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Learning to Transfer Heterogeneous Translucent Materials from a
2D Image to 3D Models

Anonymous Authors

Figure 1: Tranfer heterogeneous translucent materials from single images to 3D models. Our method achieves realistic material
transfer on different models based on different 2D images.

ABSTRACT
Great progress has been made in rendering translucent materi-
als in recent years, but automatically estimating parameters for
heterogeneous materials such as jade and human skin remains a
challenging task, often requiring specialized and expensive physical
measurement devices. In this paper, we present a novel approach
for estimating and transferring the parameters of heterogeneous
translucent materials from a single 2D image to 3D models. Our
method consists of four key steps: (1) An efficient viewpoint selec-
tion algorithm to minimize redundancy and ensure comprehensive
coverage of the model. (2) Initializing a homogeneous translucent
material to render initial images for translucent dataset. (3) Edit
the rendered translucent images to update the translucent dataset.
(4) Optimize the edited translucent results onto material param-
eters using inverse rendering techniques. Our approach offers a
practical and accessible solution that overcomes the limitations of

existing methods, which often rely on complex and costly special-
ized devices. We demonstrate the effectiveness and superiority of
our proposed method through extensive experiments, showcasing
its ability to transfer and edit high-quality heterogeneous translu-
cent materials on 3D models, surpassing the results achieved by
previous techniques in 3D scene editing.

CCS CONCEPTS
• Computing methodologies→ Appearance and texture rep-
resentations; • General and reference→ General conference
proceedings.

KEYWORDS
translucent materials, heterogeneous, material editing, differen-
tiable rendering, style transfer
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1 INTRODUCTION
Translucent materials, exhibiting high scattering characteristics,
are ubiquitous in our daily lives, ranging from precious jewels to the
intricate cellular structures found in biological organisms. These
materials play vital roles across a multitude of applications. The
rendering of such translucent materials has witnessed remarkable
progress through physically based rendering techniques [33] , in-
cluding path tracing [20] and volumetric path tracing [32] models,
seamlessly integrated into rendering engines like Mitsuba3 [18],
among others.

While rendering materials have matured, parameter estimation
for these materials has historically involved manual adjustments
[18, 31], consuming substantial time and financial resources. Efforts
to automate this process have been ongoing [6, 8, 13, 24, 25], but
they are limited to homogeneous materials and struggle to extend
to heterogeneous ones like jade, marble, or human skin. The latter
is characterized by heterogeneity, surface microstructure, and short
scattering mean free paths, making manual estimation impractical.

Addressing the challenge of parameter estimation for heteroge-
neous translucent materials, some researchers resort to physical
measurement instruments [9, 14, 37, 41, 43, 44]. However, this ap-
proach is specialized and costly, limiting its accessibility for ordi-
nary consumers or general computer graphics applications.

Recently, InverseTranslucent [5] introduced a 3D reconstruction
method for translucent objects using low-cost handheld acquisition
setups. This approach effectively estimates material parameters
through integrating multi-view images and a translucent differen-
tiable renderer. Nevertheless, limitations exist, including the need
for fixed lighting conditions during image acquisition and the man-
ual collection of multi-view images, restricting their applicability.

In this paper, we propose a novel method for transferring hetero-
geneous translucent materials from a single image. As illustrated
in Figure 1, our approach enables the direct estimation of relevant
parameters under natural lighting conditions and seamlessly trans-
fers the material onto a 3D model. To begin, we strategically select
sparse viewpoints that minimize redundancy while ensuring com-
prehensive coverage of the model. Utilizing a translucent renderer,
we render translucent initial images from the selected sparse view-
points. Subsequently, we perform material transfer sequentially on
single-view rendered images, effectively transferring the heteroge-
neous translucent material to the initial image. This approach suc-
cessfully preserving the structure and light properties of the initial
image while accurately transferring the heterogeneous translucent
materials. Inspired by the work of Instruct-NeRF2NeRF [15], we
introduce an innovative iterative editing-optimization strategy. By
iteratively editing and performing inverse rendering, we update the
edited translucent results onto the 3D model, ensuring consistency
and coherence in our multi-view material editing results. In sum,
our contributions include:

• Proposal of a method for transferring heterogeneous translu-
cent materials based on a single image.
• Design of a translucent material transfer editor preserving
both lighting and structure, enabling high-quality material
transfer for 3D models with initialized translucent materials.

• Introduction of an iterative editing-optimization strategy
ensuring consistency in material editing for heterogeneous
translucent materials across multiple viewpoints.

2 RELATEDWORK
2.1 Translucent Rendering
Achieving realistic translucent rendering involves simulating the
scattering and transmission of light through the material. The Bidi-
rectional scattering surface reflectance distribution function (BSS-
RDF) is generally used to simulate subsurface scattering effects.
Jensen et al. [19] proposed a practical dipole model that can be
effectively used in sampling techniques for conventional ray trac-
ers to represent materials scattered by homogeneous subsurfaces.
Donner et al. [8] combines photon tracing with diffusion to ef-
ficiently render highly scattering translucent materials, and also
accounting for internal blockers, complex geometry, translucent
inter-scattering, and transmission and refraction of light at the
boundary causing internal caustics. d’Eon et al. [6] presents a new
analytic BSSRDF for scattering within multilayer translucent ma-
terials with arbitrary levels of absorption and under all-frequency
illumination which creates accurate results under high-frequency
illumination. Vicini et al. [42] proposed a new shape-adaptive BSS-
RDF model that retains the efficiency of prior analytic methods
while greatly improving overall accuracy. InverseTranslucent [5]
accounts for both surface reflection and subsurface scattering to
represent translucency using a BSSRDF model. Neural rendering
is gaining increasing popularity due to its exceptional fitting capa-
bilities. Suhail et al. [39] combines the strengths of classical light
field rendering and geometric reconstruction methods, learning to
accurately represent view-dependent effects like translucency from
a sparse set of views by operating on a 4D light field representation.
Yu et al. [45] proposed Object-Centric Neural Scattering Functions
(OSFs) for learning to reconstruct the appearance of opaque and
translucent objects.

2.2 Differentiable Rendering
Simulating the appearance of translucent materials requires accu-
rate physical parameters. However, obtaining physically accurate
parameters for scattering materials remains a challenging task. Dif-
ferentiable rendering algorithms strive to estimate partial deriva-
tives of pixels in a rendered image with respect to scene param-
eters, which is difficult because visibility changes are inherently
non-differentiable. Certain methods [16, 29, 47] employ path trac-
ing based on Monte Carlo estimation, and by enabling differen-
tiable rendering, they obtain physically-based material estimates
from real images. Neural-PBIR [40] introduce a neural material
and lighting distillation stage to achieve high-quality predictions
for material and illumination and perform physics-based inverse
rendering (PBIR) to refine the initial results and obtain the final
high-quality reconstruction. For translucent materials, Gkioulekas
et al. [13] combine stochastic gradient descent with Monte Carlo
rendering and a material dictionary to invert the radiative transfer
equation and measure scattering properties. Then, Gkioulekas et al.
[12] tackling the problem of heterogeneous inverse scattering from
simulated measurements of different computational imaging con-
figurations. InverseTranslucent [5] uses a differentiable subsurface
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scattering renderer to represent translucency with a heterogeneous
BSSRDF, leveraging low-cost handheld acquisition setups. Li et al.
[25] used a physically-based renderer and a neural renderer to esti-
mates homogeneous subsurface scattering parameters from only a
pair of captured images of a translucent object.

2.3 Material Editing
Automated manipulation of surface materials in 3D models plays
a vital role in 3D modeling, enabling users to modify and control
the appearance of the models’ surfaces. Khan et al. [22] present
a method for automatically replacing one material with another,
completely different material with only a single high dynamic range
image as input.The transformations range from applying a texture
to the surface of an object, to the application of any arbitrary BRDF.
Subedit [38] decouples the BSSRDF non-local scattering effect into
the product of two local scattering profiles, enabling a method
for editing heterogeneous subsurface scattering materials obtained
from real-world samples. Liu et al. [26] proposes an end-to-end
network for image-based material editing, replicating the forward
image formation process. Diffusion models are becoming increas-
ingly popular in 3D generation. By combining diffusion models
and differentiable rendering, text-guided material generation and
editing have become highly effective [27, 35]. Unlike the explicit
representation of the surface in 3D models, NeRF can implicitly rep-
resent models or scenes. Instruct-Nerf2Nerf [15] propose a method
for editing NeRF scenes using text instructions.

Transferring materials using images is a challenging task. For
image-based material editing, editing a single image becomes a cru-
cial step. Given a reference image, convolutional neural networks
(CNNs) can be used to transfer the style from the reference image
to a content image [11, 30]. Inspired by style transfer, StyleGAN
[21] generates images by manipulating latent vectors. Hyperstyle
[1] inverts real images into the latent space, enabling real image
editing. Recently, large-scale text-driven generative models have
received widespread attention for their ability to generate highly
diverse images based on given text prompts. Prompt-to-Prompt
[17] controls editing solely through text, enabling local edits by
replacing words. VCT [4] utilizes inversion techniques with a refer-
ence image to translate visual concepts while preserving the source
image’s content. InstructPix2Pix [2] is a method for instructional
image editing that can apply specific styles to the edited image.

3 METHODS
The methodological overview is presented in Figure 2. First, the
Efficient Viewpoints Selection (Section 3.2) method is employed to
select multiple viewpoints that capture images of the 3D model, en-
suring the selected viewpoints minimize redundancy and cover the
entire surface of the model. Subsequently, a translucent material
is initialized homogeneously for the 3D model. We use translu-
cent differentiable renderer (Section 3.3) to render initial images
from the selected viewpoints, and these images constitute the ini-
tial translucent dataset. After initialization, an iterative process is
then undertaken, involving an image editing process and an in-
verse rendering process, to update the translucent dataset and the
translucent materials:

Figure 2: An Overview of our method. Our method achieves
translucent material editing through iterative updates of
the translucent dataset: (1) Efficient viewpoint selection for
rendering. (2) Translucent material and dataset initializa-
tion. (3) Editing translucent rendered images and updating
the translucent dataset. (4) Inverse rendering of translucent
dataset images to optimize material parameters.

The image editing process (Section 3.4) utilizes the translucent
initial images as the structure and lighting conditions, and a style
image as the style and texture conditions. A proposed structure-
preserving translucent editor is employed to edit the current mate-
rial renderings, and the edited translucent results are used to update
the translucent dataset. The preliminaries (Section 3.1) provide the
techniques used in the editing model.

The inverse rendering process randomly selects images from
the translucent dataset as the supervision, and then optimizes the
material parameters by performing inverse rendering through the
translucent differentiable renderer.

Through the iterative process of our consistent translucent ma-
terial update (Sec.3.5), we alternately editing and inverse rendering
to update our translucent materials. The iterative process preserves
the structure and lighting by using the initial image and the current
image as conditions, allowing for the consistent transfer of the style
image to the translucent material.

3.1 Preliminaries
DDIM sampling: Text-guided diffusion models have beeb a widely
researched area. The primary objective of text-guided diffusion
models is to, given a randomnoise vector 𝑧𝑇 , denoise 𝑧𝑇 conditioned
on a given text 𝑃 , until obtaining an output image latent 𝑧0 that is
close to the description in 𝑃 . To this end, the network 𝜖𝜃 is trained
to predict the added noise, following the optimization objective:

min
𝜃

𝐸𝑧0,𝜀,𝑡 ∥𝜀 − 𝜀𝜃 (𝑧𝑡 , 𝑡, C)∥22 , 𝜀∼𝑁 (0, 𝐼 ), 𝑡∼Uniform(1,𝑇 ), (1)

where C represents the conditional embedding of 𝑃 , and 𝑧𝑡 is the
noisy sample with noise added according to the timestamp 𝑡 on the
original sample 𝑧0. During inference, for a given noise vector 𝑧𝑇 ,
the pre-trained network is used to sequentially predict the noise 𝜖𝜃
and remove it through 𝑇 steps, ultimately generating a clear image.
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The Diffusion Denoise Implicit Model (DDIM) [36] sampling is
employed to generate images, with the computation formula:

𝑧𝑡−1 =
√︂

𝛼𝑡−1
𝛼𝑡

𝑧𝑡 +
(√︂

1
𝛼𝑡−1

− 1 −
√︂

1
𝛼𝑡
− 1

)
· 𝜀𝜃 (𝑧𝑡 , 𝑡, C), (2)

where 𝛼𝑡 is the noise scaling factor sequence defined by the dif-
fusion process, which describes the relative strength of the noise
at each step as it transitions from a completely noisy state to the
original data distribution.
Classifier-free Guidance: Classifier-free Guidance (CFG) is a key
technique to control the influence of the text condition on the
image generation process, without relying on a separate text classi-
fier model. CFG introduces an additional unconditional prediction
𝜀𝜃 (𝑧𝑡 , 𝑡,∅), which ∅ represents an empty text embedding. The final
noise prediction used for denoising is then a weighted average of
these two predictions:

𝜀𝜃 (𝑧𝑡 , 𝑡, C,∅) = 𝜔 · 𝜀𝜃 (𝑧𝑡 , 𝑡, C) + (1 − 𝜔) · 𝜀𝜃 (𝑧𝑡 , 𝑡,∅). (3)

The weighting factor𝜔 , known as the guidance scale, determines
how much the final prediction is influenced by the text condition
versus the unconditional generation.
DDIM Inversion: DDIM Inversion is a complementary technique
that allows for the reconstruction of the initial noise latent from
an existing image. This capability enables the editing of generated
images by manipulating the recovered noise latent.

DDIM Inversion takes the final noisy image encoding 𝑧𝑇 and
works backwards through the denoising steps to recover the initial
noise encoding 𝑧0 that was used to generate that image, which can
be formulated as:

𝑧𝑡+1 =
√︂

𝛼𝑡+1
𝛼𝑡

𝑧𝑡 +
(√︂

1
𝛼𝑡+1

− 1 −
√︂

1
𝛼𝑡
− 1

)
· 𝜀𝜃 (𝑧𝑡 , 𝑡, C) . (4)

Here, 𝑧𝑡 represents the noise encoding at each step 𝑡 , 𝛼𝑡 is a noise
scaling factor, and 𝜀𝜃 (𝑧𝑡 , 𝑡, C) is the noise prediction made by the
diffusion model, conditioned on the current encoding 𝑧𝑡 , timestep
𝑡 , and any relevant conditioning information C (e.g. a text prompt).
Attention Control The attention control mechanism, proposed
by Prompt-to-Prompt [17], aims to replace the attention maps in
the diffusion process using the following formula:

𝐸𝑑𝑖𝑡 (𝑀𝑡 , 𝑀
∗
𝑡 , 𝑡) :=

{
𝑀∗𝑡 if 𝑡 < 𝜏

𝑀𝑡 otherwise,
(5)

where𝑀𝑡 is the original attention map,𝑀∗𝑡 is the edited attention
map, and 𝜏 is a timestamp parameter that determines the step until
which the attention map replacement is applied. This soft attention
constraint allows the method to preserve the original composition
in the diffusion steps, while enabling more targeted editing.

3.2 Efficient Viewpoints Selection
Existing methods for generating geometric and material properties
based on diffusion models typically use either a large range of ran-
dom viewpoints (e.g., DreamFusion [34], Fantasia3D [3]) or fixed
viewpoints (e.g., TEXTure [35], Instruct-Nerf2Nerf [15]). While ef-
fective, these approaches suffer from either excessive redundancy
(random viewpoints) or lack of adaptability and reliability (fixed

Figure 3: Visualization of EVS’s coverage. We render a UV
color map from each selected viewpoint to show efficiency.
After several selection, the viewpoints almost covered the
entire surface of the bunny.

viewpoints) for our translucent material transferring task. To ad-
dress these issues and satisfy our requirement of covering the vast
majority of the surface with only a few viewpoints. we propose a
method called Efficient Viewpoints Selection (EVS), which consists
of two steps:
Viewpoint Sampling: We first normalize the geometry of the
mesh, then sample points on the mesh surface. For each sampled
point, we define a corresponding viewpoint as the intersection
between the surface normal at that point and a bounding sphere of
radius 2 around the model. We set the camera orientation to point
from each viewpoint towards its associated surface sample point
and get sampled viewpoints 𝑉𝑠𝑎𝑚𝑝𝑙𝑒𝑑 .
Viewpoint Selection: For each candidate viewpoint 𝑣𝑖 in𝑉𝑠𝑎𝑚𝑝𝑙𝑒𝑑 ,
we devide the surface of mesh into 𝑆𝑛𝑒𝑤 (new captured surface)
and 𝑆𝑜𝑡ℎ𝑒𝑟𝑠 (uncaptured or already captured surface). Then we
render an image which the the pixel of 𝑆𝑛𝑒𝑤 set to 1 and 𝑆𝑜𝑡ℎ𝑒𝑟𝑠
set to 0. We then evaluate the quality of each viewpoint using a
scoring function that aims to maximize the coverage of surface at a
fine angle. The scoring function is defined as:

𝑆𝑐𝑜𝑟𝑒 (𝑣𝑖 ) =
∑
𝑃𝑣𝑎𝑙𝑢𝑒=1

𝐴(𝑆𝑛𝑒𝑤)
←, 𝑣𝑖 ∈ 𝑉𝑠𝑎𝑚𝑝𝑙𝑒𝑑 . (6)

where 𝑆𝑐𝑜𝑟𝑒 (𝑣𝑖 ) is the score of the 𝑖-th viewpoint, 𝑃 (𝑣𝑎𝑙𝑢𝑒=1) is pixel
with a value of 1 in rendered image (representing new captured
surface), and 𝐴(𝑆new) is the total area of the new captured surface
from the current viewpoint.

By calculating this scoring function for each candidate viewpoint
and iteratively selecting the viewpoint with the highest score, the
algorithm can efficiently choose a set of viewpoints 𝑉𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 that
cover nearly the entire surface of the 3D model, as demonstrated
in Figure 3, the selected viewpoints after several iterations can
cover nearly the entire surface of the bunny, demonstrating the
effectiveness of our algorithm.

3.3 Translucent Differentiable Rendering
InverseTranslucent[5] introduced an end-to-end approach to si-
multaneously estimate the complex geometry and heterogeneous
translucent properties of translucent objects from photographs
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using inverse rendering techniques. This method uses a heteroge-
neous BSSRDF to represent translucency, and extends the frame-
work of Path-Space Differentiable Rendering (PSDR) [46] to ac-
commodate both surface reflection and subsurface scattering. The
following integral formula is used to simulate the subsurface light
transport problem:

𝐿𝑜 (x0, 𝜔0) =
∬

𝜌𝑠 (x𝑜 , x𝑖 , 𝜔𝑜 , 𝜔𝑖 )𝐿𝑖 (x𝑖 , 𝜔𝑖 ) | cos𝜃𝑖 |d𝐴d𝜔𝑖

+
∫

𝜌r (x0, 𝜔0, 𝜔𝑖 )𝐿𝑖 (x0, 𝜔𝑖 ) | cos𝜃𝑖 |d𝜔𝑖 .

(7)

Here, the outgoing radiance 𝐿𝑜 is the combined result of subsurface
scattering and surface reflection. 𝜌𝑟 represents the BRDF model,
calculating the surface reflection contribution at x𝑜 . 𝜌𝑠 represents
the BSSRDF model, calculating the subsurface light transport con-
tribution from incident light at x𝑖 in direction 𝜔i to the outgoing
direction at x𝑜 . The BRDF model describes the scattering behav-
ior of light on rough surfaces, parameterized by the GGX distri-
bution with surface roughness 𝛽 and refractive index 𝜂. For the
BSSRDF model, the practical dipole model proposed in [19] is used
to compactly represent homogeneous subsurface scattering materi-
als. Spatially-varying parameters following [38] are introduced to
model heterogeneity, with parameters including scattering albedo 𝛼
and extinction coefficient 𝜎t. These physical parameters can be rep-
resented either as single values or as textures, collectively referred
to as the parameter vector 𝜋 .

To optimize the parameter vector 𝜋 , the loss function 𝑔(I(𝜋))
is minimized. To effectively optimize the model in the presence of
Monte Carlo noise introduced by the BSSRDF integral, a dual-buffer
method is employed to evaluate L2 image loss:

𝑔(I(𝜋)) = (I1 (𝜋) − Iref ) (I2 (𝜋) − Iref ). (8)

This provides an unbiased estimate of the difference between the
rendered image I(𝜋) generated based on parameters 𝜋 and the
reference image Iref . It effectively computes the loss value based on
two Monte Carlo estimates, helping to reduce potential gradient
estimation bias caused by correlations between a single rendering
and its derivatives, even when using low sampling rates to ensure
correct convergence of the optimizer.

In contrast to InverseTranslucent [5], our optimization process
fixed the 3D model’s geometric parameters and updated only the
material-related parameters. We employed the translucent differen-
tiable renderer to perform rendering and inverse rendering.

3.4 Translucent Style Image Transfer
Pivot Turning Inversion: A key challenge with standard DDIM
inversion is the accumulated error when using CFG in text-guided
diffusion models. The CFG guidance scale 𝜔 amplifies this error,
leading to visual artifacts. The key idea of Pivot Turning Inversion
(PTI) is to modify the unconditional embedding 𝜑𝑡 associated with
each timestamp 𝑡 to better match the given image and reduce error.

PTI inverts the initial image 𝑥𝑖𝑛𝑖𝑣𝑖
and the current rendered image

𝑥𝑐𝑢𝑟𝑣𝑖
in viewpoint 𝑣𝑖 . Taking the inversion of 𝑥𝑐𝑢𝑟𝑣𝑖

as an example:
PTI optimizes the unconditional embedding 𝑣𝑐𝑢𝑟𝑡 at each timestamp
𝑡 to minimize the distance between the ground-truth noise-free
latent 𝑧𝑐𝑢𝑟0 and the denoised latent 𝑧0 (𝑧𝑐𝑢𝑟𝑡 , 𝑣𝑐𝑢𝑟𝑡 ) estimated by the

Figure 4: Our structure-preserving translucent editor for im-
age editing. The editor transfers the style image to the current
rendered image while preserving the structure and lighting
conditions of the initial image.

pre-trained model:
min
𝑣𝑐𝑢𝑟𝑡

∥𝑧𝑐𝑢𝑟0 − 𝑧0 (𝑧𝑐𝑢𝑟𝑡 , 𝑣𝑐𝑢𝑟𝑡 )∥,

min
𝑣𝑖𝑛𝑖𝑡

∥𝑧𝑖𝑛𝑖0 − 𝑧0 (𝑧
𝑖𝑛𝑖
𝑡 , 𝑣𝑖𝑛𝑖𝑡 )∥.

(9)

Here, 𝑧𝑐𝑢𝑟0 is the noise-free latent of the editing image 𝑥𝑐𝑢𝑟𝑣𝑖
, and

𝑧0 (𝑧𝑐𝑢𝑟𝑡 , 𝑣𝑐𝑢𝑟𝑡 ) is the denoised latent estimated by the pre-trained
model. The same process is applied to 𝑥𝑖𝑛𝑖𝑣𝑖

. This approach learns
an unconditional embedding that can perfectly reconstruct the
inverted image with the initial noise latent.
Multi-concept Inversion: Multi-concept Inversion (MCI) focuses
on learning a conditional embedding 𝜑𝑠𝑡𝑦 that extracts rich seman-
tic information from the style image 𝑥𝑠𝑡𝑦 . However, the negative
embedding used in prior methods like Textual Inversion[10] and
DreamArtist [7] are not necessary in our case, as they may conflict
with the unconditional embedding learned through PTI.

Therefore, we adopt a single positive multi-concept embedding
approach used by VCT [4]. We fix the parameters of the pre-trained
diffusion model and optimize the style embedding 𝜑𝑠𝑡𝑦 to minimize
the following objective:

L𝑙 = 𝐸𝜖,𝑡

[𝜖 − 𝜀𝜃 (𝑧𝑠𝑡𝑦𝑡 , 𝑡, 𝜑𝑠𝑡𝑦)
2
2

]
. (10)

Here, the style embedding 𝜑𝑠𝑡𝑦 represents the embedding of the
style image 𝑥𝑠𝑡𝑦 , and 𝑧

𝑠𝑡𝑦
𝑡 is the noisy latent of the style image at

each timestamp 𝑡 . The goal of this objective is to learn the style
embedding that best predicts the noise residual 𝜀, effectively cap-
turing the essential visual concepts in the style image, which can
aid our transfer process.
Structure-preservingTranslucent Editor:The proposed structure-
preserving translucent editor aims to transfer the style image to the
current rendered image while preserving the structure and light-
ing conditions of the translucent initial image. The dual stream
denoising architecture employed by VCT [4], which, although ef-
fective in first editing, resulted in unstable style transfer and loss
of translucency and structural information during iterative editing.

To address these issues, we propose a structure-preserving translu-
cent editor illuminated in Figure 4. The editor utilizes two branches:

Structure preserving Branch: We use PTI to invert the initial
translucent image 𝑥𝑖𝑛𝑖𝑣𝑖

of viewpoint 𝑣𝑖 , obtaining its text embed-
ding 𝜑𝑖𝑛𝑖𝑣𝑖

and initial noise latent 𝑧𝑖𝑛𝑖
𝑇

, which are used to perfectly
reconstruct the translucent initial image. During the reconstruction
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Figure 5: Consistent Translucent Material Update. Our it-
erative editing-optimization strategy ensures consistency
in material editing for heterogeneous translucent materials
across multiple viewpoints.

process, we extract the attention maps𝑀∗𝑡 at each timestamp 𝑡 . The
denoise process of the structure preserving branch 𝐵∗ is as follows:

𝜀𝜃 (𝑧𝑖𝑛𝑖𝑡 , 𝑡, 𝜑𝑖𝑛𝑖𝑣𝑖
, 𝜑∅) = 𝜔 · 𝜖𝜃 (𝑧𝑖𝑛𝑖𝑡 , 𝑡, 𝜑∅) + (1 − 𝜔) · 𝜖𝜃 (𝑧𝑖𝑛𝑖𝑡 , 𝑡, 𝜑𝑖𝑛𝑖𝑣𝑖

),
(11)

where 𝜑∅ is the empty text embedding, and 𝜔 is the guidance scale
for CFG.

Style Transfer Branch: We also use PTI to invert the current
rendered image 𝑥𝑐𝑢𝑟𝑣𝑖

of viewpoint 𝑣𝑖 , obtaining its text embedding
𝜑𝑐𝑢𝑟𝑣𝑖

and initial noise latent 𝑧𝑐𝑢𝑟
𝑇

. Meanwhile, we use MCI to invert
the style image 𝑥𝑠𝑡𝑦 and obtain the style embedding 𝜑𝑠𝑡𝑦 . We then
use the two learned embeddings as conditions to denoise the noise
latent in the style transfer branch 𝐵:

𝜀𝜃 (𝑧𝑐𝑢𝑟𝑡 , 𝑡, 𝜑𝑐𝑢𝑟𝑣𝑖
, 𝜑𝑠𝑡𝑦) = 𝜔 ·𝜖𝜃 (𝑧𝑐𝑢𝑟𝑡 , 𝑡, 𝜑𝑠𝑡𝑦)+(1−𝜔)·𝜖𝜃 (𝑧𝑐𝑢𝑟𝑡 , 𝑡, 𝜑𝑐𝑢𝑟𝑣𝑖

),
(12)

note that the 𝜔 in the above two formulas is the same.
During the simultaneous denoising process described above, we

use the attention control mechanism in Eq.5, extracting𝑀∗𝑡 from
𝐵∗ to replace 𝑀𝑡 of 𝐵. This ensures that the structure and light
conditions of the initial image are perfectly preserved during the
style transfer.

The editing process is as follows:

𝐵∗ : 𝑧𝑖𝑛𝑖𝑇 → 𝑧𝑖𝑛𝑖𝑇−1 → · · · → 𝑧𝑖𝑛𝑖

𝐵 : 𝑧𝑐𝑢𝑟𝑇 → 𝑧𝑐𝑢𝑟𝑇−1 → · · · → 𝑧𝑐𝑢𝑟𝑡𝑔𝑡

(13)

We continuously render-edit-optimize, and during the editing pro-
cess, the structure preserving branch always uses the initial im-
age 𝑥𝑖𝑛𝑖𝑣𝑖

, while the style transfer branch’s input image iteratively
changes from current rendered 𝑥𝑐𝑢𝑟𝑣𝑖

, and the edited result 𝑥𝑡𝑔𝑡𝑣𝑖 ,
gradually achieving global consistency with the style image across
multiple viewpoints.

3.5 Consistent Translucent Material Update
Editing the rendered translucent images only once may generate
good results, but could lead to inconsistencies across multiple view-
points, where some edited images do not perfectly transfer the style
and remain close to the originals. Instruct-Nerf2Nerf [15] adopts

Figure 6: Material Initialize. We present edited results with-
out translucent material initialization under different style
images and compare them with our results. In contrast, our
edited results with translucent material initialization better
preserve translucent details.

an iterative editing approach, alternately updating the dataset to
achieve consistent NeRF scene editing. Inspired by this alternating
update strategy, our method uses iterative editing to update the
translucent dataset. Our structure-preserving translucent editor
ensures stability across multiple edits, preventing "drift" and loss
of structure and translucency information during the iterative ma-
terial updates. Figure 5 shows our iterative editing-optimization
strategy for heterogeneous translucent materials across multiple
viewpoints.
Translucent Material Initialization: Material initialization is
crucial as it determines the optical information. As most semantic
information is concentrated in non-black areas, and higher color
values are more easily perceived by the attention mechanisms of
diffusion models, our translucent initialization meets the require-
ment of preserving only structure and lighting for material transfer.
Opaque materials are unable to capture translucency details due to
the lighting model’s inability to describe subsurface scattering. As
demonstrated in Figure 6, without translucent initialization, edited
results clearly lose translucency details under the same lighting
and viewing conditions compared to renderings with translucent
initialization, which achieve high-quality texture transfer while pre-
serving initial lighting. The detail of our translucent initialization
is in Section 4.1.

The translucent dataset, denoted as 𝐷𝑇 , is designed to facilitate
the transfer of materials from 2D to 3D. Initial rendered images
𝑥0𝑣𝑖 are rendered for each viewpoint, and this collection forms the
initial translucent dataset 𝐷𝑇 .
Iterative Translucent Dataset Update: After initializing the
translucent dataset 𝐷𝑇 , an iterative update process is performed,
alternating between the translucent style image style transfer 𝐸
and the translucent material parameters optimization 𝑂 .

In process 𝐸, the current image 𝑥 𝑗𝑣𝑖 in 𝑗-th iteration is rendered
and edited to obtain 𝑥 𝑗𝑡𝑔𝑡 , which updated the𝐷𝑇 . During the process,
𝐷𝑇 transitions from the old state to the new state. Next editing
process will edit current image rendered in next view (𝑣𝑖 → 𝑣𝑖+1).



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Learning to Transfer Heterogeneous Translucent Materials from a 2D Image to 3D Models ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

In process 𝑂 , an image from 𝐷𝑇 is randomly selected for super-
vision, and the translucent parameters are optimized through a
differentiable renderer using inverse rendering.

The combination of the 𝐸 and 𝑂 allows for the gradual refine-
ment of 𝐷𝑇 . By alternating between these processes, the material
properties are iteratively updated to match the desired style while
maintaining consistency across different viewpoints. This iterative
editing-optimization strategy ensures consistent material editing
for heterogeneous translucent materials across multiple viewpoints.

4 RESULTS
Figure 1 shows the results of our method of editing various standard
models with different style images. The selected results can be found
in the appendix. Our method accomplishes numerous challenging
edits, including those involving semitransparent materials like jade
and marble found in nature. We elaborate on the implementation
details of our method in Section 4.1. In Section 4.2, we qualitatively
compare our approach with renowned works such as 𝑆𝑡𝑦𝑇𝑅2 [5],
Artflow [23], and InstructPix2Pix [2] in image-to-image (I2I) tasks.
To validate our method, we conducted ablation experiments against
a set of ablative baselines in Section 4.3.

4.1 Implementation details
Our work was conducted with the following specifications: The
translucent renderer was performed at a resolution of [512, 512]
pixels, and the field of view (FOV) was set to 45 degrees. In the
rendered scene, a pinhole camera was placed on a sphere with a
radius of 2, and a point light was utilized, positioned around the
camera at a distance of 0.2. The power of the point light was set to
20000. To enhance rendering precision, the entire scene was scaled
by a factor of 10.

For our translucent material initialization, the extinction coef-
ficient 𝜎𝑡 , which describes light attenuation through the medium,
was initialized to [1.5, 1.5, 1.5], a value close to that commonly
observed in translucent materials. Higher values of 𝜎𝑡 indicate
stronger absorption and scattering, resulting in faster decay. The
scattering albedo 𝛼 , which represents the probability of light scat-
tering at a location in the medium, was initialized to [0.9, 0.9, 0.9].
All these parameters were presented in the form of textures with a
resolution of [512, 512] pixels.

A total of 500 iterations were conducted during the optimization
process, which took approximately 18 minutes on two NVIDIA
3090 GPUs. For the optimization process, the same loss function as
InverseTranslucent [5] was used, along with an AdamW optimizer
[28]. After performing 50 optimization iterations, an editing process
was conducted. For the editing process, the style image embedding
was initially trained for 500 iterations. During the inference stage,
a cross-attention ratio of 0.2 and a self-attention ratio of 0.9 were
used.

4.2 Baseline comparisons
Comparison with image editing models. Figure 7 shows the
result of a comparison between our methods and the baseline image
editing methods. As for baselines, we selected some state-of-the-
art methods, including InstructPix2Pix, 𝑆𝑡𝑦𝑇𝑅2, and Artflow. The
results indicate that our approach can edit images while preserving

Figure 7: Comparison with other image editing methods. Our
method accurately transfers the material while preserving
the translucent information of the material. More impor-
tantly, the edited results also elegantly maintain the geomet-
ric shapes and lighting features of the models in the images.

the translucent information of the material, as well as the geomet-
ric structure of the model and lighting features. Specifically, in the
results from 𝑆𝑡𝑦𝑇𝑅2, the image editing outcome exhibits colors
similar to the style image but loses a significant amount of texture
features and translucent information. The results in Artflow retain
more texture features from the style image compared to 𝑆𝑡𝑦𝑇𝑅2 but
still fall short of the desired effect. In the results of InstructPix2Pix
with Multi-concept inversion, the method effectively preserves the
texture details from the style image by employing multi-concept
inversion to generate concept embeddings representing complex
visual concepts. Moreover, the results demonstrate the ability to
retain translucent information and lighting features. However, re-
grettably, this method loses the geometric structure of the model
in the image.
Comparison with 3D editing models. We compare our method
with other 3D model editing approaches. As for baselines, we se-
lected prominent methods in 3D scene editing, including Instruct-
NeRF2NeRF [15]. Figure 8 shows the results of ourmethod alongside
those of the baseline methods on 3D models. NeRF2NeRF performs
editing on NeRF scenes guided by text instructions, but its output
exhibits limitations in expressing surfaces with complex materials.
In an effort to improve the outcomes, we substituted the image
editing method in Instruct-Pix2Pix [2] from NeRF2NeRF with other
image editing techniques. However, since NeRF2NeRF is primarily
trained on 3D NeRF scenes, it is evident that the baseline methods
based on NeRF2NeRF and its variants still encounter difficulties in
editing the translucent materials. Nevertheless, our method suc-
cessfully transfer the style image to the 3D model’s translucent
material with consistence.
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Figure 8: Comparison with other 3D scene editing methods.
Comparison with variants of various 3D scene editing meth-
ods. The bunny and chair models are edited using images
with jade and apophyllite materials. Our results effectively
preserve the texture details and translucent information of
the style images.

4.3 Ablation
In order to verify the necessity of each component in our method,
we conducted ablation studies. The qualitative differences are shown
in Figure 9:
Dense view update. In this baseline, we do not employ our effi-
cient viewpoint selection method to select high-quality viewpoints.
Instead, we obtain dense and uniform viewpoints around the model.
Images from all viewpoints are edited only once, and all participate
in iterative training. From the results, dense viewpoints lead to the
averaging of texture features in the final iteratively edited outcome,
causing a loss of material features.
One time update. The next method adopts a strategy of updating
the dataset only once. In this baseline, we first use the efficient
viewpoint selection method to choose good viewpoints, but during
iterative dataset updates, we edit the rendering images of each view-
point only once. Results indicate that a single edit is not sufficient
to extract the features from the style image.
Iterative update. Building upon the One-time update approach,
we adopt the strategy from Instruct-NeRF2NeRF [15] to iteratively
edit the translucent dataset. However, during the editing process,
we refrain from using the initial image. Although this method can
produce decent editing results, the outcome lacks a significant
amount of translucent information in the absence of the initial
image. This experiment highlights the importance of the structure
preserving branch of our structure-preserving translucent editor.

Figure 9: Ablation study results. We compare our method
with a collection of variants described in Section 4.3. Dense
view update shows the results of editing with uniformly
dense viewpoints; One-time update presents the outcome
of a single-time editing strategy; Iterative update displays
the results of iterative editing without utilizing initialized
translucent input.

5 CONCLUSION
This paper introduces an innovative method for estimating param-
eters of heterogeneous translucent materials from a single image,
enabling direct parameter estimation under natural lighting con-
ditions and material transfer onto a 3D model. Our contributions
encompass a novel single-image-based transfer method for het-
erogeneous translucent materials, a translucent material transfer
editor preserving lighting and structure, and an iterative editing
approach ensuring consistency across multiple viewpoints. Despite
the practical and accessible nature of our approach, overcoming
limitations of existing methods, there are some constraints. Recov-
ering the geometry and appearance of translucent objects from
sparse views under strong illumination remains a challenge, re-
quiring further improvement in our method’s learning capability
for materials occluded by highlights. Additionally, our algorithm
currently lacks support for scene-level 3D editing under ambient
lighting. Despite these limitations, we believe our method marks a
significant step in 3D object material editing, offering new possibil-
ities for 3D modelers and artists to efficiently transfer translucent
materials onto 3D models.
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