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Figure 1: Overview of MONICA. The benchmark is meticulously designed for the evaluation of the
generalization of various long-tailed learning methodologies on medical image classification. We
also develop a unified, well-structured codebase integrating over 30 methods developed in relevant
fields and evaluate which on 12 long-tailed medical datasets covering 6 medical domains.

ABSTRACT

Long-tailed learning is considered to be an extremely challenging problem in
data imbalance learning. It aims to train well-generalized models from a large
number of images that follow a long-tailed class distribution. In the medical
field, many diagnostic imaging exams such as dermoscopy and chest radiography
yield a long-tailed distribution of complex clinical findings. Recently, long-tailed
learning in medical image analysis has garnered significant attention. However, the
field currently lacks a unified, strictly formulated, and comprehensive benchmark,
which often leads to unfair comparisons and inconclusive results. To help the
community improve the evaluation and advance, we build a unified, well-structured
codebase called Medical OpeN-source Long-taIled ClassifiCAtion (MONICA),
which implements over 30 methods developed in relevant fields and evaluated on
12 long-tailed medical datasets covering 6 medical domains. Our work provides
valuable practical guidance and insights for the field, offering detailed analysis
and discussion on the effectiveness of individual components within the inbuilt
state-of-the-art methodologies. We hope this codebase serves as a comprehensive
and reproducible benchmark, encouraging further advancements in long-tailed
medical image learning. The codebase will be publicly available on GitHub.

1 INTRODUCTION

The deep learning techniques have proven effective for most computer vision tasks benefiting from
the grown-up dataset scale (Deng et al., 2009; Dosovitskiy et al., 2020; He et al., 2016). However,
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training a well-generalized deep-learning-based model is data-driven and requires a balanced data
distribution. In the real world, the collected image datasets often exhibit a long-tailed distribution
due to the complex findings and attributes (Ridnik et al., 2021; Lin et al., 2014). Models trained
from such datasets always result in the overprediction of head classes and underprediction of tail
classes (Liu et al., 2019; Zhang et al., 2023a). In the medical domain, medical image datasets are
typically long-tailed because of the natural frequency of diseases in the population and the challenges
in collecting sufficient samples of rare conditions (Ju et al., 2023). However, it is vital to recognize
these rare diseases in real-world practice, as they are relatively rare for doctors and may also lack
diagnostic capacity.

To address the long-tailed class imbalance, massive deep long-tailed learning studies have been con-
ducted for natural image recognition. A recent survey (Zhang et al., 2023a) grouped existing methods
into three main categories based on their main technical contributions, i.e., re-sampling (Chawla
et al., 2002; Estabrooks et al., 2004; Liu et al., 2008; Zhang & Pfister, 2021), information augmen-
tation (Zhang, 2017; Zhong et al., 2021; Li et al., 2022) and module improvement (Kang et al.,
2020; Tang et al., 2020; Zhang et al., 2021). Class Re-sampling aims to balance the distribution
by over-sampling the minority-class samples or under-sampling the majority-class samples. Data
Augmentation aims to enhance the size and quality of datasets by applying predefined transformations
to each data/feature for model training. Module improvement aims to modify the network to better
learn from a long-tailed distribution with a specific module design. In Sec. 3.2, we will briefly
introduce these methodologies supported in our codebase as groups.

In recent years, research on long-tailed medical image classification (LTMIC) has garnered significant
attention. Current research on LTMIC is primarily focused on dermatology (Ju et al., 2022; Roy
et al., 2022; Mehta et al., 2022; Zhang et al., 2023b), ophthalmology (Ju et al., 2021; 2023; Li et al.,
2024), and radiology (Holste et al., 2022; 2024; Jeong et al., 2023), where more abundant datasets
and well-defined diagnostic tasks are available. However, these methods are often evaluated under
varying experimental settings, making it difficult to comprehensively compare and select the best
approach for practical applications. This challenge is further compounded by the lack of standard
benchmarks and pipelines. Overall, these works may share common shortcomings, which arise from
the following factors. 1) Datasets. Existing works on LTMIC are evaluated on different datasets.
Despite the specialized nature of medical data, we are still curious to explore whether there are highly
generalizable methods that can perform well across different datasets, tasks, or medical domains. 2)
Partition Schemes. The partition schemes are vita important for long-tailed learning to ensure a fair
comparison and metric evaluation. For example, in natural image long-tailed learning, although the
training data follows a long-tailed distribution, the test set is often balanced. However, in medical
imaging, the test set typically mirrors the distribution of the training set. As a result, relying solely
on overall accuracy may not accurately reflect the performance of trained models. 3) Comparison
Methodologies The methodologies used for comparing different approaches in LTMIC can vary
significantly, which adds another layer of complexity when trying to assess their effectiveness. Due to
the lack of standardized comparison practices, such as consistent use of baseline models, evaluation
metrics, and reporting standards, it becomes challenging to draw meaningful conclusions across
studies. Furthermore, the varying availability of codes and experiment replication further hinder the
transparency of fair comparison and the ability to establish a clear understanding of which methods
are truly superior. These inconsistencies highlight the need for more unified and comprehensive
comparison methodologies in future research.

Our main contributions are summarized as follows: (1) We introduce MONICA, the first compre-
hensive LTMIC benchmark, where 30+ methodologies from relevant fields are impartially evaluated
from scratch across 12 long-tailed medical datasets spanning 6 medical domains. This benchmark
covers datasets with varying scales, granularity, and imbalance ratios, offering a robust framework
for researchers to objectively assess their models against a wide array of baselines, providing a
clear measurement of each method’s effectiveness. (2) We developed a well-structured codebase
specifically for customized LTMIC. The framework is modular, featuring decoupled components such
as augmentations, well-known backbones, loss functions, optimization strategies, and distributed
training. This codebase offers best practices for researchers and engineers to identify applicable
methodologies for both pre-defined benchmarks and their own customized datasets. (3) We per-
formed extensive empirical analyses and gave a detailed discussion on valuable insights that suggest
promising directions for methodological and evaluation innovations in future LTMIC research.
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2 SUPPORTED TASKS, BENCHMARKS, AND METRICS

2.1 PROBLEM DEFINITION AND SUPPORTED TASKS

LTMIC seeks to learn a deep neural network model from a training dataset with a long-tailed class
distribution. Let {xi, yi}ni=1 be the long-tailed training set, where each sample xi has a corresponding
class label yi. The total number of training set over K classes is n = ΣK

k=1nk, where nk denotes
the data number of class k; let π denote the vector of label frequencies, where π = nk

n indicates the
label frequency of class k where ρ denoted as imbalance ratio ρ = n1

nk
. Without loss of generality, a

common assumption in long-tailed learning is when the classes are sorted by cardinality in decreasing
order (i.e., if i1 < i2, then ni1 > ni2 , and n1 ≫ nk ). For a multi-label setting, the class label yi
would be a set of Bernoulli distribution yi ∈ {0, 1}k. Label cardinality LCard(S) =

1
nΣ

n
i=1|yi| is

commonly used to describe the degree of label co-occurrence in a multi-label dataset. In this context,
MONICA is developed to support the training and evaluation of both single-label / multi-class (MC)
and multi-label (ML) long-tailed learning on conducted benchmarks and customized datasets.

2.2 BENCHMARKS AND DATASETS

Table 1: Comparison, partition, and statistics of datasets across various medical specialties.

Dermatology Ophthalmology Radiology Pathology Hematology Histology Gastroenterology
Dataset ISIC-2019-LT DermaMNIST ODIR RFMiD OrganA/C/SMNIST CheXpert PathMNIST BloodMNIST TissueMNIST KVASIR

Data Modality Dermatoscope Dermatoscope Fundus Fundus CT X-Ray Pathology Microscope Microscope Endoscope
Task MC MC ML ML MC ML MC MC MC MC

Class Number 8 7 12 29 11 14 9 8 8 14
Imbalance Ratio 100 / 200 / 500 100 80 310 100 33 100 100 100 20
Train Samples 10,322 / 9,400 / 8,494 6,964 7,000 1,920 16,597 / 7,712 / 9,146 178,731 29,276 4,809 109,532 4,656

Validation Samples 400 1003 1,000 640 6,491 / 2,392 / 2,452 44,683 10,004 1,712 23,640 700
Test Samples 800 2005 2,000 640 17,778 / 8,216 / 8,827 243 7,180 3,421 47,280 1400
Group Split 2 / 5 / 8 1 / 5 / 7 3 / 9 / 12 6 / 14 / 29 3 / 6 / 11 4 / 10 / 14 2 / 5 / 9 3 / 5 / 8 3 / 5 / 8 4 / 8 / 14

To address the challenge of long-tailed medical image classification, we conducted our bench-
mark on 12 datasets covering Dermatology (ISIC-2019 (Tschandl et al., 2018), Dermamnist (Yang
et al., 2023)), Ophthalmology (ODIR (ODIR), RFMiD (Quellec et al.)), Radiology (Organamnist,
Organamnist, Organamnist (Yang et al., 2023), CheXpert (Irvin et al., 2019)), Pathology (Pathm-
nist), Hematology (Bloodmnist), Histology (Tissuemnist) (Yang et al., 2023) and Gastroenterology
(KVASIR) (Pogorelov et al., 2017). To evaluate the ability of existing methodologies under extremely
challenging imbalance conditions, some widely-used medical image datasets and tasks with fewer
than 8 categories such as Diabetic Retinopathy (Li et al., 2019) Grading are not considered.

2.2.1 DERMATOLOGY DATASETS

ISIC-2019-LT (Ju et al., 2022) is a long-tailed version constructed from ISIC-2019 Chal-
lenge (Tschandl et al., 2018), which aims to classify 8 kinds of diagnostic categories. We follow
FlexSampling (Ju et al., 2022) and sample a subset from a Pareto distribution. With k classes
and imbalance ratio r = N0

Nk−1
, the number of samples for class c ∈ [0, k) can be calculated as

Nc = (r−(k−1))
c ∗N0. We set r = {100, 200, 500} for three different imbalance levels. We select

50 and 100 images from the remained samples as validation set and test set.

DermaMNIST is created by MedMNIST (Yang et al., 2023) based on the HAM10000 (Tschandl
et al., 2018), a large collection of multi-source dermatoscopic images of common pigmented skin
lesions. The dataset consists of 10, 015 dermatoscopic images categorized as 7 different diseases,
formalized as a multi-class classification task. The original images are split into training, validation
and test set with a ratio of 7: 1: 2. We modify the training set with Pareto distribution and imbalance
ratio of r = 100. We keep the use of original validation and test set for evaluation.

2.2.2 OPHTHALMOLOGY DATASETS

Ocular Disease Intelligent Recognition (ODIR) (ODIR) is a structured ophthalmic database of
5,000 patients with age, colour fundus photographs of left and right eyes, and doctors’ diagnostic
keywords. Specifically, the ODIR dataset was originally divided into 8,000 / 1,000 / 2,000 images for
training/off-site testing / on-site testing. The classes of annotations can be divided into two levels:
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coarse and fine. There are 8 classes at the coarse level, where one or more conditions are given on a
patient-level diagnosis, resulting in a multi-label classification challenge.

RFMiD dataset (Quellec et al.) consists of 3200 fundus images captured using three different fundus
cameras with 46 conditions annotated through adjudicated consensus of two senior retinal experts.
The RFMiD dataset was originally divided into 1,920 / 640 / 640 images for training/validation/testing.
We followed the setting in the RFMiD challenge, the diseases with more than 10 images belong to an
independent class and all other disease categories are merged as “OTHER”. This finally constitutes
29 classes (normal + 28 diseases or lesions) for disease classification.

2.2.3 RADIOLOGY DATASETS

OrganA, C, SMNIST is based on 3D computed tomography (CT) images from Liver Tumor
Segmentation Benchmark (LiTS) (Bilic et al., 2023). They are renamed from OrganMNIST-
Axial/Coronal/Sagittal (in MedMNIST (Yang et al., 2023)), which uses bounding-box annotations
of 11 body organs from another study to obtain the organ labels. 2D images are cropped from the
center slices of the 3D bounding boxes in axial/coronal/sagittal views. All three datasets contain the
labeling of 11 body organs, resulting in a multi-class classification task. We modify the training set
with Pareto distribution and imbalance ratio of r = 100. We keep the use of original validation and
test set for evaluation.

CheXpert dataset (Irvin et al., 2019) is a large dataset that contains 224,316 chest radiographs with
14 kinds of observations. The training labels in the dataset for each observation are either 0 (negative),
1 (positive), or u (uncertain). For convenience, we map all uncertain instances to 0 (negative). The
original images are split into training, validation and test set with a ratio of 7: 1: 2.

2.2.4 OTHERS

PathMNIST (Yang et al., 2023) is constructed for predicting survival from colorectal cancer histology
slides, providing a dataset (NCT-CRC-HE-100K) (Kather et al., 2018) of 100, 000 non-overlapping
image patches from hematoxylin & eosin stained histological images, and a test dataset (CRC-VAL-
HE-7K) of 7, 180 image patches from a different clinical center. The dataset is comprised of 9 types
of tissues as a multi-class classification task. We modify the training set with Pareto distribution and
imbalance ratio of r = 100. We keep the use of original validation and test set for evaluation.

BloodMNIST (Yang et al., 2023) is based on a dataset of individual normal cells, captured from
individuals without infection, hematologic or oncologic disease and free of any pharmacologic
treatment at the moment of blood collection. It contains a total of 17,092 images and is organized
into 8 classes. The source dataset was originally split to a ratio of 7 : 1: 2 into training, validation and
test set. We modify the training set with Pareto distribution and imbalance ratio of r = 100. We keep
the use of original validation and test set for evaluation.

TissueMNIST (Yang et al., 2023) is based on the Broad Bioimage Benchmark Collection (Ljosa
et al., 2012). The dataset contains 236, 386 human kidney cortex cells, segmented from 3 reference
tissue specimens and organized into 8 categories. The source dataset was originally split to a ratio of
7: 1: 2 into training, validation and test set. We modify the training set with Pareto distribution and
imbalance ratio of r = 100. We keep the use of original validation and test set for evaluation.

Kvasir (Pogorelov et al., 2017) is a long-tailed dataset of 10,662 gastrointestinal tract images with 23
classes from different anatomical and pathological landmarks. We modify the original dataset with
Pareto distribution and imbalance ratio of r = 20. Those categories with images less than 50 are not
included. We select 50 and 100 images from the remained samples as validation set and test set.

3 MONICA AND SUPPORTED METHODOLOGIES

3.1 CODEBASE STRUCTURE

The whole training process here is fragmented into multiple components, including augmenta-
tion (.MONICA.dataset), sampling strategies (.MONICA.sampler), model architectures (.MON-
ICA.models), and loss functions (.MONICA.losses) etc. For instance, vision models are decoupled
into several encoders and classification heads according to different methodology designs. This
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modular architecture allows researchers to easily craft different counterparts as customized datasets
and tasks are needed. With the help of configuration files in .MONICA.configs, users can tailor
specialized visual classification models and their associated training strategies with ease.

3.2 SUPPORTED METHODOLOGIES

According to a recent survey (Zhang et al., 2023a), we group existing methods into
three main categories based on their main technical contributions, i.e., class re-sampling ,

information augmentation and module improvement . Based on factors such as the availability of
open-source code, its impact, and ease of implementation, we have selected and introduced over
30 methodologies supported in MONICA. Note that one methodology may contain more than one
of those three taxonomy and we will group them based on their primary motivation and technical
contribution when presenting them.

3.2.1 RE-SAMPLING METHODOLOGIES

Re-sampling aims to balance the distribution by over-sampling the minority-class samples or
under-sampling the majority-class samples following designed schemes. Focal loss (Lin et al.,
2017) is designed to down-weight the loss assigned to well-classified examples, focusing more on
hard-to-classify instances. Class-balanced (CB) loss (Cui et al., 2019) addresses class imbalance
by weighting the loss inversely proportional to the effective number of samples per class, thereby
reducing the impact of over-represented classes. LADE loss (Hong et al., 2021) proposed to use
them to post-adjust model outputs so that the trained model can be calibrated for arbitrary test
class distributions. LDAM loss (Cao et al., 2019) adjusts the margins for different classes based
on their label distribution, promoting larger margins for underrepresented classes to improve their
classification accuracy. EQL (Tan et al., 2020) directly down-weights the loss values of tail-class
samples when they serve as negative labels for head-class samples. Balanced softmax (Jiawei et al.,
2020) proposed to adjust prediction logits by multiplying by the label frequencies, so that the bias of
class imbalance can be alleviated by the label prior before computing final losses. VS loss (Kini et al.,
2021) intuitively analyzed the distinct effects of additive and multiplicative logit-adjusted losses,
leading to a novel VS loss to combine the advantages of both forms of adjustment.

3.2.2 INFORMATION AUGMENTATION METHODOLOGIES

Data Augmentation aims to enhance the size and quality of datasets by applying predefined transfor-
mations to each data/feature for model training. MixUp (Zhang, 2017) is proposed to improve the
model generalization but found to be effective for long-tailed learning by information shared between
head and tailed classes. MiSLAS (Zhong et al., 2021) proposed to enhance the representation learning
with data mixup in the first stage, while applying a label-aware smoothing strategy for better classifier
generalization in the second stage. RSG (Wang et al., 2021a) proposed to dynamically estimate a set
of feature centers for each class, and use the feature displacement between head-class sample features
and their nearest intra-class feature center to augment each tail sample feature. RIDE (Wang et al.,
2021b) introduced a knowledge distillation method to reduce the parameters of the multi-expert model
by learning a student network with fewer experts. GCL loss (Li et al., 2022) perturbs logits with
Gaussian noise of varying amplitudes, especially larger for tail classes. Additionally, a class-based
effective number sampling strategy with classifier re-training is proposed to mitigate classifier bias.

3.2.3 MODULE IMPROVEMENT METHODOLOGIES

Decoupling (Kang et al., 2020; Zhou et al., 2020) was the pioneering work to introduce such a
two-stage decoupled training scheme. It empirically evaluated different sampling strategies for
representation learning in the first stage and then evaluated different classifier training schemes
by fixing the trained feature extractor in the second stage. In the classifier learning stage, there
are also four methods, including classifier re-training with class-balanced sampling, the nearest
class mean classifier, the τ -normalized classifier, and the learnable weight-scaling classifier.
Range loss (Zhang et al., 2017) is designed to reduce overall intrapersonal variations while enlarging
interpersonal differences simultaneously. Causal classifier (Tang et al., 2020) resorted to causal
inference for keeping the good and removing the bad momentum causal effects in long-tailed learning.
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Table 2: The comparison study results on ISIC-2019-LT benchmark.

ISIC-2019-LT
Imbalance Ratio r = 100 r = 200 r = 500

Methods Head Medium Tail Avg. Head Medium Tail Avg. Head Medium Tail Avg.
ERM 79.00 60.67 38.33 59.33 78.50 56.67 27.00 54.06 78.00 46.67 12.67 45.78
RS 69.50 61.33 49.33 60.06 76.00 62.67 36.33 58.33 78.50 44.00 19.67 47.39
RW 68.00 55.33 53.67 59.00 73.50 54.67 41.33 56.50 62.00 38.00 34.33 44.78

Focal 73.50 54.00 44.33 57.28 79.50 53.00 31.00 54.50 83.00 44.00 13.00 46.67
CB-Focal 71.00 57.67 52.67 60.44 72.50 52.00 51.00 58.50 59.50 42.33 43.33 48.39

LADELoss 78.50 52.33 43.67 58.17 84.00 52.33 18.67 51.67 78.50 43.00 14.00 45.17
LDAM 78.50 55.67 41.67 58.61 81.50 52.33 31.00 54.94 76.50 41.33 19.33 45.72

BalancedSoftmax 62.50 54.33 61.00 59.28 77.00 53.67 55.00 61.89 62.00 49.67 41.67 51.11
VSLoss 80.00 56.33 33.67 56.67 80.50 51.00 28.67 53.39 79.00 47.67 11.00 45.89
MixUp 78.00 50.67 35.67 54.78 83.00 46.67 21.33 50.33 76.00 48.00 9.00 44.33

MiSLAS 57.50 52.33 57.67 55.83 71.50 48.33 49.67 56.50 63.50 43.00 39.33 48.61
GCL 57.50 63.33 71.33 64.06 71.00 56.67 64.33 64.00 63.50 55.00 46.00 54.83
cRT 74.50 59.67 55.67 63.28 81.00 60.00 39.67 60.22 63.50 48.33 28.00 46.61
LWS 72.50 52.67 45.33 56.83 79.50 51.33 32.67 54.50 68.00 43.33 29.67 47.00
KNN 70.00 55.67 58.67 61.44 77.00 51.33 46.67 58.33 75.00 45.33 27.33 49.22
LAP 75.00 59.33 49.33 61.22 76.50 50.67 48.00 58.39 72.00 43.67 33.00 49.56

De-Confound 79.00 52.33 47.67 59.67 82.50 52.67 24.33 53.17 72.50 45.33 9.67 42.50
DisAlign 81.00 60.00 52.33 64.44 78.00 59.67 52.33 63.33 68.50 49.33 37.33 51.72

BBN 82.50 58.33 46.00 62.28 76.50 62.33 31.00 54.94 75.50 50.67 19.00 48.39

DisAlign (Zhang et al., 2021) innovated the classifier training with a new adaptive logits adjustment
strategy. BBN (Zhou et al., 2020) proposed to use two network branches, i.e., a conventional learning
branch and a re-balancing branch, to handle long-tailed recognition. SADE (Li et al., 2021) explored
a new multi-expert scheme to handle test-agnostic long-tailed recognition, where the test class
distribution can be either uniform, long-tailed or even inversely long-tailed. SAM (Foret et al., 2020)
minimizes both loss value and loss sharpness by seeking parameters in neighborhoods.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We implement all experiments in PyTorch, ensuring a fair comparison by using unified settings with
consistent hyperparameters and architecture choices, unless otherwise specified in the paper. For
instance, we use ResNet-50 (He et al., 2016) as the primary network backbone across all methods,
modifying it as needed for certain module improvement methods like BBN. Model training is
conducted with the Adam optimizer, using a batch size of 256, a learning rate of 0.0003, and an input
size of 224×224, except for CheXpert, where the input size is 512×512. For certain methodologies,
such as SAM, we adhere to the specific optimizer and hyperparameters following the original paper.
All these designs are for the fairness and the practicality of the comparison on the benchmark. We
use top-1 accuracy to evaluate the performance of single-label datasets and mean average precision
is adopted for multi-label datasets following DBLoss (Wu et al., 2020). The main benchmark
development and testing are performed using 8 × NVIDIA RTX4090 GPUs.

4.2 MAIN RESULTS

We conducted extensive experiments on various datasets in the comparison of the state-of-the-art long-
tailed learning methods. We introduced and implemented 30+ methods but only present results for
the most relevant ones to avoid redundancy and maintain clarity. Methods with similar or suboptimal
performance were excluded to focus on those that best support our key findings within the main
motivation’s constraints.

Overall performance evaluation. Table 2 and Table 3 compare the performance of various methods
on the ISIC-2019-LT, MedMNIST, and KVASIR benchmarks under different imbalance ratios and
datasets. We group the methods as introduced in Sec. 3.2 and filter out these results which do not
outperform ERM in terms of any metrics. ERM, as a baseline, generally struggles with tail classes,
showing declining performance as imbalance increases. Re-sampling (RS) and re-weighting (RW)
methods improve tail class performance but still face challenges under extreme imbalance. Advanced
methods like GCL and MiSLAS demonstrate strong results, particularly in handling severe class
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Table 3: The comparison study results on MedMNIST and KVASIR benchmarks.

BloodMNIST DermaMNIST PathMNIST TissueMNIST
Methods Head Medium Tail Avg Head Medium Tail Avg. Head Medium Tail Avg. Head Medium Tail Avg.

ERM 97.27 97.16 82.00 92.14 95.82 61.86 44.08 67.25 98.46 99.64 83.07 93.72 64.38 62.11 23.21 49.90
RS 95.75 99.20 91.17 95.37 91.95 65.75 59.75 72.48 99.26 97.47 86.78 94.50 50.26 64.71 52.88 55.95
RW 97.39 99.04 88.14 94.86 87.32 65.31 69.19 73.94 96.62 99.74 88.57 94.97 59.72 66.15 43.44 56.44

Focal 97.09 99.42 80.75 92.42 95.08 59.60 60.57 71.75 96.38 98.66 87.51 94.18 61.89 63.17 22.07 49.04
CB-Focal 96.97 98.34 85.21 93.51 84.41 63.27 73.99 73.89 98.44 99.45 84.10 94.00 58.60 67.08 45.31 56.99

LADELoss 97.16 98.77 72.76 89.56 91.28 67.43 50.60 69.77 98.55 98.48 84.43 93.82 65.96 63.33 23.92 51.07
LDAM 96.74 98.45 87.32 94.17 92.62 63.71 53.15 69.82 97.37 98.66 86.07 94.03 63.31 64.57 14.64 47.51

BalancedSoftmax 96.55 98.13 90.71 95.13 89.41 67.35 76.61 77.79 96.39 99.54 88.42 94.78 53.86 68.41 52.91 58.39
VSLoss 96.05 97.70 86.59 93.45 92.84 64.75 49.70 69.10 98.87 98.31 83.46 93.54 66.78 61.45 21.54 49.92
MixUp 98.04 98.93 79.93 92.30 95.90 59.03 54.43 69.78 99.38 99.54 84.72 94.54 65.85 62.79 13.54 47.39

MiSLAS 93.15 99.25 81.74 91.38 65.92 67.53 75.72 69.72 96.30 98.99 88.63 94.64 42.84 64.71 49.91 52.49
GCL 96.98 99.52 90.70 95.74 68.75 73.11 90.03 77.30 96.16 99.89 87.80 94.62 64.44 69.99 33.69 56.04
cRT 97.64 99.36 87.43 94.81 88.52 73.36 70.09 77.32 93.86 99.69 90.59 94.71 59.47 67.83 38.70 55.33
LWS 90.30 75.36 1.50 55.72 44.87 7.82 1.26 17.98 59.44 32.10 23.94 38.49 59.28 33.59 0.60 31.16
KNN 93.63 95.88 83.31 90.94 85.31 66.62 59.67 70.53 93.56 99.79 89.67 94.34 54.77 55.40 51.38 53.85

De-Confound 97.14 97.49 85.10 93.24 95.08 61.54 49.25 68.62 93.45 99.85 88.53 93.94 65.32 61.35 24.34 50.34
DisAlign 97.11 98.98 88.82 94.97 85.68 66.04 75.72 75.81 96.70 97.95 91.85 95.50 50.20 59.73 60.21 56.71

BBN 96.24 98.23 89.39 94.62 91.87 70.98 64.02 75.62 98.14 98.95 90.33 95.80 58.62 69.68 43.29 57.19
OrganAMNIST OrganCMNIST OrganSMNIST KVASIR

Methods Head Medium Tail Avg. Head Medium Tail Avg. Head Medium Tail avg Head Medium Tail Avg.
ERM 82.67 78.20 68.56 76.48 93.50 59.20 65.18 72.63 88.33 56.89 66.90 70.71 95.50 93.25 60.33 83.03
RS 76.14 82.10 63.39 73.88 92.49 57.14 64.06 71.23 89.99 52.61 66.39 69.66 95.75 94.50 62.83 84.36
RW 83.79 78.89 73.55 78.74 92.20 68.91 66.84 75.98 83.01 58.68 69.60 70.43 96.75 88.75 67.67 84.39

Focal 85.08 73.19 68.88 75.72 91.98 57.02 63.36 70.79 86.24 54.93 64.77 68.65 95.75 92.00 57.67 81.81
CB-Focal 75.95 80.52 74.12 76.86 94.16 57.99 67.36 73.17 84.18 60.42 71.42 72.00 95.00 84.75 71.50 83.75

LADELoss 84.54 77.00 68.73 76.76 91.22 61.58 62.86 71.88 83.32 59.04 64.92 69.09 96.25 90.00 60.83 82.36
LDAM 82.86 76.38 70.14 76.46 90.98 61.68 69.16 73.94 86.07 58.66 68.60 71.11 96.00 89.00 63.17 82.72

BalancedSoftmax 79.45 76.48 72.79 76.24 93.58 62.68 67.61 74.62 81.44 59.27 70.05 70.26 95.25 88.25 65.83 83.11
VSLoss 81.59 81.73 67.85 77.06 94.79 61.42 67.08 74.43 86.46 58.66 66.70 70.61 96.75 92.75 62.83 84.11
MixUp 85.54 77.78 65.60 75.97 92.25 57.43 66.97 72.22 89.15 50.09 64.25 67.83 96.25 92.25 55.33 81.28

MiSLAS 73.78 73.71 67.63 71.71 84.86 51.08 64.40 66.78 74.66 52.74 69.39 65.60 94.25 85.75 71.00 83.67
GCL 75.72 83.69 77.86 79.09 94.15 60.46 68.99 74.54 88.64 62.68 73.08 74.80 96.00 93.75 65.67 85.14
cRT 83.88 76.10 67.34 75.77 92.11 63.17 67.38 74.22 88.23 58.99 69.79 72.34 95.50 88.00 68.83 84.11
LWS 84.37 35.86 7.49 42.57 44.87 7.82 1.26 17.98 59.44 32.10 23.94 38.49 95.00 87.00 61.67 81.22
KNN 79.03 78.74 68.64 75.47 88.66 56.54 65.97 70.39 85.33 54.82 66.60 68.92 95.00 91.50 67.00 84.50

De-Confound 77.50 87.72 68.87 78.03 92.56 64.81 64.58 73.98 87.03 61.35 66.07 71.48 96.25 90.50 66.50 84.42
DisAlign 80.51 78.31 69.20 76.01 93.74 62.69 72.65 76.36 88.09 58.77 66.50 71.12 95.75 89.25 68.50 84.50

BBN 74.63 77.48 67.08 73.06 91.55 63.41 63.86 72.94 87.91 59.28 71.74 72.98 95.25 89.25 70.00 84.83

imbalance, with GCL consistently showing the highest average performance across multiple datasets.
Methods like LADELoss, LDAM, and PriorCELoss are effective in improving tail performance,
while VSLoss and BalancedSoftmax also perform well, particularly in medium and head classes.
In the following sections, we will explore the factors that contribute to the effectiveness of these
methods and offer insights into best practices.

Curse of shot-based group evaluation. Improving the performance on tail and medium groups often
comes at the cost of reducing accuracy on the head group. For instance, in the ISIC dataset with an
imbalance ratio of 100, while the average performance remains similar for GCL and DisAlign, GCL
sacrifices a substantial portion of the head group’s performance (from 79.00% to 57.50%) to achieve a
superior improvement in the tail group’s performance (from 38.33% to 71.33%). While the trade-off
is inevitable, it presents an additional challenge in designing novel metrics that can globally assess
performance to meet the demands of real-world practice, particularly in complex disease systems.

Effectiveness of re-sampling across SOTAs. The primary challenge in long-tailed problems is
underfitting tail classes due to data imbalance. While resampling is a simple and straightforward
approach that shows promising improvements across various datasets and tasks. Also, it is easily
incorporated in most state-of-the-art methods along with other module improvements. In this context,
further improvements could involve replacing or combining re-sampling modules with alternative
approaches, as MONICA offers decoupled training to facilitate these explorations. Given the diverse
implementations and intersections of techniques (e.g., Focal Loss as a component in CBLoss), we
summarize their key characteristics—class weighting, modulating factors, and loss formulas—in
Table 4 to provide a comprehensive overview of how each method addresses class imbalance through
class- or instance-level sampling strategies.

MixUp can improve the feature representation MixUp (Zhang, 2017), while often included
in data augmentation strategies, does not always improve performance for long-tailed learning
when used alone, as shown in the results. However, it shows value in blending head and tail data,
facilitating knowledge transfer, reducing head class prediction confidence, and enhancing feature
encoder generalization, as evidenced in two-stage decoupling work (Zhong et al., 2021; Li et al.,
2022). MiSLAS (Zhong et al., 2021) also empirically observed that data mixup is beneficial to
feature learning but has a negative effect on classifier training under the two-stage training scheme.
Therefore, assessing MixUp based solely on performance is not fair; integrating it with other methods,
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Table 4: Overview of various loss functions based on re-sampling strategies.

Loss Function Class Weighting Modulating Factor Formula
ERM (Original Sampling) None (uses original data distribution) None CrossEntropy(logits, y)
Re-balanced Sampling 1

nc
, where nc is the number of samples in class c None CrossEntropy(logits, y) with P (y = c) ∝ 1

nc

Difficulty-based Sampling Learning difficulty, typically inverse of validation accuracy ac None CrossEntropy(logits, y) with P (y = c) ∝ 1
ac

Focal Loss Optional per-sample weighting via α (1− pt)
γ , where pt is the probability of correct classification −α(1− pt)

γ log(pt)

CBLoss The number of samples per class 1−β
1−βnc None weight × Loss(pt, y)

LADELoss Class weighting based on the number of samples per class Regularization using ReMINE to prevent overfitting −
∑

(ReMINE loss × cls weight)
LDAM Loss Margin m adjustment based on the number of samples per class None max(0,m− log(prob[c])) + regularization
PriorCELoss The class prior distribution nc

N logits = x+ log(prior) loss = CrossEntropy(logits, y)
WeightedSoftmax The normalized class probabilities weight = − log(normalized prob) + 1 CE(logits, y,weight)
BalancedSoftmax The number of samples per class, applied to logits None logits = log(softmax)− log(class distribution)
VSLoss The number of samples per class with adjustments Adjustment factors ∆ and offsets ι applied to logits CrossEntropy

(
xc

∆c
+ ιc, y

)

as seen in MisLAS and GCL, is essential. The removal of MixUp from GCL in our experiments led
to a significant performance decline, e.g, from 64.06% to 62.01% for ISIC-2019-LT with r = 100,
underscoring its crucial role.

Use two-stage training as a general paradigm. Although end-to-end training is often considered to
be elegant, addressing long-tailed problems undeniably requires distinct solutions at both the feature
and classifier levels and two-stage methods provide significant flexibility in this regard. For feature
representation, methods like mixup, as previously discussed, can enhance the representation learning,
and self-supervised learning is another potential strategy to improve the generalization of feature
encoders. At the classifier level, designing new classifiers can help correct the bias introduced by
linear layers. We will delve into these aspects in more detail later.

Dilemmas of self-supervised learning for LTMIC. SSL appears promising for addressing long-tailed
problems (Kang et al., 2021b; Cui et al., 2021), as it works without the need for label supervision,
allowing the feature encoder to obtain more generalizable feature representation. We explore the
general SSL methodologies such as MoCo (He et al., 2020), BYOL (Grill et al., 2020), SimCLR (Chen
et al., 2020), and SSL for long-tailed learning such as SCL (Khosla et al., 2020), KCL (Kang
et al., 2021a) and PaCo (Cui et al., 2021) but the performance is not satisfactory with catastrophic
performance drop. We conclude this for several reasons: (1) The amount of medical imaging data
in this study is limited, especially for a LTMIC setting, while SSL often relies on large quantities
of unlabeled data. (2) SSL typically depends on specific hyper-parameter designs/tuning such
as data augmentations, which are crucial to the second-stage fine-tuning. However, the lack of
guidance in these aspects diminishes the possibility of achieving optimal practice. We have provided
implementations of some SSL methodologies in our codebase for further modification or improvement
by researchers.

Modify classifier to reduce prediction bias. The common practice for image classification is using a
linear classifier, and the predictions can be formulated as p =Softmax(WX+b). However, long-tailed
class imbalance often results in larger classifier weight norms W for head classes than tail classes,
which makes the predictions easily biased to dominant classes. In Fig. 2, We visualize the trade-off
between shot-based group performance and weight norms. This indicates that re-sampling strategies
such as RW and CBLoss can further calibrate the classifier weight norms. GCL and DisAlign adopt
a simple normalized linear classifier with learnable parameters to scale the predictions, leading
to an optimal calibration of the weight norms. There are also some other compacted classifier
designs (Kang et al., 2020; Tang et al., 2020). Considering that different classifier designs and other
strategies, such as resampling methods, may conflict with each other, we still recommend starting
with a simple design like a normalized linear classifier in practice.

LTMIC improves out-of-distribution detection. Open Long-tailed Recognition (OLTR) extends
long-tailed learning by incorporating out-of-distribution (OOD) detection as an additional task.
Models trained on imbalanced datasets typically struggle to generalize well to tail classes, making
OLTR especially challenging due to the confusion between tail and OOD samples. To assess whether
the LTMIC methods improve OOD detection capabilities, we used the OpenOOD codebase (Yang
et al., 2022) and evaluated six in-built OOD detection methods. We used the model trained on the
OrganAMNIST dataset, using its test set as closed-set samples and ImageNet (Deng et al., 2009) as
OOD samples, each with 1,000 randomly selected images. AUROC was used as the evaluation metric
for binary classification. As shown in Fig. 3, LTMIC leads to significant performance improvements
across various OOD detection methods.

Using imbalanced validation dataset for checkpoint selection. Ideally, a balanced validation set
would be preferred for selecting the best model checkpoint, as it ensures a fairer evaluation on the
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Figure 2: The performance and weight norms of
the model trained from ISIC-2019-LT (r=500).
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Figure 3: The performance of OOD detection
methods with LTMIC methods.
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Figure 4: (a) Performance and the gap between the selected epoch (based on validation set perfor-
mance) and the best test set epoch across different methods. (b) Performance and the gap between the
selected epoch (based on validation set performance) and the final epoch across different methods.

test set. An imbalanced validation set may not fully represent the underlying data distribution, and
in extreme cases, some tail categories could contain fewer than 10 samples. As a result, achieving
high performance on the validation set may not translate to strong generalization on the test set or in
real-world applications. Therefore, the method should demonstrate stability during training, with
minimal performance fluctuations as it progresses. Without repeating trials, we conducted following
two sets of experiments: (1) For each epoch, we evaluated both the validation and test sets. We then
calculated the difference between the best test set performance and the test set performance at the
epoch where the validation set achieved its highest performance. (2) We calculated the difference
between the test set performance at the epoch with the best validation set performance and the test
set performance at the final epoch. The results shown in Fig. 4 indicate that GCL demonstrates both
strong overall performance and stable convergence during model training.

Multi-label classification is more challenging. Compared to multi-class (MC) classification, multi-
label (ML) classification presents additional challenges, particularly due to label co-occurrence,
where some labels frequently appear together (e.g., in medical imaging, ”diabetic retinopathy” often
co-occurs with ”glaucoma”). This complicates the application of re-sampling strategies that are
commonly used in MC problems with new relative imbalance introduced (Wu et al., 2020; Ju et al.,
2023). Despite these complexities, many methods designed for MC tasks can be adapted for ML
scenarios. Methods such as OLTR (Liu et al., 2019), RSKD (Ju et al., 2021), and HKGL (Ju et al.,
2023) show consistent improvements over the standard ERM approach, as demonstrated in results
from ODIR and RFMiD (Table 5, based on HKGL (Ju et al., 2023)). Notably, some methods
like OLTR can achieve performance gains across head, medium, and tail classes simultaneously
in ML tasks. This may be because improving the model’s ability to detect positive samples in tail
classes reduces overall misclassification of negative samples, thereby enhancing performance even
for head classes. For MC tasks, we resampled datasets using a Pareto distribution to focus on the
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Table 5: The results of comparison study on multi-label classification datasets. * - denotes the
methodology is not supported in MONICA.

Dataset RFMiD ODIR CheXpert
Split Test Set Off-Site On-Site Test Set

Groups Many Medium Few Average Many Medium few average many medium Few Average Many Medium Few Average
ERM 70.93 57.89 14.85 47.89 48.47 46.80 11.22 35.50 50.74 36.46 12.79 33.33 85.78 57.60 3.67 42.06
RS 68.67 61.48 25.94 52.03 46.34 49.27 9.07 34.89 47.91 39.10 15.35 34.12 73.28 48.76 13.65 45.23
RW 70.27 60.00 18.71 49.66 50.56 48.12 11.57 36.75 51.39 37.86 17.92 35.72 74.33 46.27 14.20 44.93

OLTR 71.25 60.22 20.77 50.75 47.37 45.02 11.86 34.75 50.11 36.01 20.78 35.63 - - - -
RSKD 70.55 59.63 22.15 50.78 48.09 47.78 10.82 35.56 48.89 38.61 31.21 39.57 - - - -
Focal 70.65 55.53 16.42 47.53 46.63 46.89 13.32 35.61 47.92 35.41 10.49 31.27 72.35 55.11 9.68 45.71

LDAM 46.67 3.19 1.18 17.01 41.14 8.22 0.48 16.61 42.97 5.10 0.55 16.21 63.63 10.14 3.29 25.58
CBLoss-Focal 67.73 50.89 24.65 47.77 39.30 47.44 10.00 32.25 43.40 32.31 8.60 28.10 65.83 10.45 3.00 26.30
DBLoss-Focal 68.16 55.27 18.94 47.46 48.39 47.11 27.83 41.11 50.06 37.60 12.96 33.54 74.44 46.12 13.95 44.83

ASL 68.25 58.25 19.59 48.70 47.93 47.89 18.57 38.13 51.69 37.36 23.70 37.58 73.86 45.08 13.50 44.15
HKGL 69.75 61.26 25.98 52.33 49.02 48.26 28.05 41.78 51.58 36.82 28.98 39.12 - - - -

total number of data samples and the degree of imbalance. However, in ML tasks, the presence of
label co-occurrence makes following a Pareto distribution impossible. This highlights the greater
complexity of long-tailed multi-label learning compared to multi-class classification, where the
interplay of factors such as imbalance ratio, label co-occurrence, and category distribution makes it
challenging to draw unified conclusions or insights.

What makes an essential strong baseline? Our analysis shows that the most advanced long-tailed
learning methods no longer focus on improving a single strategy. Instead, they integrate re-sampling,
information augmentation, and module improvements, as exemplified by GCL. We would like
to emphasize that LTMIC is primarily an engineering-focused effort. These include using more
sophisticated augmentation techniques like RandAugment (Cubuk et al., 2020), employing models
with larger parameters, and introducing various other tricks such as learning scheduler, attention
mechanism, and knowledge distillation (Hinton et al., 2015). However, we have reservations about the
results of these attempts to maintain focus on the core methods under investigation and avoid diluting
the primary contributions of this study. Finally, given the inherent imperfections of long-tailed data,
it is unrealistic to assume that a single method can deliver optimal performance across all categories.
Therefore, it is necessary to consider trade-offs in performance between different shot-based groups
and select methods based on specific needs.

Integration of medical domain prior knowledge. While this paper extensively explores state-of-the-
art methods designed for natural image classification and validates their generalization across datasets
from various medical domains, we still advocate for the integration of medical domain knowledge
to develop specialized techniques, such as hierarchical learning (Ju et al., 2023), tailored to specific
medical challenges. Incorporating prior knowledge helps guide the model to focus on critical features,
thereby accelerating convergence and improving training efficiency, finally benefiting the overall
performance. More importantly, the integration of clinical insights enhances model interpretability,
enabling more transparent and clinically relevant decision-making, from which the importance and
value of LTMIC research are exactly highlighted and appreciated.

5 CONCLUSION

In this study, we introduced MONICA, a comprehensive benchmark for long-tailed medical image
classification (LTMIC). Our findings emphasize the importance of integrating techniques from
multiple aspects including re-sampling, data augmentation, and module improvements, offering
valuable practical guidance for future research in LTMIC. The modular design of our codebase further
facilitates the application and comparison of these methods across various medical imaging tasks.

Limitations and Future Works This work is largely limited to the implementation of partial existing
long-tailed learning works. Due to the unavailability of code, our implementation relies heavily on
the details provided in the papers, which may lead to variations in performance. Another limitation is
that multi-label learning, as a significant challenge within long-tailed learning, has distinct problem
definitions, implementations, and evaluation metrics. However, this paper does not delve deeply into
this aspect but instead provides a brief introduction and experimental results on some mainstream
datasets. Finally, no novel metrics are proposed for better quantitative analysis. In future work, it is
promising to extend our benchmark towards update works and more long-tailed learning tasks such
as long-tailed multi-label learning, regression, object detection, and semantic segmentation.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Abhijit Bendale and Terrance E Boult. Towards open set deep networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1563–1572, 2016.

Patrick Bilic, Patrick Christ, Hongwei Bran Li, Eugene Vorontsov, Avi Ben-Cohen, Georgios Kaissis,
Adi Szeskin, Colin Jacobs, Gabriel Efrain Humpire Mamani, Gabriel Chartrand, et al. The liver
tumor segmentation benchmark (lits). Medical Image Analysis, 84:102680, 2023.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss. In Advances in Neural Information Processing
Systems, 2019.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le. Randaugment: Practical automated data
augmentation with a reduced search space. In Advances in Neural Information Processing Systems,
volume 33, 2020.

Jiequan Cui, Zhisheng Zhong, Shu Liu, Bei Yu, and Jiaya Jia. Parametric contrastive learning. In
International Conference on Computer Vision, 2021.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on
effective number of samples. In Computer Vision and Pattern Recognition, pp. 9268–9277, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Andrew Estabrooks, Taeho Jo, and Nathalie Japkowicz. A multiple resampling method for learning
from imbalanced data sets. Computational Intelligence, 20(1):18–36, 2004.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
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