
Parallel Simulation for Log-concave Sampling
and Score-based Diffusion Models

Huanjian Zhou 1 2 Masashi Sugiyama 2 1

Abstract
Sampling from high-dimensional probability dis-
tributions is fundamental in machine learning and
statistics. As datasets grow larger, computational
efficiency becomes increasingly important, par-
ticularly in reducing adaptive complexity, namely
the number of sequential rounds required for sam-
pling algorithms. While recent works have intro-
duced several parallelizable techniques, they often
exhibit suboptimal convergence rates and remain
significantly weaker than the latest lower bounds
for log-concave sampling. To address this, we
propose a novel parallel sampling method that im-
proves adaptive complexity dependence on dimen-
sion d reducing it from Õ(log2 d) to Õ(log d).
Our approach builds on parallel simulation tech-
niques from scientific computing.

1. Introduction
We study the problem of sampling from a probability distri-
bution with density π(x) ∝ exp(−f(x)) where f : Rd →
R is a smooth potential. We consider two types of set-
ting. Problem (a): the distribution is known only up to a
normalizing constant (Chewi, 2023), and this kind of prob-
lem is fundamental in many fields such as Bayesian infer-
ence, randomized algorithms, and machine learning (Robert
et al., 1999; Marin et al., 2007; Nakajima et al., 2019).
Problem (b): known as the score-based generative models
(SGMs) (Song & Ermon, 2019), we are given an approx-
imation of ∇ log πt, where πt is the density of a specific
process at time t. The law of this process converges to π
over time. SGMs are state-of-the-art in applications like
image generation (Ho et al., 2022a; Dhariwal & Nichol,
2021), audio and video generation (Ho et al., 2022b; Yang
et al., 2023a), and inverse problems (Song et al., 2022).

1The University of Tokyo, Tokyo, Japan 2Center for Advanced
Intelligence Project, RIKEN, Tokyo, Japan. Correspondence to:
Huanjian Zhou <zhou@ms.k.u-tokyo.ac.jp>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

For Problem (a), specifically log-concave sampling, start-
ing from the seminal papers of Dalalyan & Tsybakov
(2012), Dalalyan (2017), and Durmus & Moulines (2017),
there has been a flurry of recent works on proving non-
asymptotic guarantees based on simulating a process which
converges to π over time (Wibisono, 2018; Vempala &
Wibisono, 2019; Mou et al., 2021; Altschuler & Talwar,
2023). Moreover, these processes, such as Langevin dy-
namics, converge exponentially quickly to π under mild
conditions (Dalalyan, 2017; Mou et al., 2021; Bernard et al.,
2022). Such dynamics-based algorithms for Problem (a)
share a common feature with the inference process of SGMs
that they are actually a numerical simulation of an initial-
value problem of differential equations (Hodgkinson et al.,
2021). Thanks to the exponentially fast convergence of the
process, significant efforts have been conducted on discretiz-
ing these processes using numerical methods such as the
forward Euler, backward Euler (proximal method), exponen-
tial integrator, mid-point, and high-order Runge-Kutta meth-
ods (Vempala & Wibisono, 2019; Wibisono, 2019; Shen &
Lee, 2019; Li et al., 2019; Oliva & Akyildiz, 2024).

Furthermore, in recent years, there have been increasing in-
terest and significant advances in understanding the conver-
gence of inherently dynamics-based SGMs (Bortoli, 2022;
Chen et al., 2023c; Lee et al., 2023; Pedrotti et al., 2024;
Chen et al., 2023b; Tang & Zhao, 2024; Li & Yan, 2024).
Notably, polynomial-time convergence guarantees have
been established (Chen et al., 2023c;b; Benton et al., 2024;
Liang et al., 2025), and various discretization schemes for
SGMs have been analyzed (Lu et al., 2022a;b; Huang et al.,
2025).

The algorithms underlying the above results are highly se-
quential. However, with the increasing size of data sets for
sampling, we need to develop a theory for algorithms with
limited iterations. For example, the widely-used denoising
diffusion probabilistic models (Ho et al., 2020) may take
1000 denoising steps to generate one sample, while the eval-
uations of a neural network-based score function can be
computationally expensive (Song et al., 2021).

As a comparison, recently, the (naturally parallelizable) Pi-
card methods for diffusion models reduced the number of
steps to around 50 (Shih et al., 2024). Furthermore, in terms

1

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

of the dependency on the dimension d and accuracy ε, Picard
methods for both Problems (a) and (b) were proven to be
able to return an ε-accurate solution within O(log2(d/ε2))
iterations, improved from previous O(da/εb) with some
a, b > 0. However, the O(log2(d/ε2)) adaptive complex-
ity1 may not be yet optimal for both Problem (a) and (b).
This motivates our investigation into the question:

Can we achieve logarithmic adaptive complexity for both
log-concave sampling and sampling for SGMs?

Our Contributions

In this work, we propose a novel sampling method that
employs a highly parallel discretization approach for con-
tinuous processes, with applications to the overdamped
Langevin diffusion (Chewi, 2023) and the stochastic dif-
ferential equation (SDE) implementation of processes in
SGMs (Chen et al., 2024) for Problems (a) and (b), respec-
tively.

Faster parallel log-concave sampling. We first present
an improved result for parallel sampling from a strongly
log-concave and log-smooth distribution. Specifically, we
improve the upper bound from Õ

(
log2

(
d
ε2

))
(Anari et al.,

2024) to Õ
(
log
(

d
ε2

))
, with slightly scaling the number

of processors and gradient evaluations from O
(

d
ε2

)
to

O
(

d
ε2 log

(
d
ε2

))
.

Compared with methods based on underdamped Langevin
diffusion (Shen & Lee, 2019; Yu & Dalalyan, 2024; Anari
et al., 2024), our method exhibits higher space complexity2.
This is primarily because underdamped Langevin diffusion
typically follows a smoother trajectory than overdamped
Langevin diffusion, allowing for larger grid spacing and
consequently, a reduced number of grids. We summarize
the comparison in Table 1. In this paper, we will focus
on the adaptive complexity and discretization schemes for
overdamped Langevin diffusion.

Faster parallel sampling for diffusion models. We then
present an improved result for diffusion models. Specifi-
cally, we propose an efficient algorithm with Õ

(
log
(

d
ε2

))
adaptive complexity for SDE implementations of diffusion
models (Song & Ermon, 2019). Our method surpasses
all the existing parallel methods for diffusion models hav-
ing Õ

(
log2

(
d
ε2

))
adaptive complexity (Chen et al., 2024;

1Adaptive complexity refers to the minimal number of sequen-
tial rounds required for an algorithm to achieve a desired accuracy,
assuming polynomially many queries can be executed in parallel
at each round (Balkanski & Singer, 2018).

2We note, in this paper, that the space complexity refers to the
number of words (Cohen-Addad et al., 2023; Chen et al., 2024)
instead of the number of bits (Goldreich, 2008) to denote the
approximate required storage.

Table 1. Comparison with existing parallel methods for strongly
log-concave sampling. The symbol ♠ represents that the results
hold under a weaker condition, the log-Sobolev inequality.

Work
dynamics Measure Adaptive

Complexity
Space

Complexity
(Shen & Lee, 2019, Theorem 4)
underdamped Langevin diffusion W2 Õ

(
log2

(√
d
ε

))
Õ
(
d3/2

ε

)
(Yu & Dalalyan, 2024, Corollary 2)
underdamped Langevin diffusion W2 Õ

(
log2

(
d
ε2

))
Õ
(
d3/2

ε

)
(Anari et al., 2024, Theorem 15)
underdamped Langevin diffusion TV Õ

(
log2

(
d
ε2

))♠ Õ
(
d3/2

ε

)
(Anari et al., 2024, Theorem 13)
overdamped Langevin diffusion KL Õ

(
log2

(
d
ε2

))♠ Õ
(
d2

ε2

)
Theorem 4.2

overdamped Langevin diffusion KL Õ
(
log

(
d
ε2

))
Õ
(
d2

ε2

)

Table 2. Comparison with existing parallel methods for sampling
for diffusion models.

Works
Implementation Measure Adaptive

Complexity
Space

Complexity
(Chen et al., 2024, Theorem 3.5)

ODE / Picard method TV Õ
(
log2

(d
ε2

))
Õ

(d3/2

ε2

)
(Gupta et al., 2025, Theorem B.13)

ODE / Parallel midpoint method TV Õ
(
log2

(d
ε2

))
Õ

(d3/2

ε2

)
(Chen et al., 2024, Theorem 3.3)

SDE / Picard method KL Õ
(
log2

(d
ε2

))
Õ

(d2

ε2

)
Theorem 5.4

SDE / Parallel Picard method KL Õ
(
log

(d
ε2

))
Õ

(d2

ε2

)

Gupta et al., 2025), with slightly increasing the number of
the processors and gradient evaluations and the space com-
plexity for SDEs. We summarize the comparison in Table
2. Similarly, the better space complexity of the ordinary
differential equation (ODE) implementations is attributed to
the smoother trajectories of ODEs, which are more readily
discretized.

2. Problem Set-up
In this section, we introduce some preliminaries and key
ingredients of log-concave sampling and diffusion models
in Sections 2.1 and 2.2, respectively. Following this, Section
2.3 provides an introduction to the fundamentals of Picard
iterations.

2.1. Log-concave Sampling

Problem (a) (Sampling task). Given the potential function
f : D → R, the goal of the sampling task is to draw a
sample from the density πf = Z−1

f exp(−f), where Zf :=∫
D exp(−f(x))dx is the normalizing constant.

Distribution and function class. If f is (strongly) convex,
the density πf is said to be (strongly) log-concave. If f is
twice-differentiable and ∇2f ⪯ βI (where ⪯ denotes the
Loewner order and I is the identity matrix), we say the
potential f is β-smooth and the density πf is β-log-smooth.

We define relative Fisher information of probability density
ρ w.r.t. π as FI(ρ∥π) = Eρ[∥∇ log(ρ/π)∥2] and the Kull-
back–Leibler (KL) divergence of ρ from π as KL(ρ∥π) =
Eρ log(ρ/π). If π is α-strongly log-concave, then the fol-
lowing relation between KL divergence and Fisher informa-

2

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

tion holds:

KL(ρ∥π) ≤ 1

2α
FI(ρ∥π) for all probability measures ρ.

Langevin Dynamics. One of the most commonly-used
dynamics for sampling is Langevin dynamics (Chewi, 2023),
which is the solution to the following SDE,

dx = −∇f(x)dt+
√
2dBt,

where (Bt)t∈[0,T] is a standard Brownian motion in Rd. If
π ∝ exp(−f) satisfies strongly log-concavity, then the law
of the Langevin diffusion converges exponentially fast to
π (Bakry et al., 2014).

Score function for sampling task. We assume the score
function s : Rd → R is a pointwise accurate estimate of
∇f , i.e., ∥s(x)−∇f(x)∥ ≤ δ for all x ∈ Rd and some
sufficiently small constant δ ∈ R+.

Measures of the output. For two densities ρ and π, we
define the total variation (TV) as

TV(ρ, π) = sup{ρ(E)− π(E) | E is an event}.

We have the following relation between the KL divergence
and TV distance, known as the Pinsker inequality,

TV(ρ, π) ≤
√

1

2
KL(ρ∥π).

We denote by W2 the Wasserstein distance between ρ and
π, which is defined as

W2
2(ρ, π) = inf

Π
E(X,Y)∼Π

[
∥X − Y ∥2

]
,

where the infimum is over coupling distributions
∏

of
(X,Y) such that X ∼ ρ, Y ∼ π. If π is α-strongly log-
concave, the following transport-entropy inequality, known
as Talagrand’s T2 inequality, holds (Otto & Villani, 2000)
for all ρ ∈ P2(Rd), i.e., with finite second moment,

α

2
W2

2(ρ, π) ≤ KL(ρ∥π).

Complexity. For any sampling algorithm, we consider the
adaptive complexity defined as unparallelizable evaluations
of the score function (Chen et al., 2024), and use the notion
of the space complexity to denote the approximate required
storage during the inference. We note, in this paper, that
the space complexity refers to the number of words (Cohen-
Addad et al., 2023; Chen et al., 2024) instead of the number
of bits (Goldreich, 2008) to denote the approximate required
storage.

2.2. Score-based Diffusion Models

Sampling for diffusion models. In score-based diffusion
models, one considers forward process (xt)t∈[0,T] in Rd

governed by the canonical Ornstein-Uhlenbeck (OU) pro-
cess (Ledoux, 2000):

dxt = −1

2
xtdt+ dBt, x0 ∼ q0, t ∈ [0, T], (1)

where q0 is the initial distribution over Rd. The correspond-
ing backward process (⃗xt)t∈[0,T] in Rd follows an SDE
defined as{

d ⃗xt =
[
1
2

⃗xt +∇ log ⃗pt(⃗xt)
]
dt+ dBt t ∈ [0, T],

⃗x0 ∼ p0 ≈ N (0d, Id)

(2)
where N (·, ·) represents the normal distribution over Rd.
In practice, the score function ∇ log ⃗pt(⃗xt) is estimated
by neural network (NN) sθt : Rd 7→ Rd, where θ is the
parameters of NN. The backward process is approximated
by {

dyt =
[
1
2yt + sθt (yt)

]
dt+ dBt t ∈ [0, T],

y0 ∼ N (0d, Id).
(3)

Problem (b) (Sampling task for SGMs). Given the learned
NN-based score function sθt , the goal is to simulate the
approximated backward process such that the law of the
output is close to q0.

Distribution class. For SGMs, we assume the data density
p0 has finite second moments and is normalized such that
covp0(x0) = Ep0

[
(x0 − Ep0 [x0])(x0 − Ep0 [x0])

⊤] =
Id. Such a finite moment assumption is standard across
previous theoretical works on SGMs (Chen et al., 2023a;b;c)
and we adopt the normalization to simplify true score
function-related computations as Benton et al. (2024) and
Chen et al. (2024) did.

OU process and inverse process The OU process and its
inverse process also converge to the target distribution ex-
ponentially fast in various divergences and metrics such as
the 2-Wasserstein metric W2; see Ledoux (2000). Further-
more, the discrepancy between the terminal distributions of
the backward process (2) and its approximation version (3)
scales polynomially with respect to the length of the time
horizon and the score matching error. (Huang et al. (2025,
Theorem 3.5) or setting the step size h → 0 for the results
in Chen et al. (2023a;b;c)).

Score function for SGMs. For the NN-based score, we
assume the score function is L2-accurate, bounded and Lip-
schitz; we defer the details in Section 5.2.

3

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

2.3. Picard Iterations

Consider the integral form of the initial value problem,
xt = x0 +

∫ t

0
fs(xs)ds+

√
2Bt. The main idea of Picard

iterations (Clenshaw, 1957) is to approximate the difference
over time slice [tn, tn+1] as

xtn+1 − xtn

=

∫ tn+1

tn

fs(xs)ds+
√
2(Btn+1

−Btn)

≈
M∑
i=1

wiftn+τn,i(xtn+τn,i)ds+
√
2(Btn+1 −Btn),

with a discrete grids of M collocation points as xtn =
xtn+τn,0

≤ xtn+τn,1
≤ xtn+τn,2

≤ · · · ≤ xtn+τn,M
=

xtn+1
. We update the points in a wave-like fashion, which

inherently allows for parallelization: for m′ = 1, . . . ,M ,

xp+1
tn+τn,m

= x0 +

m−1∑
m′=1

wm′ftn+τn,m′ (x
p
tn+τn,m′)

+
√
2(Btn+τn,m

−Btn).

Various collocation points have been proposed, including
uniform points and Chebyshev points (Bai & Junkins, 2011).
In this paper, however, we focus exclusively on the simplest
case of uniform points, and extension to other cases is future
work. Picard iterations are known to converge exponentially
fast and, under certain conditions, even factorially fast for
ODEs and backward SDEs (Hutzenthaler et al., 2021).

3. Technical Overview
We adopt the time splitting for the time horizon used in the
existing parallel methods (Shen & Lee, 2019; Gupta et al.,
2025; Chen et al., 2024; Anari et al., 2024; Yu & Dalalyan,
2024). With same time grids, our algorithm, however, depart
crucially from prior work in the design of parallelism across
the time slices, and the modification for controlling the score
estimation error. Below we summarize these algorithmic
contributions and technical novelties.

Recap of existing parallel sampling methods. Existing
works for parallel sampling apply the following generic dis-
cretization schemes (Shen & Lee, 2019; Gupta et al., 2025;
Chen et al., 2024; Anari et al., 2024; Yu & Dalalyan, 2024).
At a high level, these methods divide the time horizon into
many large time slices and each slice is further subdivided
into grids with a small enough step size. Instead of se-
quentially updating the grid points, they update all grids
at the same time slice simultaneously using exponentially
fast converging Picard iterations (Alexander, 1990; Chen
et al., 2024; Anari et al., 2024), or randomized midpoint
methods (Shen & Lee, 2019; Yu & Dalalyan, 2024; Gupta

et al., 2025). With Õ(log d) Picard iterations for Õ(log d)
time slices, the total adaptive complexity of their algorithms
is Õ(log2 d). However, while sequential updating of each
time slice is not necessary for simulating the process, it
remains unclear how to parallelize across time slices for
sampling to obtain O(log d) time complexity.

Algorithmic novelty: parallel methods across time slices.
Naı̈vely, if we directly update all the grids simultaneously,
the Picard iterations will not converge when the total length
is T = Õ(log d). Instead of updating all time slices together
or updating the time slice sequentially, we update the time
slices in a diagonal style as illustrated in Figure 1. For
any j-th update at the n-th time slice (corresponding the
rectangle in the n-th column from the left and the j-th row
from the top in Figure 1), there will be two inputs: (a)
the right boundary point of the previous time slice, which
has been updated j times, and (b) the points on the girds
of the same time slice that have been updated j − 1 times.
Then we perform P times Picard iterations with these inputs,
where the hyperparameter P depends on the smoothness of
the score function. This repetition is simple but essential
for preventing the accumulation of score-matching errors,
which could otherwise grow exponentially w.r.t. the length
of the time horizon. The main difference compared to the
existing Picard methods is that for a fixed time slice, the
starting points in our method are updated gradually, whereas
in existing methods, the starting points remain fixed once
processed.

Figure 1. Illustration of the parallel Picard method: each rectan-
gle represents an update, and the number within each rectangle
indicates the index of the Picard iteration. The approximate time
complexity is N + J = Õ(log d).

Challenges for convergence. Similar to the arguments for
sequential methods or parallel methods with sequentially up-
dating the time slices, we use the standard techniques such
as the interpolation method or Girsanov’s theorem (Vem-
pala & Wibisono, 2019; Oksendal, 2013; Chewi, 2023) to
decompose the total error w.r.t. KL into four components:
(i) convergence error of the continuous process, (ii) dis-
cretization error, (iii) parallelization error, and (iv) score
estimation error (See Eq. (4), Lemma B.1, and Lemma C.4).
For (i) the convergence error of the continuous processes,

4

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

their exponential convergence rates allow this error to be
effectively controlled by setting the total time length to
O(log d

ε2), regardless of the specific discretization scheme.
For (ii), the discretization error scales approximately as
d · h

M , where h denotes the time slice length, M the number
of discretization points per slice, and h

M the grid resolu-
tion (See Eq. (4), and Lemma C.5). Setting h

M ≈ O(ε2/d)
ensures the discretization error remains within O(ε2). The
technical challenges rise from controlling the remaining two
errors, which we summarize below.

(iii) Parallelization error: the parallelization error primar-
ily arises from updating with s(xj−1) instead of s(xj) in
the Picard iteration, in contrast to the sequential method,
where j indexes the steps along the Picard direction. In
existing parallel methods, the sequential update across
time slices benefits the convergence of truncation errors,
E
[∥∥xj − xj−1

∥∥2]. Assuming the truncation errors in the
previous time slice have converged, its right boundary serves
as the starting point for all grids in the current O(1)-length
time slice which results in an initial bias of O(d). Subse-
quently, by performing O(log d) exponentially fast Picard
iterations, the truncation error will converge. However, in
our diagonal-style updating scheme across time, the trunca-
tion error interacts with inputs from both the previous time
slice and prior updates in the same time slice. Consequently,
the bias-convergence loop that holds in sequential updating
no longer holds.

(iv) Score estimation error: If the score function itself is
Lipschitz continuous (Assumption 5.3 for Problem (b)), no
additional score matching error will arise during the Picard
iterations. This allows the total score estimation error to
remain bounded under mild conditions (Assumption 5.1).
However, for Problem (a), since it is the velocity field ∇f
instead of the score function s that is Lipschitz, additional
score estimation errors will occur during each update. For
the sequential algorithm, these additional score estimation
errors are contained within the bias-convergence loop, ensur-
ing the total score estimation error remains to be bounded.
Conversely, for our diagonal-style updating algorithm, the
absence of convergence along the time direction causes
these additional score estimation errors to accumulate expo-
nentially over the time direction.

Technical novelty. Our technical contributions address
these challenges by the appropriate selection of the number
of Picard iterations within each update P and the depth of
the Picard iterations J . We outline the details of the choices
below.

In the following, we assume that the truncation error at the
n-th time slice and the j-th iteration scales with Lj

n , and
that the additional score estimation error for each update
scales with δ2.

To address the initial challenge related to the truncation
error, we choose the Picard depth as J = O(N + log d).
We first bound the error of the output for each update with
respect to its inputs as Lj

n ≤ aLj
n−1 + bLj−1

n , where a
and b are constants. By carefully choosing the length of
the time slices, we can ensure that b < 1 along the Picard
iteration direction. Consequently, the truncation error will
converge if the iteration depth J is sufficiently large, such
that aNbJ is sufficiently small. This requirement implies
that J = O(N + log d).

To mitigate the additional score estimation error for Problem
(a), we perform P Picard iterations within each update.
The interaction between the truncation error and additional
score estimation error can be expressed as Lj

n ≤ aLj
n−1 +

bLj−1
n +cδ2, where a, b, c are constants. To ensure the total

score estimation error remains bounded, it is necessary to
have a, b < 1, which guarantees convergence along both
the time and Picard directions. By the convergence of the
Picard iteration, we can achieve b < 1. For a, the right
boundary point of the previous time slice, and prior updates
within the same time slice introduce discrepancies in the
truncation error. For the impact from the previous time slice,
we make use of the contraction of gradient decent to ensure
convergence. However, since the grid gap scale as 1/d, the
contraction factor is close to 1. Consequently, we have to
minimize the impact from prior updates within the same
time slice, which scales as O(1) by repeating P = logO(1)
Picard iterations for each update.

Balance between time and Picard directions. We note
that the Picard method, despite being the simplest approach
for time parallelism, has achieved the state of art perfor-
mance in certain specific settings. On the one hand, the
continuous processes need to run for at least O(log d) time.
To ensure convergence within every time slice, the time
slice length have to be set as O(1), resulting in a necessity
for at least O(log d) iterations. On the other hand, with a
proper initialization O(d), Picard iterations converge within
O(log d) iterations. Our parallelization balances the conver-
gence of the continuous diffusion and the Picard iterations
to achieve the improved results.

Related works in scientific computation. Similar paral-
lelism across time slices has also been proposed in scientific
computation (Gear, 1991; Gander, 2015; Ong & Schroder,
2020), especially for parallel Picard iterations (Wang, 2023).
Compared with prior work in scientific computation, our
approach exhibits several significant differences. Firstly,
our primary objective differs from that in simulation. In
sampling, we aim to ensure that the output distribution
closely approximates the target distribution, whereas simu-
lation seeks to make some points on the discrete grid closely
match the true dynamics. Second, our algorithm differs sig-

5

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

nificantly from that of Wang (2023). In our algorithm, each
update takes the inputs without the corrector operation. Fur-
thermore, we perform P Picard iterations in each update to
prevent error accumulation over time T = Õ(log d). How-
ever, these two fields are connected through the sampling
strategies that ensure each discrete point closely approxi-
mates the true process at every sampling step.

4. Parallel Picard Method for Strongly
Log-concave Sampling

In this section, we present parallel Picard methods for
strongly log-concave sampling (Algorithm 1) and show it
holds improved convergence rate w.r.t. the KL divergence
and total variance (Theorem 4.2 and Corollary 4.3). We
illustrate the algorithm in Section 4.1, and give a proof
sketch in Section 4.3. All the missing proofs can be found
in Appendix B.

4.1. Algorithm

Our parallel Picard method for strongly log-concave sam-
pling is summarized in Algorithm 1. In Lines 2–7, we gener-
ate the noises and initialize the value at the grid via Langevin
Monte Carlo (Chewi, 2023) with a stepsize h = O(1). In
Lines 8–26, the time slices are updated in a diagonal manner
within the outer loop, as illustrated in Figure 1. In Lines
12–14 and Lines 21–23, we repeat P Picard iterations for
each update to ensure convergence.
Remark 4.1. Parallelization should be understood as evalu-
ating the score function concurrently, with each time slice
potentially being computed in an asynchronous parallel man-
ner, resulting in the overall P (N + J) +N adaptive com-
plexity.

4.2. Theoretical Guarantees

The following theorem summarizes our theoretical analysis
for Algorithm 1.
Theorem 4.2. Suppose π is α-strongly log-concave and
β-log-smooth, and the score function s is δ-accurate. Let
κ = β/α. Suppose

βh = 0.1, M ≥ κd

ε2
, N ≥ 10κ log

(KL(µ0∥π)
ε2

)
,

δ ≤ 0.2
√
αε, P ≥ 2 log κ

3
+ 4,

and J−N ≥ log
(
N3
(κδ2h+ κKL(µ0∥π) + κ2d

ε2

))
.

then Algorithm 1 runs within N +(N +J)P iterations with
at most MN queries per iteration and outputs a sample
with marginal distribution ρ such that

max

{√
α

2
W2(ρ, π),TV(ρ, π)

}
≤
√

KL(ρ, π)

2
≤ 2ε.

Algorithm 1 Parallel Picard Method for sampling
1: Input: x0 ∼ µ0, approximate score function s ≈ ∇f ,

the number of the iterations in outer loop J , the number
of the iteration in inner loop P , the number of time
slices N , the length of time slices h, the number of
points on each time slices M .

2: for n = 0, . . . , N − 1 do
3: for m = 0, . . . ,M (in parallel) do
4: Bnh+m/Mh = Bnh +N (0, (mh/M)Id),
5: xj

−1,M = x0, for j = 0, . . . , J ,
6: x0

n,m = x0
n−1,M − hm

M s(x0
n−1,M) +√

2(Bnh+mh/M −Bnh),
7: end for
8: end for
9: for k = 1, . . . , N do

10: for j = 1, . . . ,min{k − 1, J} and m = 1, . . . ,M
(in parallel) do

11: let n = k−j, xj
n,0 = xj

n−1,M , and xj,0
n,m = xj−1

n,m,
12: for p = 1, . . . , P do

13: xj,p
n,m = xj

n,0 − h
M

m−1∑
m′=0

s(xj,p−1
n,m′) +

√
2(Bnh+mh/M −Bnh),

14: end for
15: xj

n,m = xj,P
n,m,

16: end for
17: end for
18: for k = N + 1, . . . , N + J − 1 do
19: for n = max{0, k − J}, . . . , N − 1 and m =

1, . . . ,M (in parallel) do
20: let j = k−n, xj

n,0 = xj
n−1,M , and xj,0

n,m = xj−1
n,m,

21: for p = 1, . . . , P do

22: xj,p
n,m = xj

n,0 − h
M

m−1∑
m′=0

s(xj,p−1
n,m′) +

√
2(Bnh+mh/M −Bnh),

23: end for
24: xj

n,m = xj,P
n,m,

25: end for
26: end for
27: Return:xJ

N−1,M .

To make the guarantee more explicit, we can combine it
with the following well-known initialization bound, see,
e.g., Dwivedi et al. (2019, Section 3.2).

Corollary 4.3. Suppose that π = exp(−f) is α-strongly
log-concave and β-log-smooth, and let κ = β/α. Let x⋆

be the minimizer of f . Then, for µ0 = N (x⋆, β−1), it holds
that KL(µ0∥π) ≤ d

2 log κ. Consequently, setting

h =
1

10β
, M =

κd

ε2
, N = 10κ log

(d log κ
ε2

)
,

δ ≤ 0.2
√
αε, P ≥ 2 log κ

3
+ 4,

6

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

and J −N = O
(
log

κ2d log κ

ε2

)
,

then Algorithm 1 runs within N+(N+J)P = Õ(κ log d
ε2)

iterations with at most MN = Õ(κ
2d
ε2 log d

ε2) queries per
iteration and outputs a sample with marginal distribution ρ
such that

max

{√
α

2
W2(ρ, π),TV(ρ, π)

}
≤
√

KL(ρ, π)

2
≤ 2ε.

Remark 4.4. The main drawback of our method is the sub-
optimal space complexity due to its application to over-
damped Langevin diffusion which has a less smooth trajec-
tory compared to underdamped Langevin diffusion. How-
ever, we anticipate that our method could achieve com-
parable space complexity when adapted to underdamped
Langevin diffusion.
Remark 4.5. Regarding the condition number κ, our method
achieves the same adaptive complexity of O(κ) as both
the state-of-the-art sequential method and existing paral-
lel approaches (Anari et al., 2024; Yu & Dalalyan, 2024;
Altschuler & Chewi, 2024). Whether parallelization can
improve the dependence on the condition number remains
an open question, which we leave for future work.
Remark 4.6. When the number of computation cores, de-
noted by ℓ, is limited, the adaptive complexity of our al-
gorithm is Õ

(
κ2d
ε2ℓ log

2 d
ε2

)
. This matches the state-of-the-

art adaptive complexity of Anari et al. (2024) and Yu &
Dalalyan (2024) when ℓ ≤ κd

ε2 . However, our algorithm
achieves improved adaptive complexity when ℓ ≥ κd

ε2 , with
potential applications as demonstrated in Nishihara et al.
(2014), De Souza et al. (2022), Hafych et al. (2022) and
Glatt-Holtz et al. (2024).

4.3. Proof Sketch of Theorem 4.2: Performance
Analysis of Algorithm 1

The detailed proof of Theorem 4.2 is deferred to Appendix B.
As discussed in Section 3, by interpolation methods (Anari
et al., 2024), we decompose the error w.r.t. the KL diver-
gence into four error components (corollary B.4):

KL(ρ∥π)

≲ e−Θ(N)KL(µ0∥π)︸ ︷︷ ︸
Convergence of Langevin dynamics

+
dh

M︸︷︷︸
discretization error

+

N−1∑
n=1

e−Θ(n)EJ
N−n︸ ︷︷ ︸

parallization error

+ δ2︸︷︷︸
score estimation error

, (4)

where Ej
n represents the truncation error of the grids at n-th

time slice after j update. For the right terms, with the choice
of N = O(log d

ε2), M = O(dh/ε2) and δ ≤ ε, which

ensures a sufficiently long time horizon the sufficiently long
time horizon T = Nh = O(log d

ε2), densely spaced grids
with a gap h/M = O(ε2/d) and a small score matching
error, respectively, we can conclude that

e−Θ(N)KL(µ0∥π) +
dh

M
+ δ2 ≲ ε2

Thus, we will focus on proving the convergence of the
truncation error Ej

n in the Picard iterations, and avoiding the
additional accumulation of the score estimation error during
Picard iterations as discussed before.

Considering that the truncation error expands at most ex-
ponentially along the time direction, but diminishes expo-
nentially with an increased depth of the Picard iterations,
convergence can be achieved by ensuring that the depth of
the Picard iterations surpasses the number of time slices as
J ≥ N + O(log d

ε2) with initialization error bounded by
O(d) (the second part of Corollary B.7 and second part of
Corollary B.9).

Due to the non-Lipschitzness of the score function, we can
only bound Ej

n by quantity a∆j
n−1+bEj−1

n +cδ2h2 (Lemma
B.5 and Lemma B.8), where ∆j

n−1 represents the trunca-
tion error at the right boundary of the previous time slice.
Here, the coefficients are given by: a = 1 − 0.1βh

κ +
O(κ)(3β2h2)P , b = O((β2h2)P) and c = O(κδ2h2).
Intuitively, a comes from the contraction of the gradient
mapping with an additional term from the Picard direction,
b reflects convergence along the Picard direction, and c
accounts for the accumulation of score estimation error δ
over time length h, with an additional scaling by κ due to
Young’s inequality. To control the growth of the score error,
it is essential that the coefficients a and b remain strictly
less than one. Setting P = Θ(log κ) is sufficient to ensure
this condition.

5. Parallel Picard Method for Sampling of
Diffusion Models

In this section, we present parallel Picard methods for diffu-
sion models in Section 5.1 and assumptions in Section 5.2.
Then we show it holds improved convergence rate w.r.t. the
KL divergence (Theorem 5.4). All the missing details can
be found in Appendix C.

5.1. Algorithm

Due to space limitations, the detailed methodology for the
parallelization of Picard methods for diffusion models is
provided in Appendix C.1 and Algorithm 2. It keeps same
parallel structure as that illustrated in Figure 1. Notably,
it exhibits the following distinctions in comparison to the
parallel Picard methods for strongly log-concave sampling
presented in Algorithm 1:

7

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

• Since the score function itself is Lipschitz, there will not
be additional score matching error during Picard iterations.
As a result, we perform single Picard iteration in one
update, i.e., P = 1;

• Instead of uniform discrete grids, we employ a shrinking
step size discretization scheme towards the data end, and
the early stopping technique which is unvoidable to show
the convergence for diffusion models (Chen et al., 2024).
We show the details in Appendix C.1;

• We use an exponential integrator instead of the Euler-
Maruyama Integrator in Picard iterations, where an
additional high-order discretization error term would
emerge (Chen et al., 2023a), which we believe would
not affect the overall O(log d) adaptive complexity with
parallel sampling.

5.2. Assumptions

Our theoretical analysis of the algorithm assumes mild con-
ditions regarding the data distribution’s regularity and the
approximation properties of NNs as discussed in Chen et al.
(2024). These assumptions align with those established in
previous theoretical works, such as those described by Chen
et al. (2023c;a;b; 2024).
Assumption 5.1 ((L2([0, tN]) δ2-accurate learned score).
The learned NN-based score sθt is δ2-accurate in the sense
of

E ⃗p

[N−1∑
n=0

Mn−1∑
m=0

ϵn,m
∥∥sθtn+τn,m

(⃗xtn+τn,m)

−∇ log ⃗ptn+τn,m
(⃗xtn+τn,m

)
∥∥2] ≤ δ22 .

Assumption 5.2 (Regular and normalized data distribu-
tion). The data density p0 has finite second moments and
is normalized such that covp0

(x0) = Id.
Assumption 5.3 (Bounded and Lipschitz learned
NN-based score). The learned NN-based score function sθt
has a bounded C1 norm, i.e. ,

∥∥∥∥sθt (·)∥∥∥∥L∞([0,T])
≤ Ms

with Lipschitz constant Ls.

5.3. Theoretical Guarantees

Theorem 5.4. Under Assumptions 5.1, 5.2, and 5.3, given
the following choices of the order of the parameters

h = Θ(1), N = O
(
log

d

ε2

)
, M = O

(d

ε2
log

d

ε2

)
,

T = O
(
log

d

ε2

)
, δ ≤ ε, and J = O

(
N+log

Nd

ε2

)
the parallel Picard algorithm for diffusion models (Algo-
rithm 2) generates samples from satisfies the following error
bound,

KL(pη∥q̃tN) ≲ de−T +
dT

M
+ ε2 + δ22 ≲ ε2, (5)

with total 2N + J = Õ
(
log d

ε2

)
adaptive complexity

and dM = Õ
(
d2

ε2

)
space complexity for parallelizable δ2-

accurate score function computations.

Remark 5.5. Compared to existing parallel methods, our
method improves the adaptive complexity from O(log2 d

ε2)

to O(log d
ε2). Its main drawback is suboptimal space com-

plexity due to the less smooth trajectory in SDE implemen-
tations, but we believe it can achieve comparable space
complexity when adapted to ODE implementations.

Remark 5.6. When the number of computation cores ℓ is lim-
ited, the adaptive complexity is Õ

(
κ2d
ε2ℓ log

2 d
ε2

)
, matching

the state-of-the-art result of Chen et al. (2024) for ℓ ≤ κd
ε2 .

However, employing a large batch size ℓ ≥ κd
ε2 in diffusion

models may not always yield substantial benefits (Shih
et al., 2024; Li et al., 2024b;a).

Remark 5.7. We note that the uniformly Lipschitz assump-
tion (Assumption 5.3) may be too strong. In particular, the
required Lipschitz constant can become quite large even
becoming unbounded near the zero point (Salmona et al.,
2022; Yang et al., 2023b). In this case, to ensure conver-
gence of the Picard iterations under these conditions, the
quantity L2

se
hnhn must be sufficiently small. This require-

ment implies that the length of each time slice, hn, should
scale as O(1/L2

s). Consequently, the number of time slices
becomes N = O(L2

s log d), leading to an overall iteration
complexity of N = O(L2

s log d). We also believe our algo-
rithm, which is based on a diagonal-style update, is robust
to this assumption by adaptively adjusting the length of the
time slices.

6. Discussion and Conclusion
In this work, we proposed novel parallel Picard methods
for various sampling tasks. Notably, we obtain ε2-accurate
sample w.r.t. the KL divergence within Õ

(
log d

ε2

)
, which

represents a significant improvement from Õ
(
log2 d

ε2

)
for

diffusion models. Furthermore compared with the existing
methods applied to the overdamped Langevin dynamics or
the SDE implementations for diffusion models, our space
complexity only scales by a logarithmic factor.

Our study opens several promising theoretical directions.
First, as an analogue to simulation methods in scientific com-
puting, it highlights the potential of leveraging alternative
discretization techniques for faster and more efficient sam-
pling. Another direction is exploring smoother dynamics to
reduce space complexity in these methods.

Lastly, although our highly parallel methods may introduce
engineering challenges, such as the memory bandwidth, we
believe our theoretical works will motivates the empirical
development of parallel algorithms for both sampling and
diffusion models.

8

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

Acknowledgment
The authors thank Sinho Chewi for very helpful conversa-
tions. HZ was supported by International Graduate Program
of Innovation for Intelligent World and Next Generation
Artificial Intelligence Research Center. MS was supported
by JST ASPIRE Grant Number JPMJAP2405.

Impact Statement
This work focuses on the theory of accelerating the sampling
via parallelism. As far as we can see, there is no foreseeable
negative impact on the society.

References
Alexander, R. Solving Ordinary Differential Equations i:

Nonstiff Problems. Siam Review, 1990.

Altschuler, J. and Talwar, K. Resolving the Mixing Time of
the Langevin Algorithm to its Stationary Distribution for
Log-Concave Sampling. In Proceedings of Thirty Sixth
Conference on Learning Theory, 2023.

Altschuler, J. M. and Chewi, S. Shifted Composition III: Lo-
cal Error Framework for KL Divergence. arXiv preprint
arXiv:2412.17997, 2024.

Anari, N., Chewi, S., and Vuong, T.-D. Fast parallel sam-
pling under isoperimetry. Proceedings of Thirty Seventh
Conference on Learning Theory, pp. 161–185, 2024.

Bai, X. and Junkins, J. L. Modified Chebyshev-Picard
iteration methods for orbit propagation. The Journal of
the Astronautical Sciences, 2011.

Bakry, D., Gentil, I., Ledoux, M., et al. Analysis and geome-
try of Markov diffusion operators, volume 103. Springer,
2014.

Balkanski, E. and Singer, Y. The adaptive complexity of
maximizing a submodular function. In Proceedings of
the 50th annual ACM SIGACT Symposium on Theory of
Computing, 2018.

Benton, J., Bortoli, V. D., Doucet, A., and Deligiannidis,
G. Nearly d-Linear Convergence Bounds for Diffusion
Models via Stochastic Localization. In The Twelfth Inter-
national Conference on Learning Representations, ICLR
2024,, 2024.

Bernard, É., Fathi, M., Levitt, A., and Stoltz, G. Hypocoer-
civity with schur complements. Annales Henri Lebesgue,
5:523–557, 2022.

Bortoli, V. D. Convergence of denoising diffusion models
under the manifold hypothesis. Transactions on Machine
Learning Research, 2022. ISSN 2835-8856.

Chen, H., Lee, H., and Lu, J. Improved Analysis of Score-
based Generative Modeling: User-Friendly Bounds un-
der Minimal Smoothness Assumptions. In International
Conference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of Pro-
ceedings of Machine Learning Research, pp. 4735–4763.
PMLR, 2023a.

Chen, H., Ren, Y., Ying, L., and Rotskoff, G. M. Accelerat-
ing Diffusion Models with Parallel Sampling: Inference
at Sub-Linear Time Complexity. In The Thirty-eighth
Annual Conference on Neural Information Processing
Systems, 2024.

Chen, S., Chewi, S., Lee, H., Li, Y., Lu, J., and Salim,
A. The probability flow ODE is provably fast. In Oh,
A., Naumann, T., Globerson, A., Saenko, K., Hardt, M.,
and Levine, S. (eds.), Advances in Neural Information
Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023, 2023b.

Chen, S., Chewi, S., Li, J., Li, Y., Salim, A., and Zhang,
A. Sampling is as easy as learning the score: theory for
diffusion models with minimal data assumptions. In The
Eleventh International Conference on Learning Repre-
sentations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023,
2023c.

Chewi, S. Log-concave sampling. Book draft available at
https://chewisinho. github. io, 2023.

Chewi, S., Erdogdu, M. A., Li, M., Shen, R., and Zhang,
M. S. Analysis of Langevin Monte Carlo from Poincaré
to Log-Sobolev. Foundations of Computational Mathe-
matics, 2024.

Clenshaw, C. The numerical solution of linear differential
equations in Chebyshev series. In Mathematical Proceed-
ings of the Cambridge Philosophical Society. Cambridge
University Press, 1957.

Cohen-Addad, V., Woodruff, D. P., and Zhou, S. Streaming
Euclidean k-median and k-means with o(log n) Space.
In 2023 IEEE 64th Annual Symposium on Foundations of
Computer Science (FOCS). IEEE, 2023.

Dalalyan, A. S. Theoretical guarantees for approximate
sampling from smooth and log-concave densities. Jour-
nal of the Royal Statistical Society: Series B (Statistical
Methodology), 2017.

Dalalyan, A. S. and Tsybakov, A. B. Sparse regression learn-
ing by aggregation and Langevin Monte-Carlo. Journal
of Computer and System Sciences, 2012.

9

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

De Souza, D. A., Mesquita, D., Kaski, S., and Acerbi, L.
Parallel MCMC without embarrassing failures. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 1786–1804. PMLR, 2022.

Dhariwal, P. and Nichol, A. Diffusion models beat gans
on image synthesis. Advances in neural information
processing systems, 34:8780–8794, 2021.

Dragomir, S. S. Some Gronwall type inequalities and appli-
cations. Science Direct Working Paper, 2003.

Durmus, A. and Moulines, E. Nonasymptotic convergence
analysis for the unadjusted Langevin algorithm. 2017.

Dwivedi, R., Chen, Y., Wainwright, M. J., and Yu, B. Log-
concave sampling: Metropolis-Hastings algorithms are
fast. Journal of Machine Learning Research, 2019.

Gander, M. J. 50 years of time parallel time integration.
In Multiple Shooting and Time Domain Decomposition
Methods: MuS-TDD, Heidelberg, May 6-8, 2013, pp.
69–113. Springer, 2015.

Gear, C. Waveform methods for space and time paral-
lelism. Journal of Computational and Applied Math-
ematics, 1991.

Glatt-Holtz, N. E., Holbrook, A. J., Krometis, J. A., and
Mondaini, C. F. Parallel MCMC algorithms: theoretical
foundations, algorithm design, case studies. Transactions
of Mathematics and Its Applications, 8(2):tnae004, 2024.

Goldreich, O. Computational complexity: a conceptual
perspective. ACM Sigact News, 2008.

Gupta, S., Cai, L., and Chen, S. Faster Diffusion-based
Sampling with Randomized Midpoints: Sequential and
Parallel. International Conference on Learning Represen-
tations, 2025.

Hafych, V., Eller, P., Schulz, O., and Caldwel, A. Paralleliz-
ing MCMC sampling via space partitioning. Statistics
and Computing, 32(4):56, 2022.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in Neural Information Process-
ing Systems, 2020.

Ho, J., Saharia, C., Chan, W., Fleet, D. J., Norouzi, M.,
and Salimans, T. Cascaded diffusion models for high
fidelity image generation. Journal of Machine Learning
Research, 23(47):1–33, 2022a.

Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M.,
and Fleet, D. J. Video diffusion models. Advances in
Neural Information Processing Systems, 35:8633–8646,
2022b.

Hodgkinson, L., Salomone, R., and Roosta, F. Implicit
Langevin algorithms for sampling from log-concave den-
sities. Journal of Machine Learning Research, 22(136):
1–30, 2021.

Huang, D. Z., Huang, J., and Lin, Z. Convergence Analysis
of Probability Flow ODE for Score-Based Generative
Models. IEEE Transactions on Information Theory, 71
(6):4581–4601, 2025.

Hutzenthaler, M., Kruse, T., and Nguyen, T. A. On the speed
of convergence of Picard iterations of backward stochastic
differential equations. arXiv preprint arXiv:2107.01840,
2021.

Ledoux, M. The geometry of markov diffusion genera-
tors. In Annales de la Faculté des sciences de Toulouse:
Mathématiques, 2000.

Lee, H., Lu, J., and Tan, Y. Convergence of score-based
generative modeling for general data distributions. In In-
ternational Conference on Algorithmic Learning Theory.
PMLR, 2023.

Li, G. and Yan, Y. Adapting to unknown low-dimensional
structures in score-based diffusion models. In The Thirty-
eighth Annual Conference on Neural Information Pro-
cessing Systems, 2024.

Li, M., Cai, T., Cao, J., Zhang, Q., Cai, H., Bai, J., Jia, Y., Li,
K., and Han, S. Distrifusion: Distributed parallel infer-
ence for high-resolution diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7183–7193, 2024a.

Li, S., Yang, L., Jiang, X., Lu, H., Di, Z., Lu, W., Chen, J.,
Liu, K., Yu, Y., Lan, T., et al. SwiftDiffusion: Efficient
Diffusion Model Serving with Add-on Modules. arXiv
preprint arXiv:2407.02031, 2024b.

Li, X., Wu, Y., Mackey, L., and Erdogdu, M. A. Stochastic
Runge-Kutta Accelerates Langevin Monte Carlo and Be-
yond. Advances in neural information processing systems,
32, 2019.

Liang, Y., Ju, P., Liang, Y., and Shroff, N. Broadening
Target Distributions for Accelerated Diffusion Models via
a Novel Analysis Approach. The Thirteenth International
Conference on Learning Representations, ICLR, 2025.

Lu, C., Zhou, Y., Bao, F., Chen, J., and Li, C. A Fast ODE
Solver for Diffusion Probabilistic Model Sampling in
Around 10 Steps. Proc. Adv. Neural Inf. Process. Syst.,
New Orleans, United States, pp. 1–31, 2022a.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J. Dpm-
solver++: Fast solver for guided sampling of diffusion
probabilistic models. arXiv preprint arXiv:2211.01095,
2022b.

10

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

Marin, J.-M., Robert, C. P., et al. Bayesian Core: A Practi-
cal Approach to Computational Bayesian statistics, vol-
ume 268. Springer, 2007.

Mou, W., Ma, Y.-A., Wainwright, M. J., Bartlett, P. L.,
and Jordan, M. I. High-order Langevin diffusion yields
an accelerated MCMC algorithm. Journal of Machine
Learning Research, 2021.

Nakajima, S., Watanabe, K., and Sugiyama, M. Variational
Bayesian learning theory. Cambridge University Press,
2019.

Nishihara, R., Murray, I., and Adams, R. P. Parallel MCMC
with generalized elliptical slice sampling. The Journal of
Machine Learning Research, 15(1):2087–2112, 2014.

Oksendal, B. Stochastic differential equations: an intro-
duction with applications. Springer Science & Business
Media, 2013.

Oliva, P. F. V. and Akyildiz, O. D. Kinetic Interact-
ing Particle Langevin Monte Carlo. arXiv preprint
arXiv:2407.05790, 2024.

Ong, B. W. and Schroder, J. B. Applications of time paral-
lelization. Computing and Visualization in Science, 23:
1–15, 2020.

Otto, F. and Villani, C. Generalization of an inequality by
Talagrand and links with the logarithmic Sobolev inequal-
ity. Journal of Functional Analysis, 2000.

Pedrotti, F., Maas, J., and Mondelli, M. Improved Conver-
gence of Score-Based Diffusion Models via Prediction-
Correction. Transactions on Machine Learning Research,
2024. ISSN 2835-8856.

Robert, C. P., Casella, G., and Casella, G. Monte Carlo
statistical methods, volume 2. Springer, 1999.

Salmona, A., De Bortoli, V., Delon, J., and Desolneux, A.
Can push-forward generative models fit multimodal dis-
tributions? Advances in Neural Information Processing
Systems, 35:10766–10779, 2022.

Shen, R. and Lee, Y. T. The Randomized Midpoint Method
for Log-Concave Sampling. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Shih, A., Belkhale, S., Ermon, S., Sadigh, D., and Anari,
N. Parallel sampling of diffusion models. Advances in
Neural Information Processing Systems, 36, 2024.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. In International Conference on Learning
Representations, 2021.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. Advances in neural
information processing systems, 32, 2019.

Song, Y., Shen, L., Xing, L., and Ermon, S. Solving inverse
problems in medical imaging with score-based genera-
tive models. In International Conference on Learning
Representations, 2022.

Tang, W. and Zhao, H. Contractive diffusion probabilistic
models. arXiv preprint arXiv:2401.13115, 2024.

Vempala, S. S. and Wibisono, A. Rapid convergence of the
unadjusted langevin algorithm: Isoperimetry suffices. In
Advances in Neural Information Processing Systems 32,
pp. 8092–8104, 2019.

Wang, Y. Parallel Numerical Picard Iteration Meth-
ods. J. Sci. Comput., 95(1):27, 2023. doi: 10.1007/
S10915-023-02156-Y. URL https://doi.org/10.
1007/s10915-023-02156-y.

Wibisono, A. Sampling as optimization in the space of
measures: The Langevin dynamics as a composite opti-
mization problem. In Conference on Learning Theory,
2018.

Wibisono, A. Proximal Langevin algorithm: Rapid
convergence under isoperimetry. arXiv preprint
arXiv:1911.01469, 2019.

Yang, R., Srivastava, P., and Mandt, S. Diffusion probabilis-
tic modeling for video generation. Entropy, 25(10):1469,
2023a.

Yang, Z., Feng, R., Zhang, H., Shen, Y., Zhu, K., Huang,
L., Zhang, Y., Liu, Y., Zhao, D., Zhou, J., et al. Lips-
chitz singularities in diffusion models. In The Twelfth
International Conference on Learning Representations,
2023b.

Yu, L. and Dalalyan, A. Parallelized Midpoint Ran-
domization for Langevin Monte Carlo. arXiv preprint
arXiv:2402.14434, 2024.

Zhang, Q. and Chen, Y. Fast sampling of diffusion models
with exponential integrator. In The Eleventh International
Conference on Learning Representations, 2023.

11

https://doi.org/10.1007/s10915-023-02156-y
https://doi.org/10.1007/s10915-023-02156-y

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

A. Useful tools
A.1. Girsanov’s Theorem

Following the notation introduced in Chen et al. (2024, Appendix A.2), we consider a probability space (Ω,F , p) on
which (wt(ω))t≥0 is a Wiener process in Rd, with the filtration {Ft}t≥0. For an Itô process zt(ω) satisfies dzt(ω) =
α(t, ω)dt +Σ(t, ω)dwt(ω), we denote the marginal distribution of zt by pt, and the path measure of the process zt by
pt1:t2 .
Definition A.1. Assume B is the Borel σ-algebra on Rd. For any 0 ≤ t1 < t2, we define V as the class of functions
f(t, ω) : [0,+∞)× Ω → R which is B × Ft measurable, Ft-adapted for any t ≥ 0 and satisfies

E
[
exp

(∫ t

0

f2(t, ω)dt

)]
< +∞, ∀t > 0.

For vectors and matrices, we say it belongs to Vn or Vm×n if each component of the vector or each entry of the matrix
belongs to V .
Theorem A.2 ((Chen et al., 2024, Corollary A.4)). Let α(t, ω) ∈ Vm, Σ(t, ω) ∈ Vm×n, and (wt(ω))t≥0 be a Wiener
process on the probability space (Ω,F , q). For t ∈ [0, T], suppose zt(ω) is an Itô process with the following SDE:

dzt(ω) = α(t, ω)dt+Σ(t, ω)dwt(ω), (6)

and there exist processes δ(t, ω) ∈ Vn and β(t, ω) ∈ Vm such that:

1. Σ(t, ω)δ(t, ω) = α(t, ω)− β(t, ω);

2. The process Mt(ω) as defined below is a martingale with respect to the filtration {Ft}t≥0 and probability measure q:

Mt(ω) = exp

(
−
∫ t

0

δ(s, ω)⊤dws(ω)−
1

2

∫ t

0

∥δ(s, ω)∥2ds
)
,

then there exists another probability measure p on (Ω,F) such that:

1. p ≪ q with the Radon-Nikodym derivative dp
dq (ω) = MT (ω),

2. The process w̃t(ω) as defined below is a Wiener process on (Ω,F , p):

w̃t(ω) = wt(ω) +

∫ t

0

δ(s, ω)ds,

3. Any continuous path in C([t1, t2],Rm) generated by the process zt satisfies the following SDE under the probability
measure p:

dz̃t(ω) = β(t, ω)dt+Σ(t, ω)dw̃t(ω). (7)

Corollary A.3 ((Chen et al., 2024, Corollary A.5)). Suppose the conditions in Theorem A.2 hold, then for any t1, t2 ∈ [0, T]
with t1 < t2, the path measure of the SDE (7) under the probability measure p in the sense of pt1:t2 = p(z−1

t1:t2(·)) is
absolutely continuous with respect to the path measure of the SDE (6) in the sense of qt1:t2 = q(z−1

t1:t2(·)). Moreover, the
KL divergence between the two path measures is given by

KL(pt1:t2∥qt1:t2) = KL(pt1∥qt1) + Eω∼p|Ft1

[
1

2

∫ t2

t1

∥δ(t, ω)∥2dt
]
.

A.2. Comparison Inequalities

Theorem A.4 (Gronwall inequality (Dragomir, 2003, Theorem 1)). Let x, Ψ and χ be real continuous functions defined
in [a, b], χ(t) ≥ 0 for t ∈ [a, b]. We suppose that on [a, b] we have the inequality

x(t) ≤ Ψ(t) +

∫ t

a

χ(s)x(s)ds.

Then

x(t) ≤ Ψ(t) +

∫ t

a

χ(s)Ψ(s) exp

[∫ t

s

χ(u)du

]
ds.

12

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

A.3. Help Lemmas for diffusion models

Lemma A.5 ((Chen et al., 2023a, Lemma 9)). For q̂0 ∼ N (0, Id) and ⃗p = pT is the distribution of the solution to the
forward process ((2)), we have

KL(⃗p0∥q̂0) ≲ de−T .

B. Missing Proof for Log-concave Sampling
We denotes KLjn = KL(µj

n,M∥π) where µj
n,M represents the law of xj

n,M . We define the truncation error from prior update

as, Ej
n := max

m=1,...,M
E
[∥∥xj,P

n,m − xj,P−1
n,m

∥∥2] , and truncation error at right boundary point as, ∆j
n := E

[∥∥xj
n,M −xj−1

n,M

∥∥2].
B.1. One Step Analysis of KLjn: From KL’s Convergence to Picard Convergence

In this section, we use the interpolation method to analyse the change of KLjn along time direction, which will be bounded
by discretization error and score error.
Lemma B.1. Assume βh ≤ 0.1. For any j = 1, . . . , J , n = 1, . . . , N − 1, we have

KLjn ≤ exp(−1.2αh)KLjn−1 +
0.5βdh

M
+ 4.4β2hEj

n + 2.1δ2h.

Furthermore, for initialization part, i.e., j = 0, n = 0, . . . , N − 1, we have

KL0n ≤ exp (−α(n+ 1)h)KL(µ0∥π) +
8β2dh

α
,

Remark B.2. In the first equation, the term exp(−1.2αh)KLjn−1 characterizes the convergence of the continuous diffusion.
Additionally, the second and third terms quantify the discretization error. Adopting P = 0 and M = 1 reverts to the classical
scenario, where the discretization error approximates O(hd), as discussed in Section 4.1 of Chewi (2023). Moreover, the
second term is influenced by the density of the grids, while the third term is dependent on the convergence of the Picard
iterations. The fourth term accounts for the score error.

Proof. We will use the interpolation method and follow the proof of Theorem 13 in Anari et al. (2024). For j ∈ [J],
n = 0, . . . , N − 1 and m = 0, . . . ,M − 1, it is easy to see that

xj
n,m+1 = xj

n,m − h

M
s(xj,P−1

n,m) +
√
2(Bnh+(m+1)/h −Bnh+mh/M).

Let xt denote the linear interpolation between xj
n,m+1 and xj

n,m, i.e., for t ∈
[
nh+ mh

M , nh+ (m+1)hh
M

]
, let

xt = xj
n,m −

(
t− nh− mh

M

)
s(xj,P−1

n,m) +
√
2(Bt −Bnh+mh/M).

Note that s(xj,P
n,m) is a constant vector field. Let µt be the law of xt. The same argument as in Vempala & Wibisono (2019,

Lemma 3/Equation 32) yields the differential inequality

∂tKL(µt∥π) = −FI(µt∥π) + E
〈
∇f(xt)− s(xj,P−1

n,m),∇ log
µt(xt)

π(xt)

〉
≤ −3

4
FI(µt∥π) + E

[∥∥∇f(xt)− s(xj,P−1
n,m)

∥∥2] , (8)

where we used (a, b) ≤ 1
4∥a∥

2+∥b∥2 and E
[∥∥∥∇ log µt(xt)

π(xt)

∥∥∥2] = FI(µt∥π). For the first term, by α strongly-log-concavity

of π, we have KL(µt∥π) ≤ 1
2αFI(µt∥π). For the second term, we have

E
[∥∥∇f(xt)− s(xj,P−1

n,m)
∥∥2]

≤ 2E
[∥∥∇f(xt)−∇f(xj,P−1

n,m)
∥∥2]+ 2E

[∥∥∇f(xj,P−1
n,m)− s(xj,P−1

n,m)
∥∥2]

≤ 2β2E
[∥∥xt − xj,P−1

n,m

∥∥2]+ 2δ2. (9)

13

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

Moreover,
E
[∥∥xt − xj,P−1

n,m

∥∥2] ≤ 2E
[∥∥xt − xj

n,m

∥∥2]+ 2E
[∥∥xj,P

n,m − xj,P−1
n,m

∥∥2] (10)

For the first term, which will be influenced by density of grids, we have

E
[∥∥xt − xj

n,m

∥∥2]
≤
(
t− nh− mh

M

)2

E
[∥∥s(xj,P−1

n,m)
∥∥2]+ d

(
t− nh− mh

M

)
≤ h2

M2
E
[∥∥s(xj,P−1

n,m)
∥∥2]+ d

(
t− nh− mh

M

)
≤ 2h2

M2
E
[∥∥∇f(xj,P−1

n,m)
∥∥2]+ 2δ2h2

M2
+

dh

M

≤ 4β2h2

M2
E
[∥∥xt − xj,P−1

n,m

∥∥2]+ 4h2

M2
E
[
∥∇f(xt)∥2

]
+

2δ2h2

M2
+

dh

M
. (11)

Taking βh ≤ 1
10 , and combining (10) and (11), we have

E
[∥∥xt − xj,P−1

n,m

∥∥2] ≤ 4.4h2

M2
E
[
∥∇f(xt)∥2

]
+

2.2δ2h2

M2
+

1.1dh

M
+ 2.2E

[∥∥xj
n,m − xj,P−1

n,m

∥∥2] . (12)

For the first term, we recall the following lemma.

Lemma B.3 ((Chewi et al., 2024, Lemma 16)).

E
[
∥∇f(xt)∥2

]
≤ FI(µt∥π) + 2βd.

Combining (8), (9), (12) and βh ≤ 1
10 , we have for j ∈ [J], n = 0, . . . , n − 1, m = 0, . . . ,M − 1, and

t ∈
[
nh+ mh

M , nh+ (m+1)hh
M

]
,

∂tKL(µt∥π)

≤ − 3

4
FI(µt∥π) + E

[∥∥∇f(xt)− s(xj,P−1
n,m)

∥∥2]
≤ − 3

4
FI(µt∥π) + 2β2E

[∥∥xt − xj,P−1
n,m

∥∥2]+ 2δ2

≤ − 3

4
FI(µt∥π) +

8.8β2h2

M2
E
[
∥∇f(xt)∥2

]
+

4.4β2δ2h2

M2
+

2.2β2dh

M
+ 4.4β2E

[∥∥xj,P
n,m − xj,P−1

n,m

∥∥2]+ 2δ2

≤ − 3

4
FI(µt∥π) +

0.1

M2
E
[
∥∇V (Xt)∥2

]
+

0.1δ2

M2
+

2.2β2dh

M
+ 4.4β2Ej

n + 2δ2

≤ − 3

4
FI(µt∥π) +

0.1

M2
(FI(µt∥π) + 2βd) +

0.1δ2

M2
+

2.2β2dh

M
+ 4.4β2Ej

n + 2δ2

≤ − 1.2αKL(µt∥π) +
0.5βd

M
+ 4.4β2Ej

n + 2.1δ2

Since this inequality holds independently of m, we integral from t = nh to t = (n+ 1)h,

KLjn ≤ exp(−1.2αh)KLjn−1 +
0.5βdh

M
+ 4.4β2hEj

n + 2.1δ2h.

As for j = 0, actually, Line 4-7 performs a Langevin Monte Carlo with step size h, by Theorem 4.2.6 in Chewi (2023), we
have

KL0n ≤ exp (−αnh)KL00 +
8dhβ2

α
,

with 0 < h ≤ 1
4L .

14

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

Corollary B.4. Assume βh ≤ 0.1. We have

KLJN−1 ≤ e−1.2α(N−1)h
(
KL(µ0∥π) + 4.4β2h∆J

0

)
+

N−1∑
n=1

e−1.2α(n−1)h4.4β2hEJ
N−n +

0.5βd

αM
+

2.1δ2

α
.

Furthermore, if EJ
N−n has a uniform bound as EJ

N−n ≤ E + 500δ2h2, we have

KLJN−1 ≤ e−1.2α(N−1)h
(
KL(µ0∥π) + 4.4β2h∆J

0

)
+ 5βκE +

0.5βd

αM
+

2.5δ2

α
.

Proof. By Lemma B.1, we decompose KLJN−1 as

KLJN−1 ≤ e−1.2α(N−1)hKLJ0 +

N−1∑
n=1

e−1.2α(n−1)h

(
0.5βdh

M
+ 4.4β2hEJ

N−n + 2.1δ2h

)
≤ e−1.2α(N−1)h

(
KL(µ0∥π) + 4.4β2h∆J

0

)
+

4.4β2h(E + 500δ2h2) + 0.5βdh
M + 2.1δ2h

1− exp(−1.2αh)

≤ e−1.2α(N−1)h
(
KL(µ0∥π) + 4.4β2h∆J

0

)
+

1.1

αh
4.4β2hE +

1.1

αh

0.5βdh

M

+
1.1

αh
25δ2h

= e−1.2α(N−1)h
(
KL(µ0∥π) + 4.4β2h∆J

0

)
+ 5κβE +

0.6βd

αM
+

28δ2

α
,

where the third inequality holds since 0 < x < 0.4, we have 1.1− 1.1 exp(−1.2x)− x > 0. It is clear that αh < βh <
0.1.

B.2. One Step Analysis of ∆j
n

In this section, we analyze the one step change of ∆j
n first.

Lemma B.5. Assume βh = 1
10 and P ≥ 2 log κ

3 + 4. For any j = 2, . . . , J , n = 1, . . . , N − 1, we have

∆j
n ≤

(
1− 0.005

κ

)
∆j

n−1 + 4.4

(
1

M
+ 10κ

)
h2δ2 + 4.4

(
1

M
+ 10κ

)
β2h2Ej−1

n .

Furthermore, for j = 1, n = 1, . . . , N − 1, we have

∆1
n ≤ ∆1

n−1 +

(
1

M
+ 10κ

)(
5δ2h2 + 6β2dh3 + 0.4β2h2KL

0
n−1

α

)
.

Proof. Decomposition when j ≥ 2. In fact, for j ∈ [J], n = 0, . . . , N − 1, m = 0, . . . ,M − 1, and p = 1, . . . , P , it is
easy to see that

xj,p
n,m+1 = xj,p

n,m − h

M
s(xj,p−1

n,m) +
√
2(Bnh+(m+1)/h −Bnh+mh/M).

For any j = 2, . . . , J , n = 1, . . . , N − 1, by the contraction of ϕ(x) = x− h
M∇f(x) (Lemma 2.2 in Altschuler & Talwar

(2023)), for any m = 1, . . . ,M , we have,

E
[∥∥xj,P

n,m − xj−1,P
n,m

∥∥2]
= E

[∥∥∥∥xj,P
n,m−1 −

h

M
s(xj,P−1

n,m−1)−
(
xj−1,P
n,m−1 −

h

M
s(xj−1,P−1

n,m−1)

)∥∥∥∥2
]

15

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

≤ (1 + η)E

[∥∥∥∥xj,P
n,m−1 −

h

M
∇f(xj,P

n,m−1)−
(
xj−1,P
n,m−1 −

h

M
∇f(xj−1,P

n,m−1)

)∥∥∥∥2
]

+

(
2 +

2

η

)
E

[∥∥∥∥ h

M
∇f(xj,P

n,m−1)−
h

M
∇f(xj,P−1

n,m−1) +
h

M
∇f(xj−1,P

n,m−1)−
h

M
∇f(xj−1,P−1

n,m−1)

∥∥∥∥2
]

+

(
2 +

2

η

)
E

[∥∥∥∥ h

M
∇f(xj,P−1

n,m−1)−
h

M
s(xj,P−1

n,m−1) +
h

M
∇f(xj−1,P−1

n,m−1)− h

M
s(xj−1,P−1

n,m−1)

∥∥∥∥2
]

≤ (1 + η)

(
1− αh

M

)2

E
[∥∥∥xj,P

n,m−1 − xj−1,P
n,m−1

∥∥∥2]+ (4 + 4

η

)
h2

M2
δ2

+

(
4 +

4

η

)
β2h2

M2
E
[∥∥∥xj,P

n,m−1 − xj,P−1
n,m−1

∥∥∥2]+ (4 + 4

η

)
β2h2

M2
E
[∥∥∥xj−1,P

n,m−1 − xj−1,P−1
n,m−1

∥∥∥2] .
By setting η = αh

M = 1
10κM , we have

E
[∥∥∥xj,P

n,M − xj−1,P
n,M

∥∥∥2]
≤
(
1− αh

M

)M

E
[∥∥∥xj,P

n,0 − xj−1,P
n,0

∥∥∥2]+ (4 + 4

η

)
h2

M
δ2

+

M∑
m=1

(
4 +

4

η

)
β2h2

M2
E
[∥∥∥xj,P

n,m−1 − xj,P−1
n,m−1

∥∥∥2]

+

M∑
m=1

(
4 +

4

η

)
β2h2

M2
E
[∥∥∥xj−1,P

n,m−1 − xj−1,P−1
n,m−1

∥∥∥2]
≤ exp(−αh)∆j

n−1 +

(
4 +

4

η

)
h2

M
δ2 +

(
4 +

4

η

)
β2h2

M
Ej
n +

(
4 +

4

η

)
β2h2

M
Ej−1
n

≤ (1− 0.1αh)∆j
n−1 +

(
4 +

4

η

)
h2

M
δ2 +

(
4 +

4

η

)
β2h2

M
Ej
n +

(
4 +

4

η

)
β2h2

M
Ej−1
n

=

(
1− 0.01

κ

)
∆j

n−1 + 4

(
1

M
+ 10κ

)
h2δ2 + 4

(
1

M
+ 10κ

)
β2h2Ej

n

+ 4

(
1

M
+ 10κ

)
β2h2Ej−1

n . (13)

In the following, we further decompose Ej
n. For any n = 0, . . . , N − 1, j ∈ [J], p = 2, . . . , P , and m = 1, . . . ,M , we can

decompose E
[∥∥xj,p

n,m − xj,p−1
n,m

∥∥2] as follows. By definition (Line 12 or 18 in Algorithm 1), we have

E
[∥∥xj,p

n,m − xj,p−1
n,m

∥∥2]
=

h2

M2
E

∥∥∥∥∥
m−1∑
m′=0

s(xj,p−1
n,m′)−

m−1∑
m′=0

s(xj,p−2
n,m′)

∥∥∥∥∥
2

≤ h2m

M2

m−1∑
m′=0

E
[∥∥∥s(xj,p−1

n,m′)− s(xj,p−2
n,m′)

∥∥∥2]

≤ h2m

M2

m−1∑
m′=0

3

[
E
[∥∥∥∇f(xj,p−1

n,m′)−∇f(xj,p−2
n,m′)

∥∥∥2]+ E
[∥∥∥∇f(xj,p−1

n,m′)− s(xj,p−1
n,m′)

∥∥∥2]
+ E

[∥∥∥∇f(xj,p−2
n,m′)− s(xj,p−2

n,m′)
∥∥∥2]]

≤ 3β2h2 max
m′=1,...,M

E
[∥∥∥xj,p−1

n,m′ − xj,p−2
n,m′

∥∥∥2]+ 6δ2h2. (14)

16

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

Furthermore,

E
[∥∥∥xj,1

n,m−1 − xj,0
n,m−1

∥∥∥2]

= E

∥∥∥∥∥xj
n−1,M − h

M

m−1∑
m′=0

s(xj,0
n,m′)−

(
xj−1
n−1,M − h

M

m−1∑
m′=0

s(xj−1,P−1
n,m′)

)∥∥∥∥∥
2

≤ 2E
[∥∥∥xj

n−1,M − xj−1
n−1,M

∥∥∥2]+ 2
h2m

M2

m−1∑
m′=0

E
[∥∥∥s(xj−1,P

n,m′)− s(xj−1,P−1
n,m′)

∥∥∥2]
≤ 2∆j

n−1 + 6β2h2Ej−1
n + 12δ2h2. (15)

Combining (14) and (15), we have

Ej
n =E

[∥∥∥xj,P
n,m−1 − xj,P−1

n,m−1

∥∥∥2] ≤ 2 · 0.03P−1∆j
n−1 + 6 · 0.03PEj−1

n + 6.6δ2h2. (16)

Substitute it into (13), we have for any j = 2, . . . , J , n = 1, . . . , N − 1,

∆j
n ≤

(
1− 0.01

κ
+ 8

(
1

M
+ 10κ

)
0.03P

)
∆j

n−1 + 4.4

(
1

M
+ 10κ

)
h2δ2

+ 4.4

(
1

M
+ 10κ

)
β2h2Ej−1

n (17)

≤
(
1− 0.005

κ

)
∆j

n−1 + 4.4

(
1

M
+ 10κ

)
h2δ2 + 4.4

(
1

M
+ 10κ

)
β2h2Ej−1

n , (18)

where the second inequality holds since P ≥ 2 log κ
3 + 4 implies 8

(
1
M + 10κ

)
0.03P ≤ 0.005

κ .

Decomposition when j = 1. When j = 1, similarly, we have for p = 1, . . . , P ,

x1,p
n,m+1 = x1,p

n,m − h

M
s(x1,p−1

n,m) +
√
2(Bnh+(m+1)/h −Bnh+mh/M),

and
x0
n,m+1 = x0

n,m − h

M
s(x0

n−1,M) +
√
2(Bnh+(m+1)/h −Bnh+mh/M).

Thus by the contraction of ϕ(x) = x− h
M∇f(x) (Lemma 2.2 in Altschuler & Talwar (2023)), we have

E
[∥∥∥x1,P

n,m+1 − x0
n,m+1

∥∥∥2]
= E

[∥∥∥∥x1,P
n,m − h

M
s(x1,P−1

n,m′)−
(
x0
n,m − h

M
s(x0

n−1,M)

)∥∥∥∥2
]

≤ (1 + η)E

[∥∥∥∥x1,P
n,m − h

M
∇f(x1,P

n,m)−
(
x0
n,m − h

M
∇f(x0

n,m)

)∥∥∥∥2
]

+

(
2 +

2

η

)
E

[∥∥∥∥ h

M
∇f(x1,P

n,m)− h

M
∇f(x1,P−1

n,m) +
h

M
∇f(x0

n,m)− h

M
∇f(x0

n−1,M)

∥∥∥∥2
]

+

(
2 +

2

η

)
E

[∥∥∥∥ h

M
∇f(x1,P−1

n,m)− h

M
s(x1,P−1

n,m) +
h

M
∇f(x0

n−1,M)− h

M
s(x0

n−1,M)

∥∥∥∥2
]

≤ (1 + η)

(
1− αh

M

)2

E
[∥∥x1,P

n,m − x0
n,m

∥∥2]+ (4 + 4

η

)
δ2h2

M2

+

(
4 +

4

η

)
β2h2

M2
E
[∥∥x1,P

n,m − x1,P−1
n,m

∥∥2]+ (4 + 4

η

)
β2h2

M2
E
[∥∥x0

n,m − x0
n−1,M

∥∥2] .
17

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

For third term E
[∥∥x1,P

n,m − x1,P−1
n,m

∥∥2], we have

E
[∥∥x1,P

n,m − x1,P−1
n,m

∥∥2]
= E

∥∥∥∥∥ h

M

m∑
m′=0

s(x1,P−1
n,m′)− s(x1,P−2

n,m′)

∥∥∥∥∥
2

≤ mh2

M2

m∑
m′=0

E
[∥∥∥s(x1,P−1

n,m′)− s(x1,P−2
n,m′)

∥∥∥2]
≤ 3β2h2 max

m′=0,...,M
E
[∥∥∥x1,P−1

n,m′ − x1,P−2
n,m′

∥∥∥2]+ 6δ2h2.

Thus

E
[∥∥x1,P

n,m − x1,P−1
n,m

∥∥2] ≤ 0.03P−1 max
m′=0,...,M

E
[∥∥∥x1,1

n,m′ − x1,0
n,m′

∥∥∥2]+ 6.2δ2h2. (19)

For E
[∥∥x1,1

n,m − x1,0
n,m

∥∥2], by definition, we have

E
[∥∥x1,1

n,m − x1,0
n,m

∥∥2]
= E

∥∥∥∥∥x1
n−1,M − h

M

m−1∑
m′=0

s(x0
n,m′)−

(
x0
n−1,M − h

M

m−1∑
m′=0

s(x0
n−1,M)

)∥∥∥∥∥
2

≤ 2E
[∥∥x1

n−1,M − x0
n−1,M

∥∥2]+ 2E

∥∥∥∥∥ h

M

m−1∑
m′=0

s(x0
n,m′)−

h

M

m−1∑
m′=0

s(x0
n−1,M)

∥∥∥∥∥
2

≤ 2E
[∥∥x1

n−1,M − x0
n−1,M

∥∥2]+ 2
h2m

M2

m−1∑
m′=0

E
[∥∥s(x0

n,m′)− s(x0
n−1,M)

∥∥2]
≤ 2E

[∥∥x1
n−1,M − x0

n−1,M

∥∥2]+ 6β2h2 max
m′∈[M]

E
[∥∥x0

n,m′ − x0
n−1,M

∥∥2]+ 12δ2h2. (20)

For E
[∥∥x0

n,m − x0
n−1,M

∥∥2], by definition of x0
n,m (Line 7 in Algorithm 1), we have

E
[∥∥x0

n,m − x0
n−1,M

∥∥2]
=

h2m2

M2
E
[∥∥s(x0

n−1,M)
∥∥2]+ dhm

M

≤ 2δ2h2 + 2h2E
[∥∥∇f(x0

n−1,M)
∥∥2]+ dh

≤ 2δ2h2 + 2h2

(
2βd+

4β2

α
KL(µ0

n−1,M∥π)
)
+ dh

= 4h2βd+ 2h2δ2 +
8β2h2

α
KL0n−1 + dh, (21)

where the last inequality is implied from the following lemma, (Vempala & Wibisono, 2019, Lemma 10)

E
[∥∥∇f(x0

n−1,M)
∥∥2] ≤ 2βd+

4β2

α
KL(µ0

n−1,M∥π).

Combining (19), (20), and (21), and P ≥ 4, we have

E
[∥∥x1,P

n,m − x1,P−1
n,m

∥∥2]
18

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

≤ 0.03P−1 max
m′=0,...,M

E
[∥∥∥x1,1

n,m′ − x1,0
n,m′

∥∥∥2]+ 6.2h2δ2

≤ 0.03P−1

[
2∆1

n−1 + 6β2h2

(
4h2βd+ 2h2δ2 +

8β2h2

α
KL0n−1 + dh

)
+ 12δ2h2

]
+ 6.2h2δ2

≤ 2 · 0.03P−1∆1
n−1 + 6.3h2δ2 + 0.01dh+ 0.01

β2h2

α
KL0n−1. (22)

By setting η = αh
M = 1

10κM , we have

E
[∥∥∥x1,P

n,M − x0
n,M

∥∥∥2]
≤
(
1− αh

M

)M

E
[∥∥∥x1,P

n,0 − x0
n,0

∥∥∥2]+ (4 + 4

η

)
δ2h2

M

+

(
4 +

4

η

)
β2h2

M

(
2 · 0.03P−1∆1

n−1 + 6.3h2δ2 + 0.01dh+ 0.01
β2h2

α
KL0n−1

)
+

(
4 +

4

η

)
β2h2

M

(
4h2βd+ 2h2δ2 +

8β2h2

α
KL0n−1 + dh

)
≤
(
1− 0.01

κ
+ 4

(
1

M
+ 10κ

)
0.03P

)
∆1

n−1 +

(
1

M
+ 10κ

)(
5δ2h2 + 6β2dh3 + 0.4β2h2KL

0
n−1

α

)

≤∆1
n−1 +

(
1

M
+ 10κ

)(
5δ2h2 + 6β2dh3 + 0.4β2h2KL

0
n−1

α

)

where the last inequality holds since P ≥ 2 log κ
3 + 4 implies 8

(
1
M + 10κ

)
0.03P ≤ 0.005

κ .

When n = 0, the update is identical to the Picard iteration shown in Anari et al. (2024), thus we have the following lemma.

Lemma B.6 (Lemma 18 in Anari et al. (2024)). For j = 1, . . . , J , we have

∆j
0 ≤ 0.03P∆j−1

0 + 6.2δ2h2,

with ∆0
0 := max

m=0,...,M
E
[∥∥x0

0,m − x0

∥∥2] ≤ 4β2h2

α KL(µ0∥π) + 1.4dh+ 2δ2h2.

Corollary B.7. For n = 1, . . . , N − 1, we have

∆1
n ≤ n

(
1

M
+ 10κ

)(
5.1δ2h2 + 0.5

β2h2

α
KL(µ0∥π) + 10κ2β2dh3

)
.

Furthermore, for j = 1, . . . , J and n = 0, we have

∆j
0 ≤ 0.03jP

4β2h2

α
KL(µ0∥π) + 1.4 · 0.03jP dh+ 6.7δ2h2.

Proof. By Lemma B.6, we have

∆j
0 ≤ 0.03P∆j−1

0 + 6.2δ2h2

≤ 0.03jP∆0
0 + 6.6δ2h2

≤ 0.03jP
(
4β2h2

α
KL(µ0∥π) + 1.4dh+ 2δ2h2

)
+ 6.6δ2h2

≤ 0.03jP
4β2h2

α
KL(µ0∥π) + 1.4 · 0.03jP dh+ 6.7δ2h2.

19

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

Combining Lemma B.1 and Lemma B.5, we have

∆1
n ≤∆1

0 +

n∑
i=1

(
1

M
+ 10κ

)(
5δ2h2 + 6β2dh3 + 0.4β2h2KL

0
i−1

α

)

≤∆1
0 + n

(
1

M
+ 10κ

)(
5δ2h2 + 6β2dh3

)
+

n∑
i=1

(
1

M
+ 10κ

)
0.4

β2h2

α

(
exp (−αnh)KL(µ0∥π) +

8β2dh

α

)
≤∆1

0 + n

(
1

M
+ 10κ

)(
5δ2h2 + 6β2dh3 + 0.4

β2h2

α
KL(µ0∥π) + 3.2κ2β2dh3

)
≤ n

(
1

M
+ 10κ

)(
5.1δ2h2 + 0.5

β2h2

α
KL(µ0∥π) + 10κ2β2dh3

)
.

B.3. One Step Analysis of Ej
n

In this section, we analyze the one step change of Ej
n.

Lemma B.8. For any j = 2, . . . , J , n = 1, . . . , N − 1, we have

Ej
n ≤ 2 · 0.03P−1∆j

n−1 + 2 · 0.03PEj−1
n + 7δ2h2.

Furthermore, for n = 1, . . . , N − 1, we have

E1
n ≤ 2 · 0.03P−1∆1

n−1 + 6.3h2δ2 + 0.01dh+ 0.01
β2h2

α
KL0n−1.

Proof. By (16), the first inequality holds. By (22), the second inequality holds.

Corollary B.9. For n = 1, . . . , N − 1, we have

E1
n ≤ n

(
5.5δ2h2 + 0.1

β2h2

α
KL(µ0∥π) + 0.1κ2dh

)
.

Proof. Combining Lemma B.1, Lemma B.8 and Corollary B.7, we have

E1
n ≤ 2 · 0.03P−1∆1

n−1 + 6.3h2δ2 + 0.01dh+ 0.01
β2h2

α
KL0n−1

≤ 2 · 0.03P−1∆1
n−1 + 6.3h2δ2 + 0.01dh

+ 0.01
β2h2

α

(
exp (−α(n+ 1)h)KL(µ0∥π) +

8β2dh

α

)
≤ 2 · 0.03P−1∆1

n−1 + 6.3h2δ2 + 0.02κdh+ 0.01
β2h2

α
KL(µ0∥π)

≤ 2 · 0.03P−1

(
n

(
1

M
+ 10κ

)(
5.1δ2h2 + 0.5

β2h2

α
KL(µ0∥π) + 10κ2β2dh3

))
+ 6.3h2δ2 + 0.02κdh+ 0.01

β2h2

α
KL(µ0∥π)

≤ n · 0.06
(
5.1δ2h2 + 0.5

β2h2

α
KL(µ0∥π) + 0.1κ2dh

)
+ 6.3h2δ2 + 0.02κdh+ 0.01

β2h2

α
KL(µ0∥π)

≤ n

(
5.5δ2h2 + 0.1

β2h2

α
KL(µ0∥π) + 0.1κ2dh

)
.

where the fifth inequality holds since P ≥ 2 log κ
3 + 4 implies

(
1
M + 10κ

)
0.03P−1 ≤ 0.03.

20

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

B.4. Proof of Theorem 4.2

We define an energy function as

Lj
n = ∆j

n−1 + κEj−1
n .

We note that 2 · 0.03P−1Lj
n + 7δ2h2 ≥ Ej

n. By Lemma B.5 and Lemma B.8, we can decompose Lj
n as

Lj
n = ∆j

n−1 + κEj−1
n

≤
(
1− 0.005

κ

)
∆j

n−2 + 4.4

(
1

M
+ 10κ

)
h2δ2 + 4.4

(
1

M
+ 10κ

)
β2h2Ej−1

n−1

+ κ(0.03P−1∆j−1
n−1 + 2 · 0.03PEj−2

n + 7δ2h2)

≤
(
1− 0.005

κ

)
∆j

n−2 + κ

(
1− 0.005

κ

)
Ej−1
n−1 + κ · 0.03P−1∆j−1

n−1 + κ · 0.03P−1 · κEj−2
n

+ 56κδ2h2

=

(
1− 0.005

κ

)
Lj
n−1 +

(
κ · 0.03P−1

)
Lj−1
n + 56κδ2h2. (23)

Combining P ≥ 2 log κ
3 + 4 implies κ · 0.03P−1 ≤ 0.04, we recursively bound Lj

n as

Lj
n ≤

n∑
a=2

0.04j−2

(
n− a+ j − 2

j − 2

)
L2
a +

j∑
b=2

(
κ · 0.03P−1

)j−b
(
1− 0.005

κ

)n−1(
n− 1 + j − b

j − b

)
Lb
1

+

j∑
a=2

n∑
b=2

(
1− 0.001

κ

)n−b

0.04j−a65κδ2h2

≤
n∑

a=2

0.04j−2

(
n− a+ j − 2

j − 2

)
L2
a +

j∑
b=2

(
κ · 0.03P−1

)j−b
(
1− 0.005

κ

)n−1(
n− 1 + j − b

j − b

)
Lb
1

+ 68000κ2δ2h2. (24)

For the first term
n∑

a=2
0.04j−2

(
n−a+j−2

j−2

)
L2
a, we first bound L2

a. To do so, we first bound ∆2
n as follows. Combining Lemma

B.5 and Corollary B.9, we have

∆2
n ≤

(
1− 0.005

κ

)
∆2

n−1 + 4.4

(
1

M
+ 10κ

)
h2δ2 + 4.4

(
1

M
+ 10κ

)
β2h2E1

n

≤ ∆2
n−1 + 48.4κh2δ2 + 48.4κβ2h2

(
n

(
5.5δ2h2 + 0.1

β2h2

α
KL(µ0∥π) + 0.1κ2dh

))
≤ ∆2

n−1 + 48.4κβ2h2n

(
55.5δ2h2 + 0.1

β2h2

α
KL(µ0∥π) + 0.1κ2dh

)
≤ ∆2

0 + 48.4κβ2h2n2

(
55.5δ2h2 + 0.1

β2h2

α
KL(µ0∥π) + 0.1κ2dh

)
≤ 0.032P

4β2h2

α
KL(µ0∥π) + 1.4 · 0.032P dh+ 6.7δ2h2

+ 48.4κβ2h2n2

(
55.5δ2h2 + 0.1

β2h2

α
KL(µ0∥π) + 0.1κ2dh

)
≤ 48.4κβ2h2n2

(
67.2δ2h2 + 0.2

β2h2

α
KL(µ0∥π) + 0.2κ2dh

)
.

21

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

Thus

L2
a = ∆2

a−1 + κE1
a

≤ 0.49κ(a− 1)2
(
67.2δ2h2 + 0.2

β2h2

α
KL(µ0∥π) + 0.2κ2dh

)
+ κ

(
a

(
5.5δ2h2 + 0.1

β2h2

α
KL(µ0∥π) + 0.1κ2dh

))
≤ κa2

(
39δ2h2 + 0.2

β2h2

α
KL(µ0∥π) + 0.2κ2dh

)
.

Thus by
(
m
n

)
≤
(
em
n

)n
for m ≥ n > 0, we have

n∑
a=2

0.04j−2

(
n− a+ j − 2

j − 2

)
L2
a

≤
n∑

a=2

0.04j−2ej−2

(
n− a+ j − 2

j − 2

)j−2

L2
a

≤
n∑

a=2

0.04j−2e2j−4L2
a

≤
n∑

a=2

0.3j−2κa2
(
39δ2h2 + 0.2

β2h2

α
KL(µ0∥π) + 0.2κ2dh

)
≤ 0.3j−2κn3

(
39δ2h2 + 0.2

β2h2

α
KL(µ0∥π) + 0.2κ2dh

)
. (25)

For the second term
j∑

b=2

(
κ · 0.03P−1

)j−b (
1− 0.005

κ

)n−1 (n−1+j−b
j−b

)
Lb
1, we first bound Lb

1. Firstly, for Eb−1
1 , combining

Corollary B.7 and Corollary B.9, we have

Eb−1
1 ≤ 2 · 0.03P−1∆b−1

0 + 2 · 0.03PEb−2
1 + 7δ2h2

≤ 2 · 0.03P−1

(
0.03(b−1)P 4β2h2

α
KL(µ0∥π) + 1.4 · 0.03(b−1)P dh+ 6.7δ2h2

)
+ 2 · 0.03PEb−2

1 + 7δ2h2

≤ 2 · 0.03PEb−2
1 + 0.03b

(
0.01

4β2h2

α
KL(µ0∥π) + 0.01dh

)
+ 7.1δ2h2

≤ (2 · 0.03P)b−2E1
1 +

b−3∑
i=0

(
2 · 0.03P

)i(
0.03b−i

(
0.01

4β2h2

α
KL(µ0∥π) + 0.01dh

)
+ 7.1δ2h2

)

≤ (2 · 0.03P)b−2E1
1 +

b−3∑
i=0

0.01i0.03i
(
0.03b−i

(
0.01

4β2h2

α
KL(µ0∥π) + 0.01dh

)
+ 7.1δ2h2

)
≤ (2 · 0.03P)b−2

(
5.5δ2h2 + 0.1

β2h2

α
KL(µ0∥π) + 0.1κ2dh

)
+ 0.03b

(
0.02

4β2h2

α
KL(µ0∥π) + 0.02dh

)
+ 7.2δ2h2

≤ 0.03b
(
0.1

β2h2

α
KL(µ0∥π) + 0.1dh

)
+ 7.3δ2h2.

As for ∆b
0 we have

∆b
0 ≤ 0.03bP

4β2h2

α
KL(µ0∥π) + 1.4 · 0.03bP dh+ 6.7δ2h2.

22

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

Thus, we bound the first term as

Lb
1 = ∆b

0 + κEb−1
1

≤ 0.03bP
4β2h2

α
KL(µ0∥π) + 1.4 · 0.03bP dh+ 6.7δ2h2

+ κ0.03b
(
0.1

β2h2

α
KL(µ0∥π) + 0.1dh

)
+ 7.3δ2h2

≤ κ0.03b
(
0.2

β2h2

α
KL(µ0∥π) + 0.2dh

)
+ 14δ2h2.

Thus by
(
m
n

)
≤
(
em
n

)n
for m ≥ n > 0, and

m∑
i=0

(
n+i
n

)
xi =

1−(m+1)(m+n+1
n)Bx(m+1,n+1)

(1−x)n+1 ≤ 1
(1−x)n+1 we have

j∑
b=2

(
κ · 0.03P−1

)j−b
(
1− 0.005

κ

)n−1(
n− 1 + j − b

j − b

)
Lb
1

≤
j∑

b=2

0.04j−b

(
1− 0.005

κ

)n−1(
n− 1 + j − b

j − b

)(
κ0.03b

(
0.2

β2h2

α
KL(µ0∥π) + 0.2dh

))

+

j∑
b=2

(
κ · 0.03P−1

)j−b
(
1− 0.005

κ

)n−1(
n− 1 + j − b

j − b

)
14δ2h2

≤
j∑

b=2

0.04j
(
n− 1 + j − b

j − b

)
κ

(
0.2

β2h2

α
KL(µ0∥π) + 0.2dh

)

+

j∑
b=2

(
κ · 0.03P−1

)j−b
(
1− 0.005

κ

)n−1(
n− 1 + j − b

j − b

)
14δ2h2

≤
j−2∑
i=0

0.04jei
(
1 +

n− 1

i

)i

κ

(
0.2

β2h2

α
KL(µ0∥π) + 0.2dh

)

+

j−2∑
i=0

(
κ · 0.03P−1

)i(
1− 0.005

κ

)n−1(
n− 1 + i

i

)
14δ2h2

≤ 0.11jen−1κ

(
0.2

β2h2

α
KL(µ0∥π) + 0.2dh

)
+

1

(1− κ · 0.03P−1)n

(
1− 0.005

κ

)n−1

(6.6 + 7.9κ)δ2h2

≤ 0.11jen−1κ

(
0.2

β2h2

α
KL(µ0∥π) + 0.2dh

)
+

1

(1− κ · 0.03P−1)
(6.6 + 7.9κ)δ2h2

≤ 0.11jen−1

(
2.2κ

(
4β2h2

α
KL(µ0∥π) + 1.6dh+ 2δ2h2

))
+ 20κδ2h2,

where the second-to-last inequality is implied by 8
(

1
M + 10κ

)
0.03P ≤ 0.005

κ .

23

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

Combing (24) and (25), we bound Lj
n as

Lj
n ≤

n∑
a=2

0.04j−2

(
n− a+ j − 2

j − 2

)
L2
a +

j∑
b=2

(
κ · 0.03P−1

)j−b
(
1− 0.005

κ

)n−1(
n− 1 + j − b

j − b

)
Lb
1

+ 68000κ2δ2h2

≤ 0.3j−2κn3

(
39δ2h2 + 0.2

β2h2

α
KL(µ0∥π) + 0.2κ2dh

)
+ 0.11jen−1

(
2.2κ

(
4β2h2

α
KL(µ0∥π) + 1.6dh+ 2δ2h2

))
+ 20κδ2h2 + 68000κ2δ2h2

≤ 0.3j−2en−1κn3
(
41δ2h2 + 1.8κ2dh+ 0.5κhKL(µ0∥π)

)
+ 68020κ2δ2h2.

Since 8
(

1
M + 10κ

)
0.03P ≤ 0.005

κ implies κ20.03P−1 ≤ 0.003, we have

Ej
n

≤ 2 · 0.03P−1Lj
n + 7δ2h2

≤ 2 · 0.03P−1
(
0.3j−2en−1κn3

(
41δ2h2 + 1.8κ2dh+ 0.5κhKL(µ0∥π)

)
+ 68020κ2δ2h2

)
+ 7δ2h2

≤ 0.3j−2en−1n3
(
δ2h2 + hKL(µ0∥π) + κdh

)
+ 416δ2h2.

Thus when J −N ≥ log
(
N3
(

κδ2h+κKL(µ0∥π)+κ2d
ε2

))
, we have for any n = 0, . . . , N − 1

EJ
n ≤ ε2

5κβ
+ 416δ2h2.

Recall

KLJN−1 ≤ e−1.2α(N−1)h
(
KL(µ0∥π) + 4.4β2h∆J

0

)
+ 5κβE +

0.6βd

αM
+

28δ2

α
,

thus when δ2 ≤ αε2

29 , M ≥ κd
ε2 , and N ≥ 10κ log KL(µ0∥π)

ε2 , we have

KLJN−1 ≤ e−1.2α(N−1)h
(
KL(µ0∥π) + 4.4β2h∆J

0

)
+ 5κβE +

0.6βd

αM
+

28δ2

α

≤ e−1.2α(N−1)h

(
KL(µ0∥π) + 4.4β2h

(
0.03JP

4β2h2

α
KL(µ0∥π) + 1.4 · 0.03JP dh+ 6.7δ2h2

))
+ 5κβE +

0.6βd

αM
+

28δ2

α

≤ e−1.2α(N−1)hKL(µ0∥π) + ε2 + 5κβE +
0.6βd

αM
+

29δ2

α

≤ 5ε2.

C. Missing Details for Sampling for Diffusion Models
In this section, we begin by presenting the algorithm details in Appendix C.1. In Appendix C.2, following the approach of
Chen et al. (2024), we apply Girsanov’s Theorem and the interpolation method to decompose the KL divergence and bound
the discretization error, accounting for the influence of the step size scheme and the estimation error of the score function.
Finally, in Appendix C.3, we analyze the additional parallelization error and derive the overall error bound.

C.1. Algorithm

In the parallel Picard method for diffusion model, we use the similar parallelization across time slices as illustrated in
Figure 1. In Lines 2–6, we generate the noises and fix them. In Lines 7–10, we initialize the value at the grid via sequential
method with a stepsize hn = O(1). In Lines 12–21, we update the grids diagonally, using the exponential integrator in
Lines 14 and 19 instead of the Euler-Maruyama scheme. The step size scheme also differs from that used for log-concave

24

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

sampling. Here, we follow the discretization scheme with early stopping and exponential decay described in Chen et al.
(2024, Section 3.1.2).

Algorithm 2 Parallel Picard Iteration Method for diffusion models
1: Input: ŷ0 ∼ q̂0 = N (0, Id), the learned NN-based score function sθt (·), the depth of Picard iterations J , the depth of

inner Picard iteration P , and a discretization scheme (T, (hn)
N
n=1 and (τn,m)n∈[0:N−1],m∈[0:M]).

2: for n = 0, . . . , N − 1 do
3: for m = 0, . . . ,M (in parallel) do
4: ξn,m ∼ N (0, Id)
5: end for
6: end for
7: for n = 0, . . . , N − 1 do
8: for m = 0, . . . ,Mn (in parallel) do
9: ŷj

−1,M = ŷ0, for j = 0, . . . , J ,

ŷ0
n,τn,m

= e
τn,m

2 ŷ0
n−1,τn,M

+

m−1∑
m′=0

e
τn,m−τ

n,m′+1
2

[
2(eϵn,m′ − 1)sθtn+τn,m′ (ŷ

0
n−1,τn,M

) +
√
eϵn,m′ − 1ξm′

]
,

(26)

10: end for
11: end for
12: for k = 1, . . . , N do
13: for j = 1, . . . ,min{k − 1, J} and m = 0, . . . ,Mn (in parallel) do
14: let n = k − j, and ŷj

n,0 = ŷj
n−1,Mn

,

ŷj
n,τn,m

= e
τn,m

2 ŷj
n,0

+

m−1∑
m′=0

e
τn,m−τ

n,m′+1
2

[
2(eϵn,m′ − 1)sθtn+τn,m′ (ŷ

j−1
n,τn,m′) +

√
eϵn,m′ − 1ξm′

]
,

(27)

15: end for
16: end for
17: for k = N + 1, . . . , N + J − 1 do
18: for n = max{0, k − J}, . . . , N − 1 and m = 0, . . . ,Mn (in parallel) do
19: let j = k − n, and ŷj

n,0 = ŷj
n−1,Mn

,

ŷj
n,τn,m

= e
τn,m

2 ŷj
n,0

+

m−1∑
m′=0

e
τn,m−τ

n,m′+1
2

[
2(eϵn,m′ − 1)sθtn+τn,m′ (ŷ

j−1
n,τn,m′) +

√
eϵn,m′ − 1ξm′

]
,

(28)

20: end for
21: end for
22: Return: ŷJ

N−1,MN−1
.

Stepsize scheme. We first present the stepsize schedule for diffusion models, which is the same as the discretization scheme
in Chen et al. (2024). Specifically, we split the the time horizon T into N time slices with length hn ≤ h = T

N = Ω(1), and

a large gap grid (tn)
N
n=0 with tn =

n∑
i=1

hi. For any n ∈ [0 : N−1], we further split the n-th time slice into a grid (τn,m)Mn
m=0

with τn,0 = 0 and τn,Mn
= hn. We denote the step size of the m-th step in the n-th time slice as ϵn,m = τn,m+1 − τn,m,

and let the total number of grids in the n-th time slice as Mn. The grids (τn,m)Mn
m=0 is scheduled as follows,

1. for the first N − 1 time slice, we use the uniform discretization: for n = 0, . . . , N − 2 and m = 0, . . . ,M − 1.

hn = h, ϵn,m = ϵ, and Mn = M =
h

ϵ
,

25

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

2. for the last time slice, we apply early stopping and exponential decay:

hN−1 = h− δ, ϵN−1,m ≤ ϵ ∧ ϵ (h− τN−1,m+1) .

We also define the indexing functions as follows: for τ ∈ [tn, tn+1], we define In(τ) ∈ N such that
In(τ)∑
j=1

ϵn,j ≤ τ <

In(τ)+1∑
j=1

ϵn,j . We further define a piecewise function g such that gn(τ) =
In(τ)∑
j=1

ϵn,j and thus we have In(τ) = ⌊τ/ϵ⌋ and

gn(τ) = ⌊τ/ϵ⌋ϵ.

Exponential integrator for Picard iterations. Compared with Line 12 and Line 18 in Algorithm 1, where we use a
forward Euler-Maruyama scheme for Picard iterations, we use the following exponential integrator scheme (Zhang &
Chen, 2023; Chen et al., 2024). Specifically, In n-th time slice [tn, tn + τn,Mn], for each grid tn + τn,m, we simulate the
approximated backward process (3) with Picard iterations as

ŷj+1
n,τn,m

= e
τn,m

2 ŷj+1
n−1,τn,M

+

m−1∑
m′=0

e
τn,m−τ

n,m′+1
2

[
2(eϵn,m′ − 1)sθtn+τn,m′ (ŷ

j
n−1,τn,M

) +
√
eϵn,m′ − 1ξm′

]
.

We note such update also inherently allows for parallelization for m = 1, . . . ,Mn.

C.2. Interpolation Processes and Decomposition of KL Divergence

Following the proof flow in Chen et al. (2024), we define the following processes:

1. the original backward process,

d ⃗xt =

[
1

2
⃗xt +∇ log ⃗pt(⃗xt)dt

]
+ dw t, with ⃗x0 ∼ pT ; (29)

2. the approximated backward process,

dyt =

[
1

2
yt + sθt (yt)

]
dt+ dw t, with y0 ∼ N (0, Id);

3. the interpolation processes (ŷj
tn,τ)τ∈[0,h] over τ ∈ [0, h] conditioned on the filtration of the backward SDE (29) up to

time t Ft, for any fixed n = 0, . . . , N − 1, j = 1, . . . , J ,

dŷj
tn,τ (ω) =

[
1

2
ŷj
tn,τ (ω) + sθtn+gn(τ)

(
ŷj−1
tn,gn(τ)

(ω)
)]

dτ + dw tn+τ (ω); (30)

with ŷj
tn,0

(ω) = ŷj
tn−1,τn−1,Mn−1

(ω).

4. the initialization process,

dŷ0
tn,τ (ω) =

[
1

2
ŷ0
tn,τ (ω) + sθtn+gn(τ)

(
ŷ0
tn−1,τn−1,M

(ω)
)]

dτ + dw tn+τ (ω), (31)

with ŷ0
t0,0 = ŷ0 and ŷ0

tn,0 = ŷtn−1,τn−1,M
.

Remark C.1. The main difference compared to the auxiliary process defined in Chen et al. (2024) is the change of the start
point across each update.

We can demonstrate that the interpolation processes remain well-defined after parallelization across time slices.

26

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

Lemma C.2. The auxiliary process (ŷj
tn,τ (ω))τ∈[0,hn] is Ftn+τ -adapted for any j = 1, . . . , j and n = 0, . . . , n− 1.

Proof. Since the initialization ŷ0
tn,τ (ω) satisfies

dŷ0
tn,τ (ω) =

[
1

2
ŷ0
tn,τ (ω) + sθtn+gn(τ)

(
ŷ0
tn−1,τn−1,M

(ω)
)]

dτ + dw tn+τ (ω),

we can claim ŷ0
tn,τ (ω) is Ftn+τ -adapted. Assume ytn,τ is Ftn+τ -adapted, by gn(τ) ≤ τ , the Itô integral∫ τ

0
sθtn+gn(τ ′)(ytn,gn(τ ′))dτ

′ is well-defined and Ftn+τ -adapted. Therefore SDE

dy′
tn,τ (ω) =

[
1

2
y′
tn,τ (ω) + sθtn+gn(τ)

(
ytn,gn(τ)(ω)

)]
dτ + dw tn+τ (ω)

has a unique strong solution (y′
tn,τ (ω))τ∈[0,hn] that is also Ftn+τ -adapted. The lemma is established through induction.

Finally, the following lemma shows the equivalence of our update rule and the auxiliary process, i.e., the auxiliary process is
an interpotation of the discrete points.

Lemma C.3. For any n = 0, . . . , N − 1, the update rule ((26)) in Algorithm 2 and the update rule ((27) or (28)) are
equivalent to the exact solution of the auxiliary process (31), and (30) respectively, for any j = 1, . . . , J , and τ ∈ [0, hn].

Proof. Due to the similarity, we only prove the equivalence of the update rule ((26)). The dependency on ω will be omitted
in the proof below.

For SDE (30), by multiplying e−
τ
2 on both sides then integrating on both side from 0 to τ , we have

e−
τ
2 ŷj

tn,τ − ŷj
tn,0

=

Mn∑
m=0

2
(
e−

τ∧τn,m
2 − e−

τ∧τn,m+1
2

)
sθtn+τn,m

(
ŷj−1
tn,τn,m

)
+

∫ τ

0

e−
τ′
2 dwtn+τ ′ .

Thus

ŷj
tn,τ = e

τ
2 ŷj

tn,0
+

Mn∑
m=0

2
(
e−

τ∧τn,m−τ∧τn,m+1
2 − 1

)
e

0∨(τ−τn,m+1)

2 sθtn+τn,m

(
ŷj−1
tn,τn,m

)
+

Mn∑
m=0

∫ τ∧τn,m+1

τ∧τn,m

e
τ−τ′

2 dwtn+τ ′ .

By Itô isometry and let τ = τn,m we get the desired result.

C.2.1. DECOMPOSITION OF KL DIVERGENCE

Similar as the analysis in Section B.2 of Chen et al. (2024), we conclude the following lemma by Corollary A.3.

Lemma C.4. Assume δtn(τ, ω) = sθtn+gn(τ)
(ŷJ−1

tn,gn(τ)
(ω))−∇ log ⃗ptn+τ (ŷ

J
tn,τ (ω)). Then we have the following one-step

decomposition,

KL(⃗ptn+1
∥q̂tn+1) ≤ KL(⃗ptn∥q̂tn) + Eω∼q|Ftn

[
1

2

∫ hn

0

∥δtn(τ, ω)∥
2
dτ

]
.

27

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

Now, the problem remaining is reduced to bound the following discrepancy,∫ hn

0

∥δtn(τ, ω)∥2dτ

=

∫ hn

0

∥∥∥sθtn+gn(τ)
(ŷJ−1

tn,gn(τ)
(ω))−∇ log ⃗ptn+τ (ŷ

J
tn,τ (ω))

∥∥∥2 dτ
≤ 3

∫ hn

0

∥∥∥∇ log ⃗ptn+gn(τ)(ŷ
J
tn,gn(τ)(ω))−∇ log ⃗ptn+τ (ŷ

J
tn,τ (ω))

∥∥∥2 dτ︸ ︷︷ ︸
:=Atn (ω)

+

∫ hn

0

∥∥∥sθtn+gn(τ)
(ŷJ

tn,gn(τ)(ω))−∇ log ⃗ptn+gn(τ)(ŷ
J
tn,gn(τ)(ω))

∥∥∥2 dτ︸ ︷︷ ︸
:=Btn (ω)

+

∫ hn

0

∥∥∥sθtn+gn(τ)
(ŷJ

tn,gn(τ)(ω))− sθtn+gn(τ)
(ŷJ−1

tn,gn(τ)
(ω))

∥∥∥2 dτ︸ ︷︷ ︸
:=Ctn (ω)

 , (32)

where Atn(ω) measures the discretization error, Btn(ω) measures the estimation error of score function, and Ctn(ω)
measures the error by Picard iteration.

C.2.2. DISCRETIZATION ERROR AND ESTIMATION ERROR OF SCORE FUNCTION IN EVERY TIME SLICE

The following lemma from Benton et al. (2024); Chen et al. (2024) bounds the expectation of the discretization error Atn .
Lemma C.5 (Discretization error (Benton et al., 2024, Section 3.1) or (Chen et al., 2024, Lemma B.7)). We have for
n ∈ [0 : N − 2]

Eω∼ ⃗p|Ftn
[Atn(ω)] ≲ ϵdhn,

and
Eω∼ ⃗p|Ftn

[
AtN−1

(ω)
]
≲ ϵd log η−1,

where η is the parameter for early stopping.

The following lemma from Chen et al. (2024) bounds the expectation of the estimation error of score function, Btn , and we
restate the proof for the convenience.

Lemma C.6 (Estimation error of score function (Chen et al., 2024, Section B.3)).
N−1∑
n=0

Eω∼ ⃗p|Ftn
[Btn] ≤ δ22 .

Proof. By Assumption 5.1 and the the fact that the process ŷJ
tn,τ (ω) follows the backward SDE with the true score function

under the measure ⃗p, we have
N−1∑
n=1

Eω∼ ⃗p|Ftn
[Btn(ω)]

≤ Eω∼ ⃗p|Ftn

[
N−1∑
n=1

∫ hn

0

∥∥∥sθtn+τ (ŷ
J
tn,τ (ω))−∇ log ⃗ptn+gn(τ)(ŷ

J
tn,τ (ω))

∥∥∥2 dτ]

= Eω∼ ⃗p|Ftn

[
N−1∑
n=1

Mn∑
m=0

ϵn,m

∥∥∥sθtn+τ (ŷ
J
tn,τ (ω))−∇ log ⃗ptn+gn(τ)(ŷ

J
tn,τ (ω))

∥∥∥2 dτ]

= Eω∼ ⃗p|Ftn

[
N−1∑
n=0

Mn∑
m=0

ϵn,m

∥∥∥sθtn+τ (⃗xtn+τ (ω))−∇ log ⃗ptn+gn(τ)(⃗xtn+τ (ω))
∥∥∥2 dτ]

≤ δ22 .

28

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

C.2.3. ANALYSIS FOR INITIALIZATION

By setting the depth of iteration as J = 1 in Chen et al. (2024), our initialization parts (Lines 4-7 in Algorithm 2) and the
initialization process ((31)) are identical to the Algorithm 1 and the the auxiliary process (Definition B.1) in Chen et al.
(2024). We provide a brief overview of their analysis and reformulate it to align with our initialization. Let

A0
tn(ω) :=

∫ hn

0

∥∥∥∇ log ⃗ptn+gn(τ)(ŷ
0
tn,gn(τ)(ω))−∇ log ⃗ptn+τ (ŷ

0
tn,τ (ω))

∥∥∥2 dτ
and

B0
tn(ω) :=

∫ hn

0

∥∥∥sθtn+gn(τ)
(ŷ0

tn,gn(τ)(ω))−∇ log ⃗ptn+gn(τ)(ŷ
0
tn,gn(τ)(ω))

∥∥∥2 dτ
Lemma C.7 (Lemma B.5 or Lemma B.6 with K = 1 in Chen et al. (2024)). For any n = 0, . . . , N − 1, suppose the
initialization ŷ0

tn,0 follows the distribution of ⃗xtn ∼ ⃗ptn , if 3e
7
2hnhnLs < 0.5, then the following estimate

sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

[∥∥∥ŷ0
tn,τ (ω)− ŷ0

tn,0(ω)
∥∥∥2] ≤ 2hne

7
2hn(Ms + 2d)

+ 6e
7
2hnEω∼ ⃗p|Ftn

[
A0

tn(ω) +B0
tn(ω)

]
.

Furthermore, the A0
tn(ω) and B0

tn(ω) can be bounded as

Lemma C.8 ((Chen et al., 2024, Lemma B.7)). We have for n ∈ [0 : N − 2]

Eω∼ ⃗p|Ftn

[
A0

tn(ω)
]
≲ ϵdhn,

and
Eω∼ ⃗p|Ftn

[
A0

tN−1
(ω)
]
≲ ϵd log η−1,

where η is the parameter for early stopping.

Lemma C.9 ((Chen et al., 2024, Section B.3)).
∑N−1

n=1 Eω∼ ⃗p|Ftn

[
B0

tn(ω)
]
≤ δ22 .

Thus we have the following uniform bound for our initialization.

Corollary C.10. With the same assumption in Lemma C.7, we have

sup
n=0,...,N

sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

[∥∥∥ŷ0
tn,τ (ω)− ŷ0

tn,0(ω)
∥∥∥2] ≲ d.

C.3. Convergence of Picard iteration

Similarly, we define
Ej
n = sup

τ∈[0,hn]

Eω∼ ⃗p|Ftn

[
∥ŷj

tn,τ (ω)− ŷj−1
tn,τ (ω)∥

2
]
,

and
∆j

n = Eω∼ ⃗p|Ftn

[
∥ŷj

tn,τn,M
(ω)− ŷj−1

tn,τn,M
(ω)∥2

]
.

Furthermore, we let EI = sup
n=0,...,N−1

sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

[∥∥∥ŷ0
n,τ − ŷ0

n−1,τn,M

∥∥∥2]. We note that by Corollary C.10, EI ≲ d.

Lemma C.11 (One-step decomposition of Ej
n). Assume L2

se
2hnhn ≤ 0.01 and e2hn ≤ 2. For any j = 2, . . . , J ,

n = 0, . . . , N − 1, we have
Ej
n ≤ 2∆j

n−1 + 0.01Ej−1
n .

Furthermore, for j = 1, n = 1, . . . , N − 1, we have

E1
n ≤ 2∆1

n + 0.01

(
sup

τ∈[0,hn]

Eω∼ ⃗p|Ftn

∥∥∥ŷ0
tn,τ (ω)− ŷ0

tn−1,τn−1,M
(ω)
∥∥∥2) .

29

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

Proof. For each ω ∈ Ω conditioned on the filtration Ftn , consider the auxiliary process defined as in the previous section,

dŷj
tn,τ (ω) =

[
1

2
ŷj
tn,τ (ω) + sθtn+gn(τ)

(
ŷj−1
tn,gn(τ)

(ω)
)]

dτ + dw tn+τ (ω),

and

dŷj−1
tn,τ (ω) =

[
1

2
ŷj−1
tn,τ (ω) + sθtn+gn(τ)

(
ŷj−2
tn,gn(τ)

(ω)
)]

dτ + dw tn+τ (ω).

We have

d
(
ŷj
tn,τ (ω)− ŷj−1

tn,τ (ω)
)

=

[
1

2

(
ŷj
tn,τ (ω)− ŷj−1

tn,τ (ω)
)
+ sθtn+gn(τ)

(
ŷj−1
tn,gn(τ)

(ω)
)
− sθtn+gn(τ)

(
ŷj−2
tn,gn(τ)

(ω)
)]

dτ.

Then we can calculate the derivative d
dτ

∥∥∥ŷj
tn,τ (ω)− ŷj−1

tn,τ (ω)
∥∥∥2 as

d

dτ

∥∥∥ŷj
tn,τ (ω)− ŷj−1

tn,τ (ω)
∥∥∥2

= 2
(
ŷj
tn,τ (ω)− ŷj−1

tn,τ (ω)
)⊤ [1

2

(
ŷj
tn,τ (ω)− ŷj−1

tn,τ (ω)
)
+ sθtn+gn(τ)

(
ŷj−1
tn,gn(τ)

(ω)
)
− sθtn+gn(τ)

(
ŷj−2
tn,gn(τ)

(ω)
)]

.

By integrating from 0 to τ , we have∥∥∥ŷj
tn,τ (ω)− ŷj−1

tn,τ (ω)
∥∥∥2 − ∥∥∥ŷj

tn,0
(ω)− ŷj−1

tn,0
(ω)
∥∥∥2

=

∫ τ

0

∥∥∥ŷj
tn,τ ′(ω)− ŷj−1

tn,τ ′(ω)
∥∥∥2 dτ ′

+

∫ τ

0

2
(
ŷj
tn,τ (ω)− ŷj−1

tn,τ ′(ω)
)⊤ [

sθtn+gn(τ ′)

(
ŷj−1
tn,gn(τ ′)(ω)

)
− sθtn+gn(τ ′)

(
ŷj−2
tn,gn(τ ′)(ω)

)]
dτ ′

≤ 2

∫ τ

0

∥∥∥ŷj
tn,τ ′(ω)− ŷj−1

tn,τ ′(ω)
∥∥∥2 dτ ′ + ∫ τ

0

∥∥∥sθtn+gn(τ ′)

(
ŷj−1
tn,gn(τ ′)(ω)

)
− sθtn+gn(τ ′)

(
ŷj−2
tn,gn(τ ′)(ω)

)∥∥∥2 dτ ′
≤ 2

∫ τ

0

∥∥∥ŷj
tn,τ ′(ω)− ŷj−1

tn,τ ′(ω)
∥∥∥2 dτ ′ + L2

s

∫ τ

0

∥∥∥ŷj−1
tn,gn(τ ′)(ω)− ŷj−2

tn,gn(τ ′)(ω)
∥∥∥2 dτ ′.

By Theorem A.4, and ŷj,p
tn,0

(ω) = ŷj
tn−1,τn−1,M

(ω), we have∥∥∥ŷj
tn,τ (ω)− ŷj−1

tn,τ (ω)
∥∥∥2 ≤ L2

se
2τ

∫ τ

0

∥∥∥ŷj−1
tn,gn(τ ′)(ω)− ŷj−2

tn,gn(τ ′)(ω)
∥∥∥2 dτ ′ + e2τ∆j

n−1.

By taking expectation, for all τ ∈ [0, hn]

Eω∼ ⃗p|Ftn

∥∥∥ŷj
tn,τ (ω)− ŷj−1

tn,τ (ω)
∥∥∥2 − e2τ∆j

n−1

≤ L2
se

2τ

∫ τ

0

Eω∼ ⃗p|Ftn

∥∥∥ŷj−1
tn,gn(τ ′)(ω)− ŷj−2

tn,gn(τ ′)(ω)
∥∥∥2 dτ ′

≤ L2
se

2ττ sup
τ ′∈[0,τ]

Eω∼ ⃗p|Ftn

∥∥∥ŷj−1
tn,τ ′(ω)− ŷj−2

tn,τ ′(ω)
∥∥∥2 .

Thus

sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

∥∥∥ŷj−1
tn,τ (ω)− ŷj−2

tn,τ (ω)
∥∥∥2

≤ e2hn∆j
n−1 + L2

se
2hnhnEj−1

n .

30

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

For j = 1, we consider the following two processes,

dŷ1
tn,τ (ω) =

[
1

2
ŷ1
tn,τ (ω) + sθtn+gn(τ)

(
ŷ0
tn,gn(τ)(ω)

)]
dτ + dw tn+τ (ω),

and

dŷ0
tn,τ (ω) =

[
1

2
ŷ0
tn,τ (ω) + sθtn+gn(τ)

(
ŷ0
tn−1,τn−1,M

(ω)
)]

dτ + dw tn+τ (ω).

Similarly, we have

sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

∥∥∥ŷ1
tn,τ (ω)− ŷ0

tn,τ (ω)
∥∥∥2

≤ e2hn∆1
n + L2

se
2hnhn

(
sup

τ∈[0,hn]

Eω∼ ⃗p|Ftn

∥∥∥ŷ0
tn,τ (ω)− ŷ0

tn−1,τn−1,M
(ω)
∥∥∥2) .

Lemma C.12 (One-step decomposition of ∆j
n). Assume L2

se
2hnhn ≤ 0.01 and and e2hn ≤ 2. For any j = 2, . . . , J ,

n = 1, . . . , N − 1, we have
∆j

n ≤ 3∆j
n−1 + 0.4Ej−1

n .

Furthermore, for j = 1, n = 1, . . . , N − 1, we have

∆1
n ≤ 3∆1

n−1 + 0.4 sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

[∥∥∥ŷ0
n,τ − ŷ0

n−1,τn,M

∥∥∥2] .
For n = 0, we have ∆j

0 ≤ 0.32∆j−1
0 , and ∆1

0 ≤ sup
τ∈[0,h0]

Eω∼ ⃗p|Ft0

[∥∥∥ŷ0
t0,τ (ω)− ŷ0

t0,0(ω)
∥∥∥2].

Proof. By definition of ŷj
tn,τn,M

(ω) we have∥∥∥e−hn
2 ŷj

tn,τn,M
− e−

hn
2 ŷj−1

tn,τn,M

∥∥∥2
=

∥∥∥∥∥ŷj
n,0 − ŷj−1

n,0 +

m−1∑
m′=0

e
−τ

n,m′+1
2 2(eϵn,m′ − 1)

[
sθtn+τn,m′ (ŷ

j−1
n,τn,m′)− sθtn+τn,m′ (ŷ

j−2
n,τn,m′)

]∥∥∥∥∥
2

≤ 2
∥∥∥ŷj

n,0 − ŷj−1
n,0

∥∥∥2 + 2

∥∥∥∥∥
m−1∑
m′=0

e
−τ

n,m′+1
2 2(eϵn,m′ − 1)

[
sθtn+τn,m′ (ŷ

j−1
n,τn,m′)− sθtn+τn,m′ (ŷ

j−2
n,τn,m′)

]∥∥∥∥∥
2

≤ 2
∥∥∥ŷj

n,0 − ŷj−1
n,0

∥∥∥2 + 32ϵ2n,m′M

M−1∑
m′=0

∥∥∥[sθtn+τn,m′ (ŷ
j−1
n,τn,m′)− sθtn+τn,m′ (ŷ

j−2
n,τn,m′)

]∥∥∥2
≤ 2

∥∥∥ŷj
n,0 − ŷj−1

n,0

∥∥∥2 + 32h2
n sup

τ∈[0,hn]

L2
s

∥∥∥ŷj−1
n,τ − ŷj−2

n,τ

∥∥∥2 ,
where the second inequality is implied by that ex − 1 ≤ 2x when x < 1. By taking expectation, and the assumption that
L2
se

2hnhn ≤ 0.1 and e2hn ≤ 2, we have

e−
hn
2 ∆j

n = Eω∼ ⃗p|Ftn
e−

hn
2

[∥∥∥ŷj
tn,τn,M

− ŷj−1
tn,τn,M

∥∥∥2]
≤ 2Eω∼ ⃗p|Ftn

[∥∥∥ŷj
n,0 − ŷj−1

n,0

∥∥∥2]+ 32h2
nL

2
s sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

[∥∥∥ŷj−1
n,τ − ŷj−2

n,τ

∥∥∥2]
≤ 2∆j

n−1 + 0.32Ej−1
n .

31

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

Thus
∆j

n ≤ 3∆j
n−1 + 0.4Ej−1

n .

In the remaining part, we will bound ∆1
n. By definition, we have∥∥∥e−hn

2 ŷ1
tn,τn,M

(ω)− e−
hn
2 ŷ0

tn,τn,M
(ω)
∥∥∥2

=

∥∥∥∥∥ŷ1
n,0 − ŷ0

n−1,τn,M
+

m−1∑
m′=0

e
−τ

n,m′+1
2 2(eϵn,m′ − 1)

[
sθtn+τn,m′ (ŷ

0
n−1,τn,m′)− sθtn+τn,m′ (ŷ

0
n−1,τn,M

)
]∥∥∥∥∥

2

≤ 2
∥∥∥ŷ1

n,0 − ŷ0
n−1,τn,M

∥∥∥2 + 2

∥∥∥∥∥
M−1∑
m′=0

e
−τ

n,m′+1
2 2(eϵn,m′ − 1)

[
sθtn+τn,m′ (ŷ

0
n−1,τn,m′)− sθtn+τn,m′ (ŷ

0
n−1,τn,M

)
]∥∥∥∥∥

2

≤ 2
∥∥∥ŷ1

n,0 − ŷ0
n−1,τn,M

∥∥∥2 + 32h2
nL

2
s sup
τ∈[0,hn]

∥∥∥ŷ0
n−1,τ − ŷ0

n−1,τn,M

∥∥∥2 ,
where the second inequality is implied by that ex − 1 ≤ 2x when x < 1. Thus with L2

se
2hnhn ≤ 0.01 and e2hn ≤ 2, we

have

e−
hn
2 ∆1

n = Eω∼ ⃗p|Ftn
e−

hn
2

[∥∥∥ŷ1
tn,τn,M

− ŷ0
tn,τn,M

∥∥∥2]
≤ 2Eω∼ ⃗p|Ftn

[∥∥∥ŷ1
n,0 − ŷ0

n−1,τn,M

∥∥∥2]+ 32h2
nL

2
s sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

[∥∥∥ŷ1,P−1
n−1,τ − ŷ0

n−1,τn,M

∥∥∥2]
≤ 2∆1

n−1 + 0.32 sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

[∥∥∥ŷ0
n,τ − ŷ0

n−1,τn,M

∥∥∥2] .

Let Lj
n = 2∆j

n−1 + 0.01Ej−1
n . We note that Lj

n ≥ Ej
n. Thus for n ≥ 1 and j ≥ 2,

Lj
n = 2∆j

n−1 + 0.01Ej−1
n

≤ 2(80∆j
n−1 + 0.4Ej−1

n) + 0.01Lj
n

≤ 160Lj
n−1 + 0.01Lj

n. (33)

We recursively bound Lj
n as

Lj
n ≤

n∑
a=2

(0.01)j−2160n−a

(
n− a+ j − 2

j − 2

)
L2
a +

j∑
b=2

(0.01)
j−b

160n−1

(
n− 1 + j − b

j − b

)
Lb
1.

Bound for
n∑

a=2
(0.01)j−2160n−a

(
n−a+j−2

j−2

)
L2
a. Firstly, we bound L2

a. To do so, by Lemma C.12, we bound ∆1
n as

∆1
n ≤ 3∆1

n−1 + 4EI ≤ 3n∆1
0 +

n−1∑
i=0

4 · 3iEI ≤ 4

n∑
i=0

3iEI ≤ 3n+2EI .

and by Lemma C.11, bound E1
n as

E1
n ≤ 2∆1

n + 0.1EI ≤ 3n+3EI .

Furthermore, by Lemma C.12, we bound ∆2
n as

∆2
n ≤ 3∆2

n−1 + 0.4E1
n ≤ 3n∆2

0 +

n−1∑
i=0

3iE1
n−i ≤ 0.32 · 3nEI + 3n+3nEI ≤ 28 · 3nnEI .

32

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

Thus
L2
a = 2∆2

a−1 + 0.01E1
a ≤ 28 · 3aaEI .

Furthermore, by
(
m
n

)
≤
(
em
n

)n
for m ≥ n > 0, we have

n∑
a=2

(0.01)j−2160n−a

(
n− a+ j − 2

j − 2

)
L2
a

≤ (0.01)j−2(28 · 160nn2)ej−2

(
n− a+ j − 2

j − 2

)j−2

EI

≤ (e2 · 0.01)j−2(28 · 160nn2)EI .

Bound for
j∑

b=2

(0.01)
j−b

160n−1
(
n−1+j−b

j−b

)
Lb
1. By Lemma C.11, we have

Ej
1 ≤ 0.01Ej−1

1 + 2∆j
0

≤ (0.01)
j EI +

j−1∑
i=0

(0.01)
i
2∆j−i

0 .

Combining the fact that ∆j
0 ≤ 0.32j−1EI , we have

Ej
1 ≤ 7 · j · 0.32jEI .

Thus

Lb
1 = 2∆j

0 + 0.01Eb−1
1

≤ 2 · 0.32b−1EI + 0.01 · 7 · (b− 1) · 0.32b−1EI
≤ 7 · b · 0.32b−1EI .

Furthermore, by
m∑
i=0

(
n+i
n

)
xi =

1−(m+1)(m+n+1
n)Bx(m+1,n+1)

(1−x)n+1 ≤ 1
(1−x)n+1 , we have

j∑
b=2

(0.01)
j−b

160n−1

(
n− 1 + j − b

n− 1

)
Lb
1

≤
j∑

b=2

(0.01)
j−b

160n−1

(
n− 1 + j − b

n− 1

)
7 · b · 0.32b−1EI

≤ 22 · 0.87j440n−1jEI .

Combining the above two results, we have

EJ
n ≤ (e2 · 0.01)j−2(28 · 160nn2)EI + 22 · 0.87j440n−1jEI .

If J − 45N ≳ log NEI

ε2 , for any n = 0, . . . , N

EJ
n ≤ ε2

N
. (34)

C.3.1. OVERALL ERROR BOUND

By the previous computation, we have

KL(⃗ptn+1
∥q̂tn+1)

≤ KL(⃗ptn∥q̂tn) + Eω∼q|Ftn

[
1

2

∫ hn

0

∥δtn(τ, ω)∥
2
dτ

]
≤ KL(⃗ptn∥q̂tn) + 3Eω∼ ⃗p|Ftn

[Atn(ω) +Btn(ω)] + 3L2
shnEJ

n .

33

Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models

Combining Lemma A.5, Corollary C.10, and Eq. (34), we have

KL(⃗ptn+1
∥q̂tn+1

)

≤ KL(⃗p0∥q̂0) + 3

N−1∑
n=0

(
Eω∼ ⃗p|Ftn

[Atn(ω) +Btn(ω)] + L2
shnEJ

n

)
≲ de−T + ϵd(T + log η−1) + δ22 + ε2,

≲ ε2,

with parameters J − 45N ≥ O(log Nd
ε2), h = Θ(1), N = O(log d

ε2), T = O(log d
ε2) ϵ = Θ(d−1ε2 log−1 d

ε2), M =

O(dε−2 log d
ε2), log η

−1 ≲ T .

34

