
Transformer2: Self-adaptive LLMs

Qi Sun*, Edoardo Cetin*, Yujin Tang*

Sakana AI, Japan
{qisun,edo,yujintang}@sakana.ai

*Equal contributions

Abstract

Self-adaptive large language models (LLMs) aim to solve the challenges posed
by traditional fine-tuning methods, which are often computationally intensive and
inflexible for diverse tasks. We introduce Transformer2, a novel framework that
adapts LLMs for unseen tasks in real-time by selectively adjusting singular com-
ponents of weight matrices, using a two-pass mechanism: task identification fol-
lowed by mixing task-specific “expert” vectors to best cope with test-time con-
ditions. Our approach outperforms ubiquitous methods like LoRA with fewer
parameters and greater efficiency across various LLM architectures and modali-
ties, and offers a scalable solution for enhancing the adaptability and task-specific
performance of LLMs, paving the way for truly self-organizing AI systems.

1 Introduction

SVD of Weights

Self-Adaptation Vectors

Coding VLM

…
Dispatch

User Query

H
id

de
n

St
at

es

“This is a math question”

H
id

de
n

St
at

es

Answer to User Query

<latexit sha1_base64="N1vdtuDDj/v4W8Gh3EJBeDVKdH4=">AAAB9HicbVBNS8NAEJ34WetX1aOXYCt4KolI9WbBi8cK9gPaWDbbabt0s4m7m0IJ/R2ieFDEq3f/hjf/jZu2B219MPB4b4aZeX7EmdKO820tLa+srq1nNrKbW9s7u7m9/ZoKY0mxSkMeyoZPFHImsKqZ5tiIJJLA51j3B1epXx+iVCwUt3oUoReQnmBdRok2kleo3bWY0Cgp4YV2Lu8UnQnsReLOSP7y8zHFU6Wd+2p1QhoHKDTlRKmm60TaS4jUjHIcZ1uxwojQAelh01BBAlReMjl6bB8bpWN3Q2lKaHui/p5ISKDUKPBNZ0B0X817qfif14x198JLmIhijYJOF3VjbuvQThOwO0wi1XxkCKGSmVtt2ieSUBODypoQ3PmXF0nttOiWiqUbN18+gykycAhHcAIunEMZrqECVaBwDw/wAq/W0Hq23qz3aeuSNZs5gD+wPn4AOWeWLw==</latexit>

V|<latexit sha1_base64="N1vdtuDDj/v4W8Gh3EJBeDVKdH4=">AAAB9HicbVBNS8NAEJ34WetX1aOXYCt4KolI9WbBi8cK9gPaWDbbabt0s4m7m0IJ/R2ieFDEq3f/hjf/jZu2B219MPB4b4aZeX7EmdKO820tLa+srq1nNrKbW9s7u7m9/ZoKY0mxSkMeyoZPFHImsKqZ5tiIJJLA51j3B1epXx+iVCwUt3oUoReQnmBdRok2kleo3bWY0Cgp4YV2Lu8UnQnsReLOSP7y8zHFU6Wd+2p1QhoHKDTlRKmm60TaS4jUjHIcZ1uxwojQAelh01BBAlReMjl6bB8bpWN3Q2lKaHui/p5ISKDUKPBNZ0B0X817qfif14x198JLmIhijYJOF3VjbuvQThOwO0wi1XxkCKGSmVtt2ieSUBODypoQ3PmXF0nttOiWiqUbN18+gykycAhHcAIunEMZrqECVaBwDw/wAq/W0Hq23qz3aeuSNZs5gD+wPn4AOWeWLw==</latexit>

V|
<latexit sha1_base64="eBMAWvMj6r7BRZByVUOzrFT18f0=">AAAB73icbZC5TgMxEIZnwxXCFY6OxiJBoop2KQIdkSigDIIcUrKKvI6TWLG9i+1FCqu8BA0FCNHSUPEkdJS8Cc5RQMIvWfr0/zPyzAQRZ9q47peTWlhcWl5Jr2bW1jc2t7LbO1UdxorQCgl5qOoB1pQzSSuGGU7rkaJYBJzWgv75KK/dUaVZKG/MIKK+wF3JOoxgY616vnnNugLnW9mcW3DHQvPgTSF39nH/ffG+l5Rb2c9mOySxoNIQjrVueG5k/AQrwwinw0wz1jTCpI+7tGFRYkG1n4znHaJD67RRJ1T2SYPG7u+OBAutByKwlQKbnp7NRuZ/WSM2nVM/YTKKDZVk8lEn5siEaLQ8ajNFieEDC5goZmdFpIcVJsaeKGOP4M2uPA/V44JXLBSvvFzJhYnSsA8HcAQenEAJLqEMFSDA4QGe4Nm5dR6dF+d1Uppypj278EfO2w9IDpMn</latexit>

⌃
<latexit sha1_base64="eBMAWvMj6r7BRZByVUOzrFT18f0=">AAAB73icbZC5TgMxEIZnwxXCFY6OxiJBoop2KQIdkSigDIIcUrKKvI6TWLG9i+1FCqu8BA0FCNHSUPEkdJS8Cc5RQMIvWfr0/zPyzAQRZ9q47peTWlhcWl5Jr2bW1jc2t7LbO1UdxorQCgl5qOoB1pQzSSuGGU7rkaJYBJzWgv75KK/dUaVZKG/MIKK+wF3JOoxgY616vnnNugLnW9mcW3DHQvPgTSF39nH/ffG+l5Rb2c9mOySxoNIQjrVueG5k/AQrwwinw0wz1jTCpI+7tGFRYkG1n4znHaJD67RRJ1T2SYPG7u+OBAutByKwlQKbnp7NRuZ/WSM2nVM/YTKKDZVk8lEn5siEaLQ8ajNFieEDC5goZmdFpIcVJsaeKGOP4M2uPA/V44JXLBSvvFzJhYnSsA8HcAQenEAJLqEMFSDA4QGe4Nm5dR6dF+d1Uppypj278EfO2w9IDpMn</latexit>

⌃
<latexit sha1_base64="matz0JW476ILPpVL90CB+3EA69o=">AAAB6nicbZDNTsJAFIVv8Q/xD3XpZiKYuCKtIehOEjcuMVoggYZMhylMmE6bmakJaXgENy406NaX8DXc+TZOgYWCJ5nkyzn3Zu69fsyZ0rb9beXW1jc2t/LbhZ3dvf2D4uFRU0WJJNQlEY9k28eKciaoq5nmtB1LikOf05Y/usny1iOVikXiQY9j6oV4IFjACNbGui+75V6xZFfsmdAqOAsoXX9OM701esWvbj8iSUiFJhwr1XHsWHsplpoRTieFbqJojMkID2jHoMAhVV46G3WCzozTR0EkzRMazdzfHSkOlRqHvqkMsR6q5Swz/8s6iQ6uvJSJONFUkPlHQcKRjlC2N+ozSYnmYwOYSGZmRWSIJSbaXKdgjuAsr7wKzYuKU6vU7pxSvQpz5eEETuEcHLiEOtxCA1wgMIAneIFXi1vP1tR6n5fmrEXPMfyR9fEDiQqRvg==</latexit>

U
<latexit sha1_base64="matz0JW476ILPpVL90CB+3EA69o=">AAAB6nicbZDNTsJAFIVv8Q/xD3XpZiKYuCKtIehOEjcuMVoggYZMhylMmE6bmakJaXgENy406NaX8DXc+TZOgYWCJ5nkyzn3Zu69fsyZ0rb9beXW1jc2t/LbhZ3dvf2D4uFRU0WJJNQlEY9k28eKciaoq5nmtB1LikOf05Y/usny1iOVikXiQY9j6oV4IFjACNbGui+75V6xZFfsmdAqOAsoXX9OM701esWvbj8iSUiFJhwr1XHsWHsplpoRTieFbqJojMkID2jHoMAhVV46G3WCzozTR0EkzRMazdzfHSkOlRqHvqkMsR6q5Swz/8s6iQ6uvJSJONFUkPlHQcKRjlC2N+ozSYnmYwOYSGZmRWSIJSbaXKdgjuAsr7wKzYuKU6vU7pxSvQpz5eEETuEcHLiEOtxCA1wgMIAneIFXi1vP1tR6n5fmrEXPMfyR9fEDiQqRvg==</latexit>

U

Math

First pass
Second pass

Element-wise multiplication

Matrix multiplication

N
la

ye
rs

 in
si

de
 a

n
LL

M

Figure 1: Overview of Transformer2. In train-
ing, we tune the singular values of the weight ma-
trices to generate a set of “expert” vectors special-
izing in different tasks. In inference, a two-pass
process is adopted where the first applies the ex-
pert and the second generates the answer.

Self-adaptive large language models (LLMs)
would represent a significant advancement in
artificial intelligence, enabling real-time adap-
tation to various tasks and contexts. While
compositionality and scalability are crucial
for effective adaptation, current LLM train-
ing methodologies fall short of achieving both
these properties simultaneously. Our research
aims to present a solution to address these gaps.

In principle, the first step toward achieving self-
adaptive LLMs can be realized through the de-
velopment of specialized expert modules, each
fine-tuned (Kaplan et al., 2020) via techniques
such as low-rank adaptation (LoRA) (Hu et al.,
2021). However, several challenges need to be
addressed to make this approach both scalable
and compositional: (1) multiple expert modules
significantly increase the number of parame-
ters; (2) expert modules are often prone to over-
fitting; and (3) flexible composition of these ex-
perts is still an open problem.

To overcome these limitations, we first propose
SVF, a novel parameter-efficient fine-tuning
(PEFT) method to obtain effective building blocks for self-adaptation. SVF works by extracting
and selectively tuning only the singular values within the model’s weight matrices. By focusing on

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

this essential and principled parameterization, our approach mitigates the risk of overfitting, drasti-
cally reduces computational demands, and allows for inherent compositionality.

We then introduce our full Transformer2 framework, which entails a two-pass inference mechanism
to produce dynamically adapted weights targeted for the test-time conditions (Figure 1). We design
three different adaptation strategies that can be used within Transformer2, which we show provide
monotonic performance benefits with increasing access to the test-time conditions. We evaluate
SVF and the full Transformer2 framework through extensive experiments across a diverse range of
LLMs and tasks. SVF outperforms traditional efficient fine-tuning methods like LoRA on domain-
specific datasets with far fewer parameters. Transformer2 further improves performance, even for
out-of-distribution tasks like visual QA. Our analysis even shows that Transformer2 allows the reuse
of SVF experts across different LLMs. In summary, our key technical contributions are:

• The development of Transformer2 as a pivotal self-adaptation framework for LLMs, pro-
viding a blueprint to adapt the behavior of LLMs from a growing set of pre-trained skills.

• The introduction of SVF, a novel PEFT method trainable with RL on small datasets, pro-
ducing compact expert vectors with inherent compositionality.

• The implementation of three adaptation strategies, effectively dispatching SVF-trained ex-
perts with properties designed to cope with different deployment scenarios.

2 Related works

Self-adaptive LLMs operate at macro (multiple collaborating LLMs) and micro (internal adapta-
tions) levels. Microview adaptations often use Mixture of Experts (MoE) for dynamic routing (Fedus
et al., 2022). Low-rank adaptation methods like LoRA (Hu et al., 2021) enable efficient fine-tuning.
Recent approaches leverage SVD for LLM fine-tuning, either using minor components (Wang et al.,
2024) or top singular vectors (Bałazy et al., 2024). The most related work (Lingam et al., 2024)
explores SVD-based sparsification but doesn’t focus on self-adaptive LLMs or use reinforcement
learning for efficiency. We refer to Appendix D for references to the wider literature.

3 Methods
3.1 Preliminaries

Singular value decomposition (SVD) offers a fundamental view of matrix multiplications. In
neural networks, each weight matrix W ∈ Rn×m can be decomposed into three components
W = UΣV ⊺, yielding semi-orthogonal matrices U ∈ Rm×r and V ∈ Rn×r together with an
ordered vector of r singular values arranged in the diagonal matrix Σ ∈ Rr×r.

Cross-entropy method (CEM) is a Monte Carlo method for importance sampling and optimiza-
tion (Rubinstein & Kroese, 2004). The method is based on minimizing the KL divergence between
two probability distributions DKL(P∥Q), where P is the target distribution and Q is a maintained
distribution. CEM generates a set of samples from Q, evaluates them, and updates the distribution Q
with the characteristics of the elite samples. In the standard setup, Q is set to a diagonal multivariate
Gaussian, reducing the problem to simply estimating the empirical mean and standard deviation of
the latest elites. We illustrate a complete CEM step in the Python pseudocode in Appendix A.4.

3.2 TRANSFORMER2

The construction of Transformer2 comprises two main steps, for which we provide an illustrative
overview in Figure 2. First, we introduce Singular Value Fine-tuning (SVF), a method to learn
compositional expert vectors with RL. Then, we describe three different adaptation strategies within
Transformer2, inspired by orthogonal principles. We motivate how the properties of SVF are highly
complementary to our adaptation strategies, making Transformer2 an effective and scalable frame-
work for the design of new self-adaptive LLMs.

Singular value fine-tuning is a key building block in Transformer2. For any weight matrix W , SVF
learns a simple vector z ∈ Rr that provides targeted modifications to each singular component of
W independently, yielding a new weight matrix W ′ = UΣ′V ⊺, where Σ′ = Σ ⊗ diag(z). This
approach offers three main benefits: (1) Negligible parameters: efficient fine-tuning with far fewer

2

Layer Norm

<latexit sha1_base64="hnfzLeUw92WJ9yYUkRkk/DJmo2g=">AAAB8nicbZDLSgMxFIYzXmu9VV26CRbBVZkRqe4suHFZwV5gOpZMmmlDM8mQnBHK0MdwYReKuPUFfA13vo2Ztgtt/SHw8f/nkHNOmAhuwHW/nZXVtfWNzcJWcXtnd2+/dHDYNCrVlDWoEkq3Q2KY4JI1gINg7UQzEoeCtcLhTZ63Hpk2XMl7GCUsiElf8ohTAtbymw8dLoFpSkS3VHYr7lR4Gbw5lK8/n3NN6t3SV6enaBozCVQQY3zPTSDIiAZOBRsXO6lhCaFD0me+RUliZoJsOvIYn1qnhyOl7ZOAp+7vjozExozi0FbGBAZmMcvN/zI/hegqyLhMUmCSzj6KUoFB4Xx/3OOaURAjC4RqbmfFdEA0ofYKpmiP4C2uvAzN84pXrVTvvHLtAs1UQMfoBJ0hD12iGrpFddRAFCn0hF7QqwPOxHlz3melK8685wj9kfPxA3w0ldM=</latexit>

V |<latexit sha1_base64="hnfzLeUw92WJ9yYUkRkk/DJmo2g=">AAAB8nicbZDLSgMxFIYzXmu9VV26CRbBVZkRqe4suHFZwV5gOpZMmmlDM8mQnBHK0MdwYReKuPUFfA13vo2Ztgtt/SHw8f/nkHNOmAhuwHW/nZXVtfWNzcJWcXtnd2+/dHDYNCrVlDWoEkq3Q2KY4JI1gINg7UQzEoeCtcLhTZ63Hpk2XMl7GCUsiElf8ohTAtbymw8dLoFpSkS3VHYr7lR4Gbw5lK8/n3NN6t3SV6enaBozCVQQY3zPTSDIiAZOBRsXO6lhCaFD0me+RUliZoJsOvIYn1qnhyOl7ZOAp+7vjozExozi0FbGBAZmMcvN/zI/hegqyLhMUmCSzj6KUoFB4Xx/3OOaURAjC4RqbmfFdEA0ofYKpmiP4C2uvAzN84pXrVTvvHLtAs1UQMfoBJ0hD12iGrpFddRAFCn0hF7QqwPOxHlz3melK8685wj9kfPxA3w0ldM=</latexit>

V |<latexit sha1_base64="8jULmK0JRDiG/w9c6wlV1jj7guI=">AAAB7XicbZC7SgNBFIbPxluMt6ilIINBSBV2LaKdARvLBM0FkhBmJ7PJmNmZZWZWCEtKexsLRWztrPMcdj6DL+HkUmjiDwMf/38Oc87xI860cd0vJ7Wyura+kd7MbG3v7O5l9w9qWsaK0CqRXKqGjzXlTNCqYYbTRqQoDn1O6/7gapLX76nSTIpbM4xoO8Q9wQJGsLFWrXXDeiHuZHNuwZ0KLYM3h9zlx7jy/XA8Lneyn62uJHFIhSEca9303Mi0E6wMI5yOMq1Y0wiTAe7RpkWBQ6rbyXTaETq1ThcFUtknDJq6vzsSHGo9DH1bGWLT14vZxPwva8YmuGgnTESxoYLMPgpijoxEk9VRlylKDB9awEQxOysifawwMfZAGXsEb3HlZaidFbxioVjxcqU8zJSGIziBPHhwDiW4hjJUgcAdPMIzvDjSeXJenbdZacqZ9xzCHznvPxkHky0=</latexit>

⌃
<latexit sha1_base64="8jULmK0JRDiG/w9c6wlV1jj7guI=">AAAB7XicbZC7SgNBFIbPxluMt6ilIINBSBV2LaKdARvLBM0FkhBmJ7PJmNmZZWZWCEtKexsLRWztrPMcdj6DL+HkUmjiDwMf/38Oc87xI860cd0vJ7Wyura+kd7MbG3v7O5l9w9qWsaK0CqRXKqGjzXlTNCqYYbTRqQoDn1O6/7gapLX76nSTIpbM4xoO8Q9wQJGsLFWrXXDeiHuZHNuwZ0KLYM3h9zlx7jy/XA8Lneyn62uJHFIhSEca9303Mi0E6wMI5yOMq1Y0wiTAe7RpkWBQ6rbyXTaETq1ThcFUtknDJq6vzsSHGo9DH1bGWLT14vZxPwva8YmuGgnTESxoYLMPgpijoxEk9VRlylKDB9awEQxOysifawwMfZAGXsEb3HlZaidFbxioVjxcqU8zJSGIziBPHhwDiW4hjJUgcAdPMIzvDjSeXJenbdZacqZ9xzCHznvPxkHky0=</latexit>

⌃<latexit sha1_base64="ka/WwxC9Nk0i99aMsQm1DvJgrg0=">AAAB6HicbZDPTsJAEMan+A/xH+rRSyMx8URaY9CbJF48QmKBBBqyXaawst02u1sTQngCLx40Bo++ha/hzbdxCxwU/JJNfvm+mezMBAlnSjvOt5VbW9/Y3MpvF3Z29/YPiodHDRWnkqJHYx7LVkAUcibQ00xzbCUSSRRwbAbD2yxvPqJULBb3epSgH5G+YCGjRBur7nWLJafszGSvgruA0s3nNNN7rVv86vRimkYoNOVEqbbrJNofE6kZ5TgpdFKFCaFD0se2QUEiVP54NujEPjNOzw5jaZ7Q9sz93TEmkVKjKDCVEdEDtZxl5n9ZO9XhtT9mIkk1Cjr/KEy5rWM729ruMYlU85EBQiUzs9p0QCSh2tymYI7gLq+8Co2LslspV+puqXoJc+XhBE7hHFy4gircQQ08oIDwBC/waj1Yz9abNZ2X5qxFzzH8kfXxA9F0kWI=</latexit>

U
<latexit sha1_base64="ka/WwxC9Nk0i99aMsQm1DvJgrg0=">AAAB6HicbZDPTsJAEMan+A/xH+rRSyMx8URaY9CbJF48QmKBBBqyXaawst02u1sTQngCLx40Bo++ha/hzbdxCxwU/JJNfvm+mezMBAlnSjvOt5VbW9/Y3MpvF3Z29/YPiodHDRWnkqJHYx7LVkAUcibQ00xzbCUSSRRwbAbD2yxvPqJULBb3epSgH5G+YCGjRBur7nWLJafszGSvgruA0s3nNNN7rVv86vRimkYoNOVEqbbrJNofE6kZ5TgpdFKFCaFD0se2QUEiVP54NujEPjNOzw5jaZ7Q9sz93TEmkVKjKDCVEdEDtZxl5n9ZO9XhtT9mIkk1Cjr/KEy5rWM729ruMYlU85EBQiUzs9p0QCSh2tymYI7gLq+8Co2LslspV+puqXoJc+XhBE7hHFy4gircQQ08oIDwBC/waj1Yz9abNZ2X5qxFzzH8kfXxA9F0kWI=</latexit>

U

Attention

Layer Norm

MLP
<latexit sha1_base64="WPTq7ovTCCel7T147D53/f38NRg=">AAAB6HicbZC7SgNBFIbPxluMt3jpbAaDYBV2LaKdAQutJAFzgWQJs5OzyZjZCzOzQlzyBDYWitj6AFY+iZ2lb+LkUmj0h4GP/z+HOed4seBK2/anlVlYXFpeya7m1tY3Nrfy2zt1FSWSYY1FIpJNjyoUPMSa5lpgM5ZIA09gwxucj/PGLUrFo/BaD2N0A9oLuc8Z1caqXnXyBbtoT0T+gjODwtn73dfF215a6eQ/2t2IJQGGmgmqVMuxY+2mVGrOBI5y7URhTNmA9rBlMKQBKjedDDoih8bpEj+S5oWaTNyfHSkNlBoGnqkMqO6r+Wxs/pe1Eu2fuikP40RjyKYf+YkgOiLjrUmXS2RaDA1QJrmZlbA+lZRpc5ucOYIzv/JfqB8XnVKxVHUKZRumysI+HMAROHACZbiECtSAAcI9PMKTdWM9WM/Wy7Q0Y816duGXrNdvyOqQmg==</latexit> N<latexit sha1_base64="WPTq7ovTCCel7T147D53/f38NRg=">AAAB6HicbZC7SgNBFIbPxluMt3jpbAaDYBV2LaKdAQutJAFzgWQJs5OzyZjZCzOzQlzyBDYWitj6AFY+iZ2lb+LkUmj0h4GP/z+HOed4seBK2/anlVlYXFpeya7m1tY3Nrfy2zt1FSWSYY1FIpJNjyoUPMSa5lpgM5ZIA09gwxucj/PGLUrFo/BaD2N0A9oLuc8Z1caqXnXyBbtoT0T+gjODwtn73dfF215a6eQ/2t2IJQGGmgmqVMuxY+2mVGrOBI5y7URhTNmA9rBlMKQBKjedDDoih8bpEj+S5oWaTNyfHSkNlBoGnqkMqO6r+Wxs/pe1Eu2fuikP40RjyKYf+YkgOiLjrUmXS2RaDA1QJrmZlbA+lZRpc5ucOYIzv/JfqB8XnVKxVHUKZRumysI+HMAROHACZbiECtSAAcI9PMKTdWM9WM/Wy7Q0Y816duGXrNdvyOqQmg==</latexit> N

 la
ye

rs
<latexit sha1_base64="yC9X/vIczvf0cNc9NaHz45Lo31s=">AAAB6HicbZC7SgNBFIbPxluMt6ilIItBSBV2LaKdARvLBMwFkxBmJ2eTMbOzy8ysEJaUVjYWitj6ANZ5DjufwZdwcik08YeBj/8/hznneBFnSjvOl5VaWV1b30hvZra2d3b3svsHNRXGkmKVhjyUDY8o5ExgVTPNsRFJJIHHse4NriZ5/R6lYqG40cMI2wHpCeYzSrSxKredbM4pOFPZy+DOIXf5Ma58PxyPy53sZ6sb0jhAoSknSjVdJ9LthEjNKMdRphUrjAgdkB42DQoSoGon00FH9qlxurYfSvOEtqfu746EBEoNA89UBkT31WI2Mf/LmrH2L9oJE1GsUdDZR37MbR3ak63tLpNINR8aIFQyM6tN+0QSqs1tMuYI7uLKy1A7K7jFQrHi5kp5mCkNR3ACeXDhHEpwDWWoAgWER3iGF+vOerJerbdZacqa9xzCH1nvP2ZpkQg=</latexit>

Z
<latexit sha1_base64="yC9X/vIczvf0cNc9NaHz45Lo31s=">AAAB6HicbZC7SgNBFIbPxluMt6ilIItBSBV2LaKdARvLBMwFkxBmJ2eTMbOzy8ysEJaUVjYWitj6ANZ5DjufwZdwcik08YeBj/8/hznneBFnSjvOl5VaWV1b30hvZra2d3b3svsHNRXGkmKVhjyUDY8o5ExgVTPNsRFJJIHHse4NriZ5/R6lYqG40cMI2wHpCeYzSrSxKredbM4pOFPZy+DOIXf5Ma58PxyPy53sZ6sb0jhAoSknSjVdJ9LthEjNKMdRphUrjAgdkB42DQoSoGon00FH9qlxurYfSvOEtqfu746EBEoNA89UBkT31WI2Mf/LmrH2L9oJE1GsUdDZR37MbR3ak63tLpNINR8aIFQyM6tN+0QSqs1tMuYI7uLKy1A7K7jFQrHi5kp5mCkNR3ACeXDhHEpwDWWoAgWER3iGF+vOerJerbdZacqa9xzCH1nvP2ZpkQg=</latexit>

Z

Learnable parameters
trained with RL

Frozen parameters

Training Time Inference Time

<latexit sha1_base64="Zy7mRheCx49r7k9l9pfYkhWF0qk=">AAAB6HicbZC7SgNBFIbPxluMt3jpbAaDYBV2LaKdAQtthATMBZIlzE7OJmNmL8zMCnHJE9hYKGLrA1j5JHaWvomTS6HRHwY+/v8c5pzjxYIrbdufVmZhcWl5JbuaW1vf2NzKb+/UVZRIhjUWiUg2PapQ8BBrmmuBzVgiDTyBDW9wPs4btygVj8JrPYzRDWgv5D5nVBuretXJF+yiPRH5C84MCmfvd18Xb3tppZP/aHcjlgQYaiaoUi3HjrWbUqk5EzjKtROFMWUD2sOWwZAGqNx0MuiIHBqnS/xImhdqMnF/dqQ0UGoYeKYyoLqv5rOx+V/WSrR/6qY8jBONIZt+5CeC6IiMtyZdLpFpMTRAmeRmVsL6VFKmzW1y5gjO/Mp/oX5cdErFUtUplG2YKgv7cABH4MAJlOESKlADBgj38AhP1o31YD1bL9PSjDXr2YVfsl6/AcdmkJk=</latexit>

M
<latexit sha1_base64="Zy7mRheCx49r7k9l9pfYkhWF0qk=">AAAB6HicbZC7SgNBFIbPxluMt3jpbAaDYBV2LaKdAQtthATMBZIlzE7OJmNmL8zMCnHJE9hYKGLrA1j5JHaWvomTS6HRHwY+/v8c5pzjxYIrbdufVmZhcWl5JbuaW1vf2NzKb+/UVZRIhjUWiUg2PapQ8BBrmmuBzVgiDTyBDW9wPs4btygVj8JrPYzRDWgv5D5nVBuretXJF+yiPRH5C84MCmfvd18Xb3tppZP/aHcjlgQYaiaoUi3HjrWbUqk5EzjKtROFMWUD2sOWwZAGqNx0MuiIHBqnS/xImhdqMnF/dqQ0UGoYeKYyoLqv5rOx+V/WSrR/6qY8jBONIZt+5CeC6IiMtyZdLpFpMTRAmeRmVsL6VFKmzW1y5gjO/Mp/oX5cdErFUtUplG2YKgv7cABH4MAJlOESKlADBgj38AhP1o31YD1bL9PSjDXr2YVfsl6/AcdmkJk=</latexit>

M matrices

<latexit sha1_base64="hnfzLeUw92WJ9yYUkRkk/DJmo2g=">AAAB8nicbZDLSgMxFIYzXmu9VV26CRbBVZkRqe4suHFZwV5gOpZMmmlDM8mQnBHK0MdwYReKuPUFfA13vo2Ztgtt/SHw8f/nkHNOmAhuwHW/nZXVtfWNzcJWcXtnd2+/dHDYNCrVlDWoEkq3Q2KY4JI1gINg7UQzEoeCtcLhTZ63Hpk2XMl7GCUsiElf8ohTAtbymw8dLoFpSkS3VHYr7lR4Gbw5lK8/n3NN6t3SV6enaBozCVQQY3zPTSDIiAZOBRsXO6lhCaFD0me+RUliZoJsOvIYn1qnhyOl7ZOAp+7vjozExozi0FbGBAZmMcvN/zI/hegqyLhMUmCSzj6KUoFB4Xx/3OOaURAjC4RqbmfFdEA0ofYKpmiP4C2uvAzN84pXrVTvvHLtAs1UQMfoBJ0hD12iGrpFddRAFCn0hF7QqwPOxHlz3melK8685wj9kfPxA3w0ldM=</latexit>

V |<latexit sha1_base64="hnfzLeUw92WJ9yYUkRkk/DJmo2g=">AAAB8nicbZDLSgMxFIYzXmu9VV26CRbBVZkRqe4suHFZwV5gOpZMmmlDM8mQnBHK0MdwYReKuPUFfA13vo2Ztgtt/SHw8f/nkHNOmAhuwHW/nZXVtfWNzcJWcXtnd2+/dHDYNCrVlDWoEkq3Q2KY4JI1gINg7UQzEoeCtcLhTZ63Hpk2XMl7GCUsiElf8ohTAtbymw8dLoFpSkS3VHYr7lR4Gbw5lK8/n3NN6t3SV6enaBozCVQQY3zPTSDIiAZOBRsXO6lhCaFD0me+RUliZoJsOvIYn1qnhyOl7ZOAp+7vjozExozi0FbGBAZmMcvN/zI/hegqyLhMUmCSzj6KUoFB4Xx/3OOaURAjC4RqbmfFdEA0ofYKpmiP4C2uvAzN84pXrVTvvHLtAs1UQMfoBJ0hD12iGrpFddRAFCn0hF7QqwPOxHlz3melK8685wj9kfPxA3w0ldM=</latexit>

V |
<latexit sha1_base64="8jULmK0JRDiG/w9c6wlV1jj7guI=">AAAB7XicbZC7SgNBFIbPxluMt6ilIINBSBV2LaKdARvLBM0FkhBmJ7PJmNmZZWZWCEtKexsLRWztrPMcdj6DL+HkUmjiDwMf/38Oc87xI860cd0vJ7Wyura+kd7MbG3v7O5l9w9qWsaK0CqRXKqGjzXlTNCqYYbTRqQoDn1O6/7gapLX76nSTIpbM4xoO8Q9wQJGsLFWrXXDeiHuZHNuwZ0KLYM3h9zlx7jy/XA8Lneyn62uJHFIhSEca9303Mi0E6wMI5yOMq1Y0wiTAe7RpkWBQ6rbyXTaETq1ThcFUtknDJq6vzsSHGo9DH1bGWLT14vZxPwva8YmuGgnTESxoYLMPgpijoxEk9VRlylKDB9awEQxOysifawwMfZAGXsEb3HlZaidFbxioVjxcqU8zJSGIziBPHhwDiW4hjJUgcAdPMIzvDjSeXJenbdZacqZ9xzCHznvPxkHky0=</latexit>

⌃
<latexit sha1_base64="8jULmK0JRDiG/w9c6wlV1jj7guI=">AAAB7XicbZC7SgNBFIbPxluMt6ilIINBSBV2LaKdARvLBM0FkhBmJ7PJmNmZZWZWCEtKexsLRWztrPMcdj6DL+HkUmjiDwMf/38Oc87xI860cd0vJ7Wyura+kd7MbG3v7O5l9w9qWsaK0CqRXKqGjzXlTNCqYYbTRqQoDn1O6/7gapLX76nSTIpbM4xoO8Q9wQJGsLFWrXXDeiHuZHNuwZ0KLYM3h9zlx7jy/XA8Lneyn62uJHFIhSEca9303Mi0E6wMI5yOMq1Y0wiTAe7RpkWBQ6rbyXTaETq1ThcFUtknDJq6vzsSHGo9DH1bGWLT14vZxPwva8YmuGgnTESxoYLMPgpijoxEk9VRlylKDB9awEQxOysifawwMfZAGXsEb3HlZaidFbxioVjxcqU8zJSGIziBPHhwDiW4hjJUgcAdPMIzvDjSeXJenbdZacqZ9xzCHznvPxkHky0=</latexit>

⌃<latexit sha1_base64="ka/WwxC9Nk0i99aMsQm1DvJgrg0=">AAAB6HicbZDPTsJAEMan+A/xH+rRSyMx8URaY9CbJF48QmKBBBqyXaawst02u1sTQngCLx40Bo++ha/hzbdxCxwU/JJNfvm+mezMBAlnSjvOt5VbW9/Y3MpvF3Z29/YPiodHDRWnkqJHYx7LVkAUcibQ00xzbCUSSRRwbAbD2yxvPqJULBb3epSgH5G+YCGjRBur7nWLJafszGSvgruA0s3nNNN7rVv86vRimkYoNOVEqbbrJNofE6kZ5TgpdFKFCaFD0se2QUEiVP54NujEPjNOzw5jaZ7Q9sz93TEmkVKjKDCVEdEDtZxl5n9ZO9XhtT9mIkk1Cjr/KEy5rWM729ruMYlU85EBQiUzs9p0QCSh2tymYI7gLq+8Co2LslspV+puqXoJc+XhBE7hHFy4gircQQ08oIDwBC/waj1Yz9abNZ2X5qxFzzH8kfXxA9F0kWI=</latexit>

U
<latexit sha1_base64="ka/WwxC9Nk0i99aMsQm1DvJgrg0=">AAAB6HicbZDPTsJAEMan+A/xH+rRSyMx8URaY9CbJF48QmKBBBqyXaawst02u1sTQngCLx40Bo++ha/hzbdxCxwU/JJNfvm+mezMBAlnSjvOt5VbW9/Y3MpvF3Z29/YPiodHDRWnkqJHYx7LVkAUcibQ00xzbCUSSRRwbAbD2yxvPqJULBb3epSgH5G+YCGjRBur7nWLJafszGSvgruA0s3nNNN7rVv86vRimkYoNOVEqbbrJNofE6kZ5TgpdFKFCaFD0se2QUEiVP54NujEPjNOzw5jaZ7Q9sz93TEmkVKjKDCVEdEDtZxl5n9ZO9XhtT9mIkk1Cjr/KEy5rWM729ruMYlU85EBQiUzs9p0QCSh2tymYI7gLq+8Co2LslspV+puqXoJc+XhBE7hHFy4gircQQ08oIDwBC/waj1Yz9abNZ2X5qxFzzH8kfXxA9F0kWI=</latexit>

U
<latexit sha1_base64="yC9X/vIczvf0cNc9NaHz45Lo31s=">AAAB6HicbZC7SgNBFIbPxluMt6ilIItBSBV2LaKdARvLBMwFkxBmJ2eTMbOzy8ysEJaUVjYWitj6ANZ5DjufwZdwcik08YeBj/8/hznneBFnSjvOl5VaWV1b30hvZra2d3b3svsHNRXGkmKVhjyUDY8o5ExgVTPNsRFJJIHHse4NriZ5/R6lYqG40cMI2wHpCeYzSrSxKredbM4pOFPZy+DOIXf5Ma58PxyPy53sZ6sb0jhAoSknSjVdJ9LthEjNKMdRphUrjAgdkB42DQoSoGon00FH9qlxurYfSvOEtqfu746EBEoNA89UBkT31WI2Mf/LmrH2L9oJE1GsUdDZR37MbR3ak63tLpNINR8aIFQyM6tN+0QSqs1tMuYI7uLKy1A7K7jFQrHi5kp5mCkNR3ACeXDhHEpwDWWoAgWER3iGF+vOerJerbdZacqa9xzCH1nvP2ZpkQg=</latexit>

Z
<latexit sha1_base64="yC9X/vIczvf0cNc9NaHz45Lo31s=">AAAB6HicbZC7SgNBFIbPxluMt6ilIItBSBV2LaKdARvLBMwFkxBmJ2eTMbOzy8ysEJaUVjYWitj6ANZ5DjufwZdwcik08YeBj/8/hznneBFnSjvOl5VaWV1b30hvZra2d3b3svsHNRXGkmKVhjyUDY8o5ExgVTPNsRFJJIHHse4NriZ5/R6lYqG40cMI2wHpCeYzSrSxKredbM4pOFPZy+DOIXf5Ma58PxyPy53sZ6sb0jhAoSknSjVdJ9LthEjNKMdRphUrjAgdkB42DQoSoGon00FH9qlxurYfSvOEtqfu746EBEoNA89UBkT31WI2Mf/LmrH2L9oJE1GsUdDZR37MbR3ak63tLpNINR8aIFQyM6tN+0QSqs1tMuYI7uLKy1A7K7jFQrHi5kp5mCkNR3ACeXDhHEpwDWWoAgWER3iGF+vOerJerbdZacqa9xzCH1nvP2ZpkQg=</latexit>

Z

…

A) Prompt-based adaptation, or
B) Job classifier-based adaptation

Replaced with one
learned vector

C) Mixture-based adaptation

… <latexit sha1_base64="ZoBKuE7P69Fe4FstEBqOVIcwRL0=">AAAB+HicbVDLSsNAFJ20Pmp9NCqu3AwWQRBK4qK6LLhxWcE+oClhMp20QyeTMHMj1NAvceNCEbf+gb/gQnDlp+j0sdDWAxcO59zLvfcEieAaHOfTyuVXVtfWCxvFza3tnZK9u9fUcaooa9BYxKodEM0El6wBHARrJ4qRKBCsFQwvJ37rlinNY3kDo4R1I9KXPOSUgJF8u3TqEZEMiD/0gEdM+3bZqThT4GXizkm5lv/4fjv4YnXffvd6MU0jJoEKonXHdRLoZkQBp4KNi16qWULokPRZx1BJzJJuNj18jI+N0sNhrExJwFP190RGIq1HUWA6IwIDvehNxP+8TgrhRTfjMkmBSTpbFKYCQ4wnKeAeV4yCGBlCqOLmVkwHRBEKJquiCcFdfHmZNM8qbrVSvXbLNQfNUECH6AidIBedoxq6QnXUQBSl6B49oifrznqwnq2XWWvOms/soz+wXn8ATKCXPg==</latexit>

+↵k⇥
<latexit sha1_base64="ZoBKuE7P69Fe4FstEBqOVIcwRL0=">AAAB+HicbVDLSsNAFJ20Pmp9NCqu3AwWQRBK4qK6LLhxWcE+oClhMp20QyeTMHMj1NAvceNCEbf+gb/gQnDlp+j0sdDWAxcO59zLvfcEieAaHOfTyuVXVtfWCxvFza3tnZK9u9fUcaooa9BYxKodEM0El6wBHARrJ4qRKBCsFQwvJ37rlinNY3kDo4R1I9KXPOSUgJF8u3TqEZEMiD/0gEdM+3bZqThT4GXizkm5lv/4fjv4YnXffvd6MU0jJoEKonXHdRLoZkQBp4KNi16qWULokPRZx1BJzJJuNj18jI+N0sNhrExJwFP190RGIq1HUWA6IwIDvehNxP+8TgrhRTfjMkmBSTpbFKYCQ4wnKeAeV4yCGBlCqOLmVkwHRBEKJquiCcFdfHmZNM8qbrVSvXbLNQfNUECH6AidIBedoxq6QnXUQBSl6B49oifrznqwnq2XWWvOms/soz+wXn8ATKCXPg==</latexit>

+↵k⇥
<latexit sha1_base64="rvY7URDetHJ3uMUQZv0k44XFelM=">AAAB+HicbVDLSsNAFJ1YH7U+GhVXbgaLIAgl6aK6LLhxWcE+oCnhZjpph04mYWYi1NAvceNCEbf+gb/gQnDlp+j0sdDWAxcO59zLvfcECWdKO86ntZJbXVvfyG8WtrZ3dov23n5TxakktEFiHst2AIpyJmhDM81pO5EUooDTVjC8nPitWyoVi8WNHiW0G0FfsJAR0Eby7eKZBzwZgF/xNIuo8u2SU3amwMvEnZNSLffx/Xb4Reu+/e71YpJGVGjCQamO6yS6m4HUjHA6LnipogmQIfRpx1ABZkk3mx4+xidG6eEwlqaExlP190QGkVKjKDCdEeiBWvQm4n9eJ9XhRTdjIkk1FWS2KEw51jGepIB7TFKi+cgQIJKZWzEZgASiTVYFE4K7+PIyaVbKbrVcvXZLNQfNkEdH6BidIhedoxq6QnXUQASl6B49oifrznqwnq2XWeuKNZ85QH9gvf4A9NeXBQ==</latexit>

+↵2⇥<latexit sha1_base64="rvY7URDetHJ3uMUQZv0k44XFelM=">AAAB+HicbVDLSsNAFJ1YH7U+GhVXbgaLIAgl6aK6LLhxWcE+oCnhZjpph04mYWYi1NAvceNCEbf+gb/gQnDlp+j0sdDWAxcO59zLvfcECWdKO86ntZJbXVvfyG8WtrZ3dov23n5TxakktEFiHst2AIpyJmhDM81pO5EUooDTVjC8nPitWyoVi8WNHiW0G0FfsJAR0Eby7eKZBzwZgF/xNIuo8u2SU3amwMvEnZNSLffx/Xb4Reu+/e71YpJGVGjCQamO6yS6m4HUjHA6LnipogmQIfRpx1ABZkk3mx4+xidG6eEwlqaExlP190QGkVKjKDCdEeiBWvQm4n9eJ9XhRTdjIkk1FWS2KEw51jGepIB7TFKi+cgQIJKZWzEZgASiTVYFE4K7+PIyaVbKbrVcvXZLNQfNkEdH6BidIhedoxq6QnXUQASl6B49oifrznqwnq2XWeuKNZ85QH9gvf4A9NeXBQ==</latexit>

+↵2⇥<latexit sha1_base64="/hIatESGxW7y6US6Az4TZbyHk9M=">AAAB9XicbVDJSgNBEK1JXGLcouLJS2MQPIUZD9FjwIvHCGaBzBhqOj1Jk56F7h4lDPkPLx4U8eo3+AseBE9+inaWg0YfFDzeq6Kqnp8IrrRtf1i5/NLyymphrbi+sbm1XdrZbao4lZQ1aCxi2fZRMcEj1tBcC9ZOJMPQF6zlD88nfuuGScXj6EqPEuaF2I94wClqI127KJIBdh1X85CpbqlsV+wpyF/izEm5ln//et3/ZPVu6c3txTQNWaSpQKU6jp1oL0OpORVsXHRTxRKkQ+yzjqERmiVeNr16TI6M0iNBLE1FmkzVnxMZhkqNQt90hqgHatGbiP95nVQHZ17GoyTVLKKzRUEqiI7JJALS45JRLUaGIJXc3EroACVSbYIqmhCcxZf/kuZJxalWqpdOuWbDDAU4gEM4BgdOoQYXUIcGUJBwBw/waN1a99aT9TxrzVnzmT34BevlGxMUlp4=</latexit>

↵1⇥<latexit sha1_base64="/hIatESGxW7y6US6Az4TZbyHk9M=">AAAB9XicbVDJSgNBEK1JXGLcouLJS2MQPIUZD9FjwIvHCGaBzBhqOj1Jk56F7h4lDPkPLx4U8eo3+AseBE9+inaWg0YfFDzeq6Kqnp8IrrRtf1i5/NLyymphrbi+sbm1XdrZbao4lZQ1aCxi2fZRMcEj1tBcC9ZOJMPQF6zlD88nfuuGScXj6EqPEuaF2I94wClqI127KJIBdh1X85CpbqlsV+wpyF/izEm5ln//et3/ZPVu6c3txTQNWaSpQKU6jp1oL0OpORVsXHRTxRKkQ+yzjqERmiVeNr16TI6M0iNBLE1FmkzVnxMZhkqNQt90hqgHatGbiP95nVQHZ17GoyTVLKKzRUEqiI7JJALS45JRLUaGIJXc3EroACVSbYIqmhCcxZf/kuZJxalWqpdOuWbDDAU4gEM4BgdOoQYXUIcGUJBwBw/waN1a99aT9TxrzVnzmT34BevlGxMUlp4=</latexit>

↵1⇥

Replaced with a
mixture of the

learned vectors

Figure 2: Method overview. Left) At training time, we employ SVF and RL to learn the “expert”
vectors z’s that scale the singular values of the weight matrices. Right) At inference time, we propose
three distinct methods to adaptively select/combine the learned expert vectors.

optimized parameters than existing methods. (2) High compositionality: decomposition into inde-
pendent singular components enables interpretable z vectors, unlike LoRA-based methods. (3) Prin-
cipled regularization: modifying only pre-existing singular component magnitudes prevents overfit-
ting, allowing fine-tuning on small datasets without risking model collapse. These properties make
SVF a foundation block for adapting large language models efficiently and effectively.

End-to-end optimization with RL. We train a set of SVF vectors θz = {z1, · · · , zN×M} to fine-
tune an arbitrary language model πθW parameterized by θW with RL, optimizing directly for task
performance. Here, θW = {W1, · · · ,WN×M} is the set of weight matrices, where N is the number
of layers and M is the number of weight matrices to fine-tune per layer. We use the seminal RE-
INFORCE algorithm (Williams, 1992) and label each generated answer yi (for the prompt xi ∈ D)
with a unitary reward based on its correctness r ∈ {−1, 1}. Inspired by related applications of RL
for optimizing LLMs (Ouyang et al., 2022), we regularize the REINFORCE objective by adding
a KL penalty for deviating from the original model’s behavior, weighted by a small coefficient
λ ∈ R+. Thus, our final objective function can be written as:

J(θz) = E
[
log

(
πθW ′ (ŷi | xi)

)
r(ŷi, yi)

]
− λDKL(πθW ′∥πθW), (1)

where we use πθW ′ to denote the resulting language model after substituting the original weight
matrices W with W ′. While RL is generally considered less stable than next-token prediction ob-
jectives, we find the regularization properties of SVF avoid many of the failure modes of prior
less-constrained parameterizations (see Section B.1). Thus, combining these complementary com-
ponents effectively enables us to directly maximize task performance end-to-end.

Self-adaptation is a critical mechanism in nature that has established itself as a core guiding princi-
ple in modern system design (Klös et al., 2015). Our initial efforts toward self-adaptive foundation
models focus on the inference stage of LLMs, where we devise a simple two-pass adaptation strat-
egy that combines K sets of base “expert” vectors z1:K trained with SVF to provide different kinds
of capabilities (e.g., coding, math, etc). In the first inference pass, given an individual input prompt,
Transformer2 executes the model and observes its test-time behavior to derive a new z′ vector tai-
lored to its test-time conditions. This adapted z′ is then used in the second inference pass to provide
an actual response with the newly adapted weights. In this first work, we propose three simple ap-
proaches to produce the vector z′ during the first inference pass. Below, we provide an outline of
each method and refer to Appendix A for additional implementation details.

A) Prompt engineering: Our most basic approach involves constructing an “adaptation” prompt
which we use to ask the LLM to categorize the input prompt. Based on its response, we then
extract one category out of the set of domain topics used to pre-train each SVF expert and, thus, we
select the corresponding z′ directly from z1:K . We also explicitly provide the option for a generic
“others” category, allowing the model to use its base weights in case no expert provides appropriate
capabilities. We show the format used to construct the adaptation prompt in Appendix A.1

B) Classification expert: A direct extension of the prompt engineering approach comes from using
a specialized system to handle task identification. Following the principles of self-adaptation, we
apply SVF to fine-tune the base LLM itself to handle this task. In particular, we collect a dataset
D = {(x1,1, 1), · · · , (xi,k, k), · · · } from the K SVF training tasks, where xi,k is the i-th example

3

from the k-th expert task. Each tuple (xi,k, k) then forms an example to pre-train an additional job
classification expert zc learned in the same fashion as the others. During the first inference pass, we
simply load zc, intending to improve the inherent task classification capabilities of the base model.

C) Few-shot adaptation: Our third approach leverages additional task information by assuming ex-
tended access to its test-time conditions beyond individual prompts. Our method is inspired by
few-shot prompting techniques, which have been shown to provide performance improvements, al-
low LLMs to “in-context” learn tasks that were entirely unseen prior to inference (Brown, 2020). For
each optimized W , our approach entails producing a new z′ =

∑K
k=1 αkzk by linearly interpolating

between the K learned SVF vectors, each weighted by the coefficients αk. We employ CEM to
search over the αk based on the performance on a set of “few-shot prompts”, which are specifically
held out from the rest of the test prompts and used to evaluate CEM’s population samples. In the
case of multiple population samples obtaining the same score on these held-out prompts, we break
ties by favoring the one with the highest average log-likelihood across its own generated correct
answers. We refer to Section A.4, for additional details and discussions of this final approach.

4 Experiments
4.1 Experimental setups

To validate the generality of Transformer2 we consider three pre-trained LLMs ranging across dif-
ferent model families and architecture sizes: LLAMA3-8B-INSTRUCT, MISTRAL-7B-INSTRUCT-
V0.3, and LLAMA3-70B-INSTRUCT. For each model, we obtain three sets of z vectors to max-
imize performance for GSM8K (Cobbe et al., 2021), MBPP-pro (Austin et al., 2021), and ARC-
Easy (Clark et al., 2018), respectively. Additionally, we train a set of z vectors for LLAMA3-8B-
INSTRUCT, when applied as the language backbone for TextVQA (Singh et al., 2019). Finally, we
evaluate the Transformer2 on four unseen tasks: MATH (Hendrycks et al., 2021), Humaneval (Chen
et al., 2021), ARC-Challenge (Clark et al., 2018), and OKVQA (Marino et al., 2019). In our adap-
tation experiments, we only consider experts obtained in the pure-language settings. Please refer to
Appendix A for additional details and hyper-parameters summary.

4.2 Experimental results

SVF performance We provide results training on each considered task with the LLAMA3-8B-
INSTRUCT, MISTRAL-7B-INSTRUCT-V0.3, and LLAMA3-70B-INSTRUCT base models in Table 1.
Remarkably, we find that SVF provides considerable performance gains across nearly all tasks and
base models. Instead, LoRA experts yield smaller gains and even sporadic performance degrada-
tion. To ensure a fair comparison, we provide extensive ablations to both our model and the LoRA
baseline considering different architecture and optimization objectives in Appendix B.1).

Adaptation performance With the SVF trained z vectors, we assess the self-adaptation capability
of Transformer2 on unseen tasks. As shown in Table 2, all of our Transformer2 adaptation strategies
demonstrate improvements across all tasks for nearly all the models. In contrast, even the best train-
ing LoRAs only provide marginal improvements on the ARC-Challenge task and still significantly
deteriorate performance on both MATH and Humaneval. Comparing the three proposed adaptation
strategies, we highlight a clear monotonic trend – with more involved strategies and additional in-
formation about the test-time condition, self-adaptation appears to be increasingly effective. This

Table 1: Fine-tuning results. LLM performance on the test splits of math,
coding and reasoning. Normalized scores are in the parentheses.

Method GSM8K MBPP-Pro ARC-Easy

LLAMA3-8B-INSTRUCT 75.89 (1.00) 64.65 (1.00) 88.59 (1.00)
+ LoRA 70.58 (0.93) 67.68 (1.05) 88.97 (1.00)
+ SVF (Ours) 79.15 (1.04) 66.67 (1.03) 89.56 (1.01)

MISTRAL-7B-INSTRUCT-V0.3 42.83 (1.00) 49.50 (1.00) 49.50 (1.00)
+ LoRA 36.09 (0.84) 47.47 (0.96) 47.47 (0.96)
+ SVF (Ours) 49.74 (1.16) 51.52 (1.04) 85.14 (1.72)

LLAMA3-70B-INSTRUCT 85.29 (1.00) 80.81 (1.00) 89.10 (1.00)
+ LoRA 77.26 (0.91) 68.69 (0.85) 88.55 (0.99)
+ SVF (Ours) 88.32 (1.04) 80.81 (1.00) 88.47 (0.99)

TextVQA OKVQA
30

35

40

45

50

Llama3-8B
LoRA
SVF/Transformer2

Figure 3: Results for
the VLM domain.

4

Table 2: Self-adaptation on unseen tasks. Normalized scores are in the parentheses.
Method MATH Humaneval ARC-Challenge

LLAMA3-8B-INSTRUCT 3 24.54 (1.00) 60.98 (1.00) 80.63 (1.00)
+ LoRA 21.68 (0.88) 52.44 (0.86) 81.06 (1.01)
+ Transformer2 (Prompt) 25.22 (1.03) 61.59 (1.01) 81.74 (1.01)
+ Transformer2 (Cls-expert) 25.18 (1.03) 62.80 (1.03) 81.37 (1.01)
+ Transformer2 (Few-shot) 25.47 (1.04) 62.99 (1.03) 82.61 (1.02)

MISTRAL-7B-INSTRUCT-V0.3 13.02 (1.00) 43.29 (1.00) 71.76 (1.00)
+ LoRA 11.18 (0.86) 31.71 (0.73) 75.77 (1.06)
+ Transformer2 (Prompt) 11.86 (0.91) 43.90 (1.01) 72.35 (1.01)
+ Transformer2 (Cls-expert) 11.60 (0.89) 43.90 (1.01) 74.83 (1.04)
+ Transformer2 (Few-shot) 13.39 (1.03) 47.40 (1.09) 75.47 (1.05)

LLAMA3-70B-INSTRUCT 40.64 (1.00) 78.66 (1.00) 87.63 (1.00)
+ LoRA 25.40 (0.62) 73.78 (0.94) 83.70 (0.96)
+ Transformer2 (Prompt) 40.44 (1.00) 79.88 (1.02) 88.48 (1.01)

trend shows that providing additional or different kinds of information seems to be highly beneficial
to our framework, suggesting that Transformer2 could provide foundation models with new means
to continually improve performance when deployed in lifelong settings.

4.3 Cross-model analysis
We explore the potential for our self-adaptation framework to be applied across different LLMs. We
evaluate whether the SVF expert vectors trained on LLAMA3-8B-INSTRUCT can benefit MISTRAL-
7B-INSTRUCT-V0.3, and whether we can perform adaptation across the expert vectors of these two
models. We present our main findings in Table 3 and refer to Appendix B for additional detailed
results. Surprisingly, positive transfer does occur across the two models, with visible benefits in 2 out
of 3 tasks. We note these improvements are due to the inherent ordering of the SVF parameterization,
as randomly shuffling each SVF vector before applying it to the Mistral model consistently degrades
performance. This operation leads to notable performance degradation across tasks. Finally, by
performing few-shot adaptation using the SVF vectors collected from both models, the performance
of MISTRAL-7B-INSTRUCT-V0.3 further improves across the board. We observe that these gains
even surpass the best score from adapting MISTRAL-7B-INSTRUCT-V0.3 with all the SVF vectors
in the ARC-Challenge task reported in Table 2. While these results appear promising, we note that
the surprising compatibility discovered through our naive transfer approach is potentially tied to
the similarity between the architectures of the two considered LLMs. To this end, whether similar
transfer can be replicated with models of different scales remains an open research question that
could open the doors to disentangling and recycling task-specific skills for models, with important
implications for the democratization and sustainability of the field.

Table 3: Cross-model z vector transfer. Results from transferring the expert vectors trained on
LLAMA3-8B-INSTRUCT to MISTRAL-7B-INSTRUCT-V0.3 with cross model few-shot adaptation.

Method MATH Humaneval ARC-Challenge
SVF training task GSM8K MBPP-pro ARC-Easy

MISTRAL-7B-INSTRUCT-V0.3 13.02 (1.00) 43.29 (1.00) 71.76 (1.00)

+ Llama SVF (ordered σi) 11.96 (0.92) 45.12 (1.04) 72.01 (1.00)
+ Llama SVF (shuffled σi) 10.52 (0.81) 40.24 (0.93) 70.82 (0.99)
+ Few-shot adaptation (cross-model) 12.65 (0.97) 46.75 (1.08) 75.64 (1.05)

5 Conclusion
We introduced Transformer2, a novel blueprint toward realizing self-adaptive LLMs. We first pro-
posed SVF, offering superior performance, reduced costs, high compositionality, and overfitting
regularization. Building on SVF experts, we developed three effective self-adaptation strategies,
each providing unique benefits and scalable performance improvements. Future work could explore
cross-model compatibility and expert skill recycling across model generations, drawing from recent
model merging techniques (Yu et al., 2024; Goddard et al., 2024; Akiba et al., 2024) to overcome
individual LLM limitations.

5

References
Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of

model merging recipes. arXiv preprint arXiv:2403.13187, 2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Klaudia Bałazy, Mohammadreza Banaei, Karl Aberer, and Jacek Tabor. Lora-xs: Low-rank adapta-
tion with extremely small number of parameters. arXiv preprint arXiv:2405.17604, 2024.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Alberto Cetoli. Fine-tuning llms with singular value decomposition. Hugging Face Blog, June
2024. URL https://huggingface.co/blog/fractalego/svd-training. Ac-
cessed: 2024-07-01.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improv-
ing factuality and reasoning in language models through multiagent debate. arXiv preprint
arXiv:2305.14325, 2023.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vlad Karpukhin, Brian
Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging large
language models. arXiv preprint arXiv:2403.13257, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Verena Klös, Thomas Göthel, and Sabine Glesner. Adaptive knowledge bases in self-adaptive sys-
tem design. In 2015 41st Euromicro Conference on Software Engineering and Advanced Appli-
cations, pp. 472–478, 2015. doi: 10.1109/SEAA.2015.48.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki Markus Asano. Vera: Vector-based random
matrix adaptation. arXiv preprint arXiv:2310.11454, 2023.

6

https://huggingface.co/blog/fractalego/svd-training

Vijay Lingam, Atula Tejaswi, Aditya Vavre, Aneesh Shetty, Gautham Krishna Gudur, Joy-
deep Ghosh, Alex Dimakis, Eunsol Choi, Aleksandar Bojchevski, and Sujay Sanghavi. Svft:
Parameter-efficient fine-tuning with singular vectors. arXiv preprint arXiv:2405.19597, 2024.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv
preprint arXiv:2402.09353, 2024.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual
question answering benchmark requiring external knowledge. In Proceedings of the IEEE/cvf
conference on computer vision and pattern recognition, pp. 3195–3204, 2019.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Qwen Team. Qwen1.5-moe: Matching 7b model performance with 1/3 activated parameters, March
2024. URL https://qwenlm.github.io/blog/qwen-moe/. Blog post.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale. In International conference on machine
learning, pp. 18332–18346. PMLR, 2022.

Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified approach to com-
binatorial optimization, Monte-Carlo simulation, and machine learning, volume 133. Springer,
2004.

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 8317–8326, 2019.

Chen Tianlong, Cheng Yu, Chen Beidi, Zhang Minjia, and Bansal Mohit. Mixture-of-experts in the
era of llms: A new odyssey. ICML 2024 presentation slides, 2024. International Conference on
Machine Learning (ICML).

Hanqing Wang, Zeguan Xiao, Yixia Li, Shuo Wang, Guanhua Chen, and Yun Chen. Milora:
Harnessing minor singular components for parameter-efficient llm finetuning. arXiv preprint
arXiv:2406.09044, 2024.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Ab-
sorbing abilities from homologous models as a free lunch. In Forty-first International Conference
on Machine Learning, 2024.

Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
Zhang, Anji Liu, Song-Chun Zhu, et al. Proagent: building proactive cooperative agents with large
language models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 17591–17599, 2024.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023.

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan, Jingqi Tong, Conghui He, and Yu Cheng.
Llama-moe: Building mixture-of-experts from llama with continual pre-training. arXiv preprint
arXiv:2406.16554, 2024.

Mingchen Zhuge, Haozhe Liu, Francesco Faccio, Dylan R Ashley, Róbert Csordás, Anand
Gopalakrishnan, Abdullah Hamdi, Hasan Abed Al Kader Hammoud, Vincent Herrmann,
Kazuki Irie, et al. Mindstorms in natural language-based societies of mind. arXiv preprint
arXiv:2305.17066, 2023.

7

https://qwenlm.github.io/blog/qwen-moe/

A Implementation details and hyper-parameters

A.1 SVF training

We obtain the expert vectors z as the base components in Transformer2 by training the SVF fine-
tunes with a consistent recipe across the considered training tasks and language models. We divide
each dataset to produce equal-sized training and validation splits. We then apply our RL-based
approach, optimizing θz with AdamW using a learning rate of 2× 10−3 with cosine decay, a batch
size of 256, and gradient clipping.

Analyze the given question and classify it into one of four categories:
'code', 'math', 'reasoning', or ‘others’. Follow these guidelines:

1. Code: Questions asking for programming solutions...

2. Math: Questions involving mathematical calculations...

3. Reasoning: Questions requiring logical thinking....

4. Others: Questions not clearly fit into above categories...

Instructions:

- Consider the primary focus, skills, and knowledge required to answer
the question.

- If a question spans multiple categories, choose the most dominant one.

- Provide your final classification within \\boxed{} notation. Example: \
\boxed{reasoning}

Format your response as follows:

Classification: \\boxed{category}

Figure 4: Prompt based adaptation. Self-adaptation
prompt used by Transformer2 to classify the task
prompt into pre-defined categories.

We employ early stopping and select the
best λ (the coefficient of the KL diver-
gence term) based on validation perfor-
mance. For the LLAMA3-70B-INSTRUCT
and Vision tasks experiments, we apply
the SVF on half of the layers to reduce
memory usage while maintaining consid-
erable performance improvement. During
the training of LLAMA3-8B-INSTRUCT
on the vision language tasks, we apply a
small negative reward (-0.1) for training
stability.

Our system prompt used for training clas-
sification expert is in Figure 4

A.2 LoRA training

Below is an instruction that describes a task. Write a response that
appropriately completes the request.

Natalia sold clips to 48 of her friends in April, and then she sold half
as many clips in May. How many clips did Natalia sell altogether in
April and May?

Natalia sold 48/2 = <<48/2=24>>24 clips in May. Natalia sold 48+24
= <<48+24=72>>72 clips altogether in April and May. #### 72

Figure 5: Sample problem and answer. Math data
sample used for LoRA instruction fine-tuning, text in
blue is the unmasked solution.

We follow community best practices for
LoRA fine-tuning, applying it to query and
value projection layers with learning rates
around 5 × 10−5. We set 200 total itera-
tions with a 256 global batch size for suffi-
cient training. For feasible LoRA instruc-
tion training, we collect solutions for all
training tasks (GSM8K, MBPP, Arc-Easy,
TextVQA) from official sources and ap-
pend them to question prompts. Table 5
shows a sample math problem used for
LoRA fine-tuning. Despite extensive hy-
perparameter tuning, we often observe test
performance decay as discussed, which can be attributed to the small number of training samples
and potential model requirements for instruction fine-tuning data (specifically, the highly detailed
thinking process).

A.3 Hyper parameters

We present a summary of the hyperparameters used in our experiments in Table 4. To optimize
performance, we conducted sweeps across several hyperparameters and selected the most effective
combination based on validation results. For SVF, our primary focus was on adjusting the KL
coefficient to enhance training stability. In the case of LoRA, we concentrated on sweeping the
learning rate and maximum gradient clip norm to identify optimal settings.

A.4 Few-shot adaptation

As described in the main text, our few-shot adaptation approach entails producing an entirely new
z′ =

∑K
k=1 αkzk for each W by linearly interpolating between the K learned SVF vectors, each

weighted by the coefficients α ∈ RK . We employ CEM to search for αk’s based on the performance
on the few-shot prompts, which are specifically held out from the rest of the test prompts and used
to obtain the elite set at each iteration. In the case of multiple sample solutions obtaining the same

8

Table 4: Hyper-parameters used for SVF and LoRA training. We perform a sweep on certain
sensitive hyper-parameters across methods for fair comparison.

SVF Hyperparameters
Initial mean value of z 0.1
Initial variance value of z 1× 10−3

Global batch size 256
Learning rate 2× 10−3

Clip max norm 1× 10−3

KL coefficient λ 0.0, 0.1, 0.2, 0.3

LoRA Hyperparameters
Rank 16
LoRA alpha 32
LoRA dropout 0.05
Global batch size 256
Learning rate 1× 10−5, 5× 10−5, 1× 10−4

Clip max norm 1× 10−3, 1.0

score on these held-out samples, we break ties by choosing the sample solution with the highest
average log-likelihood across the tokens of its generated correct answers.

In all of our main experiments we reserve only 10 samples of data for self-adaptation and perform up
to 100 CEM iterations. For each setting, we consider both per-layer and per-vector adaptation, where
the latter strategy has the advantage of greatly simplifying search (as we only have 3 α coefficients).
Moreover, we experiment with both normalizing across the α of different tasks (such that their sum
would be fixed to 1) or keeping them unconstrained. Due to the lack of a validation set, we simply
report the performance attained by our best sample from these test configurations at the end of
optimization, on the remaining unseen samples for each task.

We provide our python pseudo code of one CEM step as follows:

def cem_step(mu, sigma, num_elites, num_samples):

samples = np.random.normal(loc=mean, scale=sigma, size=num_samples)

scores = evaluate(samples)

elites = samples[np.argsort(scores)[-num_elites:]]

new_mu = np.mean(elites, axis=0)

new_sigma = np.std(elites, axis=0)

return (new_mu, new_sigma)

B Additional results

B.1 Ablation studies

Module sensitivity: We first compare the performance of SVF when it is applied to different modules
(see trials 1-3). Under consistent conditions, both individual MLP and attention updates improve
performance, with MLP updates resulting in more pronounced gains. Simultaneous updates to both
module types yield even more significant enhancements.

Objective function: We are interested in the performance impact from different objective functions,
and we compare the RL objective with next-token prediction loss (see trials 2 and 4). For the latter,
we use instruction fine-tuning with official GSM8K solutions as target tokens. Results show clear
performance gains with RL, demonstrating its effectiveness in task-specific fine-tuning. Conversely,
next-token prediction even hinders performance. This highlights RL’s ability to handle cases lacking
detailed solutions, suggesting its superiority in this context.

SVF vs LoRA: Finally, we also evaluate LoRA using the RL objective (see trials 2 and 5). A sig-
nificant performance disparity is observed, primarily attributed to the severe instability of the LoRA

9

training process. Despite exploring a wide range of learning rates, LoRA’s performance consistently
lagged behind. For further illustrations, see Figure 6 in the appendix.

Table 5: Ablation studies. We fine-tune LLAMA3-8B-INSTRUCT on the GSM8K training split with
different settings and the results on the test split along with zero-shot transfer results on MATH.

Method Objective Function Module #Params (↓) GSM8K (↑) MATH (↑)

0 LLAMA-3-8B-INSTRUCT 75.89 (1.00) 24.54 (1.00)

1 SVF Policy gradient MLP 0.39M 78.62 (1.04) 24.20 (0.99)
2 SVF Policy gradient attention 0.16M 76.19 (1.00) 24.20 (0.99)
3 SVF Policy gradient MLP + attention 0.58M 79.23 (1.04) 25.04 (1.04)
4 SVF Next token pred attention 0.16M 60.50 (0.80) 18.52 (0.75)
5 LoRA Policy gradient attention 6.82M 57.92 (0.76) 15.72 (0.64)

B.2 Impact from number of few-shots

We investigate the relationship between the number of samples available for few-shot adaptation
and downstream performance. Our analysis focused on the test task where LLAMA3-8B-INSTRUCT
demonstrates the highest baseline performance, to prevent the potential for a null signal in our CEM-
based search.

Table 6: Few-shot adaptation scaling. Perfor-
mance varies with number of examples.

Method ARC-Challenge
LLAMA3-8B-INSTRUCT 80.63 (1.00)

+ 3-shot adaptation 82.18 (1.02)
+ 5-shot adaptation 82.38 (1.02)
+ 10-shot adaptation 82.61 (1.02)
+ 20-shot adaptation 82.61 (1.02)

As Table 6 shows, substantial benefits of our
few-shot strategy are evident with as few as 3
to 5 test samples. Moreover, performance ap-
pears to plateau beyond 10 samples, underscor-
ing how our essential and inherently regularized
SVF parameterization effectively complements
self-adaptation. This efficiency enables optimal
use of data to enhance understanding of the test
task.

B.3 Cross-model svf transfer on the training tasks

We provide complementary results to Table 3 in the main text, where we analyze the SVF cross-
model transfer performance from training on GSM8K, MBPP-pro, and ARC-Easy to our consid-
ered test tasks. In Table 7, we show the results in the same transfer setting this time evaluating
MISTRAL-7B-INSTRUCT-V0.3 on the same training tasks where the LLAMA3-8B-INSTRUCT SVF
vectors were obtained from. Overall, we recognize a similar trend, albeit with less consistent im-
provement from the original model (only in 1 out of 3 tasks), but still much higher performance than
the randomly shuffled baseline. These results further confirm that the canonical ordering of the SVF
parameterization is key for cross-model transfer, highlighting once more its inherent suitability to
empower self-adaptation.

Table 7: Cross-model z Vector Transfer. Results from transfering the SVF expert vectors trained
on LLAMA3-8B-INSTRUCT to MISTRAL-7B-INSTRUCT-V0.3 in the respective training tasks.

Method GSM8K MBPP-pro ARC-Easy
MISTRAL-7B-INSTRUCT-V0.3 42.83 (1.00) 49.50 (1.00) 81.65 (1.00)

+ Llama SVF (ordered σi) 42.61 (0.99) 48.48 (0.98) 81.78 (1.00)
+ Llama SVF (shuffled σi) 41.93 (0.98) 46.34 (0.94) 80.81 (0.99)

B.4 Training curve of LoRA and policy gradient

Figure 6 gives the learning curves for LoRA training on the GSM8K task.

10

0 50 100 150 200 250 300
Iterations

0.55

0.60

0.65

0.70

0.75

0.80

Sc
or

e

Learning Curve on GSM8K with Lora and Policy gradient

Train Accuracy
Test Accuracy
Base Model Performance

Figure 6: Training LoRA with policy gradient. The dashed line shows the performance of
LLAMA3-8B-INSTRUCT on the test split. LoRA collapses at the beginning of the training stage
and fails to recover, leading to negative effects on test performance. We swept a wide range of learn-
ing rates (2× 10−4, 5× 10−4, . . . , 2× 10−2, 5× 10−2), and all learning curves were similar to the
one presented.

C PCA on llama3 and mistral

To investigate if the singular components that have the highest singular values are able to capture
most of the information of a weight matrix, we conducted Principle Component Analysis (PCA) on
the weight matrices in LLAMA3-8B-INSTRUCT and MISTRAL-7B-INSTRUCT-V0.3 (see Figures 7
and 8). In each figure, we plot the variance that is captured by the top r components across all the
layers in each type of modules for a weight matrix W ∈ Rm×n:

ratio =

∑r
i=1 σi∑min(m,n)

j=1 σj

Here, σ’s are the ordered (from largest to smallest) singular values on the weight matrix W . It is
easy to see from the figures that when r = 256, less than 50% of the variance is captured by these
top components on average. For the MLP layers, this fraction is even lower than 20%. On the
other hand, the ranks adopted by LoRA-XS or similar methods are much less than 256, resulting
in even more information loss and restrictions in their modeling power that relies mostly on these r
components.

11

0.0

0.2

0.4

0.6

q_proj
r=16
r=64
r=256

k_proj

0.0

0.2

0.4

0.6

v_proj o_proj

0.0

0.2

0.4

0.6

up_proj gate_proj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0.0

0.2

0.4

0.6

down_proj

Figure 7: PCA of LLAMA3-8B-INSTRUCT. We show the ratio of the variance captured by the top
r singular components on the y-axis, and the layer indices on the x-axis. Except for the Query, Key
and Value projection matrices, small r values only capture a tiny fraction of variance in singular
values in the parameter matrices.

0.0

0.2

0.4

0.6

0.8

q_proj
r=16
r=64
r=256

k_proj

0.0

0.2

0.4

0.6

0.8

v_proj o_proj

0.0

0.2

0.4

0.6

0.8

up_proj gate_proj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0.0

0.2

0.4

0.6

0.8

down_proj

Figure 8: PCA of MISTRAL-7B-INSTRUCT-V0.3. We show the ratio of the variance captured by
the top r singular components on the y-axis, and the layer indices on the x-axis. Except for the
Query, Key and Value projection matrices, small r values only capture a tiny fraction of variance in
singular values in the parameter matrices.

D Extended Related works

Self-adaptive LLMs We define self-adaptive LLMs as a group of LLMs or a standalone LLM
that can evaluate and modify its behavior in response to changes in its operating environment or
internal state, without external intervention. This adaptation can be explored from two perspectives:

12

a macroview, where multiple LLMs collaborate and/or compete, and a microview, where internal
adaptations allow a single LLM to specialize in different tasks.

Macroview: From this perspective, the system directs queries to LLMs with domain specific exper-
tise, prioritizing outputs from expert models, thereby achieving higher accuracy and task-specific
optimization. Such task-specific ensembles can be realized through various mechanisms: multiple
LLMs playing distinct roles and coordinate toward a shared goal (Zhuge et al., 2023), engaging
in mutual listening and debate (Du et al., 2023), or using meticulously crafted prompt construc-
tions (Zhang et al., 2024) to integrate knowledge library and skill planning. Naturally, the improve-
ment in the specialization and adaptive capabilities of individual LLMs in the ensemble enhances
the collective performance. Thus, in this paper, we focus on the microview of self-adaptive LLMs.

Microview: MoE in LLMs plays a critical role in this perspective (Tianlong et al., 2024). In MoE
systems, inputs are dynamically routed to a subset of specialized modules or layers (e.g., MLPs)
containing domain-specific knowledge (Rajbhandari et al., 2022; Fedus et al., 2022). To reduce
inference time, researchers introduce sparsely activated MoE where only a subset of the experts are
selected per token Jiang et al. (2024); Qwen Team (2024). While it is possible to view Transformer2

loosely as a type of MoE, there are two major differences. In the aforementioned systems, self-
adaptation is achieved through token-level routing, whereas Transformer2 employs a sample-level
module selection strategy. The second difference lies in the construction of expert modules. In
traditional MoE systems, expert modules are either trained from scratch (Fedus et al., 2022; Jiang
et al., 2024) or dense models (e.g., upcycling) (Qwen Team, 2024; Zhu et al., 2024), without an
auxiliary loss to ensure module specialization. In contrast, Transformer2 specifically trains expert
vectors with RL to acquire domain specific-knowledge, making them true experts.

Low-rank adaptation PEFT methods such as LoRA (Hu et al., 2021) works by freezing the original
model’s parameters and introducing small trainable low-rank matrices for task-specific updates. It
significantly lowers the computational and memory costs while providing performance comparable
to full fine-tuning. Inspired by LoRA’s design, various modifications have been proposed (Zhang
et al., 2023; Kopiczko et al., 2023; Liu et al., 2024; Bałazy et al., 2024; Cetoli, 2024). Transformer2

does not rely on low-rank matrices, and instead scales the singular vectors of the original parameter
matrix that span the full rank space.

SVD for LLM Fine-tuning SVD is increasingly being used as an inductive bias for PEFT in LLMs.
For example, Wang et al. (2024) decompose a weight matrix and use the minor singular components,
associated with noisy or long-tail information, to initialize low-rank matrices for LoRA fine-tuning.
In a similar vein, SVD is employed to approximate an original weight matrix with the top r singular
vectors, corresponding to the highest singular values. A small trainable matrix is then introduced
on top of the truncated singular value matrix to adjust the magnitude and orientations within this
top-r subspace (Bałazy et al., 2024; Cetoli, 2024). However, the drawback of this approach is
that retaining only the top singular components can result in the loss of important information,
particularly when the singular values distribution is less skewed. The work most similar to ours is a
concurrent effort by Lingam et al. (2024), where they introduce various sparsification methods that
utilize the SVD of the weights. However, it is not for self-adaptive LLMs and does not use RL to
enhance learning efficiency.

13

	Introduction
	Related works
	Methods
	Preliminaries
	Transformer2

	Experiments
	Experimental setups
	Experimental results
	Cross-model analysis

	Conclusion
	Implementation details and hyper-parameters
	SVF training
	LoRA training
	Hyper parameters
	Few-shot adaptation

	Additional results
	Ablation studies
	Impact from number of few-shots
	Cross-model svf transfer on the training tasks
	Training curve of LoRA and policy gradient

	PCA on llama3 and mistral
	Extended Related works

