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Abstract

mixup is a regularization technique that artificially produces new samples using
convex combinations of original training points. This simple technique has shown
strong empirical performance, and has been heavily used as part of semi-supervised
learning techniques such as mixmatch [1] and interpolation consistent training
(ICT) [17]. In this paper, we look at mixup through a representation learning
lens in a semi-supervised learning setup. In particular, we study the role of mixup
in promoting linearity in the learned network representations. Towards this, we
study two questions: (1) how does the mixup loss that enforces linearity in the
last network layer propagate the linearity to the earlier layers?; and (2) how does
the enforcement of stronger mixup loss on more than two data points affect the
convergence of training? We empirically investigate these properties of mixup
on vision datasets such as CIFAR-10, CIFAR-100 and SVHN. Our results show
that supervised mixup training does not make all the network layers linear; in fact
the intermediate layers become more non-linear during mixup training compared
to a network that is trained without mixup. However, when mixup is used as an
unsupervised loss, we observe that all the network layers become more linear
resulting in faster training convergence.

1 Introduction

While models learned via empirical risk minimization (ERM) [15] tend to perform well on test data
that are similar to training data, predictions can change significantly when the samples are chosen
outside the training distribution. For improved generalization, typically data augmentation techniques
are used to generate new training examples near the neighborhood of the original training samples
through simple transformations [10]. Such techniques play a critical role in training deep neural
networks that have shown great success [6, 12, 4, 3]. While popular data augmentation techniques
such as filtering and cropping on images tend to produce samples near the vicinity of training samples,
they are domain-specific and require expert knowledge in generating augmentations.

On the contrary, mixup [19] – an augmentation technique that generates new training data by
linearly interpolating the original training points – is applicable in various domains without requiring
expert domain knowledge. mixup has shown strong performance in both supervised [19] and semi-
supervised [17, 1] learning setups by allowing the model to learn better network representations.
In the context of supervised learning, the representations learned through mixup regularization are
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shown to improve generalization of the network and also its robustness to corrupt labels [19]. The
general idea of linearly combining the two vectors in mixup can then be extended to the intermediate
layers of the network resulting in even better representations [16]. Additionally, mixup training has
been shown to improve network calibration for both in- and out-of-distribution data [14].

In the context of semi-supervised learning, mixup regularization, also known as interpolation consis-
tency training (ICT), is shown to improve the performance of a learner significantly. Specifically,
Verma et al. [17], showed that mixup training encourages consistency regularization which is an
effective unsupervised learning signal explored in many works [9, 7, 13, 8]. Other related methods
include mixmatch [1] that rely on mixing labeled and unlabeled samples, and methods relying on
pseudo-labels [11] and data augmentation [18].

While mixup regularization has brought performance benefits across the board, it is less clear how
network representations differ between a network trained with and without mixup. Some theoretical
works have studied the improved generalization of mixup through the lens of regularization effects it
brings to the network training. Carratino et al. [2] argued that mixup regularizes the Jacobian of the
network resulting in a function with a low Lipschitz constant. Similarly, Zhang et al. [20] showed
that, in a two-layer ReLU network, mixup training reduces the complexity of the hypothesis class
leading to better generalization. While these works point to some regularization effects of mixup, the
training dynamics of a network trained under mixup regularization are not fully clear.

Our work is an empirical study that aims to provide some clues as to how network representations
evolve during mixup training. Specifically, 1) we show that mixup tends to make the first and the last
layer of a network more linear, but does so at the expense of making the intermediate layers more
non-linear, compared to a network that is trained without mixup. 2) We show that when mixup is
used as an unsupervised loss, ICT, all layers tend to become more linear. Finally, 3) we show that
enforcing a stronger linearity in mixup, by means of using more than two mixing points, leads to
more linear representations that manifest in faster convergence to a specified test accuracy with less
labeled examples in a semi-supervised setup.

2 Setup
Let X ∈ RD and Y ∈ RC be input and output spaces, respectively. We adopt a standard semi-
supervised learning setup where we assume access to a small labeled dataset Ds = {(xi, yi)}ns

i=1,
and a large unlabeled dataset Dus = {ui}nus

i=1, with ns � nus are the number of examples in the
labeled and unlabeled datasets, respectively. The training objective is to learn a model fθ : X 7→ Y ,
parameterized by θ ∈ RP (a neural network in our case), that performs well on a held out test set Dte

by minimizing the following loss:
` = `s + wt · `us,

where `s : Y × Y 7→ R≥0 is a supervised loss computed on Ds (typically a cross-entropy loss
for classification tasks), `us is an unsupervised loss defined on Dus, and w(t) is the weight of
unsupervised loss at the t-th iteration of stochastic gradient descent (SGD). We define the mixup
operation as a convex operation parameterized by λλλ ∈ RK≥0, on a set P = {p1, · · · , pK} as:

Mixλλλ(P) =
K∑
i=1

λipi, (1)

such that
∑K
i=1 λi = 1, and λi ≥ 0 for all i ∈ {1, · · · ,K}. A sample from a K-th order Dirichlet

distribution with parameters α1, · · · , αK > 0, defines a valid λλλ for the mixup operation. When
the mixup operation is used on the supervised loss `s, the examples x ∈ X and targets y ∈ Y are
modified as:

xm = Mixλλλ(x1, · · · , xK),

ym = Mixλλλ(y1, · · · , yK),

at each training step of the SGD. For the case of K = 2, the supervised loss becomes the standard
mixup training as proposed by Zhang et al. [19]. Similarly, we can also use the mixup operation to
define an unsupervised loss on the unlabeled examples. Concretely, given K unlabeled examples
K = {u1, · · · , uK}, the unsupervised loss `us is defined as,

`us = D

(
f
(
Mixλλλ(K)

)
− Mixλλλ

(
f(u1), · · · , f(uK)

))
, (2)
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where D is some distance metric; L2 distance is used in this work. Intuitively, the unsupervised loss
enforces consistent predictions on the interpolated unlabeled examples which Verma et al. [17] found
to be a good learning signal for consistency regularization in semi-supervised setups.

3 Experiments
Setup We assume standard semi-supervised learning datasets (CIFAR-10, CIFAR-100, and SVHN)
and experiment with different labeled dataset sizes. For CIFAR-10 and SVHN, we consider labeled
datasets of sizes {250, 1000, 2000, 40000}. For CIFAR-100, we only consider a single labeled dataset
of size 10K. We use a ‘Wide ResNet-28’ architecture similar to [1]. We denote the output of the initial
convolution layer as ‘Layer 0’, and the outputs of the next three Wide ResNet blocks are referred to as
‘Layer 1-3’, followed by the output of average pooling layer that is denoted by ‘Layer 4‘. Finally the
logits layer is referred to as ‘Layer 5’. Under this definition of a ‘layer’, we monitor the representation
after each layer. The batch size is set to 128 and the Adam optimizer [5] is used with learning rate =
0.002, β1 = 0.9 and β2 = 0.999. The weight (wt) of the unsupervised loss follows a schedule such
that its value linearly increases from 0 to a maximum of 100 in 40% of training iterations that are kept
fixed for all datasets and for all dataset sizes. The linearity of network ‘layers’ is periodically reported
throughout the network training on a held out test set. The α for the Dirichlet distribution is set to 0.5
for CIFAR-10 and CIFAR-100, and 0.1 for SVHN. Each method is run with 5 different random seeds
and the performance is averaged across these runs, and error bars are reported for convergence plots.

Baselines We compare 3 different baselines. ERM refers to standard empirical risk minimization
without mixup. mixup refers to training using two mixup points. In both these setups, only the
supervised labeled set Ds is used and Dus is not used. ICT[K] refers to unsupervised mixup, as
defined in equation 2, with K ∈ {2, 3, 4} referring to the number of examples mixed together. For
this setup, the ICT loss is computed on the Dus and standard cross-entropy loss computed on Ds.

3.1 Non-Linearity in Network Representations
We first investigate the effect of mixup on the network representations at different layers during
training. Specifically, we take a look at the effect of mixup training on the (non-) linearity of network
representations. We specifically chose to study the linearity of representations because the mixup
theory [2, 20] suggests that mixup trained networks tend to be more linear than their non-mixup
counterparts. We define the non-linearity in a layer l at the t-th training step by:

NonLint(l) =
∑

(x1,x2)∼Dte

D

(
f̂ lt(Mixλλλ(x1, x2))− Mixλλλ(f̂ lt(x1), f̂

l
t(x2))

)
, (3)

where Dte is a held out test set, and f̂ lt(·) is the normalized output of layer l at the t-th training step.

We normalize the output of a layer to have a unit norm, i.e. f̂ lt =
f l
t

‖f l
t‖

, to allow for a fair comparison
of the non-linearity across different layers. Lower values imply a more linear layer.

Results Figure 1 show the evolution of non-linearity throughout network training for different
baselines on CIFAR-10. These figures use a labeled dataset of size 250 (see Appendix for other
datasets and settings). The total training iterations are remapped between 0 and 1000 and referred to
as Train time in the plots.

First, we compare the (non-)linearity of ERM and mixup (both are supervised setups) in different
layers. We see that in the first and last layer the representations from mixup are more linear
compared to ERM representations. Intuitively, this could be explained by the mixup operation
linearly combining both the inputs and outputs. Hence, training using mixup keeps the first and last
functions in the composition f = f0 ◦ f1 · · · ◦ f5 more linear. Surprisingly, however, we do not
see that mixup representations remain more linear in all the layers compared to those of ERM as
suggested by the theory. For example, in Figure 1, we can see that Layers 2, 3, 4 based on mixup
training are more non-linear compared to those trained with ERM. This suggests that a) the findings
of theory on simplified setups do not directly translate to practical deep networks, and b) more
importantly, without proper regularization in all layers, the network maintains an overall non-linearity
from input to output. Further, this suggests that the linearity enforced by a regularization in some
layers is counteracted by increased non-linearity in the other layers.
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Figure 1: CIFAR-10: Linearity propagation in different layers with 250 labeled examples and
consistency weight of 100. ERM and mixup refer to the cases where only supervised loss is used.
ICT[K] refer to a setup where the ICT loss with K mixup points are used as unsupervised loss. The
supervised loss with the ICT does not use mixup.

Second, we see that ICT tend to make all the layers more linear compared to ERM and mixup, except
for the first layer where mixup is slightly more linear. This suggests that the ICT loss, as defined
in equation 2, applied on the network logits, and on a larger unsupervised dataset, is a stronger
regularization compared to mixup defined on one-hot encoded vectors. Further, we see from Figure 1
that using more mixup points (ICT4 vs ICT2), leads to stronger linearity across all layers. In the next
section, we will see that this stronger linearity also leads to faster convergence.

3.2 Effect of stronger mixup on convergence

In the previous section, we saw that stronger enforcement of linearity, by using more mixup points,
led to the network layers becoming more linear. We will now empirically show the effect of this
linearity on network convergence. Specifically, we measure test accuracy given a specified number of
labeled training examples. For this, we will investigate the performance of different baselines in a
semi-supervised setup for varying amounts of labeled data.

Results Figure 2 shows the accuracy on a fixed test set against various labeled dataset sizes for
CIFAR-10 (the results for CIFAR-100 are given in the appendix). From the Figure, we can see that
the ICT-based model generally outperforms the ERM and mixup baselines across all dataset sizes.
This is likely due to the additional unsupervised training performed on the additional unsupervised
dataset. Among the ICT variants we further observe that the test accuracy tends to be higher as we
increase the number of points used in the mixup operation. This is especially true in the regime of
very small datasets and the performance of all ICT variants converges to similar performance as more
datapoints become available. For example, to reach 70% test accuracy on CIFAR-10, mixup requires
roughly 1800 labeled examples, whereas ICT4 only requires 500 labeled examples (even less for
ICT5). The stronger regularization achieved by using 4 mixup points leads to the network becoming
more linear, which results in more efficient learning from fewer labeled samples.

4 Conclusion

In this work, we explored when does (or doesn’t) mixup enforce local linearity in the learned
representations. We studied this question in a semi-supervised learning setup for image classification
tasks. Our experiments demonstrate that standard supervised mixup training doesn’t make the
representations in all the layers locally linear. In fact, some of the intermediate layers become more
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Figure 2: CIFAR-10: Test accuracy with varying numbers of labeled training examples. ERM and
mixup refer to the cases where only supervised loss is used. ICT[K] refer to a setup where the ICT
loss with K mixup points are used as unsupervised loss. The supervised loss with the ICT does not
use mixup loss.

non-linear during supervised mixup training compared to standard empirical risk minimization (ERM)
training. However, when mixup operation is used as an unsupervised loss, on a larger unlabeled
dataset, network representations in all layers become more linear. As a consequence of these smoother
representations, the network converges to a given test set performance faster (in terms of labeled
samples) than a network that is locally less linear. These findings, which we verified empirically,
sheds new light on the training dynamics of a network trained under mixup regularization.
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Figure 3: CIFAR-10: Linearity propagation in different layers with 2000 labeled examples and
consistency weight of 100. ERM and mixup refer to the cases where only supervised loss is used.
ICTK refer to a setup where the ICT loss with K mixup points are used as unsupervised loss. The
supervised loss with the ICT does not use mixup.
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Figure 4: CIFAR-10: Linearity propagation in different layers with 4000 labeled examples and
consistency weight of 100. ERM and mixup refer to the cases where only supervised loss is used.
ICTK refer to a setup where the ICT loss with K mixup points are used as unsupervised loss. The
supervised loss with the ICT does not use mixup.

Appendix

In this appendix we provide more detailed results for various sizes of labeled dataset. The results
here further strengthen the claims made in the main paper.

A More Results
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Figure 5: SVHN: Linearity propagation in different layers with 250 labeled examples and consistency
weight of 100. ERM and mixup refer to the cases where only supervised loss is used. ICT[X] refer to
a setup where the ICT loss with X mixup points are used as unsupervised loss. The supervised loss
with the ICT does not use mixup.
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Figure 6: SVHN: Linearity propagation in different layers with 2000 labeled examples and consis-
tency weight of 100. ERM and mixup refer to the cases where only supervised loss is used. ICTK
refer to a setup where the ICT loss withK mixup points are used as unsupervised loss. The supervised
loss with the ICT does not use mixup.
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Figure 7: SVHN: Linearity propagation in different layers with 4000 labeled examples and consis-
tency weight of 100. ERM and mixup refer to the cases where only supervised loss is used. ICTK
refer to a setup where the ICT loss withK mixup points are used as unsupervised loss. The supervised
loss with the ICT does not use mixup.
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Figure 8: CIFAR-100: Linearity propagation in different layers with 100 labeled examples and
consistency weight of 100. ERM and mixup refer to the cases where only supervised loss is used.
ICTK refer to a setup where the ICT loss with K mixup points are used as unsupervised loss. The
supervised loss with the ICT does not use mixup.
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Figure 9: SVHN: Test accuracy when stronger linearity is enforced. ERM and mixup refer to the
cases where only supervised loss is used. ICT[X] refer to a setup where the ICT loss with X mixup
points are used as unsupervised loss. The supervised loss with the ICT does not use mixup loss.
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Figure 10: CIFAR-100: Test accuracy
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