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Abstract

Synthesizing time series data is pivotal in modern society, aiding effective decision-
making and ensuring privacy preservation in various scenarios. Time series are
associated with various attributes, including trends, seasonality, and external infor-
mation such as location. Recent research has predominantly focused on random
unconditional synthesis or conditional synthesis. Nonetheless, these paradigms
generate time series from scratch and are incapable of manipulating existing time
series samples. This paper introduces a novel task, called Time Series Editing
(TSE), to synthesize time series by manipulating existing time series. The objec-
tive is to modify the given time series according to the specified attributes while
preserving other properties unchanged. This task is not trivial due to the inade-
quacy of data coverage and the intricate relationships between time series and their
attributes. To address these issues, we introduce a novel diffusion model, called
TEdit. The proposed TEdit is trained using a novel bootstrap learning algorithm
that effectively enhances the coverage of the original data. It is also equipped
with an innovative multi-resolution modeling and generation paradigm to capture
the complex relationships between time series and their attributes. Experimental
results demonstrate the efficacy of TEdit for editing specified attributes upon the
existing time series data. The project page is at https://seqml.github.io/tse.

1 Introduction

Time series data analysis plays a crucial role in various modern business sectors, including climate
monitoring [22, 13, 14], healthcare [12, 3, 46], urban management [43, 16, 15], and online ser-
vice [35]. Time series are derived from diverse sources with inherent characteristics, such as system
configurations, alongside external influential factors like environmental status. These factors are
considered attributes of the time series. In many real-world scenarios, such as healthcare and urban
monitoring, time series data tend to be sparse and privacy-sensitive, particularly concerning specific
attributes that are rarely observed in real-world scenarios.

Synthesizing time series data has emerged as a prominent research area aimed at addressing these
challenges. Existing methods for time series synthesis range from unconditional generation [47, 31]
to conditional generation [39, 27, 4]. Unconditional generation produces outputs based solely on the
underlying distribution of the data. Without relying on any input conditions, the generated results
are highly uncontrollable. Conditional generation controls the outcomes of the generated data based
on the input conditions. However, conditional generation tends to produce samples around the data
mean [40], as demonstrated in our experiments, which could easily overlook detailed characteristics
of the data, such as high-frequency patterns and local structures. Both unconditional and conditional
generation paradigms synthesize time series from scratch, and they are incapable of manipulating
existing samples. As a result, these paradigms are unable to answer “what if” questions in time series
synthesis: given a time series, what would it become if some of its attributes are modified?

*Baoyu Jing and Shuqi Gu share the co-first authorship.
†Correspondence to Kan Ren: renkan@shanghaitech.edu.cn

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



SeasonCityAttribute 

SpringLondonValue

SeasonCityAttribute 

SummerLondonValue “London in summer” Model

“London in summer”

Model

“London in spring”

Conditional Generation

Time Series Editing

Two time series generation paradigms

Time Series 
Editing

Conditional 
Generation

Figure 1: Illustration of the time series generation paradigms. Conditional generation generates time
series from scratch, which usually generates samples around the dataset mean. Time series editing
allows for the manipulation of the attributes of an input time series sample, which aligns with the
desired target attribute values while preserving other properties.

In this paper, we introduce a novel task, called Time Series Editing (TSE), for sample-level time
series manipulation. More specifically, our objective is to directly manipulate specific attributes of an
input time series to target values while maintaining consistency in other characteristics. For instance,
consider observing air quality under season conditions in different cities as shown in Fig. 1. On the
left side, two example air quality time series for the spring and summer of London are illustrated. The
spring one exhibits a lower amplitude with more noise, whereas the summer one features a higher
amplitude with less noise. What would the resulting time series look like if we modify the season
attribute of the spring one to summer while maintaining all other properties? As illustrated in Fig. 1,
it could have a larger amplitude with much noise.

The task of TSE is complex due to several challenges. Firstly, the time series data distribution
over the full composited attribute space is biased and may not be adequately covered, leaving
gaps in our understanding, especially concerning unobservable or poorly defined attributes. For
example, in climate data analysis, attributes like temperature and humidity are observable and
well-defined. However, attributes like atmospheric pressure variations or localized microclimates
may be challenging to observe or define accurately. Secondly, different attributes influence time
series at varying resolutions. For example, trends have a global impact, while seasonality exerts a
more localized influence. Modeling these multi-scale attributes and time series associations, while
effectively controlling them, presents significant difficulties.

To address these challenges, we introduce a novel method called Time Series Editor (TEdit),
which is based on predominant generative models, specifically diffusion models [10, 38, 39, 27]. To
address the data coverage issue, we propose a novel bootstrap learning algorithm, which leverages
the generated data as pseudo-supervision for subsequent model learning. This algorithm helps
improve the coverage of the whole attribute space and enhance the generation performance. To
capture the intricate multi-scale associations between time series and attributes, we introduce a
multi-resolution modeling and generation paradigm. The proposed multi-resolution paradigm can
manipulate the given time series and attributes both effectively and efficiently. Our experiments,
conducted on both synthetic and real-world datasets, demonstrate the effectiveness of our proposed
solution. Specifically, our approach excels in generating precise time series under specified attributes,
while keeping consistency in other attributes, showcasing the practical utility of our method.

In summary, our main contributions are threefold. (1) We introduce and formulate the novel task
of Time Series Editing (TSE). To the best of our knowledge, this is the first work exploring editing
time series according to the given attribute configuration upon the input data. (2) We propose a
novel multi-resolution diffusion model, called TEdit, with a bootstrap learning algorithm, which can
flexibly capture the patterns at diverse granularity and gradually improve the generation performance.
(3) We conduct and release a benchmark for TSE, including synthetic data and several carefully
curated real-world datasets with a comprehensive evaluation protocol, aiming to facilitate further
research in the community.
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2 Background

2.1 Time Series Generation

A time series sample x ∈ RL is a series of L chronologically ordered sample points. Each time series
sample adheres to some attributes a ∈ NK

+ , such as trend and the cycle number, and the k-th item
ak corresponds to Nk categorical options where k ∈ {1, ...,K}. In real-world scenarios, each time
series may have several attributes, e.g., the air quality time series is associated with K = 2 attributes:
location and season. Note that, not all the attributes can be observed due to practical limitations.

Before describing the main task of the paper, we first briefly review the background of Time
Series Generation. Unconditional Time Series Generation (UTSG) samples the time series data x
upon the modeled data distribution p(x) such that x ∼ p(x), of which the generation process is
uncontrollable. Conditional Time Series Generation (CTSG) generates the time series sample x based
on the conditional distribution such that x ∼ p(x|a), where a is the input condition. CTSG tends to
produce data samples near the dataset mean [40]. Both UTSG and CTSG paradigms generate time
series from scratch and lack the ability to directly manipulate the existing samples.

2.2 Conditional Diffusion Models

Diffusion models [10, 37, 38] learn to estimate and remove the random noise, which was added in
the forward process onto the real-world data, through a sequence of sampling processes. Specifically,
during training, random noise is gradually added to the original data sample x0 = x1 via a Gaussian
Markov transition q(xt|xt−1) := N (

√
1− βtxt−1, βtI), where t ∈ [1, T ] indicates the diffusion

step, and {βt}Tt=0 are the predetermined variance schedule. The expression of latent variable xt

can be simplified as xt =
√
αtx0 +

√
1− αtϵ, ϵ ∼ N (0, I), αt := Πt

s=1(1− βs). The learnable
component of the diffusion models is a noise estimation network ϵθ(xt, t,a), where a denotes the
additional condition such as attributes. ϵθ(xt, t,a) is trained by estimating the noise added to xt:

min
θ
L(x0) := min

θ
Eϵ∼N (0,I),t∼U(1,T ) ∥ϵ− ϵθ (xt, t,a)∥22 (1)

where x0 ∼ q(x0) is sampled from the real data distribution, xt is a noisy version of x0.

After training, given an attribute a, we can generate a sample x̂0 from random noise x̂T ∼ N (0, I) us-
ing ϵθ(xt, t,a) with a sampler, e.g., deterministic Denoising Diffusion Implicit Model (DDIM) [38]:

x̂t−1 =
√
αt−1fθ(x̂t, t,a) +

√
1− αt−1ϵθ(x̂t, t,a) (2)

fθ(x̂t, t,a) = (x̂t −
√
1− αtϵθ (x̂t, t,a))/

√
αt (3)

where fθ(x̂t, t,a) can be regarded as a prediction of x0 at the diffusion step t.

Adapting diffusion methods from the computer vision domain to the time series domain is not trivial.
Time series is different from images, and it poses unique challenges for modeling and generating
time series data, such as the complex multi-scale entanglement between time series and attributes.

3 Time Series Editing

Given a time series and its associated attributes (x,a), a natural question arises: “what would it
become if some of its attributes are modified?” In our work, we take a novel perspective of directly
editing the given time series with the specified attribute modifications.

In this section, we first formally formulate the problem of Time Series Editing (TSE) in Sec. 3.1.
Next, we present our method Time Series Editor (TEdit) with the overall procedure of the diffusion
model-based TSE in Sec. 3.2, the model architecture in Sec. 3.3 and the learning algorithm in Sec. 3.4.

3.1 Problem Formulation

Recall that, each time series sample x ∈ RL is associated with a set of attributes a ∈ NK
+ . Each

attribute ak has Nk options, k ∈ {1, ...,K}. For example, the trend type may contain Nk = 4 values

1x0 and x are interchangeable in this paper.
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Figure 2: Illustration of the editing function Φθ (upper) and the process of self-scoring the generated
x̂tgt
0 for bootstrap learning (lower). Upper: Φθ(x

src
0 ,a

src,atgt) first encodes the source (xsrc
0 ,a

src) into
the latent viable xsrc

T via the forward DDIM Eq.(4), and then decodes xsrc
T with the target attributes

atgt: (xsrc
T ,a

tgt) into x̂tgt
0 via the reverse DDIM in Eq.(5). See Sec. 3.2 for more details. Lower: during

bootstrap learning, we use Φθ to self-score the generated x̂tgt
0 by editing x̂tgt

0 back to x̂src
0 , and obtain

the score s = MSE(x̂src
0 ,x

src
0 ), see Sec. 3.4 for more details.

like linear, quadratic, exponential, and logistic. Let (xsrc,asrc) be a pair of source time series and
source attributes to be edited, and atgt be the desired target attributes. Comparing atgt and asrc, there
are Kedit edited attributes, e.g., trend types, and Kprsv preserved attributes, e.g., cycle numbers, where
Kedit +Kprsv = K. Now, we can formally define the task as below.

Definition 1 (Time Series Editing (TSE)) The time series editing task is to build a function Φθ to
generate a target time series x̂tgt = Φθ(x

src,asrc,atgt) by modifying the set of Kedit edited attributes
Aedit and maintaining the set of Kprsv preserved attributes Aprsv as well as other information of xsrc.

3.2 Editing with Source Modeling and Target Generation

Given a pair of source time series and attributes (xsrc,asrc), generating the target time series x̂tgt

corresponding to the target attributes atgt entails two requirements. On one hand, the edited attributes
Aedit should be satisfied after the generation. On the other hand, the preserved attributes Aprsv as
well as other characteristics, e.g., noise, need to be maintained. Conditional generation [27], such as
directly adopting the conditional diffusion model described in Sec. 2.2, would fail the editing task
because it does not take into consideration the detail characteristics of the source time series.

In this paper, we propose a diffusion based two-stage procedure for TSE: Φθ(x
src,asrc,atgt), which is

illustrated in the upper part of Fig. 2. In the first stage, we encode both the attribute semantics [6]
and the detail characteristics [10] of the source time series xsrc

0 into the latent variable xsrc
T via the

deterministic forward DDIM process [18]:

xsrc
t+1 =

√
αt+1fθ(x

src
t , t,a

src) +
√
1− αt+1ϵθ(x

src
t , t,a

src). (4)

In the second stage, originating from the latent variable x̂tgt
T = xsrc

T , we gradually generate the final
target time series x̂tgt

0 with the consideration of the target attribute atgt via the deterministic reverse
DDIM process [38]:

x̂tgt
t−1 =

√
αt−1fθ(x̂

tgt
t , t,a

tgt) +
√
1− αt−1ϵθ(x̂

tgt
t , t,a

tgt), (5)

where fθ is given in Eq. (3). Till now, we have detailed the procedure of the proposed TEdit. In the
following subsections, we introduce the model architecture and the training algorithm.

3.3 Multi-Resolution Noise Estimator

The key component of our TEdit is the noise estimator ϵθ(x, t,a) in Eqs. (4)(5). Though many
diffusion model realizations have been proposed in other fields [18, 10, 37, 38, 24] and the time series
domain [39, 27], we found them inefficacious in modeling and generating time series data, especially
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Figure 3: Architecture of the proposed multi-resolution noise estimator ϵθ. We illustrate with R = 3

patching schema, patch length Lr
p = 2r−1, r ∈ {1, ..., R} and the input length L = 8. Nr

p = ⌊L−Lr
p

Lr
p
⌋

is the patch number. D is the embedding size. Please refer to Sec. 3.3 for details.

when considering attributes. Few of them consider that different attributes can influence the time
series on varying scales. We argue that it is important to take into account these differences. For
instance, the trend types have a global impact on time series, while the seasonality affects the time
series in local areas.

In this paper, we propose a multi-resolution noise estimator. It first slices the input time series xt

into several patch sequences of different resolutions r ∈ {1, ..., R}, where R is the total number of
resolutions. Then it processes the patch sequences along with other information, e.g., attributes a and
diffusion step t, to estimate the noise ϵ̂rt for resolution r. Finally, the estimated noise for different
resolutions are mixed together to obtain the final estimated noise ϵ̂t. An illustration is presented in
Fig. 3. We elaborate on the details in the following content2.

Patchifying. Following [29], we patchify the input time series x ∈ RL, into a sequence of patch
tokens P = {p1, ...,pNp

}, where pi ∈ RLp , Lp is the window size and Np = ⌊L−Lp

Lp
⌋ is the patch

number. After that, we encode them into embeddings P̄ = {p̄1, ..., p̄Np}, where p̄i ∈ RD.

Multi-Resolution Modeling and Generation. To model multi-resolution patterns and better control
the conditional generation at multiple scales, we propose a multi-patch design with various patch
lengths. Specifically, as shown in the left part of Fig. 3, following the above patchifying operation,
we encode the input time series x into patch embedding sequences {P̄r}Rr=1 of R resolutions, where
P̄r = {p̄r

1, ..., p̄
r
Nr

p
}, p̄r

i ∈ RD, Nr
p = ⌊L−Lr

p

Lr
p
⌋ is the patch number, Lr

p is the window size. We

set the patch length as Lr
p = br−1 to produce exponential receptions, where b ∈ N+ is the base.

Thereafter, the processing module operates self-attention as the Transformer [42] to capture the input
patterns for each resolution r, and it incorporates the attribute a and diffusion step t information to
produce the embeddings {P̃r}Rr=1. The details of the processing module are presented in Appendix D.

The processed output {P̃r}Rr=1 is still in the form of multi-resolution sequences. The model subse-
quently decodes the diffusion noise at different resolutions back into the original space and integrates
the outcomes at different resolutions to produce the final noise estimation, as shown on the right side
of Fig. 3. Specifically, for each P̃r, the decoder transforms it to ϵ̂r ∈ RL in the original time series
space. The final estimated noise is obtained via a mixing upon the concatenation of estimated noise
of different resolutions as ϵ̂ = MLP([ϵ1, ..., ϵR]), where MLP(·) denotes Multi-Layer Perceptron.

Parallel Processing. Though more effective, the proposed multi-resolution modeling and generation
brings efficiency issues since it derives multiple token sequences with various sequence lengths.
Iteratively processing each sequence is of low efficiency. Herein we design a novel parallelization

2We discuss the noise estimator in the diffusion step t here, thus, we omit the notation of the diffusion step t
without causing confusion.
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with an attention masking mechanism in the processing module in Fig. 3 to harness the parallelism of
the Graphics Processing Unit (GPU). Specifically, we first concatenate the input patch embedding
sequences of different resolutions into a single vector P̄ = [P̄1, ..., P̄R] ∈ RD×(N1

p+...+NR
p ). When

calculating pair-wise self-attention scores as in the Transformer [42], we use a mask matrix to mask
out the inter-sequence attention operations across different sequences while preserving intra-sequence
attention. Please refer to Appendix D for more details.

3.4 Bootstrap Learning Algorithm

Although any pretrained conditional diffusion model ϵθ can be directly used to perform editing as
shown in Sec. 3.2, the pretrained model is an essentially conditional generator, which has a great
ability in generating time series directly from attributes but it might be less effective in modifying the
attributes of an existing time series. The simplest way to improve the model’s ability is to finetune ϵθ
via the ground-truth source (xsrc

0 ,a
src) and target (xtgt

0 ,a
tgt) pairs. However, the imaginary target xtgt

0 ,
which satisfies both atgt and the details of xsrc

0 might be very rare or even does not exist in the real
world. Thus, a key challenge for finetuning is how to effectively learn the information of xtgt

0 .

Fortunately, the pretrained model is capable of generating some edited samples of a certain quality
via x̂tgt

0 = Φθ(x
src
0 ,a

src,atgt). An example is shown in Fig. 2. In this paper, we propose a bootstrap
learning algorithm, which first pretrains ϵθ based on the noise estimation loss L in Eq. (1) and then
finetunes ϵθ based on x̂tgt

0 with top confidence scores. Here, we briefly present the key steps of the
bootstrap learning, and the full algorithm is given in Appendix E. Given a batch (Xsrc

0 ,A
src), where

Xsrc
0 ∈ RB×L, Asrc ∈ NB×K

+ , B is the batch size, the finetuning works as follows:

• Compose target attributes Atgt. For each (xsrc
0 ,a

src) ∈ (Xsrc
0 ,A

src), we compose the imaginary
target attributes atgt based on asrc by randomly sampling values for edited attributes Aedit and
keeping the values of the preserved attributes Aprsv. Then we have the tuple (Xsrc

0 ,A
src,Atgt).

• Generate the edited time series X̂tgt
0 via Φθ. An illustration is shown in the upper part of Fig. 2.

• Self-score X̂tgt
0 via Φθ and keep top ψ samples. An illustration of the self-scoring process is

shown in the lower part of Fig. 2. We first edit X̂tgt
0 back to source X̂src

0 = Φθ(X̂
tgt
0 ,A

tgt,Asrc).
Then we use the Mean Squared Error (MSE) between Xsrc

0 and X̂src
0 to score X̂tgt

0 . The top ψ
samples of X̂tgt

0 with the lowest MSE are selected as the bootstrap samples, denoted by X̂tgt
0,bs.

• Update ϵθ by minimizing LBS. We finetune ϵθ by minimizing the noise estimation loss L in
Eq. (1) for X̂tgt

0,bs. Formally, we minimize LBS = L(X̂tgt
0,bs).

4 Experiments

In this section, we present experiments aimed at addressing the following research questions: RQ1:
How does the proposed TEdit perform in terms of editing and preserving attributes? RQ2: What’s
the impact of bootstrap training? RQ3: What’s the impact of multi-resolution modeling?

4.1 Experimental Setup

Datasets. We collect three datasets for TSE, including one synthetic dataset and two real-world
datasets. For the Synthetic data, each time series sample has a length of 128, and is associated with
3 attributes, where there are 4 trend types, 2 trend directions, and 4 season cycles. In addition to
attributes, noise and bias are added to simulate real-world conditions. The Air Quality [8] dataset
contains PM2.5 time series of Beijing and London from 01/01/2017 to 31/03/2018. Each time series
has a length of 168 and is affected by two attributes: 2 cities and 4 seasons. The Motor Imagery [1]
dataset contains the ElectroEncephaloGram (EEG) data of subjects, who were required to imagine
the movements of either the tongue or the left small finger. Each sample takes a length of 150 with 2
attributes: 2 movements and 64 channel ids.

Each of the three datasets is associated with a pertaining dataset and several finetuning datasets.
The pretraining datasets only contain the source time series xsrc and its attributes asrc. During
pertaining, the noise estimator ϵθ is trained to denoise xsrc

t with asrc via Eq. (1). Each finetuning
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dataset corresponds to a specific split of Aedit and Aprsv. For example, the Synthetic dataset has 3
attributes, and thus it has 6 =

∑2
i=1

(
3
i

)
different splits, namely, finetuning datasets. Similarly, both

Air Quality and Motor Imagery datasets have 2 finetuning datasets. Finetuning datasets contain the
source time series xsrc, source attributes asrc, and target attributes atgt. The process of generating
the target attributes mirrors the target attribute composition step in bootstrap learning. Note that
for Synthetic, the target time series xtgt is also available. During finetuning, we use the proposed
bootstrap learning algorithm to further improve the model. More details can be found in Appendix F.

Evaluation Metrics. A good editor should be able to generate x̂tgt that aligns with each atgt
k ∈ atgt.

The cornerstone of our evaluation is the Contrastive Time series Attribute Pretraing (CTAP)
model, which extracts time series and attribute embeddings by learning their alignment. Our CTAP is
similar to CLIP [33]. For details of CTAP, please refer to Appendix G. Based on the CTAP model,
we introduce two metrics: CTAP score and Log Ratio of Target-to-Source (RaTS). (1) The CTAP
score is similar to the CLIP-I score [23, 33], which measures the alignment between the generated
time series and the real-world time series which are associated with the given attribute value atgt

k .
Specifically, we first use the CTAP model to extract embeddings ĥx, which is the embedding of x̂tgt,
and h̄x|atgt

k , which is the average embedding of the time series associated with atgt
k in the training

data. Then we calculate the cosine similarity of ĥx and h̄x|atgt
k , where the higher similarity indicates

better alignment. (2) The RaTS score measures whether x̂tgt is closer to atgt
k than xsrc. Formally, the

RaTS score for a tuple (x̂tgt, xsrc, atgt
k ) is defined as:

RaTS(x̂tgt,xsrc, atgt
k ) = log(

p(atgt
k |x̂tgt)

p(atgt
k |xsrc)

), (6)

where p(ak|x) is calculated by applying a softmax over the similarity scores of all (hx,hak=i) pairs,
where hx is the CTAP embedding of x, and hak=i, i ∈ {1, ..., Nk}, is the CTAP embedding of the
i-th possible value for the k-th attribute ak.

We mainly evaluate x̂tgt from two perspectives: editability and preservability for edited attributes
Aedit and preserved attributes Aprsv, respectively. For the edited attributes Aedit, the higher RaTS
and CTAP the better. For the preserved attributes Aprsv, the higher CTAP the better. Since RaTS
can take negative values, we use |RaTS| for Aprsv, which measures the semantic divergence of x̂tgt

from xsrc w.r.t ak. The lower |RaTS| means the better preservability. For more details, please refer
to Appendix H. In addition to the semantic level evaluations, for the synthetic data, since we have
ground truth target time series, we also use Mean Square Error (MSE), Mean Absolute Error (MAE)
to perform the point level evaluation.

Compared Methods. Since there is no existing method for TSE, we modify the popular time series
diffusion model CSDI [39] and the recent conditional diffusion model Time Weaver [27] for TSE.
As CSDI is unable to process attributes, we add an extra attribute encoder to incorporate attribute
information. For Time Weaver, we slightly modify its attribute encoder for our settings. After
pretraining the modified CSDI and Time Weaver, we use them to edit time series via the editing
procedure described in Sec. 3.2. Our proposed TEdit-CSDI and TEdit-TW are implemented by
incorporating core processing modules of CSDI and Time Weaver into our proposed multi-resolution
noise estimator Sec. 3.3, and trained via Sec. 3.4. Architecture details are presented in Appendix D.

Implementation Details. For all experiments, we set the number of diffusion steps as T = 50,
embedding size for attributes and time series as 64, and use Adam optimizer [20] to train the model.
For pretraining, we set (batch size, learning rate) as (256, 1e-3); for finetuning, we set them as
(64,1e-7) for Synethtic and (32,1e-7) for Air Quality and Motor Imagery. We conduct a grid search
for the hyperparameters of the multi-resolution. Considering the balance between performance
and efficiency, we chose a compromise ratio for bootstrap. Specifically, (R,Lp, ψ) = (3, 2, 0.5)
for Synthetic, (3, 2, 0.5) for Air Quality, (3, 3, 0.5) for Motor Imagery. All our experiments were
conducted on a single Nvidia-A100 GPU.

4.2 Main Results

In this section, we quantitatively evaluate the performance of comparison methods for editing and
preserving attributes (RQ1) for all the datasets. For the edited attributes Aedit, we report the RaTS
and CTAP scores to depict the models’ ability to edit attributes. For the preserved attributes Aprsv,
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Synthetic Air Motor

Overall Edited Preserved Edited Preserved Edited Preserved
↓MSE ↓MAE ↑RaTS ↑CTAP ↓|RaTS| ↑CTAP ↑RaTS ↑CTAP ↓|RaTS| ↑CTAP ↑RaTS ↑CTAP ↓|RaTS| ↑CTAP

CSDI 0.1789 0.3221 0.7540 0.5405 0.1439 0.7898 0.7452 0.1581 0.1705 0.6311 0.0939 0.4203 0.1597 0.6617
Time Weaver 0.1454 0.2898 0.9030 0.6943 0.1169 0.8292 0.8956 0.3266 0.1866 0.6299 0.0979 0.4168 0.1520 0.6691

TEdit-CSDI 0.1235 0.2606 0.9257 0.7109 0.1021 0.8553 0.8022 0.2179 0.1614 0.6529 0.1016 0.4186 0.1580 0.6654
TEdit-TW 0.1315 0.2722 1.0121 0.7957 0.0995 0.8622 0.9661 0.3930 0.1916 0.6274 0.1212 0.4348 0.1571 0.6621

Table 1: Averaged performance over all finetuning sets for Synthetic (left), Air (middle), and Motor
(right). “Edited” and “Preserved” are the average results of all edited and preserved attributes.

Synthetic Air Motor

Overall Edited Preserved Edited Preserved Edited Preserved
↓MSE ↓MAE ↑RaTS ↑CTAP ↓|RaTS| ↑CTAP ↑RaTS ↑CTAP ↓|RaTS| ↑CTAP ↑RaTS ↑CTAP ↓|RaTS| ↑CTAP

TEdit-TW w GT 0.1233 0.2622 1.0165 0.7991 0.0984 0.8650 - - - - - - - -
TEdit-TW 0.1315 0.2722 1.0121 0.7957 0.0995 0.8622 0.9661 0.3930 0.1916 0.6274 0.1212 0.4348 0.1571 0.6621

w/o BS 0.1376 0.2793 1.0127 0.7952 0.0962 0.8632 0.9524 0.3792 0.1839 0.6418 0.1113 0.4289 0.1571 0.6658
w/o BS & MR 0.1454 0.2898 0.9030 0.6943 0.1169 0.8292 0.8956 0.3266 0.1866 0.6299 0.0978 0.4168 0.1520 0.6691

Table 2: Ablation studies on the Synthetic, Air and Motor datasets. GT, BS and MR refer to
Ground Truth source and target pairs, BootStrap and Multi-Resolution. Results are averaged over all
finetuning sets. “Edited” and “Preserved” are the average results of all edited and preserved attributes.

we report the |RaTS| and CTAP scores to depict the models’ ability to preserve attributes. For the
Synthetic dataset, since we have the ground truth, we also include MSE and MAE to evaluate the
overall disparity between the ground truth xtgt and the generated x̂tgt.

In Tab. 1, we present the averaged results over all the finetuning sets for each dataset. The detailed
results for each finetuning sets are presented in Appendix I.1. Firstly, for the overall performance
(MSE and MAE), the proposed TEdit could significantly outperform baselines. Secondly, for the
edited attributes Aedit, TEdit-CSDI and TEdit-TW could respectively outperform CSDI and Time
Weaver on RaTS and TAP, showing that x̂tgt generated by TEdit could better fulfill the desired
target Aedit. Thirdly, for the preserved attributes Aprsv, TEdit could basically maintain |RaTS| and
TAP scores, which indicates TEdit is capable of preserving Aprsv. In summary, these observations
show that TEdit, including the multi-resolution and bootstrap learning, could improve the ability of
conditional diffusion models to edit Aedit and preserve Aprsv.

4.3 Ablation Study

In this subsection, we conduct ablation studies on the Synthetic and Motor datasets based on the TEdit-
TW to investigate the impact of the proposed multi-resolution modeling (RQ2) and the bootstrap
training algorithm (RQ3). The averaged results over all the finetuning sets are presented in Tab. 2.

Firstly, we compare TEdit-TW trained with BS (BootStrap) with TEdit-TW trained with GT (Ground
Truth) on the Synthetic dataset3. For GT, we finetune TEdit-TW by minimizing MSE between the
generated x̂tgt and the ground truth xtgt. It can be observed that GT performs much better than
BS on the overall metrics (MSE and MAE), and it is only slightly better than BS on the attribute
level metrics for both edited and preserved attributes, demonstrating that BS has a strong ability to
capture the attribute semantic information. Secondly, we remove BS from TEdit-TW and compare its
performance with the full TEdit-TW model. For the Synthetic dataset, BS could improve the overall
scores, and maintain the performance on other attribute level metrics. For the Air dataset, BS primarily
improves the scores of the edited attributes, with a trade-off in the scores of the preserved attributes.
We hypothesize that there might exist some intrinsic connections between the two attributes: city
and season. For the Motor dataset, BS can enhance the performance on the edited attribute while
maintaining the performance on the preserved attributes. Thirdly, we investigate the contribution
of MR (Multi-Resolution). For the Synthetic and Air datasets, MR could improve the scores on all
metrics. For the Motor dataset, MR helps improve the scores for the edited attributes and mostly
sustains the performance on the preserved attributes. These improvements highlight the effectiveness
of the proposed MR.

3Ground truth is only available in the Synthetic dataset.
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4.4 Extended Investigation

We further conduct an in-depth analysis of the effectiveness and efficiency of our TEdit, aiming to
reveal how it works through quantitative comparison and visualization.

Editing vs. Conditional Generation. Although conditional generation x̂tgt = Φθ(∅, ∅,atgt) can
produce time series that satisfy the specified target attribute values, it often struggles to retain
sufficient details, particularly for difficult or unobservable attributes, since it generates samples from
scratch. In contrast, editing x̂tgt = Φθ(x

src,asrc,atgt) is designed to modify the attributes of existing
time series, and thus is able to preserve much detail information. We first quantitatively compare the
two modes on the Synthetic data. The averaged MSE and MAE over all the finetuning datasets are
presented in Tab. 3, which shows that editing could significantly outperform conditional generation
with much better (lower) MSE and MAE scores.

0 20 40 60 80 100 120
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Edit MSE: 0.0247
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Figure 4: Case study for editing and conditional genera-
tion, under two settings: (a) editing the trend type from
logistic to linear; (b) editing the trend type from linear to
quadratic and the season cycles from 1 to 4.

Synthetic

Method Mode MSE↓ MAE↓

TEdit-CSDI Cond. Gen. 0.2581 0.4096
Edit 0.1235 0.2606

TEdit-TW Cond. Gen. 0.2875 0.4308
Edit 0.1315 0.2722

Table 3: Quantitative comparison of edit-
ing and conditional generation on the
Synthetic dataset. The results are aver-
aged over all the finetuning sets.

We further showcase how editing and conditional generation work at the sample level. Fig. 4, plots
the generated results of these two modes under. We can observe that the edited time series could
better align with the target attributes, Fig. 4(a)(b), and preserve the characteristics of the source time
series, e.g., bias in Fig. 4 (a). In comparison, conditional generation tends to produce smooth samples
around the dataset mean. Additionally, we can also see in Fig. 4 that the MSE scores of editing are
much lower than conditional generation. More visualization results can be found in Appendix I.4

Running time (ms) Serial processing Parallel processing

Noise estimator 11.1 6.0
Processing module 8.8 3.7

Table 4: Running time (ms) of the multi-resolution
modeling and generation module, averaged over
1000 samples.

Efficiency of Multi-Resolution Generation.
Considering that multi-resolution modeling and
generation brings additional efforts for process-
ing different resolutions, as discussed in Sec. 3.3.
We compare the running time of serial process-
ing and parallel processing implementations of
the multi-resolution paradigm with total resolu-
tion number R = 3 and patch length Lr

p = 3r, r ∈ {0, ..., R − 1}. The experiment is conducted
on the Synthetic dataset with a batch size of 32. The serial processing iterative processes a single
resolution at a time, whereas the parallel processing concatenates multiple resolution sequences along
the length dimension and processes them simultaneously. We record the time it takes for the full
noise estimator and the processing module to complete the forward diffusion process. As shown in
Tab. 4, our designed parallel mechanism can significantly improve the inference efficiency.

Bootstrap Improves the distributional coverage of the attribution space. Fig. 5 visualizes the
dimension reduced distribution of (a) the raw data, (b) the generated data and (c) the mixed data,
on the Synthetic dataset using t-SNE [41]. We can observe that the newly generated data fulfill
the uncovered region of the original raw data therefore enhance the data coverage over the whole
space, which explains how the bootstrap learning helps generative model training. More visualization
analysis can be found in Appendix I.5.

4.5 Sensitivity Analysis

In this subsection, we conduct sensitivity analysis to study the impacts of hyper-parameters of the
multi-resolution mechanism and bootstrap learning.
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Figure 5: Visualization of data distribution before and after bootstrapping.

Multi-resolution hyper-parameters. We perform a sensitivity study for the hyper-parameters of the
proposed multi-resolution, i.e., the patch length Lp and the number of resolutions R, on one Synthetic
finetuning set, which aims to edit trend directions while preserving other attributes. The results are
presented in Fig. 6. More results on other Synthetic finetuning sets can be found in Appendix I.2.

To analyze the impact of R, we fix Lp = 2 and vary R. As shown in Fig. 6 (a), trend types prefer
R = 3, whereas seasonal cycles perform better with R = 4. To examine the impact of Lp, we fix
R = 3 and vary Lp. According to Fig. 6 (b), trend types show a preference for Lp = 2 while seasonal
cycles prefer Lp = 3. Besides, we find that our proposed multi-resolution paradigm always performs
better than the vanilla single resolution time-series modeling paradigms, i.e., Lp = 1 or R = 1,
which corroborates the discussion in Sec. 3.3 that attributes may influence the time-series generation
at different scales and granularities.

Bootstrap learning hyper-parameters. We conduct a sensitivity study on the hyper-parameters
of bootstrapping, specifically the bootstrap ratio ψ within the range {0.1, 0.3, 0.5, 0.7, 0.9} on a
Synthetic finetuning set, which aims to edit the trend direction while preserving others. As shown in
Fig. 7, the model exhibits a poor performance then the bootstrap ratio is low, e.g., 0.1. The model has
a good performance with medium to high bootstrap ratios. We hypothesize that this is because tuning
with only a few top samples might lead to certain mode collapse.
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Figure 6: Sensitivity study for the hyper-parameters of multi-
resolution on the Synthetic finetuning set for editing trend
directions and preserving others. The higher CTAP, the better.

5 Conclusion
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Figure 7: Sensitivity study of boot-
strap ratio ψ on a Synthetic finetun-
ing set aiming to edit trend direction.

In this paper, we introduced the task of Time Series Editing (TSE), which enables controllable
time series synthesis by manipulating specific attributes of the input time series while maintaining
consistency in other properties. There are two major challenges of TSE. Firstly, in the real world,
the distribution of time series and attributes is usually biased, and the full space might not be
adequately covered. Secondly, time series and attributes exhibit complex multi-scale entanglement.
To address these two challenges, we propose a novel diffusion based approach, called TEdit, which
incorporates a bootstrap learning algorithm and a multi-resolution modeling and generation paradigm.
Comprehensive experiments on both synthetic and real-world datasets demonstrate the effectiveness
of our proposed TEdit in generating precise time series with specified attributes. In practice, our
method still has certain limitations. For example, different attributes have varying difficulty degrees
to edit; attributes may have complex inter-dependencies, and some attributes may be difficult to
edit without affecting others. Despite this limitation, we believe our work lays the groundwork
for controllable time series synthesis, potentially benefiting applications in fields such as climate
monitoring, healthcare, and urban management.
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A Related Work

Time Series Generation. Time series generation has become a research hotspot in recent years [47].
From the view of modeling, early attempts for time series generation utilize Generative Adversarial
Networks (GANs) [47, 31], which trains the generator adversarial to the discriminator of correct
classification on real or synthetic data. The latest research moves the focus to Diffusion models
(DMs) [27, 36, 39] which have illustrated much higher fidelity and generation performance than
GANs [45]. From the perspective of the generation paradigm, there are two branches. The first
one is unconditional generation [47, 31, 34, 48], which employs a generative model to generate
data samples without relying on any conditions for regulation. The second paradigm is conditional
generation [39, 27, 36, 44] making use of additional conditional information like category labels,
textual descriptions, features, and other kinds of metadata to guide the generation process and
enabling high-quality generation that is tightly correlated with the conditions. Among them, CSDI
[39] enhances time-series imputation by treating observed time series as conditions in the diffusion
model. TIME WEAVER [27] directly encode the metadata into the diffusion model to achieve
controlled generation. Though they achieved better quantitative results, these methods suffer from
unexpected outcomes that inadvertently emphasize trivial attributes while overlooking critical ones,
especially with a low availability of time-series data over various attributes.

Diffusion Model. Diffusion model [10, 37] has become increasingly prominent for data generation
across various fields [26, 28, 2, 21], which learns to gradually regress and remove the noise that was
added to the clean data in the forward process, allowing data generation aligned with real distribution.
Our work is highly related to conditional generation, which can be divided into two main streams of
techniques. Classifier-guided generation [6, 19, 24] adds the control signal from the gradient of the
classifier to bias the generation towards the specific class in the denoising process of the diffusion
model, which requires training an additional classification model. Another stream of works [11, 30]
stem from classifier-free guidance in data generation, without training any additional classifier.

Data Editing. Data editing aims to manipulate the content of the given input to meet the require-
ments of the target data attributes, such as image style [17], semantics [25], and structure [7], with
the utilization of multimodal methods such as text-to-image synthesis [9], [28, 49] and audio based
image editing [50, 51]. In text-based scenarios, some works also generate texts under the instruction
of specific attributes like sentiment [5] and structural information [32]. However, directly adopting
the existing solution from other fields to time series editing is not feasible because of the significantly
different data formats and poor data coverage of real-world time-series data w.r.t. different attributes.

B Broader Impacts

Our method offers several potential positive societal impacts in many real-world scenarios. For
example, in climate monitoring, it enhances climate models and forecasts, aiding in climate change
mitigation. For urban management, it supports better decision-making in areas such as traffic
management, pollution control, and resource allocation. Additionally, in research, it facilitates robust
experiments and innovative solutions by providing high-quality, customizable datasets.

However, there are potential negative societal impacts to consider. There are data privacy risks
associated with the manipulation of sensitive information, necessitating strong data protection
measures. In financial markets, our method could be exploited for fraudulent activities, undermining
market integrity. An overreliance on synthetic data may lead to biased or inaccurate models, resulting
in flawed decision-making. Furthermore, there are ethical concerns regarding the potential misuse of
our method in creating deceptive artificial intelligence models, which raises issues of transparency
and accountability. While our method offers significant benefits, it is crucial to carefully manage
these risks to maximize positive impacts and minimize negative consequences.

C Diffusion Process

In this section, we give a review of the diffusion process. Diffusion models are a class of two-stage
generation models, consisting of a forward process and a reverse(denoising) process. The forward
process is a Markov chain which gradually adds random noise on the origin data sample x0 and

15



Figure 8: Model architecture of our modified CSDI.

intermediate latent variables xt through a Gaussian transition q(xt|xt−1) := N (
√
1− βtxt−1, βtI),

where t = 1, · · · , T indicates the diffusion step, and {βt}Tt=0 are predetermined variance schedule.
The latent variable xt can be described as:

xt =
√
αtx0 +

√
1− αtϵ, ϵ ∼ N (0, I), αt := Πt

s=1(1− βs). (7)

In the reverse process, a denoiser ϵθ(xt, t,a), where a ∈ NK is the given attributes, is needed to
approximate the noise in each diffusion step to help to sample backward from xT through another
Gaussian transition pθ(xt−1|xt) := N (xt−1;µθ(xt, t), σθ(xt, t)I). To obtain µθ(xt, t), the denoiser
should be trained by optimizing the loss:

min
θ
L := min

θ
Ex0∼q(x0),ϵ∼N (0,I),t∼U(1,T ) ∥ϵ− ϵθ (xt, t,a)∥22 (8)

Here q(x0) denotes the data distribution of x0 (or x), t ∼ U(1, T ) indicates that the diffusion step t
follows the uniform distribution between 1 and T .

After training, given a condition a, we can generate the sample x̂0 from a random noise x̂T ∼ N (0, I)
using the trained ϵθ(xt, t,a) with a diffusion sampler, such as the deterministic denoising diffusion
implicit model (DDIM) [38]:

x̂t−1 =
√
αt−1fθ(x̂t, t,a) +

√
1− αt−1ϵθ(x̂t, t,a) (9)

fθ(x̂t, t,a) = (x̂t −
√
1− αtϵθ (x̂t, t,a))/

√
αt (10)

where fθ(x̂t, t,a) can be regarded as a prediction of x0 at the diffusion step t.

D Model Architecture

In this section, we will show the architecture utilized in our modified backbone models CSDI 8
and TIME-WEAVER 9, especially how the attributes are incorporated into the models. It should be
mentioned that all the attributes in our experiment setting are categorical.

Consider a batch of time series samples of size (Nbatch, F, L), where Nbatch represents the number
of samples per batch, F represents the number of channels in the time series, and L represents the
horizon. The corresponding attributes a is of shape (Nbatch, L,K), where K represents the number
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Figure 9: Model architecture of Time Weaver.

of the attributes. While performing the time-series inputs, each attribute option will be encoded to a
corresponding embedding vector.

As for CSDI, our modified part is highlighted in red. First, the attribute embedding will be linearly
projected to shape (Nbatch, d, F,K), then concatenated with the time series embedding to form the
prompt with shape (Nbatch, d, F,K + L). Next, the prompt is added with the expanded diffusion step
embedding and the sum will be inputted into the transformer layer. After that, the attribute embedding
will be discarded, and the shape gets back to (Nbatch, d, F, L).

For TIME-WEAVER, We only make some slight changes to its original structure: 1. Our experiment
setting doesn’t include continuous type attributes, as mentioned. 2. We replace the self-attention
modules with multi-layer perceptrons (MLPs).

As mentioned in Sec 3.3, we introduce a novel parallelization with an attention masking mechanism
to accelerate the training and inference. The attention mask is of the following form, denoted as
M ∈ R(N0

p+...+NR−1
p )×(N0

p+...+NR−1
p ) where Mr ∈ 0Nr

p , the residual value is negative infinity.
Through adding this attention mask into the original attention calculation [42] and softmax operation
softmax(z)i = ezi∑N

j=1 ezj
receiving z ∈ RN , such attention mask would mask out inter-sequence

attention while preserving intra-sequence attention.

M =

 M1 · · · −∞
...

. . .
...

−∞ · · · MR−1

E Bootstrap Learning Algorithm

As mentioned in Sec. 3.4, we propose a bootstrap learning algorithm that enables the model ϵθ to
learn the information of the imaginary target. Given the pretained model ϵθ, the detailed algorithm
for a batch (Xsrc

0 ∈ RB×L,Asrc ∈ NB×K
+ ), where B is the batch size, L is the length, and K is the

number of attributes, is presented below.
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Algorithm 1 Bootstrap Learning for a Batch

Input: (Xsrc
0 ∈ RB×L,Asrc ∈ NB×K

+ ), where B, L, K are batch size, length, and attribute number.
Attributes to be edited Aedit and preserved Aprsv.
The ratio ψ of the top bootstrapped samples to include for tuning.

1: # 1. Compose tuple (Xsrc
0 ,Asrc,Atgt).

2: for k = 1, · · · ,K do
3: if k ∈ Aedit then
4: Atgt[:, k] ∼ U{1, · · · , Nk} ▷ Random sample a new value for the k-th attribute.
5: else
6: Atgt[:, k] = Asrc[:, k]

7: # 2. Generate the target X̂tgt.
8: X̂tgt

0 ← Φθ(X
src
0 ,A

src,Atgt)

9: # 3. Self-Score the target X̂tgt
0 , and keep the top ψ samples.

10: X̂src
0 ← Φθ(X̂

tgt
0 ,A

tgt,Asrc)

11: s← MSE(Xsrc
0 , X̂

src
0 )

12: X̂tgt
0 ← Sort(X̂tgt

0 |s) ▷ Sort X̂tgt
0 based on s.

13: X̂tgt
0,bs ← X̂tgt

0 [: B · ψ] ▷ Keep the top ψ samples.

14: # 4. Calculate the loss.
15: LBS ← L(X̂tgt

0,bs) ▷ L is the noise estimation loss of diffusion models defined in Eq.(1).

Attribute Value
Trend Types [Linear, Quadratic, Exponential, Logistic]

Trend Directions [Up, Down]

Season Cycles [0, 1, 2, 4]
Table 5: Summary of attribute options

F Datasets

F.1 Synthetic Dataset

We generate the synthetic time series according to the following formula:

x = xtrend + xseason + xnoise + xbias. (11)

Table 5 shows the summary of the attributes for the synthetic dataset.

For example, the attribute {Trend Type = linear, Trend Direction = up, Season Cycles = 2} is one
of the total 32 (4 Trend Types× 2 Trend Directions× 4 Season Cycles) attribute combinations. We
split the 32 combinations into train, validation, and test sets by 24:4:4.

In the pretraining dataset, for each attribute combination, we sample 300 time series according to the
random variances described in the following subsections. For the finetuning dataset, we treat each
attribute combination in the 24:4:4 split as the target attribute. For each target attribute, we compose
its source attribute based on the desired attributes to be editedAedit and preservedAprsv. For example,
let Aedit = {trend type}, Aprsv = {trend direction, season cycles}. Suppose the target attribute
atgt = {linear, up, 2}, then its source could be asrc

1 = {linear, up, 2}, asrc
2 = {quadratic, up, 2},

asrc
3 = {exponential, up, 2} and, asrc

4 = {logistic, up, 2}. Then for a source and target attribute pair
(asrc,atgt), we generate the source and target time series (xsrc,xtgt) based on the process described
in the following subsections. Note that for each (asrc,atgt) attribute pair, we first generate the
deterministic part, e.g., trend type, for asrc and atgt, denoted by xsrc

deter and xtgt
deter. Then generate

10 randomnesses xrand, including noise, bias etc, and then we add these randomnesses to the
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deterministic part to ensure the source and target time series have the same randomness xrand:
xtgt = xtgt

deter + xrand, xsrc = xsrc
deter + xrand.

The finetuning dataset contains 6 subsets for editing different attribute combinations. For modifying
trend type, there are 760 train samples, 140 validation samples, and 160 test samples. For modifying
trend direction, there are 420 train samples, 70 validation samples, and 80 test samples. For modifying
season cycles, there are 760 train samples, 140 validation samples, and 160 test samples. For
modifying trend type and trend direction, there are 1440 train samples, 280 validation samples, and
320 test samples. For modifying trend type and season cycles, there are 2880 train samples, 560
validation samples, and 640 test samples. For modifying trend direction and season cycles, there
are 1440 train samples, 280 validation samples, and 320 test samples. In addition, the same random
variance and bias pair is used both on the source time series and target time series in a source-target
pair respectively.

In the following formulas, ti indicates the i-th sampling point in the original synthetic time series(t)
and xi indicates the i-th sampling point in a contain form of x. For instance, the total length of a time
series L = 128, then i = [1, . . . , 128].

F.1.1 Trend

Trend Types. As described in table 5, there are 4 trend types: linear, quadratic, exponential, and
logistic. As described above, t is used to obtain x. For the linear trend: xtrend = t, in this case ti ∈
[0, 1], xi ∈ [0, 1]. For the quadratic trend: xtrend = t2, in this case ti ∈ [0, 1], xi ∈ [0, 1]. For the
exponential trend: xtrend = 2t

1024 , in this case ti ∈ [−10, 10], xi ∈ [0, 1]. xtrend is needed to range
from 0 to 1, so ti is in [-10,10]. For logistic trend: xtrend = 1

1+exp(−t) , where ti ∈ [−10, 10], xi ∈
[0, 1]. Similar to the exponential trend, we repeat a scaling process in logistic trend. To train the
model more easily, xtrend = (x− 0.5)× 2 is used to normalize xtrend to [−1, 1].
Trend Directions. There are totally 2 directions: up and down. For instance, in the Cartesian
coordinate system, a linear line from coordinates (0, 0) to (1, 1) represents an “up” trend, while
another line from coordinates (0, 0) to (1,−1) represents a “down” trend. All 4 trend types introduce
above are originally “up” trends. Therefore, for an “up” trend, we set xtrend = xtrend and for a “down”
trend, we set xtrend = −xtrend.

Random Variance. We randomly perturb the scale of the trend by: xtrend = s · xtrend where s is the
random scale obtained by the following process s = m · c + (1 −m) · 1c , m ∼ Bern(0.5), c ∼
U(0.8, 1.0) If m = 1, then s = c ∈ [0.8, 1.0]; else s = 1

c ∈ [1.0, 1.25].

F.1.2 Season

The season attribute is represented by the number of cycles in a time series. [0,1,2,4] sinusoidal wave
cycles are randomly added.

xseason = a sin(2πt+ ϕ) (12)

where t ∈ [0, ncycle], ncycle ∈ [0, 20, 21, 22]. The Random Variances of these two variables follow
uniform distributions: a ∼ U(0.4, 0.6), ϕ ∼ U(0, 2π).

F.1.3 Noise

We simulate the real-world noise by a combination of Gaussian noise and high-frequency noise.

xnoise = xg + xhf (13)

The Gaussian noise is sampled through xg = N (0, σ), σ ∼ U(0.04, 0.06). The high-frequency noise
is portrayed by a sinusoidal wave: xhf = a sin(2πt + ϕ), t ∈ [0, ncycle], ncycle ∈ [24, 25, 26], a ∼
U(0.08, 0.10), ϕ ∼ U(0, 2π).

F.1.4 Bias

The last step is to add bias to the previous synthesized sample, which is randomly sampled from a
uniform distribution xbias ∼ U(−0.5, 0.5).
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Dataset L Categorical and Editable Attributes

Air Quality [8] 168 4 Seasons [Spring, Summer, Autumn, Winter]
2 Cities [Beijing, London]

Motor Imagery [1] 150 2 Movements [Figure, Tongue]
64 Channels[1, 2, ..., 64]

Table 6: Dataset description in our experiments. Some key information is listed above. The real-world
datasets include Air Quality, Motor Imagery. All datasets have been carefully processed. L indicates
the time series length. The second column indicates all editable attributes.

F.2 Real World Datasets

F.2.1 Air Quality Dataset

This dataset was used in the KDD Cup 2018 forecasting competition [8]. It contains lots of hourly
sampled time series representing the air quality levels measured from different stations in 2 cities:
Beijing (35 stations) and London (24 stations) from 01/01/2017 to 31/03/2018. This air quality level
is represented in multiple measurements such as PM2.5, PM10, NO2, CO, O3, and SO2.

We processed the raw data and split it into train, validation, and test sets. We only selected the data of
PM2.5, which is common in all stations. Season attributes are generated according to month. We slice
the series by week to a length of 168 (24hour× 7day). For pretraining dataset, there are totally 3650
time series samples, in which we randomly pick 2825 time series samples as train, 353 time series
samples as validation, and 472 time series samples as the test. For finetuning dataset, it’s composed
of multi-subsets where each subset corresponds to an editing setting, e.g. modifying the “season”.
In any subset, a sample is composed of a source time series, source attributes, and target attributes
where the source time series are sampled from the corresponding splits of pretraining data. For each
source time series, we randomly change the source attributes 2 or 3 times to get the target attributes
and pair the source time series and target attributes together. Finally, we get (train: 2000, valid: 600,
test: 600) samples for modifying “city” subset and (train: 3000, validation: 900, test: 900) samples
for modifying “season” subset.

F.2.2 Motor Imagery Dataset

The Motor Imagery dataset [1] contains some Electroencephalogram (EEG) records. During the
Brain-Computer Interface experiments, the subjects have to perform imagined movements of either
the tongue or the left small finger. All recordings are collected at a sampling rate of 1000 Hz with 64
channels. Every record contains 3000 time stamps (3 seconds measurement). For pertaining data,
there are 19353 samples in the train set, 2419 in the validation set, 2419 in the test set. For fine-tuning
data, the processing operation is similar to the Air Quality. In the subset of modifying movement,
there are (train:2000, valid:1000, test:1000) samples. In the subset of modifying channel id, there are
(train:3000, valid:1500, test:1500) samples.

G CTAP Model Details

Our Contrastive Time-Series Attribute Pretraining (CTAP) model is similar to the popular CLIP
model [33]. The purpose of this model is to train the time series encoder and the attribute encoder
by learning the alignment between the time series x ∈ RL and its associated attributes a ∈ NK

+ .
Note that we use separate attribute encoders for different attributes ak = a[k], k ∈ {1, ...,K}.
An illustration of CTAP for a batch of X ∈ RB×L and their associated k-th attribute A ∈ NB

+ is
presented in Fig. 10. Note that the attribute index k is dropped for clarity. The time series encoder
and attribute encoder extract the embeddings Hx = {hxi}Bi=1 and Ha = {hai}Bi=1. Following [33],
we calculate the pair-wise similarities between the hxi and haj , and the encoders are trained by
distinguishing whether hxi

and haj
are from the same data pair. The pseudocode of the CTAP model

is shown in Algorithm 2.
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Figure 10: Illustration of the CTAP model for the given pairs of time series X = {xi}Bi=1 and
attributes A = {ai}Bi=1, where B is the batch size. Here a = ak = a[k], k ∈ {1, ...,K} is the k-th
attribute of the full attribute vector a ∈ NK

+ . We use K separate attribute encoders for K attributes.
In the illustration, we only show one attribute and thus drop the attribute index k for clarity. After
obtaining embeddings {hxi

}Bi=1 and {hai
}Bi=1, we calculate the the pair-wise similarities between

the hxi and haj . The encoders are trained by distinguishing the positive pairs (green blocks) and
negative pairs (white blocks).

Algorithm 2 Pseudocode for the CTAP model
Input: A batch of paired time series and attributes (X ∈ RB×L, A ∈ RB).

1: # 1. Extract embeddings of time series and attributes.
2: Hx ← Time Series Encoder(X)
3: Ha ← Attribute Encoder(A)

4: # 2. Calculate pairwise similarities.
5: S← Sim(Hx,Ha) ▷ S ∈ RB×B is the similarity score matrix.

6: # 3. Calculate loss.
7: Lx ← Cross Entropy(S, I, axis = 1) ▷ I ∈ {0, 1}B×B is the identity matrix.
8: La ← Cross Entropy(S, I, axis = 0)
9: L ← (Lx + La)/2

Synthetic Air Motor

Trend types Trend directions Season cycles City Season Channel id Imagined movement

Top1 Acc 0.7877 1.0000 0.9558 0.9725 0.9068 0.8979 0.9537
Top2 Acc 0.9408 1.0000 0.9983 1.0000 0.9492 0.9364 1.0000

Table 7: The performance of CTAP models on different datasets. We report the top-1 and top-2
classification accuracy for each attribute on the test sets of the pertaining dataset.
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H Evaluation Metrics

H.1 MSE and MAE

For the synthetic dataset, MSE and MAE are two of the metrics used in our experiments. For the
reason that we have targets in our synthetic datasets, MSE and MAE can be applied to evaluate the
generated time series. The two formulas are listed below:

MSE =
1

|D|

|D|∑
i=1

(xi − x̂i)
2 (14)

MAE =
1

|D|

|D|∑
i=1

|xi − x̂i| (15)

Here |D| is the size of the test set, xi is the i-th target time series, and x̂i is the corresponding
generated time series.

H.2 CTAP

The CTAP score is obtained through the Contrastive Time series - Attribute Pretraining (CTAP)
model, which is similar to the popular CLIP model [33]. The details of the CTAP model are given
in Appendix G. Suppose atgt

k is one of the target attributes, the CTAP score is similar to the CLIP-I
score [23], which uses the pretrained CTAP model to measure the alignment, e.g., cosine similarity,
between the generated x̂tgt and the real-world time series that also associated with the attribute atgt

k .
Specifically, we first use the CTAP model to extract embeddings ĥx, which is the embedding of x̂tgt,
and h̄x|atgt

k , which is the average embedding for the time series associated with atgt
k in the training

data. Then we calculate the cosine similarity of ĥx and h̄x|atgt
k , where the higher similarity indicates

better alignment between the generated and real-world time series.

H.3 RaTS

We introduce Log Ratio of Target-to-Source probability (RaTS) score to measure whether the
generated time series x̂tgt is closer to the target attribute atgt

k than the source time series xsrc. Formally,
the RaTS score for a tuple (x̂tgt, xsrc, atgt

k ) is defined as:

RaTS(x̂tgt,xsrc, atgt
k ) = log(

p(atgt
k |x̂tgt)

p(atgt
k |xsrc)

). (16)

where p(ak|x) is calculated by applying a softmax over the similarity scores of all (hx,hak=i) pairs,
where hx is the CTAP embedding of x, and hak=i, i ∈ {1, ..., Nk}, is the CTAP embedding of the
i-th possible value for the k-th attribute ak.

RaTS > 0 represents the model doesn’t retain characteristics of the source time series xsrc to a certain
degree. RaTS < 0 means that the attribute atgt

k is reinforced compared to the source xsrc. For the edited
attributes Aedit, the higher the RaTS score, the closer the edited x̂tgt is to the target attributes. For the
preserved attributes Aprsv, the lower the |RaTS| score, the better the preservation of the attributes.
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I More Experimental Results

I.1 Results

Overall Trend Type▲ Trend Direction△ Season Cycles△
↓MSE ↓MAE ↑RaTS ↑CTAP ↓|RaTS| ↑CTAP ↓|RaTS| ↑CTAP

CSDI 0.1049±0.0852 0.2334±0.0988 0.5661±0.1651 0.3888±0.1777 0.0014±0.0001 0.9877±0.0004 0.0621±0.0049 0.8337±0.0307
Time Weaver 0.0519±0.0257 0.1783±0.0422 0.8460±0.1394 0.6870±0.1197 0.0016±0.0002 0.9871±0.0004 0.1012±0.0219 0.8219±0.0261

TEdit-CSDI 0.0377±0.0065 0.1478±0.0121 0.8442±0.0810 0.6775±0.0701 0.0017±0.0004 0.9869±0.0013 0.0813±0.0135 0.8562±0.0128
TEdit-TW 0.0522±0.0141 0.1817±0.0272 0.9006±0.0707 0.7205±0.0542 0.0015±0.0001 0.9874±0.0008 0.1042±0.0141 0.8382±0.0181

Overall Trend Type△ Trend Direction▲ Season Cycles△
↓MSE ↓MAE ↓|RaTS| ↑CTAP ↑RaTS ↑CTAP ↓|RaTS| ↑CTAP

CSDI 0.2128±0.1502 0.3726±0.1359 0.6227±0.2207 0.3655±0.2287 1.9692±0.0010 0.9748±0.0073 0.0542±0.0158 0.8641±0.0062
Time Weaver 0.1345±0.0262 0.2989±0.0320 0.3564±0.1016 0.6309±0.1071 1.9711±0.0009 0.9833±0.0030 0.0918±0.0289 0.7877±0.0329

TEdit-CSDI 0.0979±0.0185 0.2509±0.0286 0.3476±0.1117 0.6673±0.1024 1.9717±0.0015 0.9824±0.0019 0.0660±0.0090 0.8418±0.0263
TEdit-TW 0.0924±0.0202 0.2432±0.0269 0.2581±0.0530 0.7277±0.0293 1.9719±0.0007 0.9849±0.0028 0.0753±0.0148 0.8182±0.0123

Overall Trend Type△ Trend Direction△ Season Cycles▲
↓MSE ↓MAE ↓|RaTS| ↑CTAP ↓|RaTS| ↑CTAP ↑RaTS ↑CTAP

CSDI 0.1980±0.0105 0.3508±0.0141 0.1174±0.0451 0.6962±0.0754 0.0012±0.0001 0.9875±0.0008 0.3758±0.0840 0.0944±0.0862
Time Weaver 0.2167±0.0186 0.3632±0.0107 0.1767±0.0238 0.7221±0.0632 0.0019±0.0005 0.9847±0.0023 0.5976±0.0903 0.3233±0.0804

TEdit-CSDI 0.2054±0.0149 0.3538±0.0229 0.1390±0.0436 0.7795±0.0668 0.0013±0.0000 0.9877±0.0014 0.6564±0.2560 0.3670±0.2543
TEdit-TW 0.2122±0.0228 0.3623±0.0208 0.1652±0.0305 0.8021±0.0150 0.0013±0.0001 0.9881±0.0005 0.8911±0.0688 0.6045±0.0668

Overall Trend Type▲ Trend Direction▲ Season Cycles△
↓MSE ↓MAE ↑RaTS ↑CTAP ↑RaTS ↑TAP ↓|RaTS| ↑CTAP

CSDI 0.1119±0.0631 0.2532±0.0777 0.4925±0.1530 0.4653±0.1492 1.1210±0.0005 0.9835±0.0032 0.0520±0.0071 0.8546±0.0081
Time Weaver 0.0712±0.0160 0.2109±0.0264 0.7017±0.0986 0.6846±0.0893 1.1216±0.0003 0.9872±0.0003 0.0798±0.0183 0.8277±0.0252

TEdit-CSDI 0.0451±0.0085 0.1638±0.0138 0.7478±0.0754 0.7215±0.0693 1.1216±0.0004 0.9864±0.0014 0.0544±0.0028 0.8609±0.0080
TEdit-TW 0.0676±0.0254 0.1997±0.0359 0.8014±0.0629 0.7706±0.0507 1.1222±0.0002 0.9870±0.0002 0.0670±0.0092 0.8489±0.0087

Overall Trend Type▲ Trend Direction△ Season Cycles▲
↓MSE ↓MAE ↑RaTS ↑CTAP ↓|RaTS| ↑CTAP ↑RaTS ↑CTAP

CSDI 0.2065±0.0708 0.3446±0.0607 0.4990±0.1734 0.5078±0.1775 0.0022±0.0003 0.9840±0.0024 0.3325±0.0944 0.2721±0.0921
Time Weaver 0.1843±0.0341 0.3286±0.0323 0.6915±0.1057 0.7177±0.0968 0.0030±0.0009 0.9817±0.0059 0.5502±0.1060 0.4780±0.0950

TEdit-CSDI 0.1557±0.0195 0.3009±0.0266 0.7329±0.0654 0.7392±0.0639 0.0022±0.0004 0.9855±0.0020 0.5733±0.2235 0.5008±0.2151
TEdit-TW 0.1647±0.0202 0.3054±0.0187 0.7548±0.0498 0.7658±0.0343 0.0019±0.0000 0.9869±0.0010 0.7559±0.0291 0.6813±0.0307

Overall Trend Type△ Trend Direction▲ Season Cycles▲
↓MSE ↓MAE ↓|RaTS| ↑CTAP ↑RaTS ↑CTAP ↑RaTS ↑CTAP

CSDI 0.2396±0.0781 0.3780±0.0642 0.3819±0.1058 0.5349±0.1373 1.1210±0.0069 0.9788±0.0102 0.3091±0.0893 0.1987±0.0911
Time Weaver 0.2138±0.0191 0.3589±0.0146 0.2397±0.0787 0.7190±0.0972 1.1247±0.0002 0.9854±0.0007 0.5227±0.1156 0.4026±0.1005

TEdit-CSDI 0.1991±0.0122 0.3461±0.0186 0.2255±0.0510 0.7317±0.0704 1.1248±0.0006 0.9850±0.0024 0.5588±0.2143 0.4385±0.2081
TEdit-TW 0.1998±0.0191 0.3411±0.0125 0.2208±0.0293 0.7626±0.0217 1.1249±0.0000 0.9859±0.0009 0.7859±0.0465 0.6610±0.0491

Table 8: Performance on all subsets of attributes combination of Synthetic, ▲/△ denote
edited/preserved attributes.

Air Motor

City▲ Season△ Channel Id▲ Imagined Movement△
↑RaTS ↑CTAP ↓|RaTS| ↑CTAP ↑RaTS ↑CTAP ↓|RaTS| ↑CTAP

CSDI 1.2878±0.0590 0.3287±0.0779 0.2349±0.0131 0.4473±0.0296 0.1895±0.0030 0.8395±0.0025 0.2963±0.0045 0.4402±0.0045
Time Weaver 1.4429±0.0709 0.5227±0.0861 0.2143±0.0074 0.4736±0.0440 0.1802±0.0085 0.8316±0.0061 0.2799±0.0018 0.4542±0.0100

TEdit-CSDI 1.3036±0.0565 0.3541±0.0664 0.2116±0.0080 0.4807±0.0212 0.1925±0.0018 0.8418±0.0015 0.2927±0.0040 0.4467±0.0027
TEdit-TW 1.4602±0.0556 0.5337±0.0657 0.2226±0.0068 0.4839±0.0095 0.1945±0.0031 0.8443±0.0020 0.2885±0.0094 0.4394±0.0113

City△ Season▲ Channel Id△ Imagined Movement▲
↓|RaTS| ↑CTAP ↑RaTS ↑CTAP ↓|RaTS| ↑CTAP ↑RaTS ↑CTAP

CSDI 0.1062±0.0217 0.8149±0.0196 0.2026±0.0124 -0.0124±0.0163 0.0231±0.0014 0.8832±0.0029 -0.0018±0.0124 0.0010±0.0059
Time Weaver 0.1588±0.0069 0.7863±0.0107 0.3483±0.0230 0.1304±0.0206 0.0241±0.0022 0.8840±0.0007 0.0153±0.0127 0.0021±0.0034

TEdit-CSDI 0.1112±0.0058 0.8250±0.0099 0.3007±0.0245 0.0818±0.0217 0.0233±0.0008 0.8841±0.0031 0.0106±0.0022 -0.0047±0.0083
TEdit-TW 0.1606±0.0414 0.7709±0.0458 0.4720±0.0572 0.2523±0.0521 0.0258±0.0010 0.8847±0.0005 0.0479±0.0069 0.0252±0.0067

Table 9: Performance on all subsets of attributes combination of Motor and Air, ▲/△ denote
edited/preserved attributes.
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I.2 Sensitivity Study for multi-resolution

In this section, we show the impact of different Multi-resolution parameters on different attributes in
Fig. 11. All experiments are performed on 6 subsets of Synthetic, including editing [trend type, trend
direction, season cycles, trend type & trend direction, trend type & season cycles, trend direction &
season cycles]. To analyze the influence of R, we fix Lp = 2 and vary R. To examine the impact
of Lp, we fix R = 3 and vary Lp. We found that different attributes exhibit varying preferences for
multi-resolution parameters across different subsets. This observation supports the motivation for
proposing a multi-resolution approach: distinct attributes exert different scales of influence on time
series data.
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Figure 11: The impact of multi-resolution on 6 Synthetic subsets.
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I.3 Case Study

In this section, we demonstrate the superiority of our approach by visualizing the results of our
method with a baseline on editing tasks. As shown in Fig. 12, we compare our method and baselines
on Synthetic dataset. The left column compares the TEdit-CSDI and CSDI while the right column
compares the TEdit-TW and Time Weaver. Each row represents different attribute settings, containing:
modifying trend type, modifying trend direction, modifying season cycles, modifying trend type and
trend direction, modifying trend type and season cycles, modifying trend direction and season cycles.
It’s obvious that the editing results of our method are much closer to the target time series with lower
MSE and MAE, proving the superiority of our method.
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Figure 12: More cases of different attribute subsets of Synthetic dataset
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I.4 Comparing Editing and Conditional Generation

Here we provide more comparison results of conditional generation and editing in Fig. 13. The
editing results are closer to the target time series with lower MSE and MAE. Although the time series
generated by condition generation also meets the requirement of the attributes, it still lost the detailed
information of input while the editing process better retains the characteristics of the time series to
preserve and manipulate only the target attribute to change. Therefore, the editing can achieve a more
precise control compared with conditional generation.
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Figure 13: Comparison between editing and conditional generation

I.5 Bootstrap influence on different attributes

To further explore the impact of bootstrapping on data coverage, we visualize the effect of bootstrap-
ping data on different attributes to complement the original data. Fig. 14,15,16 present the results on
trend types, and season cycles, trend directions, respectively. According to the classification accuracy
of the TAP model and case study, we can infer that trend directions are a relatively simple pattern for
modeling while the trend types and season cycles are more complex. The data coverage improvement
brought by bootstrapping is more obvious when the attribute is complex.
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Figure 14: The influence of bootstrapping on different trend types
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Figure 15: The influence of bootstrapping on different season cycles
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Figure 16: The influence of bootstrapping on different trend directions
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tions to faithfully reproduce the main experimental results, as described in supplemental
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reproduce the results. See the NeurIPS code and data submission guidelines (https:
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Answer: [Yes]
Justification: Standard deviations are provided in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information about the computer resources have been claimed in the
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conform with the NeurIPS Code of Ethics https://neurips.
cc/public/EthicsGuidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper has discussed broader impacts in appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

31

https://neurips.cc/public/EthicsGuidelines
https://neurips.cc/public/EthicsGuidelines
https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not release models or real-world datasets, all the experiments
are based on synthetic data and public datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the assets used in this paper are open-source materials and are properly
credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

32

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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