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ABSTRACT

Humans can naturally reason from superficial state differences (e.g. ground wet-
ness) to transformations descriptions (e.g. raining) according to their life experience.
In this paper, we propose a new visual reasoning task to test this transformation
reasoning ability in real-world scenarios, called Visual Transformation Telling
(VTT). Given a series of states (i.e., images), VTT requires to describe the transfor-
mation occurring between every two adjacent states. Different from existing visual
reasoning tasks that focus on surface state reasoning, the advantage of VTT is that it
captures the underlying causes, e.g. actions or events, behind the differences among
states. We collect a novel dataset which comprise 13,547 samples to support the
study of transformation reasoning. Each sample involves several key state images
along with their transformation descriptions. Our dataset spans diverse real-world
activities, providing a rich resource for training and evaluation with automated,
human, and LLM assessments. To construct an initial benchmark for VTT, we test
models including traditional visual storytelling (CST, GLACNet) or dense video
captioning methods (Densecap) and advanced multimodal large language models
(LLaVA v1.5-7B, Qwen-VL-chat, Gemini-1.5, GPT-4o, and GPT-4), as well as
their upgraded versions based on our learning on human reasoning. Experimental
results reveal that even state-of-the-art models still have a significant gap with
human performance in VTT, highlighting substantial areas for improvement.

1 INTRODUCTION

What comes to your mind when you are given a series of images, e.g. Figure 1? We may first notice
the content of each image, then connect them in our mind, and finally conclude a series of events
from images, i.e., the entire intermediate process of cooking noodles. In fact, as described in Piaget’s
theory of human cognitive development Bovet (1976); Piaget (1977), this is a typical reasoning
process from states (i.e., single images) to transformation (i.e., changes between images). This
ability, perceiving and analyzing transformations between states, marks a significant advancement in
cognitive development. In the preoperational stage (2-7 years old), children tend to concentrate on
static states and often overlook these dynamic transformations. However, as they enter the concrete
operational stage (7-12 years old), their cognitive capabilities evolve, enabling them to gradually
appreciate and understand the transformations between states.

Interestingly, the development of computer vision, especially at the stage of deep learning, follows a
similar pattern. Early computer vision primarily focused on tasks such as image classification, image
detection, image captioning, image question answering, and image generation, aiming to understand
or generate static states, and it has achieved satisfactory results. Recent multimodal large language
models (MLLMs) Liu et al. (2023a); Bai et al. (2023); et al. (2024a;b) have further benefited from
larger data volumes and more extensive model parameters, achieving even greater breakthroughs.
As machines’ ability to understand and generate static states approaches or surpasses human levels,
researchers have shifted focus to dynamic vision tasks. These include visual storytelling Ting-Hao
et al. (2016), procedure planning Chang et al. (2020), and video generation Singer et al. (2022); Ho
et al. (2022); Hong et al. (2022). Despite recent advances, current models often struggle to accurately
understand and represent transformations, leading to errors in visual content interpretation and
generation. For example, Sora Liu et al. (2024), while capable of producing high-quality videos, faces
challenges in modeling basic transformations such as glass breaking. It might display water spilled
on the table before the glass itself breaks, indicating a failure to capture the sequential transformation.
This limitation highlights the critical need for more robust transformation modeling to tackle complex
visual reasoning tasks effectively.

1
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Figure 1: An example of Visual Transformation Telling.
Given a series of states (images), the goal is to reason and
describe transformations between every two adjacent states.

In this paper, we propose a new task,
called Visual Transformation Telling
(VTT), to directly evaluate the ability
of transformation modeling in real sce-
narios. VTT task asks models to gen-
erate sentences to describe the trans-
formation for a given series of states,
i.e. images. Different from traditional
visual reasoning tasks that only con-
sider state differences, VTT focuses
on digging for underlying transforma-
tion behind observation. As the im-
ages s3, s4 shown in Figure 1, the
change in the position of noodles is merely a surface phenomenon, the more fundamental rea-
son is that someone pouring out the noodles, leading to the state transition. Previously, there have
been some preliminary studies Park et al. (2019); Hong et al. (2021); Qiu et al. (2023) on transforma-
tion. However, they are defined in an artificial environment with extremely simple transformations,
which is difficult to simulate the diversity and complexity of transformations in reality. In contrast,
our dataset covers a wide range of daily activities from two extensive instructional video collec-
tions, CrossTask Zhukov et al. (2019) and COIN Tang et al. (2019; 2021), which include temporal
boundaries and descriptions annotations. These annotations, originally intended for tasks like step
localization and action segmentation, were leveraged to structure the data for our Visual Task Trans-
formation task. Specifically, key video frames were extracted to serve as state inputs, while the
annotated descriptions of the main steps were employed as transformation targets.

We benchmark existing models on VTT tasks and conduct extensive analysis. Given the similarity be-
tween VTT and visual storytelling and dense video captioning, i.e., both of which output a sequence of
sentences based on a series of keyframes, we adapt several typical methods, including CST Gonzalez-
Rico & Fuentes-Pineda (2018), GLACNet Kim et al. (2019), and Densecap Johnson et al. (2016).
Additionally, we evaluate several multimodal large language models (MLLMs), including open
source models, i.e., LLaVA v1.5-7B Liu et al. (2023a), Qwen-VL-chat Bai et al. (2023), and close
source models, i.e., Gemini-1.5 et al. (2024a), GPT-4 et al. (2024b) and GPT-4o Hel. Experimental
results indicate that existing models still have significant scope for improvement. According to the
human and LLM evaluation, even the best performing model, i.e., Gemini-1.5, achieves scores of only
3.95, and 4.17 (out of 5) in terms of Relevance, and Logical Soundnes, highlighting a significant gap
compared to human performance. We further perform qualitative analyses on test cases, identifying
four common error types in MLLMs: bias, misidentification, hallucination, and illogicality. We
further explore strategies to improve existing model on VTT data. We find that fine-tuning MLLMs on
VTT datasets significantly improves both relevance and logical consistency, suggesting that existing
training data lack sufficient information for effective transformation reasoning. Prompt strategies
like forcing the model to predict the overall transformation topic can improve the performance and
alleviate hallucination problems. Moreover, while explicitly modeling differences between states
has demonstrated substantial improvements in traditional models, applying similar approaches to
MLLMs remains non-trivial, indicating a potential direction for future study.

The contributions of this study are as follows: 1) We introduce a novel visual transformation
telling task and collect a dataset to resolve the limitations of transformation reasoning in real-world
scenarios. We support this with a comprehensive evaluation framework, incorporating automated
metrics, human assessment, and LLM-based evaluation. 2) We benchmark several models, including
traditional models and MLLMs (both open-source and closed-source), revealing significant room for
improvement. 3) We identify and categorize common error types in current models, offering insights
and potential directions for future research.

2 RELATED WORKS

Visual reasoning has been considered as one of the next north star of computer vision Fei-Fei &
Krishna (2022), and is constantly being examined by the new multimodal large models that have
emerged in recent years. Early visual reasoning tasks mainly focus on state-level reasoning. Spot-the-
diff Jhamtani & Berg-Kirkpatrick (2018) represents an initial exploration into the visual differences

2
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between states, highlighting the appearance and disappearance of objects. CLEVR Johnson et al.
(2017) and GQA Hudson & Manning (2019) concentrate on object relation and logical reasoning.
RAVEN Zhang et al. (2019) and V-PROM Teney et al. (2020) concentrate on the induction and
reasoning of graphic patterns. VCR Zellers et al. (2019) and Sherlock Hessel et al. (2022) test
the machine’s ability to learn commonsense knowledge to answer daily questions. In addition to
these tasks, there is a series of works related to dynamic reasoning. Physical reasoning Melnik et al.
(2023) evaluates the ability to learn physical rules from data to answer questions or solve puzzles.
VisualCOMET Park et al. (2020) requires reasoning beyond the given state to answer what happened
before and will happen next. Visual storytelling Park et al. (2020) requires logically telling a story
from information-incomplete states. The field of visual reasoning tends to shift from static scenes
to dynamic ones. While reasoning in dynamic scenes, state and transformation are both crucial, we
focus on transformation reasoning to better evaluate and improve this ability, which distinguishes
VTT from state-only and more complex composite tasks.

To the best of our knowledge, there are few studies on designing specific tasks for visual transfor-
mation reasoning. TVR Hong et al. (2021) and OVT Qiu et al. (2023) require to predict a sequence
of property (e.g. color) changes given the initial and final states. However, the synthetic scenario
used in both datasets is far from reality and the property changes are not commonly used to describe
transformations in real life. In contrast, VTT emphasizes event-level description, which is a more
natural way of describing transformations. Visual storytelling Ting-Hao et al. (2016); Ravi et al.
(2021) indeed requires event-level description, but transformations are mixed throughout the story,
making it difficult to evaluate transformation reasoning specifically. Visual abductive reasoning Liang
et al. (2022) has a similar core idea to VTT, which is to find the most likely explanation for incomplete
observations. However, VTT aims to reason multiple logically related transformations from states,
while their task only requires reasoning a single missing transformation from multiple transformations.
Procedure planning Chang et al. (2020) aims to complete a job given states, while VTT focuses on
explaining transformations between states, which has wider scenarios, such as explaining the wet
ground with rain. Furthermore, the requirement for natural language generation in VTT leads to
different evaluations and unique challenges, such as generalization on language compositions and
transformation combinations. Finally, walkthrough planning Chang et al. (2020) has a different target,
which is to predict intermediate states.

Another topic related to VTT is visual description. Tasks that describe a single image include image
captioning Farhadi et al. (2010); Kulkarni et al. (2011), dense image captioning Johnson et al. (2016),
and image paragraphing Krause et al. (2017), which vary in the level of detail required. Tasks that
describe videos include video description Venugopalan et al. (2015), video paragraph description Yu
et al. (2016), grounded video description Zhou et al. (2019), dense video captioning Krishna et al.
(2017), and video timeline modeling Liu et al. (2023b) start to describe events rather than a single
state. For example, dense video captioning asks to predict temporal boundaries of key events and
describe them. However, these tasks do not explicitly require reasoning about transformations since
they provide the full process of transformation throughout frames.

3 VISUAL TRANSFORMATION TELLING DATASET

3.1 TASK DEFINITION

Visual transformation telling aims to test machines’ ability to reason and describe transformations
from a sequence of visual states, i.e., images. Formally, N + 1 images S = {sn}N+1

n=1 are provided,
which are logically related and semantically distinct. Logically related means these images are
associated with a particular event and are arranged in time sequence. Semantically different means
that adjacent images come from two discontinuous time points and the content they contain has
substantially changed, i.e., a transformation. The objective is then to reason N transformations
T = {tn}Nn=1 between every two adjacent images and describe them in natural language, such that
s1 → t1 → s2 → · · · → tn → sn+1 is logically sound.

3.2 VTT DATASET CONSTRUCTION

Data collection. To create a comprehensive dataset of real-world transformations, we chose in-
structional videos due to their detailed depiction of everyday activities. Specifically, we used two

3
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Figure 2: Distributions of VTT samples. (a) Category. (b) Words. (c) Transformation length (top),
sentence length (bottom). (d) Topic.

well-known public instructional video datasets: CrossTask Zhukov et al. (2019) and COIN Tang et al.
(2019; 2021). These datasets provided a rich source of data for our VTT dataset.

State and transformation description. Figure 1 illustrates an instructional video from COIN on
cooking noodles and how we transformed their annotation into our VTT dataset. We can see that
the video is segmented into multiple main steps, each annotated with precise temporal boundaries
and text labels. For state image extraction, the best choice is the frame just before or after a
transformation. CrossTask’s and COIN’s precise temporal segment annotations, which undergo three
rounds of refinement Tang et al. (2019), can satisfy this requirement. For the first transformation,
we used the first frame of the corresponding step segment as its start state and the last frame as its
end state. For the remaining transformations, the end state is extracted in the same way, while the
start state shares the end state of the previous transformation. We filter out samples containing too
similar adjacent states based on CLIP 1 feature similarity to avoid situations where the transformation
cannot be recognized. We also use EasyOCR 2 to filter out samples containing characters in the image
to avoid potential caption leakage. For transformation descriptions, we used original text labels
as transformation labels. We manually checked the quality of 200 random samples and found that
transformations could be reasoned out from states most of the time. Using this method, we collected
13,547 samples with 55,482 transformation descriptions from CrossTask and COIN, forming our new
data for VTT.

Category and topic labels. The VTT dataset also includes annotations such as category, topic,
and transformation description, which are collected and organized from CrossTask and COIN. Step

1https://huggingface.co/openai/clip-vit-large-patch14
2https://github.com/JaidedAI/EasyOCR
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labels and corresponding segments are provided by both datasets. In CrossTask, step labels were
derived from WikiHow, whereas COIN employed experts to define them. Annotators were then
tasked with labeling the step categories and corresponding segments for each video. We collected
and organized these annotations in a uniform format for the VTT dataset. Both CrossTask and COIN
provide topic information, which pertains to the task to be solved. COIN also provides categories as
domain information, which are absent in CrossTask. We manually classify all topics from CrossTask
into existing categories. Table 6 in Appendix shows the full list of 12 categories and 198 topics.

Table 1: VTT dataset statistics.

CrossTask COIN Train Val Test Total

Categories 4 12 12 12 12 12
Topics 18 180 198 198 198 198
Samples 1825 11722 10759 1352 1436 13547
States 12860 56169 54716 6974 7339 69029
Trans. 11035 44447 43957 5622 5903 55482
Unique Trans. 105 749 853 812 806 853

Dataset Split and Statistics.
We randomly split the data into
Train/Val/Test sets with 10,759, 1,352,
and 1,436 samples at the topic level.
The detailed topic distribution is
shown in Figure 2d, indicating that
about half of the topics have over
100 samples. The main statistics of
the VTT dataset are summarized in
Table 1. VTT also requires models to
generalize to handle transformation
combinations not present in the training set. Figure 2 illustrates the distribution of the sample
categories, keywords, transformation length, and sentence length of VTT. The category distribution
and word cloud reveal that VTT encompasses a wide range of daily activities. The distribution of
transformation length shows diversity and most samples involve 2-5 transformations. The average
sentence length is around 2-6 words, suggesting that brief descriptions are predominant.

4 BENCHMARK ON VTT

4.1 MODEL SELECTION

Traditional models. We first adapt two classic visual story telling methods for comparison, including
CST Gonzalez-Rico & Fuentes-Pineda (2018) and GLACNet Kim et al. (2019), which are both
winners of the visual storytelling challenge Mitchell et al. (2018). This is because visual storytelling
generates N descriptions from N images, that is similar to our VTT task. In addition, we also
compared with a dense video captioning method called DenseCap Johnson et al. (2016), since dense
video captioning also has a similar visual description target, which aims to describe a series of
events in a video and requires predicting temporal boundaries for events. All methods were closely
implemented as per the original paper. For a better image understanding, we also provided baseline
models with CLIP as image encoder marked with ‘*’. The implementation details of TTNet as well
as the baseline models are described in the supplementary.

Multimodal language models. MLLMs have shown promising capabilities on various vision
language benchmarks. To test how well they perform on VTT, we test two open-source models,
including LLaVA v1.5-7B Liu et al. (2023a), Qwen-VL-chat Bai et al. (2023). We also test four
closed source models through their public API, including Gemini-1.5 et al. (2024a), GPT-4 et al.
(2024b), and GPT-4o Hel. Considering that these models may not be well adapted to the task form of
VTT, such as language style, differences in word usage, etc., we also tune the LLaVA model with
LORA Hu et al. (2021) on VTT for testing.

4.2 EVALUATION PROTOCOL

Automated metrics. We follow previous works on visual descriptions Ting-Hao et al. (2016);
Krishna et al. (2017); Liang et al. (2022), and select common used metrics for evaluation, including
BLEU@4 Papineni et al. (2002), CIDEr Vedantam et al. (2015), METEOR Banerjee & Lavie (2005),
ROUGE-L Lin & Hovy (2002), SPICE Anderson et al. (2016), and BERT-Score Zhang et al. (2020),

Human evaluation. For automatic evaluation metrics, factors such as vocabulary choice, sentence
structure, and sentence length can impact scores, even for semantically identical sentences. As this
is the first introduction of this benchmark, we prioritized accuracy through human evaluation. We
asked 25 human annotators to assess the quality of transformation descriptions using a Likert scale
ranging from 1 to 5 based on the following criteria: fluency, measuring the clarity and coherence of

5
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Table 2: Results on VTT evaluated using B@4(BLEU@4), M(METEOR), R(ROUGE-L), C(CIDEr),
S(SPICE), BS(BERT-Score), Flu.(Fluency), Rel.(Relevance), and Logic.(Logical Soundness). *
indicates using CLIP as image encoder. ‘Sep’ and ‘multiturn’ means inputting each image in one
prompt separately and providing each adjacent pair in multiple prompt step-by-step.

Model B@4 M R C S BS Flu. Rel. Logic.

Human 11.79 13.66 29.49 82.26 24.41 40.95 5.00 4.88 4.88

CST 10.09 11.39 25.98 43.22 9.28 16.30 - - -
CST* 13.96 19.21 38.11 84.60 21.85 25.66 2.04 3.16 2.96
GLACNet 42.77 45.26 52.98 381.48 45.33 60.12 - - -
GLACNet* 55.24 59.48 66.25 508.18 60.21 71.13 4.75 3.82 3.78
DenseCap* 48.25 52.00 59.79 439.68 53.73 66.30 4.74 3.67 3.59

GPT-4 4.73 6.74 11.76 28.24 11.66 25.84 - - -
GPT-4o 4.84 6.91 12.03 29.69 13.01 28.38 - - -
Gemini-1.0 8.36 10.25 19.82 47.79 16.13 31.43 - - -
Gemini-1.5 8.51 11.1 20.62 52.25 17.93 33.88 4.95 3.95 4.17
Gemini-1.5 (multiturn) 8.20 9.91 19.87 42.69 16.47 31.08 - - -
Qwen-VL-chat 4.71 4.57 10.62 15.32 6.25 23.93 - - -
Qwen-VL-chat (Sep) 4.70 5.62 11.23 21.91 9.38 25.64 - - -
LLaVA-1.5-7B 3.06 3.30 7.19 12.04 5.18 23.21 - - -
LLaVA-1.5-7B+Topic 3.14 3.46 7.56 12.49 5.95 23.76 4.79 2.08 3.07
LLaVA-1.5-7BLORA 31.43 32.37 40.38 268.59 33.17 49.08 - - -
LLaVA-1.5-7BLORA+Topic 33.58 34.25 41.93 289.14 35.29 50.46 4.98 3.10 3.76

TTNetBase 55.68 60.47 67.05 515.12 61.45 72.22 4.79 4.04 3.95
TTNet 61.22 66.31 71.84 570.63 66.20 76.25 4.78 4.10 4.11
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Figure 3: Performance of models under different data: (a) The SPICE values with respect to the
number of transformation items. (b) The SPICE values with respect to different categories of data.

the transformations; relevance, assessing how relevant the transformations are to the image states;
and logical soundness, evaluating how well the overall logic aligns with commonsense.

5 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first summarize the ability of various models on VTT and analyze the performance
of MLLMs on different data types. Then, we analyze the error types made by the most advanced
MLLMs. Finally, we improve the existing model to preliminarily explore how to model visual
transformations better, hoping to inspire future study.

5.1 COMPARISON OF BASELINE MODELS

Table 2 summarizes the results of models on the VTT dataset. The results show that both traditional
models and SOTA MLLMs have much room for improvement.

6
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For traditional models, GLACNet performs best, which chieves 4.75, 3.82 and 3.78 (out of 5) on
Fluency, Relevance and Logical Soundnes respectively. This may because GLACNet uses contextual
information more completely.

Among the MLLMs, Gemini-1.5 performs best, achieving scores of 4.95, 3.95, and 4.17 for Fluency,
Relevance, and Logical Soundness, respectively. This may be attributed to two factors: First, Gemini
employs multimodal interleaving to pre-train from scratch, which contrasts with other MLLMs that
primarily rely on knowledge embedded in language models. This direct multimodal pre-training
approach may enable Gemini to acquire a more comprehensive knowledge. Second, Gemini’s
training data includes videos, allowing it to encounter data more similar to VTT scenarios during
training. However, it does not demonstrate a substantial advantage over traditional models and still
exhibits a significant gap compared to human performance, as indicated by both automated and
human evaluations. Since VTT requires understanding across multiple images, we also explored
a step-by-step prompting strategy, wherein the model is provided with each adjacent image pair
sequentially and asked to describe each transformation. Nevertheless, this multi-turn approach did not
yield improved results, potentially due to the increased dependence on historical dialogues, thereby
introducing additional complexity.

Further analysis based on human evaluation shows that the main problem with the current large
model is inconsistency with the input image, that is, they always generate text that is not completely
related or even completely unrelated to the image. In addition, the output of MLLMs also have logical
errors, which are manifested in the generated activities violating commonsense or the generated
transformations sequence is unreasonable. Even tuning cannot solve these problems well, indicating
that more efforts are needed.

5.2 PERFORMANCE ACROSS DIFFERENT DATA TYPES

We further analyze the model’s performance across different data types. As shown in Figure 3, for
all MLLMs, an increase in the number of transformations correlates with a decline in performance,
indicating that the models struggle to manage long contexts effectively. This drop in performance may
be due to the models’ difficulty in modeling long-range dependencies, as the complexity of reasoning
increases with the number of transformations. Longer sequences require maintaining coherence and
tracking intricate changes over multiple steps, which current MLLMs may not handle efficiently due
to limitations in their attention mechanisms or insufficient training on extended contextual data.

In examining performance across event categories, we observe that the specific types in which
different models excel are inconsistent, likely due to variations in the training data distribution.
However, one consistent finding across all models is that their performance is weakest in the sports
category. This suggests that incorporating more relevant data may be necessary to enhance model
performance for this particular type.

5.3 QUALITATIVE ANALYSIS AND COMMON ERROR TYPES

We qualitatively analyze the output of different MLLMs and show some examples in Figure 4 (more
cases can be found at Appendix). We summarize the common errors into four types:

Bias: Models can be misled by the presence of specific objects to conclude that certain non-occurring
events are happened. As the example of the event ‘cut mango’, the simultaneous appearance of the
glass and the fruit leads the Qwen and LLaVa to assume that the event is related to juicing. This type
of error indicates that the models are overly reliant on co-occurrence patterns observed in the training
data, which may not accurately reflect real-world scenarios.

Misidentification: Models sometimes mistakenly identify objects in images. For instance, LLava
failed to recognize contact lenses and incorrectly identified cleaner as lotion. Such recognition errors
are more prevalent in models with smaller parameters. This suggests that model capacity and the
training data quality significantly impact the object recognition capability, highlighting the necessity
for both larger models and more diverse and comprehensive datasets.

Hallucination: Models sometimes generate predictions that deviate from the image context, despite
they correctly identify objects and topics. This results in the generation that is relevant to the topic
but inconsistent with the image, or even generating objects that do not exist. As the example of the

7
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Groundtruth Remove the core. Cut the flesh. Cut into strips and pieces. Cut the flesh.
Gemini-1.5 Cut mango in half. Scoop mango with mango skin. Slice mango flesh. Scoop mango with knife.
GPT-4o Place mango on cutting board. Slice mango with knife. Separate mango slices from seed. Transfer mango slices to glass.
Qwen-VL-chat Cutting the fruit. Peeling the fruit. Squeezing the fruit. Drinking the fruit juice.
LLaVA-1.5-7b Cut the fruit into pieces. Squeeze the juice into a glass. Add a slice of lemon. Serve the juice with a straw.

Groundtruth Wet and wash hands. Add some cleaner to clean and wet the lenses and take out the lenses. Wear the contact lenses.
Gemini-1.5 Cup hands under faucet. Dispense contact solution on finger. Place contact lens on eye.
GPT-4o Open contact lens case. Pick up contact lens. Move contact lens to eye.
Qwen-VL-chat Apply contact lens. Look in mirror. Remove contact lens.
LLaVA-1.5-7b Apply lotion to hand. Squeeze bottle of lotion. Spread lotion on hand.

Figure 4: Qualitative comparison on the VTT test data. Above: cut mango. Below: wear contact
lenses. Different error types are marked with different colors: bias (red), misidentification (green),
hallucination (orange), and illogicality (blue).

event ‘wear contact lenses’, the output of GPT-4o is consistent with the topic but includes ‘contact
lens case’, which is not present in the image. This issue points to a disconnect between the language
and vision components of current MLLMs.

Illogicality: Models may output illogical content or even violate commonsense. For example, Gemini
outputs ‘scoop mangoes with mango skin’, which is an implausible scenario. These errors highlight
the limitations of models in understanding and applying commonsense reasoning, indicating a need
for incorporating more advanced reasoning capabilities and better grounding in real-world knowledge.

5.4 FURTHER EXPLORATION

Building on our understanding of the basic pipeline for human reasoning about transformations from
visual states, we explore ways to enhance models’ capacity for visual transformation reasoning. Given
the need for both flexibility and manageable computational overhead, we focus on improving the
best-performing traditional model, GLACNet. To further enhance image understanding, we replace
the original image encoder with CLIP Radford et al. (2021). We call this improved model TTNetBase.

We investigated three key areas for improving the model: (1) Difference Sensitive Encoding (Diff.):
In addition to the original representation of each state, we include the differences between every pair
of adjacent states at the embedding level to enhance the model’s ability to capture semantic-level
differences between states. (2) Masked Transformation Modeling (MTM): To enable the model
to fully utilize information from all states and transformations across different steps, we employ
a masked transformation modeling strategy. (3) Auxiliary Learning (Aux.): we introduce topic
prediction and category prediction task for each state series to reinforce the consistency of model
outputs with the overall themes. We refer to this improved model as TTNet. Further details can be
found in the Appendix D.

The overall performance of TTNet on the VTT task is presented in the last two rows of Table 2, while
the ablation study results for each component are shown in Table 3. The results indicate that using
the state feature difference provides the most substantial improvement, suggesting that capturing
differences is essential for effective transformation reasoning. The subsequent four rows show the
results of various combinations of these strategies, and it is evident that utilizing all three strategies
yields the best performance. We also evaluate the impact of different auxiliary tasks. From Table 4,
topic classification proves more effective than category classification, likely because topics offer
a more fine-grained level of information than categories. Notably, using both classification tasks
concurrently enhances overall performance.

We also try to apply improved strategies to LLaVA. Considering both ‘difference sensitive encod-
ing’ and ‘masked transformation modeling’ require fine-tuning the model to adapt to inputs not

8
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Table 3: Results of applying different key compo-
nents of TTNet. The first row presents the base
model’s performance.

Diff. MTM Aux. B@4 M R C BS

55.68 60.47 67.05 515.12 72.22
√

59.89 64.61 70.30 556.85 75.00√
56.26 60.92 67.57 520.04 72.72√
56.37 61.18 67.85 521.93 72.97

√ √
60.39 65.38 70.99 562.25 75.62√ √
60.38 65.50 71.14 562.83 75.72√ √
56.91 61.89 68.45 527.62 73.54

√ √ √
61.22 66.31 71.84 570.63 76.25

Table 4: Ablation study results on the auxiliary
tasks, i.e., category prediction, and topic pre-
diction.

category topic B@4 M R C BS

60.39 65.38 70.99 562.25 75.62
√

59.11 64.08 69.99 549.44 74.81√
60.49 65.51 71.25 562.96 75.89

√ √
61.22 66.31 71.84 570.63 76.25

Table 5: Results of human and LLM evaluations of logical consistency on different models.

Evaluation CST GLACNet DenseCap Gemini LLaVA LLaVALORA TTNetBase TTNet

Human 2.96 3.78 3.59 4.17 3.07 3.76 3.95 4.11

Gemini-1.5 1.04 2.85 2.6 4.0 3.26 3.72 3.73 3.76

encountered during pretraining, we opted to implement only ‘auxiliary learning’ by predicting the
corresponding topic. As shown in Table 2, auxiliary learning enhances performance in both the
zero-shot and fine-tuned settings. Experiments on traditional models demonstrate that explicitly
modeling the differences between states leads to substantial improvement. However, applying similar
modeling to MLLMs is not trivial. We leave these improvements for MLLMs to future work.

5.5 USING LLM EVALUATION REPLACE HUMAN EVALUATION

For evaluating various aspects, particularly logical consistency, human evaluation remains the most
reliable method, as no current metric can precisely measure logical coherence. However, human
evaluation is costly and not feasible for large-scale assessments. To address this, we leverage an
advanced LLM, Gemini-1.5, to partially substitute for human evaluations by scoring candidate
responses. The prompt used for this evaluation can be found in Appendix G. As shown in Table 7,
Gemini-1.5 achieves a Spearman’s correlation of 88.1 with a p-value of 0.004 when compared to
human ratings, indicating a statistically significant correlation. This result suggests that LLMs can
serve as a viable proxy for human evaluation to a certain extent.

6 CONCLUSION AND DISCUSSION

This paper introduces Visual Transformation Telling (VTT), a novel visual reasoning task that
focuses on understanding transformations between states in a series of images, which is a crucial
cognitive skill for humans. To the best of our knowledge, this is the first real-world application of
transformation reasoning that defines transformation descriptions as outputs. We constructed the VTT
dataset, consisting of 13,547 samples, to facilitate this study. We extensively test the capabilities of
existing models, both traditional models and state-of-the-art MLLMs. Our experimental results reveal
that even the most advanced MLLMs struggle to effectively address this task. We categorize the
primary errors of current models into four types: bias, misidentification, hallucination and illogicality.
Furthermore, we conduct extensive experiments by tuning MLLMs on VTT data, prompting to force
topic generation, and proposing several enhancement strategies for traditional models. Based on
our findings, we believe that collecting more data containing explicit transformation information
and adapting MLLMs to better understand differences between states (images) represent the most
promising future directions for research in transformation reasoning.

9
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A DATASET SCALE DISCUSSION

As mentioned in the main paper, the limited size of the VTT dataset hinders the generalization
ability of current models. Additionally, the dataset covers only a narrow range of transformations,
which limits the models’ applicability. However, collecting a larger dataset is costly due to the
expense of annotating steps/transformations with descriptions and temporal boundaries are expensive.
One possible way to mitigate this cost is to use pretrained step localization models Wang et al.
(2021); Zhang et al. (2022) or action and object state-recognition models Soucek et al. (2022) to
propose coarse steps/transformations and refine the results with human annotators. In addition,
we suggest using object state-recognition Soucek et al. (2022) to refine the boundary precision of
existing step segments in CrossTask and COIN for constructing larger datasets in the future. Apart
from annotating a large-scale dataset, another way is to design a method that can directly learn
transformation reasoning from massive raw video-caption data such as HowTo100M Miech et al.
(2019). There have already been pioneer works that obtain impressive results on natural language
processing tasks, such as GPT-3 Brown et al. (2020) and chatGPT 3, and computer tasks, such as
CLIP Radford et al. (2021).

Category Topics

Nursing and Care
(14)

Wash Dog, Use Earplugs, Use Neti Pot, Put On Hair Extensions, Use Epinephrine Auto-injector, Perform CPR,
Wear Contact Lenses, Remove Blackheads With Glue, Give An Intramuscular Injection, Shave Beard, Wash Hair,
Bandage Dog Paw, Draw Blood, Bandage Head

Pets and Fruit (7) Plant Tree, Transplant, Graft, Cut Grape Fruit, Cut Mango, Cut Cantaloupe, Sow

Furniture and Decora-
tion (15)

Install Shower Head, Install Ceramic Tile, Install Air Conditioner, Install Curtain, Lubricate A Lock, Replace Door
Knob, Install Wood Flooring, Install Closestool, Assemble Cabinet, Assemble Sofa, Replace Faucet, Replace Toilet
Seat, Assemble Bed, Build Simple Floating Shelves*, Assemble Office Chair

Leisure and Perfor-
mance (17)

Make Paper Wind Mill, Perform Vanishing Glass Trick, Raise Flag, Play Frisbee With A Dog, Make Chinese
Lantern, Carve Pumpkin, Change Guitar Strings, Perform Paper To Money Trick, Pitch A Tent, Open Champagne
Bottle, Blow Sugar, Make Paper Easter Baskets, Cut And Restore Rope Trick, Do Lino Printing, Replace Drumhead,
Prepare Sumi Ink, Prepare Canvas

Dish (23) Make Kimchi Fried Rice*, Cook Omelet, Make Sandwich, Grill Steak*, Clean Fish, Use Toaster, Clean Shrimp,
Make Burger, Make French Toast*, Wrap Zongzi, Make French Strawberry Cake*, Make Pickles, Boil Noodles,
Make Bread and Butter Pickles*, Make Kerala Fish Curry*, Make Lamb Kebab, Make French Fries, Use Rice
Cooker To Cook Rice, Make Pizza, Make Youtiao, Make Salmon, Smash Garlic, Make Pancakes*

Electrical Appliance
(20)

Replace Graphics Card, Replace Light Socket, Replace Electrical Outlet, Replace Memory Chip, Use Soy Milk
Maker, Change Toner Cartridge, Replace Laptop Screen, Replace Refrigerator Water Filter, Use Vending Machine,
Replace Filter For Air Purifier, Replace Hard Disk, Replace Blade Of A Saw, Refill Cartridge, Clean Laptop
Keyboard, Arc Weld, Install Ceiling Fan, Replace A Bulb, Paste Screen Protector On Pad, Assemble Desktop PC,
Use Sewing Machine

Science and Craft
(15)

Prepare Standard Solution, Make Flower Press, Use Volumetric Pipette, Hang Wallpaper, Make Candle, Make Soap,
Use Triple Beam Balance, Make Flower Crown, Use Volumetric Flask, Paste Car Sticker, Make Slime With Glue,
Make Paper Dice, Wrap Gift Box, Set Up A Hamster Cage, Use Analytical Balance

Drink and Snack (20) Make Meringue*, Make Salad, Make Lemonade*, Make Taco Salad*, Make Tea, Make Chocolate, Make a Latte*,
Make Homemade Ice Cream, Make Jello Shots*, Make Coffee, Make Cocktail, Make Cookie, Make Irish Coffee*,
Roast Chestnut, Make Banana Ice Cream*, Make Orange Juice, Make Matcha Tea, Make Sugar Coated Haws,
Make Strawberry Smoothie, Make Hummus

Vehicle (21) Change Bike Chain, Replace Car Fuse, Replace Rearview Mirror Glass, Tie Boat To Dock, Pump Up Bicycle
Tire, Change Car Tire, Use Jack, Remove Scratches From Windshield, Jack Up a Car*, Change Bike Tires, Install
License Plate Frame, Fuel Car, Replace A Wiper Head, Install Bicycle Rack, Replace Tyre Valve Stem, Change a
Tire*, Patch Bike Inner Tube, Polish Car, Replace Car Window, Add Oil to Your Car*, Park Parallel

Housework (15) Put On Quilt Cover, Clean Bathtub, Wash Dish, Clean Leather Seat, Pack Sleeping Bag, Clean Wooden Floor, Clean
Toilet, Iron Clothes, Drill Hole, Remove Crayon From Walls, Clean Hamster Cage, Make Bed, Unclog Sink With
Baking Soda, Clean Rusty Pot, Clean Cement Floor

Sport (10) Practise Karate, Wear Shin Guards, Practise Triple Jump, Throw Hammer, Play Curling, Practise Skiing Aerials,
Practise Pole Vault, Attend N B A Skills Challenge, Glue Ping Pong Rubber, Practise Weight Lift

Gadgets (21) Open A Lock With Paperclips, Replace Mobile Screen Protector, Load Grease Gun, Change Mobile Phone Battery,
Replace Sewing Machine Needle, Change Battery Of Watch, Replace SIM Card, Resize Watch Band, Replace CD
Drive With SSD, Refill Mechanical Pencils, Make Wireless Earbuds, Refill Fountain Pen, Refill A Lighter, Rewrap
Battery, Replace Battery On Key To Car, Fix Laptop Screen Scratches, Operate Fire Extinguisher, Replace Battery
On TV Control, Use Tapping Gun, Refill A Stapler, Make RJ45 Cable

Table 6: The Categories and topics in VTT dataset. Topics marked with * are from CrossTask and
others belong to COIN.

3https://chat.openai.com/

15

https://chat.openai.com/


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Metric Score Criteria

Fl
ue

nc
y

5 All sentences are fluent.
4 Most sentences are fluent, with only a few flaws.
3 About half of the sentences are fluent.
2 Most of the sentences are difficult to read, with only a few being okay.
1 All sentences are hard to read.

R
el

ev
an

ce
5 The descriptions are all related to the corresponding before and after images.
4 A few descriptions are slightly irrelevant, e.g. the description is related to the underlying topic but

cannot be clearly inferred from the images.
3 Many descriptions are slightly irrelevant or a few descriptions are irrelevant, e.g. the action or target

object mentioned in the transformation does not match the images.
2 Many descriptions are irrelevant.
1 Most descriptions are irrelevant, or some descriptions are completely irrelevant, e.g. transformation

is unrelated to the underlying topic of the images.

L
og

ic
al

So
un

dn
es

s

5 The underlying logic of the descriptions is consistent with common sense.
4 The overall logic is consistent with common sense, with minor flaws.
3 There are a few obvious logical problems between the descriptions, e.g. unresonable repeating

transformations.
2 There are some obvious logical problems, e.g. the order of transformations is obviously not in line

with common sense.
1 Logic cannot be judged because of the extremely poor fluency or poor relevance leading to overall

logic inconsistent with the underlying topic.

Table 7: The VTT human evaluation guidelines.

Figure 5: The web interface of human evaluation on VTT.

B THE CATEGORIES AND TOPICS IN VTT

Each sample in VTT has a topic and a category. All Categories and topics are shown in Table 6.

C EVALUATION FOR VTT

C.1 AUTOMATIC EVALUATION

The computation of BLEU@4 follows the smooth strategy Chen & Cherry (2014) to improve the
accuracy of the results. This is necessary because the descriptions in the VTT dataset are typically
short, resulting in a zero score when using the original BLEU@4 method. In addition, BERT-Score
is rescaled with the pre-computed baseline Zhang et al. (2020) to provide more meaningful scores
with a wider range. The NLTK package 4 is used to compute BLEU@4, while CIDEr, METEOR,

4https://www.nltk.org/api/nltk.translate.bleu_score.html
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ROUGE, and SPICE are computed using the code from coco-caption 5. BERT-Score is computed
using the official code 6 provided by the authors.

C.2 HUMAN EVALUATION

Automatic evaluation metrics have limitations in reflecting the quality of the generated text, as they
are uninterpretable and do not necessarily align with human evaluations van der Lee et al. (2019).
To address this, we manually evaluate text quality in the VTT task using three levels of assessment.
The first level assesses the fluency of the text, while the second level evaluates the relevance of each
transformation description to the topic and to the images before and after. The third level assesses
the logical consistency between transformation descriptions. The assessment is conducted using a
5-point Likert scale and follows the guidelines presented in Table 7. We invited 25 volunteers to
evaluate major baseline models on a subset of 200 samples randomly sampled from the testing set,
including one sample from each topic and two additional samples. Annotators were asked to read
and follow the guidelines to assign scores. During the human evaluation process, annotators were
able to view the images, the category, and the topic as references. At least two individuals evaluated
each model’s result for each sample. The web interface for human evaluation is shown in Figure 5
and will be included in the VTT source code.

D TTNET

Our TTNet is inspired by human’s cognitive process of transformation and existing visual storytelling
models Gonzalez-Rico & Fuentes-Pineda (2018); Kim et al. (2019). In this section, we first introduce
the problem formulation and the basic structure of TTNet. Then we describe how we model
transformation by enhancing the model’s ability to capture semantic-level differences with difference
sensitive encoding, and fully utilize context to strengthen transformation reasoning with masked
transformation model and auxiliary learning.

Base structure of TTNet. Inspired by humans and existing visual storytelling models, the first step
in TTNet is independent recognition, where each image is understood independently. To achieve
this, an image encoder fstate is introduced to semantize each image into a vector, resulting in a
set of state representations V = {vi}N+1

i=1 = {fstate(si)}N+1
i=1 . The next step is to associate these

states together to form a complete understanding of the event. To reflect this process, a context
encoder is used. This encoder, which can be a bi-directional RNN or a transformer encoder, is
denoted as ftrans and contextualizes the state representations to obtain transformation representations
C = {ci}N+1

i=1 = {ftrans(i, V )}N+1
i=1 . The final step is to describe the transformations based on the

existing understanding. In TTNet, this is achieved using a transformation decoder ftext, which can
be an RNN or a transformer decoder. This decoder textualizes N transformation representations into
separate descriptions T = {ti}Ni=1 = {ftext(ci+1)}Ni=1, in an auto-regressive manner. Empirically,
it was found that adding the transformation representation to the word embedding in each step is
better than using it as the prefix token. The training objective is to reduce the gap between generated
transformations and ground truth transformations T ∗ = {t∗i }Ni=1 by minimizing the negative log-
likelihood loss, where t∗i = {x∗

i,l}Ll=1 is the ground truth description of the ith transformation.

Ltext = −
N∑
i=1

L∑
l=1

log pθ(x
∗
i,l|x∗

i,<l) (1)

Next, we introduce three strategies we used to model transformation, and we called the model that
does not use these strategies as TTNetbase.

Difference Sensitive Encoding. To bridge the semantic gap between state differences and transforma-
tion descriptions, the first step is to enable the model to accurately identify and capture the variations
between states. However, capturing differences is challenging since adjacent states often exhibit
minimal variation at the pixel level. This is mainly because the scene remains almost unchanged
before and after the transformation, and only certain attributes of the transformed object have changed.

5https://github.com/tylin/coco-caption
6https://github.com/Tiiiger/bert_score
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Figure 6: The architecture of TTNet. Images are first semantized into state representations in
the image encoder, then contextualized to be transformation representations in the context encoder,
and finally textualized into text by the transformation decoder. To better modeling transformation,
difference sensitive encoding is used to capture semantic-level differences, masked transformation
model and auxiliary learning are used to fully utilize context to strengthen transformation reasoning.

1. Cut both ends and remove fruit seeds.
2. Pour the egg into the bowl.
3. Pour the orange juice into the cup.

Figure 7: A failure case from TTNetbase which has the potential to be corrected by utilizing context
information.

Our intuition to solve this problem is that despite the minimal differences between states at the pixel
level, there are often significant semantic differences. Therefore, we first choose CLIP Radford
et al. (2021) as our image encoder to extract state representations, due to CLIP’s strong semantic
representation ability trained on large-scale unsupervised data. Then, we compute semantic difference
features between adjacent states by subtracting the current state and the previous state representations
∆V = {vi − vi−1}N+1

i=1 , where v0 = vN+1. In TTNet, we feed both state representations and the
semantic difference features into the context decoder. To make the model able to distinguish these two
kinds of features, we initialize two learnable types of embeddings and add them to the corresponding
features.

Masked Transformation Model. After identifying state differences, the next challenge is to
efficiently reason about the underlying transformations. For humans, one common approach is to
fully utilize the context to aid reasoning rather than focusing solely on adjacent states. Therefore,
we chose the transformer Vaswani et al. (2017) as the backbone of the context encoder, given its
well-known ability to encode contextual information. However, in our initial experiments, we found
TTNetbase failed to fully utilize context information when reasoning about transformations. A typical
example is shown in Figure 7, where TTNetbase mistakenly identified an orange as an egg due
to their similarities in the image. Nevertheless, such ambiguity can be resolved by incorporating
other correct transformations. Hence, the question becomes how to enhance the model’s ability to
leverage contextual information. Inspired by BERT objectives, we proposed two strategies, including
the masked transformation model (MTM) and auxiliary learning. Similar to the masked language
model Devlin et al. (2019), the intuition behind MTM is that one transformation can be reasoned from
nearby transformations. Specifically, during training, 15% of the features fed into the context encoder,
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Table 8: Implementations details of baseline models and TTNet.

Model Image Encoder Context Encoder Transformation Decoder Params

CST InceptionV3 LSTM LSTM 379M
CST* CLIP (ViT-L/14) LSTM LSTM 661M
GLACNet ResNet152 bi-LSTM LSTM 128M
GLACNet* CLIP (ViT-L/14) bi-LSTM LSTM 373M
DenseCap* CLIP (ViT-L/14) Attention LSTM 361M

TTNetBase CLIP (ViT-L/14) Transformer Transformer 368M
TTNet CLIP (ViT-L/14) Transformer Transformer 368M

Table 9: Results of different image encoders.

Image Encoder Params Acc B@4 C BS

Im
ag

eN
et

Pr
et

ra
in

ed
7 InceptionV3 Szegedy et al. (2016) 23M 77.44 44.88 404.85 61.75

ResNet152 He et al. (2016) 59M 82.82 50.71 464.01 67.40
ViT-L Dosovitskiy et al. (2022) 304M 85.84 58.26 540.46 73.59
Swin-L Liu et al. (2021) 196M 86.32 57.36 531.51 73.03
BEiT-L Bao et al. (2022) 306M 87.48 41.57 370.00 58.80

Im
ag

e-
te

xt
Pr

et
ra

in
ed

8 RN50 39M 73.30 53.35 491.80 69.79
RN101 57M 75.70 53.78 495.30 70.08
ViT-B/32 88M 76.10 55.21 510.08 71.27
ViT-B/16 86M 80.20 57.73 534.92 73.37
ViT-L/14 304M 83.90 61.22 570.63 76.25

including state representations and semantic difference features, are randomly masked. Empirically,
we found using MTM with a 50% probability works better.

Auxiliary Learning. Following the target of fully utilizing context information, another strategy is
focused on the global representation. BERT applied the objective of next sentence prediction (NSP)
but this is not suitable for our task. However, we found humans usually try to guess the category or
topic before describing transformations, e.g. cooking noodles. Therefore, we set another objective
that requires TTNet to predict the category and topic from the global representation during training.
Two additional cross-entropy losses Lcategory and Ltopic can be computed from these two classification
problems. The final training loss becomes a combination of Ltext, Lcategory, and Ltopic, with adjustment
factor α and β:

L = Ltext + αLcategory + βLtopic. (2)

E IMPLEMENTATION DETAIL OF MODELS

E.1 TRADITIONAL MODELS

The training process of includes standard image augmentation techniques such as random cropping
and flipping, resulting in images cropped into 224×224 patches. The architectures of all baseline
models are presented in Table 8.

We re-implemented CST and GLACNet based on the original papers and their released source
code 9 10. We followed the paper for implementing the final model of DenseCap since we could not
find its code. However, we used CLIP to replace DenseCap’s original video encoder because it was
designed for video descriptions.

7Model weights and top-1 accuracy on ImageNet of ImageNet pretrained models are from: https://
github.com/rwightman/pytorch-image-models

8Pretrained weights of CLIP models are from https://github.com/openai/CLIP and top-1 accu-
racy on ImageNet is from Table 10 of the original paper.

9https://github.com/dianaglzrico/neural-visual-storyteller
10https://github.com/tkim-snu/GLACNet

19

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/openai/CLIP
https://github.com/dianaglzrico/neural-visual-storyteller
https://github.com/tkim-snu/GLACNet


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

USER:
There are {N+1} pictures of an event strip, and each picture shows one state of the event.
Write the topic of this event strip, and {N} transformations between every two adjacent panels to describe what 
happened between two states that caused a state change.
Each transformation must be a phrase. Here are some examples from other pictures: "put steak on grill", "release 
liquid", "add whipped cream"...

Your answer must be formatted as JSON:
{
   "topic": <the topic you wrote>,
   "transformations": [
        <the 1st transformation you wrote>, 
        <the 2nd transformation you wrote>, 
        ...
        <the Nth transformation you wrote>
    ]
}

ASSISTANT:

Figure 8: Template used to generate prompts for testing multimodal language models. The content
highlighted in yellow is only used when adding a topic prediction task, it is not included in the prompt
in the standard setting.

The implementation of TTNet includes a default CLIP image encoder of ViT-L/14, which is pre-
trained and fixed during training. We compare multiple other image encoders in Section H. The
context encoder uses a transformer-based architecture consisting of two transformer encoder layers,
implemented using x-transfomer 11. All transformer layers use simplified relative positional encod-
ing Raffel et al. (2020). In the transformation decoder part, we directly borrow CLIP’s tokenizer and
their vocabulary list. Each transformation description is generated separately with a shared two-layer
transformer decoder. The idea of adding transformation representations into word embeddings is
inspired by GLACNet Kim et al. (2019) and we empirically found this way improves a lot on lan-
guage influence compared with using the representation as the start token. Like the context encoder,
simplified relative positional encoding is also used in the transformation decoder.

Since TTNet is greatly inspired by GLACNet, we provide a more detailed description of the relation-
ship between these two models here. GLACNET and TTNET have a consistent overall architecture,
employing an image encoder, context encoder, and decoder design. The image encoder extracts
features from each image, the context encoder extracts contextual information, and finally, the decoder
generates the corresponding change description. The difference lies in the implementation of different
modules in GLACNET and TTNet, as seen in Table 7 of the text, from which we have extracted the
relevant lines here.

We use top-k top-p sampling with k = 100 and p = 0.9 to generate text. The dimension of
intermediate vectors, including state representations, transformation representations, and word
embeddings, is set to 512. For the training loss, we set the adjustment factor α for Lcategory to
0.025 and β for Ltopic to 0.1. We use the AdamW optimizer Loshchilov & Hutter (2022), with a
learning rate that warms up to 1e-4 in the first 2000 steps and then gradually decreases to 0. All
models are implemented with PyTorch Paszke et al. (2019) and trained on a single Tesla A100 80G
GPU card with 50 epochs. The code will be released publicly.

E.2 MULTIMODAL LANGUAGE MODELS

To establish MLLMs performance and provide fair comparisons, we employ the exact same prompting
structure as in Figure 8, in which N should be replaced to the transformation number. Since

11https://github.com/lucidrains/x-transformers
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Table 10: Results of different strategies of computing difference features.

state diff B@4 M R C BS
√

- 56.91 61.89 68.45 527.62 73.54
√

early 60.10 65.16 70.88 559.78 75.69√
late 61.22 66.31 71.84 570.63 76.25

Table 11: Models perform worse with only adjacent states in terms of CIDEr score and re-training on
them still falls short of the normal setting.

Model Normal Adjacent States Only

CST* 84.90 49.80
DenseCap* 439.53 295.75
GLACNet* 508.19 268.49
TTNet 570.63 349.96

TTNet (retrain) - 459.84

existing pretrained MLLMs (except Qwen) either do not support multiple image inputs or perform
poorly when processing multiple images in order, we adapted the model’s input requirements by
collapsing the multiple images corresponding to each sample into a single one. We follow the
official implementation 12 to tune LLaVA with LORA. We conduct our experiments over 50 epochs,
employing a batch size of 16. The learning rate is set to 2e-5 and the warmup ratio is 0.03.

F MORE ANALYSES ON TTNET

F.1 COMPARISON OF EARLY AND LATER DIFFERENCES

In the main paper, we computed the difference features in a later fusion manner, i.e., computing
them on encoded image vectors to produce the semantic difference. In this section, we compare this
approach with an the alternative one, early fusion, which calculates pixel-level difference on raw
images before feeding them to the image encoder. In TVR Hong et al. (2021), early differences were
found to be more effective, while Table 10 shows the opposite result. We explain that this is because
TVR involves predicting property changes on synthetic data, which relies more on pixel differences.
In contrast, VTT requires event-level descriptions, placing greater emphasis on semantic distinctions.

DenseCap:
1. Pour espresso.
2. Pour espresso.
3. Add whipped cream.

GLACNet:
1. Pour espresso.
2. Pour espresso.
3. Add whipped cream.

TTNet:
1. Pour alcohol.
2. Pour espresso.
3. Add whipped cream.

Groundtruth:
1. Pour coffee into glass.
2. Pour chocolate in glass.
3. Pour cream.

Figure 9: Models fail to describe unseen transformations composed by seen words.
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Figure 10: TTNet performs most robustly when reasoning on partial context (some states are missing).

Table 12: Models including TTNet perform worse on unseen transformation combinations.

Seen Unseen

Model C Flu. Rel. Logic. C Flu. Rel. Logic.

CST* 0.99 1.95 3.22 3.00 0.73 2.17 3.08 2.91
GLACNet* 6.21 4.80 3.90 3.91 4.11 4.69 3.70 3.59
DenseCap* 5.16 4.72 3.66 3.61 3.75 4.76 3.68 3.57

TTNetBase 6.02 4.80 4.08 4.00 4.40 4.77 3.99 3.88
TTNet 7.01 4.81 4.23 4.29 4.59 4.74 3.93 3.86

F.2 ANALYSES ON CONTEXT MODELING

Analyzing Context Importance for VTT. To determine the importance of the context for VTT, we
evaluated models in an independent setting where each transformation could only be reasoned from
two adjacent states, without accessing other states. If context were not important, the performance of
models would remain unchanged. However, Table 11 shows all four models experienced a significant
performance drop. For example, TTNet’s CIDEr score decreased by approximately 39%, indicating
the crucial role of context in transformation reasoning. We also retrained TTNet on data constructed
following the independent setting, and while performance improved, there remained a considerable
gap compared to fully accessing context, further demonstrating the importance of context for VTT.

Assessment on Utilizing Context. Having established the importance of context, it is important
to test models’ ability to utilize it. We examined two settings where the provided states gradually
decreased. The basic idea is that models with strong context utilization ability can compensate for
missing information by relying on context. In the “randomly mask one" setting, only one state in each
sample was masked, while in the “start & end only" setting, only start and end states are provided.
Figure 10 demonstrates TTNet has the highest robustness as more states are missing, highlighting
its exceptional ability to utilize context for transformation reasoning. Comparing TTNet to two of
its variants, one without MTM and one without semantic difference features, we concluded that
both MTM and semantic difference features contribute to context utilization, with the latter having a
greater impact.

F.3 ANALYSES ON TRANSFORMATION REASONING

Assessment on Reasoning Unseen Transformation Combinations. A robust transformation rea-
soning system should be able to generalize to unseen transformation combinations, where individual
transformations have been seen during training, but certain combinations have not. This often occurs
when there are multiple ways of achieving the same task such as cooking noodles. In VTT, more
than half of the combinations in the test set are not present in the training set (532 seen vs. 559

12https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/finetune_
lora.sh
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Table 13: Results of different mask ratios used in MTM.

mask ratio B@4 C BS

0% 60.38 562.83 75.72
5% 60.93 567.92 76.11

10% 61.02 568.71 76.13
15% 61.22 570.63 76.25
20% 61.07 568.99 76.21
25% 61.16 570.18 76.35
30% 60.72 565.43 75.94

Table 14: Results of different sample ratios used in MTM.

sample ratio B@4 C BS

0% 60.38 562.83 75.72
25% 60.39 562.15 75.63
50% 61.22 570.63 76.25
75% 60.96 567.99 76.00
100% 60.95 568.18 76.10

unseen). To evaluate how well models can reason about unseen transformation combinations, we
divided the test set into two splits: “seen" (combinations appeared in the training set) and “unseen"
(new combinations). As shown in Table 12, all models perform significantly worse on the unseen
combinations than on the seen ones, with TTNet’s logical soundness dropping by roughly 10%
(from 4.29 to 3.86), showcasing the challenge of generalization. The performance gap between
TTNet, TTNetBase, and DenseCap* on the unseen split is less significant than the gap on the seen
split, implying that our strategies for modeling transformation primarily help with reasoning seen
transformation combinations, while providing little benefit for reasoning unseen combinations.

Assessment on Reasoning Unseen Language Compositions. A robust transformation reasoning
system should also be able to generalize to unseen language compositions, where individual words
such as entities and actions have been seen during training, but their combinations have not. For
example, successfully reasoning the unseen transformation “pour coffee" when only “pour milk" and
“make coffee" appeared in the training set. According to our statistics, VTT has a high proportion of
shared vocabulary, this is the major reason that VTT is designed as a natural language generation task
rather than a classification task, as models have a better chance of learning common patterns from
transformations with shared words. To evaluate model generalization to new language compositions,
we evaluated models on several manually labeled samples from “related" tasks in CrossTask. In the
example shown in Figure 9, transformations for the topic Make Bicerin have not appeared in VTT
but are composed with seen words. However, all models failed to generate new descriptions and
instead produced existing descriptions that matched the states as closely as possible. This indicates a
significant limitation in the models’ ability to generalize to new language compositions.

F.4 HYPERPARAMETER TUNING OF MTM

There are two hyperparameters in the masked transformation model: the mask ratio and the sample
ratio. The mask ratio is similar to that used in BERT Devlin et al. (2019), indicating the percentage of
state representations and semantic difference features that are replaced with zero. After experimenting
with mask ratios ranging from 0%-30%, we found 15% works best (as shown in Table 13), which is
consistent with BERT’s finding. The other hyperparameter is the sample ratio, which addresses the
inconsistency between training and inference where no features are masked during inference. By
setting the sample ratio, which is the probability that the sample will accept the masking strategy, we
found a 50% probability performs best, outperforming the strategy of masking all samples used in
BERT (as shown in Table 13).
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USER:
Impartially assign a score for the transformation sequence ranging from 1 to 5. A transformation sequence 
corresponds to an event, where each transformation describes the change between two adjacent states in the 
event.
Each transformation in a sequence is separated by a comma.
Your scoring needs to be only considered from the perspective of logical consistency.  Ignore other aspects, such 
as grammar, spelling, fluency, vividness, etc.
The meaning of each score is as follows:
5: The logic between the transformation descriptions is consistent with commonsense.
4: The logic between most of the descriptions is consistent with commonsense.
3: The logic between some of the descriptions is consistent with commonsense.
2: There seems to be logic between the descriptions, but it doesn't make commonsense.
1: There is no logic between the transformation descriptions, or they are completely inconsistent with 
commonsense.

transformation sequence: {TRANSFORMATIONS}
your score (output a numerical score directly without any extra explanation):

ASSISTANT:

Figure 11: Prompt used to evaluate logical consistency with LLM.

G PROMPT OF LLM EVALUATION

we incorporated an automated evaluation on logical consistency using LLM. The prompt we used is
shown in Figure 11.

H COMPARISON OF DIFFERENT IMAGE ENCODERS

The quality of image encoding is crucial for subsequent reasoning and description, which determines
whether the model can correctly recognize and understand the image content. Therefore, image
encoder significantly impacts the overall performance of the model. In the main paper, we observe that
the original version of CST and GLACNet, with Inception V3 Szegedy et al. (2016) and ResNet He
et al. (2016) as image encoders, respectively, perform worse than CST* and GLACNet*. This
indicates the importance of choosing an appropriate image encoder. We conduct a more detailed
analysis of the image encoder by testing ten state-of-the-art image encoders, five of which were
pretrained on ImageNet and five on large-scale image-text data from the CLIP variations. In the table,
we report their parameter size, ImageNet top-1 accuracy, and performance on the VTT dataset. We
found that when the parameter sizes were similar, models pretrained on image-text data outperformed
those pretrained only on image data, e.g. ViT-L/14 vs. ViT-L. This is consistent with the existing
understanding that CLIP encodes more semantic information. In addition to training data, factors that
affect model performance include model size, patch size used in vision transformers, and training
strategies. For example, CLIP models, which have more parameters, perform better. Although the
parameter size between ViT-B/16 and ViT-B/32 is similar, ViT-B/16, which encodes finer images with
smaller patch sizes, results in better image representation. BEiT-L Bao et al. (2022) has the highest
accuracy on ImageNet but performs the worst among all models. We speculate that although BEiT-L
has learned sufficient image pattern information, it has limitations in capturing semantic information.

I ADDITIONAL QUALITATIVE RESULTS.

We present additional cases in Figure 12.
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Groundtruth Add coffee. Steam milk. Pour milk. Add coffee.
Gemini-1.5 Stir the milk. Pour milk into mug. Top with froth. Sprinkle cinnamon powder.
GPT-4o Scoop ice into pitcher. Add milk to pitcher. Insert thermometer. Use steam wand to heat milk.
Qwen-VL-chat Man stirring coffee. Coffee being poured into mug. Coffee being frothed. Coffee being decorated with heart design.
LLaVA-1.5-7b Insert oil gun in the car. Release liquid. Put steak on grill. Absorb liquid with dropper.
TTNet Pour milk. Steam milk. Pour milk. Pour milk.

Groundtruth Knead the meat. Fry meat. Combine meat and bread to make burger.
Gemini-1.5 Form meatloaf. Fry bacon. Assemble hamburger.
GPT-4o Mix ingredients. Form meatloaf. Cook bacon.
Qwen-VL-chat Add bacon to burger. Top with cheese. Add caramelized onions.
LLaVA-1.5-7B Insert oil gun in the car. Release liquid. Put steak on grill.
TTNet Knead the meat. Fry meat. Combine meat and bread to make burger.

Groundtruth Roll and rub the earplugs. Pull the ears outwards. Insert the earplugs into the ears.
Gemini-1.5 Roll earplug into a cylinder. Place earplug in ear. Push earplug into ear canal.
GPT-4o Hold earplug. Roll and compress earplug. Pull back ear.
Qwen-VL-chat Remove candy corn from package. Insert candy corn in ear. Remove candy corn from ear.
LLaVA-1.5-7B Hold orange object in hand. Insert orange object into the other hand. Squeeze orange object to release its contents.
TTNet Roll and rub the earplugs. Pull the ears outwards. Insert the earplugs into the ears.

Groundtruth Place the bed board. Place mattress on the bed. Place mattress on the bed.
Gemini-1.5 Place padding over the board. Lay fabric over the padding. Remove the finished product.
GPT-4o Remove frame from table. Place frame in workstation area. Adjust frame position.
Qwen-VL-chat Man putting tray on machine. Machine cutting material. Man removing tray from machine.
LLaVA-1.5-7B Man wearing safety goggles. Man wearing safety goggles and apron. Man wearing safety goggles and apron while working on a project.
TTNet Install stand of the bed. Install horizontal boards. Install horizontal boards.

Groundtruth Prepare the frame. Prepare flower. Prepare flower. Stick or bind flower to the frame.
Gemini-1.5 Wrap wire around hand three times. Create a circular wire crown. Gather a cluster of flowers. Attach flower cluster to wire crown.
GPT-4o Measure wire around head three times. Create a wire crown. Cut flower stems. Attach flowers to crown using glue gun.
Qwen-VL-chat Apply flower crown. Glue flowers together. Add greenery. Finishing touches.
LLaVA-1.5-7B Flower petals wilt. Flower petals dry. Flower petals wither. Flower petals die.
TTNet Prepare the frame. Prepare flower. Stick or bind flower to the frame. Stick or bind flower to the frame.

Figure 12: More Cases of MLLMs and TTNet on the VTT test data. Error outputs are marked with
red.
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