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Abstract

Multi-agent Inverse Reinforcement Learning (MAIRL) aims to recover agent re-
ward functions from expert demonstrations. We characterize the feasible reward
set in Markov games, identifying all reward functions that rationalize a given equi-
librium. However, equilibrium-based observations are often ambiguous: a single
Nash equilibrium can correspond to many reward structures, potentially changing
the game’s nature in multi-agent systems. We address this by introducing entropy-
regularized Markov games, which yield a unique equilibrium while preserving
strategic incentives. For this setting, we provide a sample complexity analysis
detailing how errors affect learned policy performance. Our work establishes
theoretical foundations and practical insights for MAIRL.

1 Introduction

Multi-agent Reinforcement Learning (MARL) has garnered substantial attention in recent years
due to its capacity to model scenarios involving interacting agents. Notable successes have been
achieved across diverse domains, including autonomous driving [Shalev-Shwartz et al., 2016, Zhou
et al., 2020], internet marketing [Jin et al., 2018], multi-robot control [Dawood et al., 2023], traffic
control [Wang et al., 2019], and multi-player games [Baker et al., 2019, Samvelyan et al., 2019]. A
critical prerequisite for these applications is the careful design of reward functions, a task that proves
challenging even in single-agent settings [Amodei et al., 2016, Hadfield-Menell et al., 2017] and
becomes significantly more complex in multi-agent environments where each agent’s reward function
must be tailored to their specific, potentially conflicting, objectives.

In numerous real-world scenarios, expert demonstrations of optimal behavior may be observable,
while the underlying reward function driving these actions remains unknown. This is precisely the
domain of Inverse Reinforcement Learning (IRL) [Ng and Russell, 2000]. The objective of IRL is to
recover plausible reward functions that can rationalize the observed behavior as optimal. However,
early research in IRL highlighted a fundamental challenge: the problem is inherently ill-posed, as
multiple reward functions can potentially explain the same observed behavior. Subsequent research
has therefore focused on reformulating the IRL problem to enhance its practicality and applicability
in real-world contexts [Abbeel and Ng, 2004, Ziebart et al., 2008, Ramachandran and Amir, 2007,
Ratliff et al., 2006a].

The extension of IRL to the multi-agent setting introduces novel complexities, particularly concerning
the definition of optimality and the multiplicity of Nash equilibria, given that each agent’s optimal
strategy is dependent on the strategies of all other agents. This necessitates the adoption of game-
theoretic solution concepts, with the Nash equilibrium being the most prevalent [Goktas et al., 2024,
Song et al., 2018, Ramponi et al., 2023, Fu et al., 2021]. In contrast to the substantial progress
in understanding the theoretical underpinnings of single-agent IRL, the theoretical foundations
of Multi-agent Inverse Reinforcement Learning remain comparatively underexplored. In single-
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Figure 1: Feasible Reward Sets of true sets of Nash equilibria and the recovered feasible reward sets
for two different observed Nash equilibria.

agent IRL Metelli et al. [2021] established explicit conditions for feasible reward functions and
developed efficient algorithms for unknown transition models and expert policies, assuming access to
a generative model. This work has been extended to settings without a generative model [Lindner et al.,
2022], stricter optimality metrics [Zhao et al., 2024, Metelli et al., 2023], and offline settings Lazzati
et al. [2024b], Zhao et al. [2024]. However, these studies are confined to single-agent scenarios
and evaluate performance based on criteria that are not directly transferable to general-sum Markov
games. In Appendix B we provide an extensive discussion on related works.

This paper aims to bridge the existing gap between the theoretical understanding of IRL in single-
agent systems and its application to multi-agent systems. Specifically, we first address the research
question:

(Q1) What constitutes a rigorous definition of Multi-agent Inverse Reinforcement Learning?

To address this question independently of a specific MAIRL algorithm, we derive properties of the
feasible reward set, drawing inspiration from the initial work in single-agent settings by Metelli et al.
[2021]. First, we define a straight-forward extension from the single-agent feasible reward set to
the multi-agent setting as all the rewards under which a single Nash equilibrium expert is optimal,
meaning it is indeed a Nash equilibrium. Then, we demonstrate that a single observed equilibrium is
insufficient for identifying expressive reward sets, as distinct observed equilibria can induce different
feasible reward sets (see Fig. 1 for an illustration). This can result in a Nash Gap of order (1− γ)−1

due to the multiplicity of the Nash equilibria. To mitigate the equilibrium selection problem, we
introduce entropy-regularized Multi-agent IRL. Then, we formally characterize the inherent increase
in complexity associated with the multi-agent setting. Within this framework, we characterize feasible
rewards and establish sample complexity bounds that account for errors in transition dynamics and
policy estimation, assuming access to a generative model.

In single-agent settings, the introduction of entropy-regularized experts has facilitated the derivation
of conditions under which the reward function is identifiable [Cao et al., 2021, Rolland et al., 2022].
This motivates our second research question:

(Q2) Is reward identifiability achievable in Multi-agent settings?

We provide a partial positive answer to this question. We show that in general-sum Markov games
without additional structural assumptions, reward identifiability is only possible in the average reward
sense. However, we prove that if the underlying reward structure is linearly separable, meaning that the
reward can be decomposed into a reward for player 1 and player 2, R(s, a, b) = RA(s, a)+RB(s, b),
then reward identification (up to additive constants) is possible.

2 Preliminaries

We present the essential background and notation used throughout this paper, also summarized in
Appendix A.

Mathematical background. Let X be a finite set, then we denote by RX all functions map-
ping from X to R. Additionally, we denote by ∆X the set of probability measures over X . For
n ∈ N we use [n] := {1, . . . , n}. We introduce for a (pre)metric space (X , d) with Y,Y ′ ⊆ X
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two non-empty sets the Hausdorff (pre)metric Hd : 2X × 2X → [0,+∞) as Hd(Y,Y ′) :=
max

{
supy∈Y infy′∈Y′ d(y, y′), supy′∈Y′ infy∈Y d(y, y′)

}
. Additionally, for two probability distri-

butions µ, µ′ over a finite set X , we denote the total variation as TV(µ, µ′) :=
∑

x∈X |µ(x)−µ′(x)|.
Markov games. An infinite time, discounted n-person general-sum Markov game [Shapley, 1953,
Takahashi, 1964, Fink, 1964] without reward function (MG \ R) is characterized by a tuple G =
(n,S,A, P, γ, ρ), where n ∈ N denotes the finite number of players; S the finite state space;
A := A1 × . . . ×An the joint action space of the individual action spaces Ai; P : S × A → ∆S

the transition model; γ is the discount factor and ρ is the initial state distribution. We will make
use of the words persons, agents and players interchangeably. The strategy of a single agent, also
called the policy, we denote by πi : S → ∆Ai

. A joint strategy is given by π = (π1, . . . , πn) =
(πi, π−i), where π−i refers to the (joint-) policy of all players except player i. A joint action
is denoted by a = (a1, . . . , an) ∈ A. Therefore, the probability of a joint strategy is given by
π(a | s) :=

∏n
j=1 π

j(aj | s). Πi denotes the set of all policies for agent i. The discounted
probability of visiting a state-(joint-)action pair, given that the starting state is drawn from ρ, is
defined as wπ,ρ

s,a =
∑∞

t=0 γ
tPt(s, a, ρ), where Pt denotes the probability of visiting the joint state

action pair when drawing the initial state from ρ and following the joint policy π for t steps. If the
starting distribution is deterministic for a state s, we omit the dependence on ρ and simply write wπ

s,a.

Reward function. The reward function for an agent, Ri : S × A → [−Ri
max, R

i
max], takes a

state and a joint action as inputs, mapping them to a bounded real number. The joint reward is
represented as R = (R1, . . . , Rn). The uniform reward bound across all agents is defined by
Rmax := maxi∈[n] R

i
max. A Markov game without reward G combined with a joint reward results in

a standard Markov game denoted as G ∪R.

Value functions and equilibrium concepts. For a Markov game G ∪R with a policy π we define
the Q-function and the value-function of an agent i for a given state and action as Qi,π

G∪R(S,A) =

Eπ[
∑∞

t=0 γ
tRi(St,At) | St = S,At = A] and V i,π

G∪R(s) =
∑

a π(a | s)Q
i,π
G∪R(s, a). If it is clear

from the context what the underlying Markov game is, we omit the subscript.

Nash Equilibrium. Various types of equilibrium solutions have been proposed to model optimal
strategies in Markov games. In this work, we focus on the NE similarly to previous works on MAIRL
[Goktas et al., 2024, Song et al., 2018].A strategy profile is a Nash equilibrium if no agent can
improve their expected return by unilaterally deviating from their strategy, assuming the strategies of
the other agents remain unchanged. Formally, a policy πNash is a (perfect) Nash equilibrium strategy,
if for every state s and every agent i V i,πNash

G∪R (s) ≥ V
i,(πi,π−i,Nash)
G∪R (s) ∀πi ∈ Πi. To simplify the

notation used in the remainder of this work, we will denote this as V i(πNash) ≥ V i(πi, π−i,Nash).
The set of Nash equilibria, depending on the underlying reward, we will denote as ΠNash(R).

Entropy Regularized Markov games. For better readability, let us consider the case π = (µ, ν)
and A2 := B. Then, the value function of player 1 in a λ entropy regularized Markov game is
defined as V

1,(µ,ν)
λ (s) = E(µ,ν)[

∑∞
t=0 γ

t
(
R1(St, At, Bt)− λ log(µ(At | St))

)
| S0 = s]. Addi-

tionally, we have V
1,(µ,ν)
λ (ρ) = ES0∼ρ[V

1,(µ,ν)
λ (S0)]. The value function for player 2 is defined

analogously. Additionally, the Q-function is defined as Q1,(µ,ν)
λ (s, a, b) = R1(s, a, b) +

∑
s′ P (s′ |

s, a, b)V
1,(µ,ν)
λ (s′).

Multi-agent Inverse Reinforcement Learning. Given a Markov game without a reward function G
and a Nash equilibrium expert, the MAIRL problem is defined as the tuple (G,πNash). If we only
have access to an estimated version of (G,πNash), we call it recovered MAIRL problem and denote
it as (Ĝ, π̂Nash) and analogously for entropy equilibria by replacing π̂Nash.

3 Feasible reward set in multi-agent systems

This section addresses research question (Q1). First, we will define MAIRL for a single NE observa-
tion. Then, we will show, that this can be ill-suited for multi-agent systems due to the multiplicity
of equilibria. This motivates to consider entropy regularized Markov games to guarantee a unique
equilibrium.
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3.1 Nash equilibrium observations

In this section, we begin by revisiting single-agent Inverse Reinforcement Learning. The feasible
reward set in single-agent IRL, first defined by Metelli et al. [2021] and later refined for different
settings as e.g. the offline case in [Zhao et al., 2024, Metelli et al., 2023, Lazzati et al., 2024b], lacks
a multi-agent counterpart for observed expert equilibria. We thus translate the single-agent definition,
formalizing feasible rewards as in prior works [Lin et al., 2014, 2018].

Definition 3.1. Let a MAIRL problem (G,πNash) with a single (observed) Nash equilibrium policy
be given. Then, the feasible reward set for general-sum Markov games is given by

R(G,πNash) =

{
R ∈ R | ∀i ∈ [n],∀s ∈ S,∀πi ∈ Πi : V

i,(πNash
i ,πNash

−i )

G∪R (s) ≥ V
i,(πi,π

Nash
−i )

G∪R (s)

}
.

Here, πNash ∈ ΠNash(R) is any Nash equilibrium, analogous to an optimal policy in single-agent
IRL. A key difference in MAIRL is that different NEs can yield varying values, and we impose
no restriction on the observed NE (pure or mixed) from ΠNash(R). This is the first fundamental
difference between IRL and MAIRL.

Since varying NE values make single-agent value-based gap objectives [Metelli et al., 2021, 2023,
Zhao et al., 2024, Lazzati et al., 2024b] unsuitable for MAIRL, we adapt the Nash Gap, recently
used in multi-agent imitation learning [Ramponi et al., 2023, Tang et al., 2024], as our objective.

Definition 3.2 (Nash Imitation Gap for MAIRL). Let G ∪R be the underlying n-person general-sum
Markov game. Furthermore, let π̂ be the policy recovered from the corresponding MAIRL problem.
Then we define the Nash Imitation Gap of π̂ as

E(π̂, R) := max
i∈[n]

max
πi∈Πi

V i
G∪R(π

i, π̂−i)− V i
G∪R(π̂).

The definition possesses the desirable property that it equals 0 if π̂ is an NE, and, it is > 0 if π̂ is
not an NE in the underlying Markov game.

Normally, we cannot assume to know the expert equilibrium nor the transition function. Therefore,
to analyze how estimation errors in the transition probability and expert policy affect the recovered
feasible reward set, we relate them to our proposed optimality criterion.

Definition 3.3 (Optimality Criterion). Let R := R(G,πNash) be the exact feasible set and
R̂ := R(Ĝ,π̂) the recovered feasible set after observing N ≥ 0 samples from the underlying MAIRL
problem (G,πNash). An algorithm is (ε, δ,N)-correct after N samples if, with probability at least
1− δ, it holds that:

sup
R∈R

inf
R̂∈R̂

sup
π̂∈ΠNash(R̂)

E(π̂, R) ≤ ε , sup
R̂∈R̂

inf
R∈R

sup
π̂∈ΠNash(R̂)

E(π̂, R) ≤ ε,

where ΠNash(R̂) := {π | V π
Ĝ∪R̂

(s) > V
π̃i,π−i

Ĝ∪R̂
(s)∀π̃i ∈ Πi ,∀s ∈ S,∀i ∈ [n]}.

The optimality criterion is in the Hausdorff metric style, see 2. The first condition ensures that the
recovered feasible set captures a reward function that makes sure that the recovered policy is at most
an ε-NE in the true Markov game. However, this would support choosing a set that captures all
possible reward functions RS×A. Consequently, the second condition ensures that this is not possible
by requiring every recovered reward to also have a true reward function that captures the desired
behavior. Additionally, note that the optimality criterion depends on R̂ as π̂ is the Nash equilibrium
of the recovered Markov game Ĝ ∪ R̂.

The shortcomings of observing only a single equilibrium are discussed next. For completeness, this
framework is further analyzed in Appendix C.

Feasible reward set and equilibrium ambiguity. In this section, we show that observing only a
single equilibrium solution leads to a non-expressive feasible reward set. Fu et al. [2021] noted that
relying on a single Nash equilibrium for inverse learning introduces inherent limitations. Here, we
extend this finding to the feasible reward set, rather than focusing solely on specific reward functions.
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Tang et al. [2024] showed that minimizing the regret gap is hard in Imitation Learning problems.
However, in this work we do not consider the setting of mimicking the expert policy instead we
examine the feasible reward set. In general, (MA)IRL can be more powerful as it allows to transfer
the reward function to new environments. In Appendix G we provide an experiment in a simple
Grid World game that emphasizes this. Unfortunately, the next theorem shows, that learning under
a recovered reward function from the feasible set stemming from a MAIRL problem with a single
equilibrium observation can lead to a NE that has a Nash Gap of the order (1− γ)−1 in the original
Markov game.

Proposition 3.4. Let us consider any MAIRL algorithm AlgMAIRL that chooses R̂ ∈ R(Ĝ,π̂Nash)

that is not a constant reward, i.e. R̂ ̸= C for C ∈ [−Rmax, Rmax]. Furthermore, consider a MARL
algorithm AlgMARL that guarantees learning a policy π̃ ∈ ΠNash(R̂). Then, there exists a Markov
game, such that even if π̂ ∈ ΠNash and R̂ ∈ R(G,πNash) it holds true that E(π̃) is of order (1−γ)−1.

The construction of the underlying general-sum Markov game can be found in Fig. 2. The idea of the
proof is that Definition 3.1 only ensures that the recovered expert π̂Nash is a NE under R̂, an MAIRL
algorithm cannot capture a meaningful reward for other equilibria that potentially have different
values. Therefore, the constraints on the rewards inside the feasible reward set only gives a relation
for a fixed strategy of the opponent. Consider a simple example with two players where player 2
plays action b with probability one. Then, for player one the constraints only tell us something about
R1(s, aNash, b) ≥ R1(s, a, b)∀a ∈ A1, but nothing on rewards R1(s, a, b′)∀(a, b′) ∈ A1 × A2.

This allows that the recovered reward functions allow for new equilibria, i.e. ΠNash(R̂) ⊃ ΠNash(R)
that can be exploited in the original Markov game. We empirically investigate this for the considered
Game in Proposition 3.4. Summarized, the reward set captures too many reward functions and this
flexibility in reward specification allows for undesirable scenarios, such as changing the nature of
the game. This means the game can transform the set of all Nash equilibria e.g. from a coordination
game into an anti-coordination variant. For further intuition we provided additional examples in
Example D.1.
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Figure 2: Failure of single equilibrium observation.

To address this, we propose the following definition of the feasible reward set.
Definition 3.5. Let ΠNash(R) denote the set of Nash equilibrium in the underlying Markov
game G ∪ R. Then, the feasible reward set for general-sum Markov games is defined as:

R(G,ΠNash) =

{
R ∈ R | ∀πNash ∈ ΠNash, i ∈ [n], s ∈ S, πi ∈ Πi : V

i,(πNash
i ,πNash

−i )

G∪R (s) > V
i,(πi,π

Nash
−i )

G∪R (s)

}
.

Note that, the subscript is now on the set of equilibria instead of a single one. This definition ensures
that the feasible reward set aligns with all equilibrium solutions of the original game, rather than
a single observed equilibrium. While this improves the interpretability of the feasible reward set,
calculating even one Nash equilibrium is computationally intractable in general-sum Markov games.
Hence, this definition does not fully resolve the tractability issue in MAIRL.

The multiplicity of equilibria and the absence of a unique value pose a significant challenge in Inverse
Reinforcement Learning, in particular which equilibria should be chosen, commonly referred to
as the Equilibrium Selection problem. This ambiguity complicates reward inference, as different
equilibria can lead to inconsistent or unreliable outcomes.
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Leonardos et al. [2021] address this by proposing game structure modifications, such as regularized
Markov games. Techniques like entropy regularization refine the equilibrium set to a unique one,
eliminating the selection problem. We will transfer this concept to MAIRL and investigate its
implications in subsequent chapters.

3.2 Feasible rewards for entropy regularized games

This section examines Entropy-Regularized Markov games and their unique Quantal Response
Equilibrium (QRE), which reflects bounded rationality. We show that QREs help avoid problematic
reward configurations (cf. Fig. 2) and yield recovered rewards more similar to the true game rewards.
We then formally define the feasible reward set for QRE experts and provide a sample complexity
analysis for MAIRL to achieve the entropy version of Definition 3.3. Technically, this is not the Nash
Gap anymore, instead it only measures the exploitability of a policy in the entropy regularized game.
Avoiding the ambiguity with QRE expert. We begin by demonstrating that entropy regularization,
yielding a unique fully mixed QRE, provides sufficient structure for reward recovery to avoid the
degenerate cases highlighted in Fig. 2. Recalling our empirical validations (Fig. 2), single, potentially
pure, equilibrium observations permitted exploitable new equilibria in the original game. We now
present analogous experiments using QRE observations (see Fig. 3).
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Figure 3: Recovered rewards under QRE equilibrium observations.

We can observe that in simple games the QRE ensures that no new pure equilibria arise and ad-
ditionally the correlation of the recovered reward function and the true reward function measured
by the Pearson Correlation Coefficient (PCC) and Spearman Correlation Coefficient (SCC) are
significantly higher. The reason for this is that the QRE enforces the equilibrium observation to
explore the environment better and gets rid of the equilibrium selection problem. This can be further
motivated by assumptions needed also in the Multi-agent Imitation Learning setting, where Tang
et al. [2024] showed that under coverage assumption equilibria can successfully be recovered. This is
automatically fulfilled if the observed expert is a QRE expert.
Characterization of feasible rewards. In the single-agent IRL setting, an explicit characterization
of the reward function in entropy-regularized Markov Decision Processes (MDPs) was first derived
by Cao et al. [2021]. The authors introduced entropy regularization to tackle the ill-posedness of the
IRL problem. In particular, the authors established conditions under which the reward function is
identifiable up to a constant. These conditions were subsequently simplified by Rolland et al. [2022],
providing further insights into the structure of the reward function. This naturally motivates our
second research question (Q2), which we will answer in Section 4. In this section we will first focus
on the feasible reward set.

We begin our analysis in a manner similar to the single-agent case. For better readability we from
now on assume to only have two players, with policies µ, ν. We can give an explicit characterization
of the optimal policy for the agents. Next, we give this definition for player 1, it analogously holds
also for player 2

µ∗(a | s) =
exp

(
1
λ

∑
b′∈B ν∗(b′ | s)Q∗,1

λ (s, a, b′)
)

∑
a′∈A exp

(
1
λ

∑
b′∈B ν∗(b′ | s)Q∗,1

λ (s, a′, b′)
) , (1)

where µ∗ denotes the optimal policy, i.e. the quantal response equilibrium policy of player 1 and
Q∗,1 the corresponding Q-function for player 1. Several remarks are in order to clarify this equation.
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First, the optimal strategy depends not only on the Q-function but also on the strategy of the opposing
agent. This can be interpreted as fixing one agent and considering the induced MDP (see, for example,
Definition 4.1 in Fu et al. [2021]).

From now on we will state everything from the perspective of player one. The results for player 2
follow analogously. Therefore, we will also omit the index of the reward and value functions. Next,
using the definition of the Q-function and the value function, we can rewrite (1) to get an explicit
formulation of the average reward that agent 1 receives for playing a specific action a ∈ A:∑
b′∈B

ν∗(b′ | s)R(s, a, b′) = λ log (µ∗(a | s)) + V ∗
λ (s)− γ

∑
s′

∑
b′∈B

ν∗(b′ | s)P (s′ | s, a, b′)V ∗
λ (s

′).

(2)

Regarding the feasible reward set, our focus is to find an explicit reward formulation to characterize
the reward functions in the feasible reward set. Rewriting equation (2) in terms of a specific reward,
we get the following characterization.
Lemma 3.6. Let (µ∗, ν∗) be two equilibrium policies for the 2 Person λ Entropy-Regularized Markov
game G. Then for the MAIRL problem (G, (µ∗, ν∗)) a reward R is feasible if and only if there exists
a function V ∈ RS and |B| − 1 functions R : RS×A×B, such that for all (s, a, b) ∈ S ×A× B
R(s, a, b) = 1

ν∗(b|s)

(
λ log(µ∗(a | s)) + V (s)− γ

∑
s′
∑

b′∈B ν∗(b′ | s)P (s′ | s, a, b′)V (s′)−∑b′ ̸=b ν
∗(b′ | s)R(s, a, b′)

)
.

As in practice, we do not have access to P, ν∗ and µ∗, our goal is to analyze the impact of estimating
the transition probability and the expert’s policy, and how this affects the existence of a recovered
feasible reward. Therefore, we now want to analyze how a recovered MAIRL problem (Ĝ, (µ̂∗, ν̂∗))
translates to the original MAIRL problem. Care is required for this analysis, as we must consider the
estimation of the expert itself, the induced transition model, which incorporates the estimation of the
other expert’s policy and their deviations for alternative actions.
Theorem 3.7 (Error propagation). Let the MAIRL problem be given by (G, (µ∗, ν∗)) and another
MAIRL problem by (Ĝ, (µ̂∗, ν̂∗)). Then, we have that

|R(s, a, b)− R̂(s, a, b)| ≤ 1

ν∗(b | s)ν̂∗(b | s)

(
λ| logµ∗(a | s)− log µ̂∗(a | s)|

+ γmax
b
|
∑
s′

V (s′)P (s′ | s, a, b)− P̂ (s′ | s, a, b)|+RmaxTV(ν, ν̂)

)
.

The introduced theorem highlights the additional complexity of the problem. Specifically, it reveals
two key challenges that arise in error propagation for multi-agent IRL. First, the maximum of the joint
transition probabilities plays a critical role, amplifying the sensitivity of the system to inaccuracies in
transition estimation. Second, any deviation in estimating the other expert’s policy, quantified by the
total variation distance, directly contributes to errors in the recovered reward.
Recovering feasible rewards. The previous section revealed, that also in the Multi-agent case, the
explicit feasible reward can be decomposed into parts that depend on the policy of both agents and
the transition model. Therefore, we will now analyze the amount of samples required to obtain a
meaningful reward function. Let us first introduce the assumption, also common in single-agent IRL,
that the lowest probability of an action taken from the experts is bounded away from zero by some
constant (see e.g. Assumption D.1. in Metelli et al. [2023]).
Assumption 3.8. Let µ∗, ν∗ be the QRE equilibrium expert policies. Then we assume that

min
a∈A,b∈B

(µ∗(a | s), ν∗(b | s)) ≥ ∆min ∀s ∈ S.

For both estimation tasks, the expert policies and the transition probability, we employ empirical
estimators. For each iteration k ∈ [K], let nk(s, a, b, s

′) =
∑k

t=1 1(st,at,bt,s′t)=(s,a,b,s′) denote the
count of visits to the triplet (s, a, b, s′) ∈ S×(A×B)×S , and let nk(s, a, b) =

∑
s′∈S nk(s, a, b, s

′)
denote the count of visits to the state-action pair (s, a). Additionally, we introduce nk(s, a) =∑k

t=1 1(st,at)=(s,a) and nk(s, b) =
∑k

t=1 1(st,bt)=(s,b) as the count of times action a and respectively
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b was sampled in state s ∈ S for each agent i, and nk(s) =
∑

a∈A nk(s, a) as the count of visits to
state s for any agent.

It is important to note the distinction here: the count of actions must be done separately for each
agent, whereas the count of state visits needs to be done for both of the agents.

In the following theorem we will assume to have access to a generative model, an assumption that
is common in initial theoretical works on IRL [Metelli et al., 2021, Lindner et al., 2022, Metelli
et al., 2023]. We will discuss potential directions that loosen this assumption in Section 5.

Theorem 3.9. Let Assumption 3.8 hold true. Then, allocating the samples uniformly over S ×A×B
and using the empirical estimators introduced in Eq. (12) and Eq. (13), we can stop the sampling
procedure with a probability of at least 1 − δ after iteration τ and satisfy the optimality criterion
Definition E.2, where the sample complexity is of order Õ

(
γ2R2

max|S||A||B|
(1−γ)4ε2∆4

min

)
.

Some remarks are in order for this complexity bound. We observe that the sample complexity bound
depends on the product of the action space of both players. Translating this to the n-player setting
would result in an exponential dependency in the number of players. Although this might seem
unfavorable, it is generally known that learning an NE in the worst case has an exponential bound.
Zhang et al. [2023] show that even in model-based two player zero-sum games with access to a
generative model, where the reward knowledge can not be used during learning the sample complexity
depends on |A||B|. Therefore, the derived bound for the MAIRL setting aligns with the bounds
derived for learning NE in the MARL setting. Additionally, we can see that the sample complexity
bound is related to estimating the expert policies. This requires to estimate the log probabilities
as well as the inverse probabilities of specific action taken by one player. To do so, we need the
assumptions that the probabilities are bounded away from zero (Assumption 3.8).

4 Identifiability in multi-agent games?

At the beginning of Section 3.2, we noted that entropy regularization has been introduced in the single-
agent setting to derive conditions to identify the reward (up to constants). Unlike the single-agent case,
multi-agent systems introduce additional challenges due to the interplay between agents’ strategies
and the underlying reward structure. These challenges make identifiability like in single-agent settings
not possible, unless further assumptions on the underlying Markov game are posed. We split this
section into two parts. First, we consider average reward characterization. Then, we introduce linear
separable Markov games and investigate identification in this setting.

Average reward identification. First, let us revisit the derivations from the last section. In particular,
note that the left-hand side of Eq. (2) shows, that agent 1’s average reward depends on agent 2’s
policy ν(b′ | s) which averages over agent 2’s action. Additionally, note that the reward function
is in the multi-agent setting, has dimensionality |S||A||B|, while Eq. (1) only gives condition for
|S||A| and |S||B| respectively. This shows immediately that the resulting system of equations is
under-determined.

However, the left hand side can be interpreted in terms of the induced MDP. In particular we derive
an explicit reward function for the average reward Rν(s, a) =

∑
b′∈B ν(b′ | s)R(s, a, b′). Next, let

us additionally define the induced transition function, keeping the strategy of agent 2 fixed. Then, we
have P ν(· | s, a) :=∑b′∈B ν(b′ | s)P (s′ | s, a, b′). Thus, agent 1’s decision problem, when facing
a fixed opponent policy ν, is equivalent to a single-agent MDP with the average reward function Rν

and the transition function P ν .

These findings indicate that single-agent IRL theory [Cao et al., 2021, Rolland et al., 2022] can
be applied. However, note that for identifiability in single-agent settings at least two environments
with different transition dynamics and discount factors that induce experts with the same reward
functions are necessary. In multi-agent systems, one obtains a different transition model by varying
the policy of the opponent and observing the best responds to this change of dynamics. This can be
less restrictive than requiring a new environment as in the single-agent case. Next, we state the result
for the average reward case for multi-agents, this is similar to Theorem 3 by [Rolland et al., 2022].

Theorem 4.1. Let a Markov game be given with two different opponents ν1, ν2 that induce different
dynamics P ν1 , P ν2 and discount factors γ1, γ2. Suppose that in both Games we observe QRE
equilibrium policy pairs (µ1, ν1) and a different ν2 with a best responding policy µ2 such that they
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have same average reward functions Rν1 = Rν2 . Additionally, define P νi
a ∈ RS×S the induced

transition matrix of expert i ∈ {1, 2}. Then, the average reward player 1 receives can be recovered
up to a constant if and only if

rank

 I − γ1P
ν1
a1

I − γ2P
ν2
a1

...
...

I − γ1P
ν1
a|A|

I − γ2P
ν2
a|A|

 = 2|S| − 1. (3)

Analogously this holds for player 2.

Therefore, for the average case this closely resembles the single-agent case. However, if we want to
estimate the underlying problem, which is the more realistic setting, things change. In particular the
error in the estimated induced transition ∥P ν − P ν̃∥ is bounded by terms dependent on the policy
estimation error and the underlying transition model error. Using the L1 norm we receive for a given
(s, a) : ∥P ν(· | s, a)−P ν̃(· | s, a)∥ ≤ ∥ν(· | s)− ν̂(· | s)∥1+maxb′ ∥P (s, a, b′)− P̂ (· | s, a, b′)∥1.
We can derive the following sample complexity for this.
Theorem 4.2 (Sample Complexity for Induced Transitions). To estimate the induced transition model
P ν for Player 1 such that the maximum L1 error over all (s, a) rows is bounded by ε with probability

at least 1− δ, the total number of samples Ntotal is in the order of O
(

|S||A||B|
ε2

)
.

With this theorem we can recover the same result of the single agent case. In particular, we get
for every player that if the estimated transition model satisfies Eq. (3), then also the true transition
matrices satisfies this condition given that a condition on the second smallest eigenvalue holds true.
We state the complete theorem in Appendix F.
Reward identification in linearly separable Markov games. To get an identifiable reward not
only in the average sense one needs to disentangle the reward from player 2’s strategy. This shows
that the multi-agent case is fundamentally harder than then the single-agent case. Intuitively, the
reason is that the definition of the NE only ensures optimality against a fixed opponent strategy.
Additionally, note that the reward function is a matrix of size |S||A||B| while the optimal policy is
only defined on |S||A| and |S||B| respectively.

A potential assumption that disentangles the joint dependency of the reward is fulfilled in linearly
separable reward Markov games, first introduced in the seminal work of Parthasarathy et al. [1984].
This framework has also been leveraged in more recent studies (e.g., Pérolat et al. [2021]). A
reward function is said to be linearly separable if it can be decomposed into two independent terms,
each depending solely on one player’s action R1(s, a, b) = R1

A(s, a) +R1
B(s, b). This formulation

immediately mitigates the complexity introduced by the product space dependency, as the reward
function now operates over individual action spaces instead. Now, we can rewrite the condition on
a reward for a specific state action pair (s, a). We give the formulation directly for two observed
environments, meaning that for every (s, a) ∈ S ×A

RA(s, a) = λ log(µ∗
1(a | s)) + V1(s)− γ

∑
s′

P ν∗
1 (s′ |, s, a)V1(s

′)−
∑
b∈B

ν∗1 (b | s)RB(s, b)

= λ log(µ∗
2(a | s)) + V2(s)− γ

∑
s′

P ν∗
2 (s′ |, s, a)V2(s

′)−
∑
b∈B

ν∗2 (b | s)RB(s, b) (4)

We can observe the following two cases. If we have two environments for which the reward RA(s, a)
is the same, and player 1 faces the same opponent strategy ν∗, but different transition dynamics
P1 and P2, then we notice that

∑
b∈B ν∗(b | s)RB(s, b) cancels out. Instead if we have different

opponent policies ν∗1 ̸= ν∗2 , then we get a new rank requirement for the resulting system of equation.
We give a detailed discussion in Appendix F and summarize the findings in the following proposition.
Proposition 4.3 (Identifiability with Linearly Separable Rewards). Let two Markov games with
linearly separable rewards be given. Then, the resulting system of equations from Eq. (4) is solvable,
i.e. the reward is identifiable up to a constant, if the matrix has rank 2|S| − 1 and ν∗1 = ν∗2 or rank
2|S|(|B|+ 1)− 1 in case ν∗1 ̸= ν∗2 and for one action b0 ∈ B we have RB(s, b0) = 0.

Summarized, we have shown that identifiability is not possible in general in the multi-agent setting for
a particular R(s, a, b). Additionally, we have given scenarios and conditions that make identifiability
possible.
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5 Conclusion and future work

We formalized Multi-agent Inverse Reinforcement Learning (MAIRL), highlighting its unique
challenges over single-agent IRL, particularly the insufficiency of single equilibrium observations for
meaningful reward construction due to equilibrium multiplicity and selection ambiguity. To address
this, we focused on regularized Markov games to ensure equilibrium uniqueness. In this setting,
we extended single-agent IRL bounds Metelli et al. [2021] to analyze error propagation from these
estimations to the recovered reward set, resulting in a sample complexity bound for the Uniform
Sampling algorithm for Quantal Response Equilibria. Additionally, we addressed the question of
reward identifiability in multi-agent systems. This work gives theoretical foundation of MAIRL and
opens many potential directions for future work. We outline a few of them next.

Removing assumption of generative model. In the provided sample complexity analysis we have
assumed having to a generative model and sampled uniformly from this. While this is a common
assumption in initial works also in single-agent IRL [Metelli et al., 2021, Lindner et al., 2022, Metelli
et al., 2023], this can be restrictive in general. Therefore, it could be of interest to explore the offline
setting as done in [Lazzati et al., 2024b, Zhao et al., 2024] for multi-agents. However, this might not
be easy as in offline learning for multi-agents different coverage assumptions are needed compared to
the single-agent setting even in case of reward knowledge [Cui and Du, 2022, Zhong et al., 2022].
Another direction would be to consider the active exploration direction, meaning how to construct
policies that actively the environment as done in Lindner et al. [2022] for the single-agent case.

Designing algorithms. Our analysis showed that single Nash equilibrium observations allow for an
uninformative feasible reward set. One potential algorithmic implication of this finding could be to
design an algorithm that guarantees that the observed NE is the only equilibrium under this reward
function. This algorithm could be in a similar spirit as the Max-Gap IRL algorithm for single-agents
[Ratliff et al., 2006b], but now on an equilibrium level instead of a value-based design.

Observing multiple equilibria. As pointed out in the discussion around Definition 3.5 and in Fu
et al. [2021], if one would be able to observe multiple or all equilibria from the set of Nash equilibria
of the underlying game, the characterized feasible reward set is more meaningful. As this might be
restrictive in practice it could give important theoretical insights.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims stated in the introduction are answered in Proposition 3.4, Theo-
rem 3.9 and in Theorem 4.1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations about the assumption of a generative model are discussed and
justified above and also outlined in Section 5.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Each Theorem states the assumptions clearly and contains a proof in the
appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper is mainly theoretical. However, simple empirical validations are
given and the details for these examples can be found in Appendix G.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The main contributions of this paper are theoretical and we only provide
numerical verifications of the theory. However, details on the empirical validations are given
in Appendix G. The full code will be released after publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper does not have a part that requires training. However, details on how
to reproduce the plots are given in Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All plots contain error bars where applicable Fig. 2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: No specific requirements are needed regarding compute resources as the
experiments are only on a small scale.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper is conform, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The main contributions of this work are theoretical. However, reward learning
in multi-agents can have a societal impact as for example recovering a reward that is not
exploitable, see Fig. 2 and the introduction for a discussion.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Contents of Appendix

This appendix provides supplementary material to support the main findings of the paper. First, we
give an overview of the used notations, including some additional notations needed for the proofs
in the appendix. Then, we present the omitted analysis for the feasible reward set under a single
equilibrium observation in Appendix C. We then present the complete proofs for key results for the
regularized Markov game setting in Appendix E. Afterwards, in Appendix F we give the missing
proofs for the identifiability section. Then, we give the details for our presented numerical validations
and some additional experiments that show that MAIRL can be superior to BC. Finally, the appendix
compiles a list of technical results, along with their proofs, that are referenced throughout this work.
For a better overview we provide a table of contents.
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A Notation and Symbols

In this part of the appendix, we include notation used in the main paper and some additional notation
used for the proofs in the appendix.

Notation Description
X Finite set
RX Set of all functions mapping from X to R
∆X Set of probability measures over X
[n] Set {1, ..., n}
(X , d) (Pre)metric space
Hd Hausdorff (pre)metric
G Markov game without reward function (n,S,A, P, γ, ρ)
n Number of players
S Finite state space
Ai Action space for player i
A Joint action space A1 × ...×An

P (s′|s, a) Transition model (probability of next state s′ given state s and joint action a)
γ Discount factor
ρ Initial state distribution
πi Policy (strategy) for player i : S → ∆Ai

π Joint policy (π1, ..., πn) = (πi, π−i)
π(a|s) Probability of joint action a under joint policy π in state s,

∏n
j=1 π

j(aj |s)
Πi Set of all policies for agent i
Π Set of all joint policies
w̄π,ρ

s,a Discounted probability of visiting state-action pair (s, a) starting from ρ under π
Ri(s, a) Reward function for agent i : S ×A → [−Ri

max, R
i
max]

R Joint reward function (R1, ..., Rn)
Rmax Maximum absolute reward across all agents, maxi∈[n] R

i
max

G ∪R Standard Markov game with reward
Qi,π

G∪R(s, a) Q-function for agent i under policy π

V i,π
G∪R(s) Value function for agent i under policy π

πNash Nash Equilibrium policy
ΠNash(R) Set of Nash Equilibria for reward R

V
i,(µ,ν)
λ (s) Value function for player i in λi-entropy regularized MG

Q
i,(µ,ν)
λ (s, a, b) Q-function for player i in λi-entropy regularized MG

(G,πNash) MAIRL problem definition
(Ĝ, π̂Nash) Recovered MAIRL problem
R(G,πNash) Feasible reward set for a single observed NE πNash

π̂ Policy recovered from MAIRL problem
E(π̂) Nash Imitation Gap for MAIRL
R(G,ΠNash) Feasible reward set for the set of all NE ΠNash

µ∗, ν∗ QRE equilibrium policies
Rν(s, a) Average reward for player 1 when player 2 plays ν:

∑
b′∈B ν(b′|s)R(s, a, b′)

P ν(s′|s, a) Induced transition for player 1 when player 2 plays ν:
∑

b′∈B ν(b′|s)P (s′|s, a, b′)
R1

A(s, a) +R1
B(s, b) Linearly separable reward for player 1

∆min Minimum probability bound for QRE policies
Nk(s, a, b, s

′) Count of visits to (s, a, b, s′) up to iteration k
Nk(s, a, b) Count of visits to (s, a, b) up to iteration k
Nk(s, a) Count of player 1 taking action a in state s up to iteration k
Nk(s, b) Count of player 2 taking action b in state s up to iteration k
Nk(s) Count of visits to state s up to iteration k

P̂k(s
′|s, a, b) Empirical estimate of transition probability at iteration k

µ̂k(a|s) Empirical estimate of policy µ at iteration k
ν̂k(b|s) Empirical estimate of policy ν at iteration k
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In this section, we introduce the additional notation needed for the matrix expression of the Q-
function, the value function, and in particular, for an additional implicit condition for the feasible
reward function (Theorem C.1) similar to the one derived in Lin et al. [2018]. To achieve this we use
a similar notation from Lin et al. [2018], adjusted to this work. First, we introduce for every agent
i ∈ [n] the stacked reward Ri. For every state s ∈ S the reward can be seen as a matrix of dimension
|Ai| × |∏n

j ̸=i |Aj |. Doing this for every state and stacking them, results in a vector Ri ∈ R|S||A|,
|A| is the dimension of the joint action space. We additionally introduce the operator π, which can
be written as a |S| × |S||A| matrix, structured in the following way. First, we need to fix an arbitrary
order on the joint action space [|A|] in the same way as already done for stacking the Reward for
every agent. Given the order, we have that for k ∈ [|S|], the k-th row is given by

Φπ
1 (k), . . . ,Φ

π
|A|(k),

where for j ∈ [|A|] we have

Φπ
j (k) =

0, . . . , 0︸ ︷︷ ︸
k−1

,

n∏
i=1

πi(aij | k), 0, . . . , 0︸ ︷︷ ︸
|S|−k

 .

Therefore, the resulting matrix has in its first |S| columns a diagonal matrix of size |S| × |S| with the
corresponding probabilities of playing the first joint action in all possible states.

∏n
i=1 π

i(a1 | 1) 0 0 · · · 0 · · ·
0

∏n
i=1 π

i(a1 | 2) 0 · · · 0 · · ·
0 0

∏n
i=1 π

i(a1 | 3) · · · 0 · · ·
...

...
...

. . .
... · · ·

0 0 0 · · · ∏n
i=1 π

i(a1 | S) · · ·


The transition matrix P of a Markov game also depends on the joint actions, making the resulting
transition matrix of dimension |S||A| × S. This allows us to write the value function as a column
vector of dimension R|S| and the Q-value function as a vector, identically as the reward vector, of
dimension |S||A| × 1. Therefore, we can write:

Qi,π = Ri + γPV i,π, V i,π = πQi,π.
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B Related Work

This work intersects with several fields of research, particularly Inverse Reinforcement Learning,
Multi-agent Inverse Reinforcement Learning , and Inverse (Algorithmic) Game Theory.

Theoretical Understanding of IRL. IRL was first introduced by Ng and Russell [2000], emphasizing
its ill-posed nature. Subsequent work tackled ambiguity via reformulations [Abbeel and Ng, 2004,
Ziebart et al., 2008, Ramachandran and Amir, 2007, Ratliff et al., 2006a, Levine et al., 2011]. To avoid
the ambiguity in IRL, recent research has addressed to characterize the set of feasible rewards instead
of picking a single reward function. Theoretical efforts to characterize the feasible reward set were
pioneered by Metelli et al. [2021]. The authors provide an explicit reward formulation, that shows
that the reward depends on the expert policy and the transition dynamics. As in realistic scenarios
it is not common to know the transition model and the expert policy, the authors provide an error
propagation analysis on how estimation errors in these quantities transfer to the recovered reward.
Additionally, they provide a uniform sampling algorithm with access to a generative model combined
with a sample complexity analysis on how many samples are required to find a suitable reward
function from the set of feasible rewards, that is also transferable to new environments. In Lindner
et al. [2022] the authors extend this to the finite horizon setting. Additionally, the authors provide
the first algorithm that removes the assumption of a generative model and instead create exploration
policies to mitigate the reward uncertainty dubbed active inverse reinforcement learning. Additionally,
they provide a sample complexity analysis for the most general case and a problem-dependent variant.
Further insights on the theoretical insights of IRL have been provided by [Metelli et al., 2023]. The
authors investigate different metrics for the IRL problem, leading to a more nuanced analysis and the
requirement of refined concentration inequalities. Additionally, they provide the first lower bound
for IRL, addressing an open question , that IRL is not harder than forward RL. The first offline
algorithm for IRL combined with a sample complexity analysis has been provided in [Zhao et al.,
2024]. The authors note limitations of so far introduced metrics in settings without a generative
model. Additionally, the authors show that IRL is not harder than standard RL in the offline setting.
The offline setting has also been considered in Lazzati et al. [2024b]. The authors provide a new
formulation of the feasible reward set, more suitable for the offline setting. They introduce two new
efficient algorithms designed for the offline setting, overcoming the new introduced challenges as the
data coverage cannot be controlled anymore. An investigation how IRL translates to large state spaces
has been obtained in Lazzati et al. [2024a]. The authors provide the negative result, that the feasible
reward set cannot be learned efficiently in large state spaces without additional assumptions. Instead
of the feasible reward set, they provide a new framework, rewards compatibility and an efficient
algorithm for this setting.

While these works analyze distances to value functions and expert policies, applying them to Markov
games remains challenging due to the need for equilibrium-based solutions. This implies that the
standard objectives for IRL, namely value based gaps, cannot be applied in multi-agent settings.
Additionally, we show that MAIRL introduces new challenges due to the multiplicity of equilibria.

Another line of works, considers the case of reward identifiability. In Cao et al. [2021] the authors give
an explicit reward characterization in the setting of regularized MDPs. In particular, the authors note
that the value function can be chosen arbitrarily for a given optimal policy and therefore identifiability
is not possible by a single expert policy. However, if one considers two MDPS with different transition
dynamics and discount factors and the same optimal reward function, then identifiablity is possible
if the MDPs are value-distinguishable. Based on these observations, Rolland et al. [2022] derived
explicit conditions what value-distinguishable MDPs are. In particular, they rewrote the reward
identifiability problem as system of equations and derived rank conditions that need to be fulfilled to
identify the rewards up to constants. Additionally, they provide insights for the case with unknown
transition functions and transferability to new environments.

In [Kim et al., 2021] the authors study the type of MDPs under which reward identifiability is possible.
Considering a deterministic MDP with an entropy regularized objective, the authors provide necessary
and sufficient conditions whether and MDP is identifiable. Additionally, building on these findings
they provide efficient algorithms to check if an MDP is identifiable.

In this work we address the question of identifiability in the context of multi-agents. We show that it
is not possible to identify the reward function up to constants without additional assumptions. Instead
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it is only possible to obtain an average reward function or one poses additional structural assumptions
on the underlying Markov game as e.g. linear separable rewards.

Multi-agent Inverse Reinforcement Learning. The first extension of IRL to multi-agent settings
was introduced by Natarajan et al. [2010], focusing on a centralized controller in an average reward
RL framework, but without addressing competitive settings requiring game-theoretic solutions. Lin
et al. [2014] extended this to Zero-Sum Markov games, introducing a Bayesian MAIRL framework
based on observed Nash equilibria, later expanded by Lin et al. [2018] to incorporate various solution
concepts, though without sample complexity bounds. Yu et al. [2019] extended Maximum Entropy
IRL to multi-agent settings via the logistic best response equilibrium, focusing on recovering a single
reward function rather than analyzing the feasible reward set. More recently, Goktas et al. [2024]
explored Inverse Multi-agent Learning with parameter-dependent payoffs, simplifying the problem
by assuming access to samples from the reward function. Fu et al. [2021] approached MAIRL by
decomposing it into multiple single-agent IRL tasks, applying utility-matching IRL algorithms on the
induced MDPs. Additionally, this work is the first that notes that single Nash equilibrium observations
can be limited. Instead of considering a single reward function, we formalize that that single
equilibrium observations lead to an uninformative feasible reward set. Additionally, their approach
does not address equilibrium multiplicity and lacks a sample complexity analysis. In a concurrent
work, Liao et al. [2025] address reward-function recovery in two-player zero-sum games with entropy
regularization. They first analyze a static (matrix) game under a linear parametrization of the payoff
matrix and derive a rank-condition on the feature kernel under which the reward parameters are
uniquely identifiable. They then extend their framework to linear Markov games (entropy-regularized
zero-sum Markov decision processes) and propose algorithms with high-probability finite-sample
guarantees for recovering the feasible set of reward (and transition) parameters. Finally, Tang et al.
[2024] highlighted the inadequacy of value-based gaps in Multi-agent Imitation Learning, proposing
regret as a more suitable objective when observing Correlated Equilibrium experts. In this work,
we consider the Multi-agent Inverse Reinforcement Learning framework and consider the Nash
equilibrium as well as the QRE.

Inverse (Algorithmic) Game Theory. There is significant overlap between Multi-agent Inverse
Reinforcement Learning and inverse algorithmic game theory. Many works in this area apply game-
theoretic solution concepts to rationalize the behavior of observed players in specific types of games
[Kalyanaraman and Umans, 2008, 2009]. A related work is by Kuleshov and Schrijvers [2015], who
developed polynomial-time algorithms for coarse correlated equilibria in succinct games, where the
structure of the game is known and noted that in cases where the game structure is unknown, the
problem is NP-hard. Their theorems indicate that without additional assumptions or more specific
settings, polynomial-time algorithms cannot be expected for inversely solving Nash equilibria. In
a more recent work, [Wu et al., 2022] introduce bounded rationality, i.e. considering QRE as the
observed behavior, in the context of Stackelberg Games. In particular, the authors show that QRE
observations are more informative than Nash equilibrium observations. This means that bounded
rationality helps to be more robust against an irrational opponent. Additionally, this makes it possible
to construct algorithms that have exponential dependencies on neither the number of leader actions
nor the number of follower actions.

C Omitted analysis for Section 3

The first theorem serves as an extension of the two player version theorem by Lin et al. [2018] (see
section 4.6 in Lin et al. [2018]) to n-person games and general Nash equilibria. It makes use of the
notation introduced in Appendix A.

Theorem C.1. Let G ∪R be a n-person general-sum Markov game. A policy π is an NE strategy if
and only if

(πNash − π̃)(I − γPπNash)−1Ri ≥ 0.

with the meaning that without (s, a) symbols a matrix notation and π̃ is the policy with π−i =
π−i,Nash and πi plays action a with probability 1.

Proof. In the first step of the proof we state the theorem for the case where n = 2 with the use of the
definition of an NE. We only write the condition for agent 1 to understand the structure. For every
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action a1 ∈ A1 and every state s ∈ S it must hold true that:∑
a2∈A2

π2,Nash(a2 | s)R1(s, a1a2)+γ
∑

a2∈A2

π2,Nash(a2 | s)
∑
s′

P (s′ | s, a1a2)V πNash

(s) ≤ V πNash

(s)

If we now want to generalize this to a n-person Markov game, we get that for every player i ∈ [n],
every action ai and every state s ∈ S it must hold true that:∑

a−i∈A−i

π−i,Nash(a−i | s)R1(s, aia−i)

+ γ
∑

a−i∈A−i

π−i,Nash(a−i | s)
∑
s′

P (s′ | s, aia−i)V πNash

(s) ≤ V πNash

(s)

We can rewrite this equation in terms of the Q-function and get∑
a−i∈A−i

π−i(a−i | s)QπNash

(s, a) ≤ V πNash

(s). (5)

Now we want to rewrite the equation for all states simultaneously. Therefore we recall the notation
introduced in Appendix A. We have that

Qi,π = Ri + γPV i,π, V i,π = πQi,π.

Rewriting this equation for the Nash Policy πNash gives us

Qi,πNash

= (I − γPπNash)−1Ri.

Plugging in the derived equations in (5) using matrix notation for all states s ∈ S simultaneously and
additionally denote the joint policy, where agent i plays action ai with probability 1 and the other
agents execute their Nash strategy π−i,Nash as π̃, we get

(π̃ − πNash)(I − γPπNash)−1Ri ≤ 0.

The next lemma restates the condition by directly using the expectation of the advantage function
with respect to the policy.

Lemma C.2 (Feasible Reward Set Implicit). A reward function R = (R1, . . . , Rn) is feasible if and
only if for a Nash policy πNash, for every agent i ∈ [n] and all (s, ai) ∈ S ×Ai, it holds true that:∑
a−i∈A−i

π−i,Nash(a−i | s)Ai,πNash

G∪R (s, ai, a−i) = 0, if πi,Nash(ai | s) > 0, a−i ∈ supp(π−i,Nash(· | s)).

∑
a−i∈A−i

π−i,Nash(a−i | s)Ai,πNash

G∪R (s, ai, a−i) ≤ 0, if πi,Nash(ai | s) = 0, a−i ∈ supp(π−i,Nash(· | s)).

Proof. As we know that a−i ∈ supp(π−i,Nash(· | s)) for both cases, we get for all agents i ∈ [n] and
all actions ai,Nash ∈ Ai that fulfill πi,Nash(ai,Nash | s) > 0, that

∑
a−i∈A−i π−i,Nash(a−i |

s)Qi,πNash

(s, ai,Nasha−i) >
∑

a−i∈A−i π−i,Nash(a−i | s)Qi,πNash

(s, aia−i). Additionally,
we have that for all ai,Nash with πi,Nash(ai,Nash | s) > 0 that

∑
a−i∈A−i π−i,Nash(a−i |

s)Qi,πNash

(s, ai,Nasha−i) = V i,πNash

(s).

In the following we will constrain to the case of pure NE, therefore it holds true, that for some
a−i ∈ A−i, we have π(a−i | s) = 1 ∀s ∈ S.
Lemma C.3. Let i ∈ [n] be an arbitrary agent. Then the Q-function of player i satisfies the optimality
conditions of Lemma C.2 for a pure Nash equilibrium if and only if for every (s, a) ∈ S ×A there
exists a function Ai ∈ RS×A

≥0 and V i ∈ RS such that:

Qi,πNash

G∪R (s, a) = −Ai(s, a)1{πi,Nash(ai|s)=0}1{π−i,Nash(a−i|s)=1} + V i(s)
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Proof. First we assume that the Q-function can be expressed as

Qi,πNash

G∪R (s, a) = −Ai(s, a)1{πi,Nash(ai|s)=0}1{π−i,Nash(a−i|s)=1} + V i(s).

We note that

V i,πNash

G∪R (s) =
∑
a∈A

πNash(a | s)Qi,πNash

G∪R (s, a)

=
∑
a∈A

πNash(a | s)
(
−Ai(s, a)1{πi,Nash(ai|s)=0}1{π−i,Nash(a−i|s)=1} + V i(s)

)
= V i(s),

where the last equality follows from the fact, that if πNash(a | s) > 0, then 1{πi,Nash(ai|s)=0} = 0

and vice versa. Additionally, V i(s) is independent of a and as the sum is over the joint action space
it holds true that

∑
a∈A πNash(a | s) = 1. We now have to consider two cases. The first one is if

1{πi,Nash(ai|s)=0} = 0 and 1{π−i,Nash(a−i|s)=1} = 1. Then it holds true that∑
a∈A

πNash(a | s)Qi,πNash

G∪R (s, a) = V i(s) = V i,πNash

G∪R .

The second case is if 1{πi,Nash(ai|s)=0} = 1 and 1{π−i,Nash(a−i|s)=1} = 1 for one action ã−i with
π−i(ã−i | s) as we assumed it is a pure NE. Then it holds true that∑

a∈A
π−i,Nash(a−i | s)Qi,πNash

G∪R (s, aia−i)

= Qi,πNash

G∪R (s, aiã−i)

= −Ai(s, a)1{πi,Nash(ai|s)=0}1{π−i,Nash(a−i|s)=1} + V i(s)

≤ V i(s) = V i,πNash

G∪R ,

where we used the fact that −Ai(s, a) ≤ 0.
If we now assume that the conditions of Lemma C.2 hold, we can set for every (s, a) ∈ S × A
V i(s) = V i,πNash

G∪R and Ai(s, a) = V i,πNash

G∪R (s)−Qi,πNash

G∪R (s, a).

Lemma C.4 (Feasible Reward Set Explicit). A reward function R is feasible if and only if, for
each agent i ∈ [n], there exist a function Ai ∈ RS×A

≥0 and a function V i ∈ RS such that for all
(s, a) ∈ S ×A, the following holds:

Ri(s, a) = −Ai(s, a)1{πi,Nash(ai|s)=0}1{π−i,Nash(a−i|s)=1} + V i(s)− γ
∑
s′

P (s′ | s, a)V i(s′).

Proof. Remembering that we can express the Q-function as Qi,πNash

G∪R (s, a) = Ri(s, a)+γ
∑

s′ P (s′ |
s, a)V i,πNash

G∪R (s′) and applying Lemma C.3 to express the Q-function for an NE policy, we can
conclude

Ri(s, a) = Qi,πNash

G∪R (s, a)− γ
∑
s′

P (s′ | s, a)V i,πNash

G∪R (s′)

= −Ai(s, a)1{πi,Nash(ai|s)=0}1{π−i,Nash(a−i|s)=1} + V i(s)− γ
∑
s′

P (s′ | s, a)V i(s′).

Theorem C.5 (Error Propagation). Let (G,πNash) and (Ĝ, π̂Nash) be the true and the recovered
MAIRL problem. Then, for every agent i ∈ [n] and any Ri ∈ RB there exists R̂i ∈ RB̂ such that:

|Ri(s, a)− R̂i(s, a)| ≤ Ai(s, a)|1E − 1Ê |+ γ
∑
s′

V i(s′)|P (s′ | s, a)− P̂ (s′ | s, a)|,

where E := {{πi,Nash(ai | s) = 0} ∩ {π−i,Nash(a−i | s) > 0}} and Ê := {{π̂i,Nash(ai | s) =
0} ∩ {π̂−i,Nash(a−i | s) = 1}}.
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Proof. From the explicit expression of a feasible reward C.4, we know that we can write the reward
function of any agent i ∈ [n] as

Ri(s, a) = −Ai(s, a)1{πi,Nash(ai|s)=0}1{π−i,Nash(a−i|s)=1} + V i(s)− γ
∑
s′

P (s′ | s, a)V i(s′)

(6)

R̂i(s, a) = −Âi(s, a)1{π̂i,Nash(ai|s)=0}1{π̂−i,Nash(a−i|s)=1} + V̂ i(s)− γ
∑
s′

P̂ (s′ | s, a)V̂ i(s′)

(7)

As pointed out in Metelli et al. [2023], the rewards R̂i(s, a) do not have to be bounded by the same
Ri(s, a) and therefore also not by the same Rmax. To fix this issue the authors point out, that the
reward needs to be rescaled such that the recovered feasible reward set is bounded by the same value.
In our case we have to be a bit more careful with the choice of the scaling, as we did not assume
that the reward is bounded by 1. As we proof the existence of such reward function, we can choose
Ṽ i(s) = V i(s) for every s ∈ S and Ãi(s, a) = Ai(s, a) for every (s, a) ∈ S ×A, which results in a
reward
R̃i(s, a) = −Ai(s, a)1{π̂i,Nash(ai|s)=0}1{π̂−i,Nash(a−i|s)=1} + V i(s) + γ

∑
s′

P̂ (s′ | s, a)V i(s′).

Now we need to rescale the reward with Rmax + |εi(s, a)|, where

εi(s, a) = −Ai(s, a)
(
1{πi,Nash(ai|s)=0}1{π−i,Nash(a−i|s)=1} − 1{π̂i,Nash(ai|s)=0}1{π̂−i,Nash(a−i|s)=1}

)
+ γ

∑
s′

(P (s′ | s, a)− P̂ (s, a))V i(s′),

such that it remains bounded by Rmax, we receive

R̂i(s, a) = R̃i(s, a)
Rmax

Rmax + |εi(s, a)|

= −Ai(s, a)
Rmax

Rmax + |εi(s, a)|1{π̂i,Nash(ai|s)=0}1{π̂−i,Nash(a−i|s)=1}

+
RmaxV

i(s)

Rmax + |εi(s, a)| + γ
∑
s′

P̂ (s′ | s, a)
RmaxV

i(s′)

Rmax + |εi(s, a)|
It then follows that:

|Ri(s, a)− R̂i(s, a)| = |Ri(s, a)− RmaxR̃
i(s, a)

Rmax + |εi(s, a)| |

≤ Rmax

Rmax + |εi(s, a)|

∣∣∣∣(Rmax + |εi(s, a)|
Rmax

)
Ri(s, a)− R̃i(s, a)

∣∣∣∣
≤ Rmax

Rmax + |εi(s, a)|

(
|Ri(s, a)− R̃i(s, a)|+ |ε

i(s, a)
Rmax

Ri(s, a)|
)

≤ Rmax

Rmax + |εi(s, a)|
(
|εi(s, a)|+ |εi(s, a)|

)
≤ Rmax

Rmax

(
|εi(s, a)|+ |εi(s, a)|

)
= 2

(
Ai(s, a)|

(
1E − 1Ê

)
|+ γ

∣∣∣∣∣∑
s′

(P (s′ | s, a)− P̂ (s′ | s, a))V i(s′)

∣∣∣∣∣
)

Lemma C.6. Let G ∪R be a n-person general-sum Markov game, P, P̂ two transition probabilities
and R, R̂ two reward functions, such that π̂ is a Nash equilibrium strategy in Ĝ ∪ R̂. Then, it holds
true that:

V i(πi, π̂−i)− V i(π̂i, π̂
−i)

≤
∑
s,a

wπ̂
s,a(R

i(s, a)− R̂i(s, a) + γ
∑
s′

(P̂ (s′ | s, a)− P (s′ | s, a)V i,π̂(s′)))

+
∑
s,a

wπ̃
s,a(R

i(s, a)− R̂i(s, a) + γ
∑
s′

(P̂ (s′ | s, a)− P (s′ | s, a)V i,π̃(s′))),
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Algorithm 1 MAIRL Uniform Sampling Algorithm with Generative Model

Require: Significance δ ∈ (0, 1), target accuracy ε
1: Initialize k ← 0, ε0 ← +∞
2: while εk > ε do
3: Generate one sample for each (s, a) ∈ S ×A
4: Update P̂k as described in (12)
5: Update accuracy εk ← 1

1−γ max(s,a) Ĉk(s, a)
6: end while

where π̃ = (πi, π̂−i).

Proof.

V i(πi, π̂−i)− V i(π̂i, π̂−i)

= V i(πi, π̂−i)− V̂ i(πi, π̂−i) + V̂ i(π̂i, π̂−i)− V i(π̂i, π̂−i) + V̂ i(πi, π̂−i)− V̂ i(π̂i, π̂−i)

≤ V i(πi, π̂−i)− V̂ i(πi, π̂−i) + V̂ i(π̂i, π̂−i)− V i(π̂i, π̂−i)

=
∑
s,a

wπ̂
s,a(R

i(s, a)− R̂i(s, a) + γ
∑
s′

(P̂ (s′ | s, a)− P (s′ | s, a))V i,π̂(s′))

+
∑
s,a

wπ̃
s,a(R

i(s, a)− R̂i(s, a) + γ
∑
s′

(P̂ (s′ | s, a)− P (s′ | s, a))V i,π̃(s′)),

where we used that V̂ i(π̂i, π̂−i)− V i(π̂i, π̂−i) ≤ 0 as π̂ is a NE policy and in the last equation we
applied H.2.

C.1 Sample Complexity analysis of the Uniform Sampling algorithm

In this section we give the proofs of the sample complexity for Uniform Sampling algorithm and
lemmas derived in Theorem C.12 and Lemma C.8 The structure is as follows:

1. We first state the Uniform Sampling algorithm.
2. Then, we state the optimality criterion based on the Nash Imitation Gap.
3. Next, we present the Good Event Lemma bounds, using Hoeffding’s inequality.
4. We define the reward uncertainty.
5. Then, we state a theorem that provides conditions—dependent on the derived confidence

bounds—under which the optimality criterion holds.
6. Finally, we consolidate all results to prove the sample complexity bound for the uniform

sampling algorithm.

The algorithm, that we are evaluating in this section is given in Algorithm 1.

Now, we can restate the optimality criterion of the algorithm.
Definition C.7 (Optimality Criterion). LetR(G,πNash) be the exact feasible set andR(Ĝ,π̂Nash) the
recovered feasible set after sampling N ≥ 0 from (G,πNash). We consider an algorithm to be
(ε, δ,N)-correct after observing N samples if it holds with a probability of at least 1− δ:

sup
R∈R

(G,πNash)

inf
R̂i∈R

(Ĝ,π̂Nash)

max
i∈[n]

max
πi∈πi

V i
G∪R(π

i, π̂−i)− V i
G∪R(π̂

i, π̂−i) ≤ ε

sup
R̂∈R

(G,πNash)

inf
R∈R

(Ĝ,π̂Nash)

max
i∈[n]

max
πi∈πi

V i
G∪R(π

i, π̂−i)− V i
G∪R(π̂

i, π̂−i) ≤ ε

We are now introducing the empirical estimator for the transition dynamic. For each iteration
k ∈ [K], let nk(s, a, s′) =

∑k
t=1 1(st,at,s′t)=(s,a,s′) denote the count of visits to the triplet (s, a, s′) ∈

S ×A× S, and let nk(s, a) =
∑

s′∈S nk(s, a, s′) denote the count of visits to the state-action pair
(s, a).
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It is important to note the distinction here: the count of actions must be done separately for each
agent, whereas the count of state visits needs to be done for any one of the agents. The cumulative
count over all iterations k ∈ [K] can then be written as:

Nk(s, a, s′) =
∑
j∈[k]

nj(s, a, s′),

The cumulative state visit count are given by:

N i
k(s, a

i) =
∑
j∈[k]

ni
j(s, a

i) ∀i ∈ [n]

After introducing the empirical counts, we can now state the empirical estimators for the transition
model:

P̂k(s
′ | s, a) =

{
Nk(s,a,s′)
Nk(s,a) if Nk(s, a) > 0

1
S otherwise

(8)

Next, we state the lemma that derives the good event by applying Hoeffding’s inequality. As the
Nash equilibrium is assumed to be a pure one, meaning it is deterministic for every s ∈ S, we only
have to define the good event for the transition probability and for the experts policy we require, that
for each agent we have seen each state only once.

Lemma C.8 (Good Event). Let k be the number of iterations and πNash be the stochastic expert
policy. Furthermore let π̂Nash and P̂ be the empirical estimates of the transition probability after k
iterations as defined in Eq. (8) respectively. Then for δ ∈ (0, 1), define the good event E as the event
such that the following inequalities hold simultaneously for all (s, a) ∈ S ×A and k ≥ 1:

∑
s′

∣∣∣(P (s′ | s, a)− P̂k(s
′ | s, a))V i(s′)

∣∣∣ ≤ Rmax

1− γ

√
8lk(s, a)
N+

k (s, a)
,

∑
s′

∣∣∣(P (s′ | s, a)− P̂k(s
′ | s, a))V̂ i(s′)

∣∣∣ ≤ Rmax

1− γ

√
8lk(s, a)
N+

k (s, a)
.

where we introduced lk(s, a) := log
(

12|S|
∏

i |A
i|(N+

k (s,a))2

δ

)
.

Proof. We start with bound the two last equations. Therefore we define lk(s, a) =

log
(

12S
∏

i |A
i|(N+

k (s,a))2

δ

)
and additionally we denote βNk(s,a) = Rmax

1−γ

√
2lk(s,a)
N+

k (s,a)
. Now we de-

fine the set

E trans :=

{
∀k ∈ N, ∀(s, a) ∈ S ×A :

∑
s′∈S
|(P (s′ | s, a)− P̂ (s′ | s, a))V i(s′)| ≤ βNk(s,a)

}
.
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Then we get for V i with probability of 1− δ:

P
(
(E trans)C

)
= P

(
∃k ≥ 1,∃(s, a) ∈ S ×A :

∑
s′

∣∣∣(P (s′ | s, a)− P̂k(s
′ | s, a)

)
V i(s′)

∣∣∣ > βNk(s,a)(s, a)

)
(a)

≤
∑

(s,a)∈S×A

P

(
∃k ≥ 1 :

∑
s′

∣∣∣(P (s′ | s, a)− P̂k(s
′ | s, a)

)
V i(s′)

∣∣∣ > βNk(s,a)(s, a)

)
(b)

≤
∑

(s,a)∈S×A

P

(
∃m ≥ 0 :

∑
s′

∣∣∣(P (s′ | s, a)− P̂k(s
′ | s, a)

)
V i(s′)

∣∣∣ > βNk(s,a)(s, a)

)
(c)

≤
∑

(s,a)∈S×A

∑
m≥0

2 exp

(
β2
Nk(s,a)m

2(1− γ)2

4mγ2R2
max

)

≤
∑

(s,a)∈S×A

∑
m≥0

δ

6|S|(∏n
i=1 |Ai|)(m+)2

≤ δ

6

(
1 +

π2

6

)
≤ δ

2
,

where (a) uses a union bound over the state and joint-action space, (b) uses that we only consider
the m-times, where we updated the estimated transition model and (c) uses an union bound over
the update times m and an application of Hoeffding’s inequality combined with the fact that we can
bound the value function, i.e. V i(s′) ≤ Rmax

1−γ for every s′ ∈ S.

Following, we present the reward uncertainty metric, which allows us to demonstrate that the
difference between the recovered reward function and the true reward function is bounded.

Definition C.9 (Reward Uncertainty). Let k be the number of iterations. Then the reward uncertainty
after k iterations for any (s, a) ∈ S ×A is defined as

Ck(s, a) :=
4γRmax

1− γ

(√
8lk(s, a)
N+

k (s, a)

)
.

Theorem C.10. Let the reward uncertainty be defined as in C.9. Under the good event it holds for
any (s, a) ∈ S ×A that:

|Ri(s, a)− R̂i(s, a)| ≤ Ck(s, a).

Proof. The theorem is an application of the error propagation Theorem C.5, followed by Lemma C.8

|Ri(s, a)− R̂i(s, a)| ≤ 2

(
Ai(s, a)|1E − 1Ê |+ γ

∑
s′

|(P (s′ | s, a)− P̂ (s′ | s, a))V i(s′)|
)

≤ 4γRmax

1− γ

(√
2lk(s, a)
N+

k (s, a)

)

≤ 4γRmax

1− γ

(√
8lk(s, a)
N+

k (s, a)

)
= Ck(s, a).

Corollary C.11. Let k be the number of iterations for any allocation of the samples over the state-
action space S×A. Furthermore, letR(G,πNash) be the true feasible set andR(Ĝ,π̂Nash) the recovered
one. Then the optimality criterion 3.3 holds true, if

1

1− γ
max
(s,a)

Ck(s, a) ≤ ε

2
.
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Proof. We complete the proof for the first case of the optimality criterion, the second one follows
analogously.

sup
R∈R

(G,πNash)

inf
R̂i∈R

(Ĝ,π̂Nash)

max
i∈[n]

max
πi∈Πi

(
V i
G∪R(π

i, π̂−i)− V i
G∪R(π̂

i, π̂−i)
)

(a)

≤ sup
R∈R

(G,πNash)

inf
R̂i∈R

(Ĝ,π̂Nash)

max
i,πi

(∑
s,a

wπ̂
s,a

(
Ri(s, a)− R̂i(s, a) + γ

∑
s′

(P̂ − P )(s′ | s, a)V i,π̂(s′)

)

+
∑
s,a

wπ̃
s,a

(
Ri(s, a)− R̂i(s, a) + γ

∑
s′

(P̂ − P )(s′ | s, a)V i,π̃(s′)

))
(b)

≤ sup
R∈R

(G,πNash)

inf
R̂i∈R

(Ĝ,π̂Nash)

max
i,πi

2
∑
s,a

wπ
s,a

(
Ri(s, a)− R̂i(s, a) + γ

∑
s′

(P̂ − P )(s′ | s, a)V i,π(s′)

)
(c)

≤ sup
R∈R

(G,πNash)

inf
R̂i∈R

(Ĝ,π̂Nash)

max
i,πi

2
∑
s,a

wπ
s,a

(
Ai(s, a)

∣∣1E − 1Ê

∣∣+ 2γ
∑
s′

∣∣∣(P̂ − P )(s′ | s, a)V i(s′)
∣∣∣)

(d)

≤ 2

1− γ
max
(s,a)

Ck(s, a) ≤ ε.

where in (a) we applied C.6; in (b) we used the fact that a + b ≤ 2max{a, b} and denoted the
corresponding policy as π; in (c) we used the error propagation Theorem C.5 and in (d) we used
C.10.

We can combine the derived results to now state the main theorem regarding the sample complexity
of allocating the samples uniformly over the state action space.

Theorem C.12 (Sample Complexity of Uniform Sampling MAIRL). Allocating the samples uni-
formly (see Algorithm 1) over the state and (joint-) action space stops with a probability of at least
1− δ after iteration τ and satisfies the optimality criterion (see 3.3), where the sample complexity is
of order

Õ
(
γ2R2

max|S|
∏n

i=1 |Ai|
(1− γ)4ε2

)

Proof. We know from C.11, that we need

1

1− γ
max
(s,a)

Ck(s, a) ≤ εk
2

⇔ 2Rmax

(1− γ)2
max
(s,a)

(
γ

√
8lk(s, a)
N+

k (s, a)

)
≤ εk

2

This is satisfied if

4γRmax

(1− γ)2

√
8lk(s, a)
N+

k (s, a)
≤ εk

2

To achieve the first condition, we get

Nk(s, a) ≥ Rmax

(1− γ)4
γ28lk(s, a)

8

ε2k
=

γ264Rmax

(1− γ)4ε2k
log

(
12S

∏
i |Ai|(N+

k (s, a))2

δ

)
Applying Lemma B.8 by Metelli et al. [2021] we get that

Nk(s, a) ≤ 256γ2R2
max

(1− γ)4ε2k
log

(
128γ2R2

max

(1− γ)4ε2k

√
12|S|∏i |Ai|

δ

)
.
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At each iteration we are allocating the samples uniformly over S × A and recalling that τs,a =
S
∏

i |Ai|Nk(s, a) therefore we get

τ ≤ 256|S|∏i |Ai|γ2R2
max

(1− γ)4ε2k
log

(
128γ2R2

max

(1− γ)4ε2k

√
12|S|∏i |Ai|

δ

)
Now we only have to achieve that we have seen each state at least once, to correctly estimate the
policies for every agent. Therefore, we force that Nk(s) ≥ 1. As we here need to allocate samples
uniformly over the state space only but for every agent separately and recalling that τs = |S|Nk(s),
we get

τs ≤ n|S|
With τ = τs,a + τs we get in total

τ ≤128|S|∏i |Ai|γ2R2
max

(1− γ)4ε2k
log

(
64aγ2R2

max

(1− γ)4ε2k

√
12|S|∏i |Ai|

δ

)
+ n|S|.

This is exactly of order

Õ
(
γ2R2

max|S|
∏n

i=1 |Ai|
(1− γ)4ε2

)

D Hardness result

In this section, we want to quantify the non-expressiveness of the recovered feasible reward set under
a single NE observation. Therefore, we give the following hardness result. The idea is that the
observed NE only covers a part of the environment and the definition of NE only ensures robustness
against single agent deviations.

Theorem D.1. Let us consider any IRL algorithm AlgIRL that chooses R̂ ∈ R(Ĝ,π̂Nash) that is not

a constant reward, i.e. R̂ ̸= C for C ∈ [−Rmax, Rmax]. Furthermore consider a forward MARL
algorithm AlgMARL that guarantees learning a policy π̃ ∈ ΠNash. Then, there exists a Markov game,
such that even if π̂ ∈ ΠNash and R̂ ∈ R(G,πNash) it holds true that E(π′) is of order (1− γ)−1.

Proof. We consider the following 2-player general-sum Markov game G ∪ R. Let S =
{s0, s1, s2, s3, s4} with A1 = A2 = {a1, a2}. Furthermore, let the transition dynamics be given by

P (· | s0, a) =


s1 if a = (a1a1),
s2 if a ∈ {(a1a2), (a2a1)},
s3 if a = (a2, a2),

In states s1, s2, s3 the transition is defined to stay in the respective state with probability 1. Further-
more, let the true reward of the Markov game be given by

R1(s0, a) =


3 if a = (a1a1),
0 if a ∈ {(a1a2), (a2a1)},
2 if a = (a2, a2),

R2(s0, a) =


2 if a = (a1a1),
0 if a ∈ {(a1a2), (a2a1)},
3 if a = (a2, a2),

For the other states we have that R(s1, a) = R(s3, a) = 1 ∀a ∈ A and R(s2, a) = 0 ∀a ∈ A. This
indicates that the Markov game has two pure NE strategies πNash

1 withπ1(a1 | s0) = π2(a1 | s0) =
1 and πNash

2 with π1(a2 | s0) = π2(a2 | s0) = 1 and any distribution in states s1, s2, s3. Note that
this game can be seen as a Markov game extension of the Normal Form Game Battle of the Saxes that
rewards the NE strategies in subsequent states. An illustration of this game can be found in Fig. 2.
Let us assume that the observed Nash equilibrium is πNash

1. Next, we apply anyAlgIRL that returns
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R̂ ∈ R(Ĝ,π̂Nash). Note, that the Nash equilibrium for the state s0 and s1 will be recovered perfectly

and a potential R̂ is given by

R̂1(s0, a) =


2 if a = (a1a1),
−1 if a = (a1a2),
2 if a = (a2a1),
−2 if a = (a2, a2),

R̂2(s0, a) =


2 if a = (a1a1),
2 if a = (a1a2),
−1 if a = (a2a1),
−2 if a = (a2, a2),

Additionally, the rewards R̂(s1, a) = 1, R̂(s3, a) = −1 ∀a ∈ A and R(s2, a) = 1∀a ∈ A. Then, we
note that π̂ is indeed a NE under R̂ and also in the true underlying environment G ∪R.

However, in the recovered Markov game Ĝ ∪ R̂ there exists another pure equilibrium solutions
πNash

3,π
Nash

4 /∈ ΠNash
G∪R , where for πNash

3 we have π1
3(a1 | s0) = 1 and π2

3(a2 | s0) = 1 and
πNash

4 is given by π1
3(a2 | s0) = 1 and π2

3(a1 | s0) = 1.

If one now applies a forward MARL algorithm that guarantees convergence to a any (pure) NE
defined by π̃, i.e. satisfying

ER̂ = max
i∈{1,2}

max
πi∈Πi

V i
R̂
(πi, π̃−i)− V i

R̂
(π̃) = 0.

Then, assuming that π̃ in the true Markov game it holds true that

EAlgMARL
[ER(π̃)] ≥

1

(1− γ)
P(π̃ ̸= πNash

1).

This holds true because for π̃ = πNash
1, we have that E(πNash

1) = 0 as this is also a NE in the
original Markov game. However for πNash

3 and πNash
4 which both go to state s2 a Best response

would either be to go s1 or s3 resulting in a exploitability for 1 for all future states. Assuming that
the algorithm returns a NE uniformly across the set of NE, we get

EAlgMARL
[ER(π̃)] ≥

1

(1− γ)
P(π̃ ̸= πNash

1) =
2

3(1− γ)
.

This is exactly of the order (1− γ)−1 and completes the proof.

Next, we want to provide further intuition on this phenomenon by giving the Normal Form Game
that is the origin of the considered Markov game instance.
Example D.1. We consider the general form of a coordination game as a Normal Form Game (NFG):

Player 2: Stag Player 2: Hare
Player 1: Stag (A,A) (C,B)
Player 1: Hare (B,C) (D,D)

In general coordination games, we have that D > B and D −B < A+D −B − C. Assume we
observe the pure Nash equilibrium strategy (Stag,Stag). The feasible reward setR then contains all
rewards that satisfy:

R1(Stag,Stag) ≥ R1(Hare,Stag) ∧R2(Stag,Stag) ≥ R2(Stag,Hare),

while for all other reward values, any rewards are feasible, i.e., R1(Stag,Hare), R1(Hare,Hare) ∈
RA1×A2

.

This flexibility in reward specification allows for undesirable scenarios (see Example D.1), such as:

• Changing the nature of the game: The game can transform into an anti-coordination
variant with additional pure Nash equilibria not present in the original game.

• Losing equilibria: Rewards can be defined so that "Stag" becomes the unique dominant
strategy for player 1.

The following are two examples of feasible rewards if observing the NE expert (Stag,Stag):
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Player 2: Stag Player 2: Hare
Player 1: Stag (2, 2) (0, 0)
Player 1: Hare (0, 0) (−1,−1)

Player 2: Stag Player 2: Hare
Player 1: Stag (2, 2) (−1, 2)
Player 1: Hare (2,−1) (−10,−10)

This example highlights that even in simple NFGs, the feasible reward set encompasses too many
reward functions, including those that significantly alter the game’s equilibria. This contrasts with
the single-agent IRL setting, where the feasible reward set contains degenerate rewards like constant
ones, but due to the fact that all equilibria obtain the same value, preserving the meaning of the
environment. In the multi-agent setting, this second source of ambiguity allows for strategic behavior
entirely absent in the original game, which is highly undesirable if the goal is to recover meaningful
reward functions for transfer to new environments.

E Proofs of Section 3.2

In this section, we will give the missing proofs of Section 3.2. We start by giving again the definition
of a feasible reward function for an observed pair of expert policies. In particular, if the observed
expert policy is a QRE equilibrium.
Definition E.1 (Feasible Reward Set (regularized)). A reward function R is feasible for an MAIRL
problem (G, (µ∗, ν∗)) if and only if the observed policy pair forms an equilibrium in G ∪R.

Additionally, we will restate Definition 3.3 in terms of regularized games.
Definition E.2 (Regularized Optimality Criterion). LetR := R(G,(µ∗,ν∗)) be the exact feasible set
and R̂ := R(Ĝ,(µ̂∗,ν̂∗)) the recovered feasible set after observing N ≥ 0 samples from the underlying
MAIRL problem (G,πNash). We consider an algorithm to be (ε, δ,N)-correct after observing N
samples if with a probability of at least 1− δ it holds:

sup
R∈R

inf
R̂∈R̂

max{max
µλ

V 1
λ (µ, ν̂)− V 1

λ (µ̂, ν̂),max
νλ

V 2
λ (µ̂, ν)− V 2

λ (µ̂, ν̂)} ≤ ε

sup
R̂∈R̂

inf
R∈R

max{max
µλ

V 1
λ (µ, ν̂)− V 1

λ (µ̂, ν̂), V
2
λ (µ̂, ν̂)−min

νλ

V 2
λ (µ̂, ν)} ≤ ε,

where we used µλ, νλ to denote entropy regularized policies.

This optimality criterion can be seen as the soft version of the Nash Imitation Gap(Definition 3.2).

Next, note that a policy is considered optimal, i.e. a QRE equilibrium, if the policies satisfy

µ∗(a | s) =
exp

(
1
λ

∑
b′∈B ν∗(b′ | s)Q∗,1

λ (s, a, b′)
)

∑
a′∈A exp

(
1
λ

∑
b′∈B ν∗(b′ | s)Q∗,1

λ (s, a′, b′)
) , (9)

ν∗(b | s) =
exp

(
1
λ

∑
a′∈A µ∗(a′ | s)Q∗,2

λ (s, a′, b)
)

∑
b′∈A exp

(
1
λ

∑
a′∈A µ∗(a′ | s)Q∗,2

λ (s, a′, b′)
) . (10)

Similarly to the analysis done in the single-agent setting the goal is to derive an explicit characteriza-
tion of the reward function [Metelli et al., 2023, Lindner et al., 2022, Metelli et al., 2023, Zhao et al.,
2024, Cao et al., 2021]. The idea is to rewrite the formulation of the optimal policy in terms of the
reward function by using the definition of the value function and the Q-function. We will present
the analysis only for player 1, it holds analogously for player 2. For a better readability we drop the
superscript for the player.
Lemma E.3 (Feasible Explicit (regularized)). A reward function R for the regularized Markov game
i feasible if and only if there exists V ∈ RS and |B|− 1 many functions R′ ∈ [−Rmax, Rmax]

S×A×B

such that for all (s, a, b) it holds that

R(s, a, b) = 1
ν∗(b|s)

(
λ log(µ∗(a | s)) + V (s)− γ

∑
s′
∑

b′∈B ν∗(b′ | s)P (s′ | s, a, b′)V (s′)−∑b′ ̸=b ν
∗(b′ | s)R(s, a, b′)

)
.
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Proof. First, assume that the reward function R is feasible. By definition, this implies that µ∗ is an
optimal policy for agent 1 under R when agent 2 plays ν∗. Let V ∗

λ (s) be the corresponding unique
entropy-regularized optimal value function for agent 1. The optimal policy µ∗(a | s) (see Eq. (9)) is
given by

µ∗(a | s) = exp
(
1
λ

∑
b′∈B ν∗(b′ | s)Q∗

λ(s, a, b
′)
)∑

a′∈A exp
(
1
λ

∑
b′∈B ν∗(b′ | s)Q∗

λ(s, a
′, b′)

) .
Recognizing that the denominator relates to the soft value function V ∗

λ (s) =
λ log

∑
a∈A exp

(
1
λ

∑
b′∈B ν∗(b′ | s)Q∗

λ(s, a, b
′)
)
, we can write

µ∗(a | s) = exp

(
1

λ

(∑
b′∈B

ν∗(b′ | s)Q∗
λ(s, a, b

′)− V ∗
λ (s)

))
.

Using the definition of the Q-function, Q∗
λ(s, a, b

′) = R(s, a, b′) + γ
∑

s′∈S P (s′ | s, a, b′)V ∗
λ (s

′),
we substitute this into the expression for µ∗(a | s):
µ∗(a | s)

= exp

(
1

λ

(∑
b′∈B

ν∗(b′ | s)R(s, a, b′) + γ
∑
b′∈B

ν∗(b′ | s)
∑
s′∈S

P (s′ | s, a, b′)V ∗
λ (s

′)− V ∗
λ (s)

))
.

Taking the logarithm and rearranging terms yields∑
b′∈B ν∗(b′ | s)R(s, a, b′) = λ log(µ∗(a | s)) + V ∗

λ (s)− γ
∑

b′∈B ν∗(b′ | s)∑s′∈S P (s′ | s, a, b′)V ∗
λ (s

′).

Let KV ∗
λ
(s, a) denote the right-hand side of the equation above. Then, for any specific action b ∈ B

such that ν∗(b | s) > 0, we can express R(s, a, b) as

R(s, a, b) =
1

ν∗(b | s)

KV ∗
λ
(s, a)−

∑
b′∈B\{b}

ν∗(b′ | s)R(s, a, b′)

 .

This matches the form specified in the lemma, where V (s) is taken as V ∗
λ (s), and the |B|−1 functions

R′ correspond to the components R(s, a, b′) for b′ ̸= b from the original feasible reward R.

For the opposing direction, assume there exists an arbitrary function V ∈ RS and a reward function
R (composed of |B| − 1 given functions R′(s, a, b′) for b′ ̸= b that are within [−Rmax, Rmax], and
the remaining component R(s, a, b) defined by the formula) such that for all (s, a, b) it holds that

R(s, a, b) =
1

ν∗(b | s)

(
λ log(µ∗(a | s)) + V (s)− γ

∑
s′∈S

∑
b′′∈B

ν∗(b′′ | s)P (s′ | s, a, b′′)V (s′)

−
∑

b′∈B\{b}

ν∗(b′ | s)R(s, a, b′)

 .

This structural definition implies that the expected reward for agent 1, Rν∗
(s, a) =

∑
b′∈B ν∗(b′ |

s)R(s, a, b′), satisfies

Rν∗
(s, a) = λ log(µ∗(a | s)) + V (s)− γ

∑
s′∈S

∑
b′∈B

ν∗(b′ | s)P (s′ | s, a, b′)V (s′). (11)

Let P ν∗
(s′ | s, a) =

∑
b′∈B ν∗(b′ | s)P (s′ | s, a, b′) be the expected transition probability from

agent 1’s perspective. Then (11) becomes Rν∗
(s, a) = λ log(µ∗(a | s)) + V (s)− γ

∑
s′∈S P ν∗

(s′ |
s, a)V (s′). We now show that R is feasible by demonstrating that V (s) is the value function of
policy µ∗ for agent 1 (given agent 2 plays ν∗) and that µ∗ is the optimal policy.

First, let V µ∗
(s) be the value function for agent 1 when it follows policy µ∗ and agent 2 follows ν∗,

with rewards R(s, a, b). The Bellman equation for V µ∗
(s) is given by

V µ∗
(s) =

∑
a∈A

µ∗(a|s)
(
Rν∗

(s, a) + γ
∑
s′∈S

P ν∗
(s′|s, a)V µ∗

(s′)− λ logµ∗(a|s)
)
.
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Substituting the expression for Rν∗
(s, a) from (11):

V µ∗
(s) =

∑
a∈A

µ∗(a|s)
([

λ log(µ∗(a | s)) + V (s)− γ
∑
s′∈S

P ν∗
(s′ | s, a)V (s′)

]

+γ
∑
s′∈S

P ν∗
(s′|s, a)V µ∗

(s′)− λ logµ∗(a|s)
)

=
∑
a∈A

µ∗(a|s)
(
V (s)− γ

∑
s′∈S

P ν∗
(s′ | s, a)V (s′) + γ

∑
s′∈S

P ν∗
(s′|s, a)V µ∗

(s′)

)
.

Since
∑

a∈A µ∗(a|s) = 1, we have

V µ∗
(s) = V (s) + γ

∑
a∈A

µ∗(a|s)
∑
s′∈S

P ν∗
(s′ | s, a)(V µ∗

(s′)− V (s′)).

Let g(s) = V µ∗
(s)−V (s). Then g(s) = γ

∑
a∈A µ∗(a|s)∑s′∈S P ν∗

(s′ | s, a)g(s′). This equation,
g = γPµ∗,ν∗g, where Pµ∗,ν∗ is the Bellman operator for policy evaluation, implies that g(s) = 0 is
the unique solution since γ ∈ [0, 1) ensures Pµ∗,ν∗ is a contraction. Thus, V µ∗

(s) = V (s) for all
s ∈ S.

Next, we show that µ∗(a|s) is the entropy-regularized optimal policy for agent 1. The optimal policy,
π∗,1(a|s), is given by π∗,1(a|s) ∝ exp

(
1
λE

∗,1
Q (s, a)

)
, where E∗,1

Q (s, a) is the expected Q-value
using the optimal value function V (s):

E∗,1
Q (s, a) = Rν∗

(s, a) + γ
∑
s′∈S

P ν∗
(s′|s, a)V (s′).

Substituting the expression for Rν∗
(s, a) from (11):

E∗,1
Q (s, a) =

[
λ log(µ∗(a | s)) + V (s)− γ

∑
s′∈S

P ν∗
(s′ | s, a)V (s′)

]
+ γ

∑
s′∈S

P ν∗
(s′|s, a)V (s′).

Rewriting this expression gives exactly the form of an optimal policy in the entropy regularized
Markov game. Since µ∗(a|s) is the optimal policy for agent 1 under the reward R (when agent 2
plays ν∗), the reward function R is feasible. This completes the proof.

In the following, we want to investigate how an error in estimating the expert policy pair and the
transition function translates to the recovered reward function. Note that compared to the single-agent
case it is required to estimate the policy of opponent accurately as well.

The next lemma is of great importance, to derive the error propagation. It states how estimating the
induced transition probability is related to the joint transition probability.

Lemma E.4. Let V : S → R be a function. Furthermore, let P ν be the induced transition probability
and P̂ ν the estimated one of an underlying Markov game with transition dynamic P . With out loss of
generality, we assume that we are fixing the policy of agent 2, i.e. ν. Then it holds true, that

|
∑
s′

P ν(s′ | s, a)V (s′)−
∑
s′

P̂ ν(s′ | s, a)V (s′)|

≤ max
b
|
∑
s′

V (s′)
(
P (s′ | s, a, b)− P̂ (s′ | s, a, b)

)
|
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Proof.

|
∑
s′

P ν(s′ | s, a)V (s)−
∑
s′

P̂ ν(s′ | s, a)V (s′)|

= |
∑
s′

∑
b∈B

ν(b | s)P (s′ | s, a, b)V (s′)−
∑
s′

∑
b∈B

ν̂(b | s)P̂ (s′ | s, a, b)V (s′)|

≤
∑
b∈B

max(ν(b | s), ν̂(b | s))|
∑
s′

P (s′ | s, a, b)V (s′)−
∑
s′

P̂ (s′ | s, a, b)V (s′)|

≤ max
b
|
∑
s′

P (s′ | s, a, b)V (s′)−
∑
s′

P̂ (s′ | s, a, b)V (s′)|

= max
b
|
∑
s′

V (s′)
(
P (s′ | s, a, b)− P̂ (s′ | s, a, b)

)
|

With the introduced Lemma, we can now introduce an error propagation theorem. The idea is that
we use the explicit reward function from Lemma E.3 and bound the individual terms of the true
underlying MAIRL problem and the estimated one.
Theorem E.5 (Error propagation). Let the MAIRL problem be given by (G, (µ∗, ν∗)) for a Markov
game and let (Ĝ, (µ̂∗, ν̂∗) be another MAIRL problem. Then, we have that

|R(s, a, b)− R̂(s, a, b)| ≤ 2

ν∗(b | s)ν̂∗(b | s)

(
λ| logµ∗(a | s)− log µ̂∗(a | s)|

+ γmax
b
|
∑
s′

V (s′)P (s′ | s, a, b)− P̂ (s′ | s, a, b)|+RmaxTV(ν, ν̂)

)

Proof. In the first step, we use the derived explicit form of the reward derived in Lemma E.3.

R̂(s, a, b) =
1

ν̂∗
(b | s)

(
λ log(µ̂∗(a | s)) + V̂ (s)

− γ
∑
s

∑
b′

ν̂∗(b′ | s)P̂ (s′ | s, a, b′)V̂ (s′)−
∑
b′

ν∗(b′ | s)R̂(s, a, b′)

)

As pointed out in Metelli et al. [2023], the rewards R̂(s, a, b) do not have to be bounded by the same
Rmax as R(s, a, b). To fix this issue the authors point out, that the reward needs to be rescaled such
that the recovered feasible reward set is bounded by the same value. In our case we have to be a bit
more careful with the choice of the scaling, as we did not assume that the reward is bounded by 1. As
we proof the existence of such reward function, we can choose Ṽ (s) = V (s) for every s ∈ S and
R̃(s, a, b′) = R(s, a, b′)∀b′ ̸= b for every (s, a, b) ∈ S ×A× B, which results in rewards

R̃(s, a, b) =

λ log(µ̂∗(a | s)) + V (s)− γ
∑

s

∑
b′ ν̂

∗(b | s)P̂ (s′ | s, a, b′)V (s′)−∑b′ ̸=b ν̂
∗(b′ | s)R(s, a, b′)

ν̂∗(b | s) .

Now we need to rescale the reward with Rmax + |εi(s, a, b)| respectively,

ε(s, a, b)

=
λ log(a | s) + V (s)− γ

∑
s′
∑

b′∈B ν∗(b′ | s)P (s′ | s, a, b′)V (s′)−∑b′ ̸=b ν
∗(b′ | s)R(s, a, b′)

ν∗(b | s)

−

(
λ log(µ̂∗(a | s)) + V̂ (s)− γ

∑
s

∑
b′ ν̂

∗(b′ | s)P̂ (s′ | s, a, b′)V̂ (s′)−∑b′ ν̂
∗(b′ | s)R̂(s, a, b′)

)
ν̂∗(b | s) ,

such that it remains bounded by Rmax, we receive R̂(s, a, b) = R̃(s, a, b) Rmax

Rmax+|ε(s,a,b)| .
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It then follows that:

|R(s, a, b)− R̂(s, a, b)| = |R(s, a, b)− RmaxR̃(s, a, b)

Rmax + |ε(s, a, b)|
|

≤ Rmax

Rmax + |ε(s, a, b)|

∣∣∣∣(Rmax + |ε(s, a, b)|
Rmax

)
R(s, a, b)− R̃(s, a, b)

∣∣∣∣
≤ Rmax

Rmax + |ε(s, a, b)|

(
|R(s, a, b)− R̃(s, a, b)|+ |ε(s, a, b)

Rmax
R(s, a, b)|

)
≤ Rmax

Rmax + |ε(s, a, b)|
(|ε(s, a, b)|+ |ε(s, a, b)|)

≤ Rmax

Rmax
(|ε(s, a, b)|+ |ε(s, a, b)|)

= 2|ε(s, a, b)|
In the next step, we bound the |ε(s, a, b)|
|ε(s, a, b)|

=
λ log(a | s) + V (s)− γ

∑
s′
∑

b′∈B ν∗(b′ | s)P (s′ | s, a, b′)V (s′)−∑b′ ̸=b ν
∗(b′ | s)R(s, a, b′)

ν∗(b | s)

−

(
λ log(µ̂∗(a | s)) + V̂ (s)− γ

∑
s

∑
b′ ν̂

∗(b′ | s)P̂ (s′ | s, a, b′)V̂ (s′)−∑b′ ν̂
∗(b′ | s)R̂(s, a, b′)

)
ν̂∗(b | s)

≤ 1

ν∗(b | s)ν̂∗(b | s) (λ| logµ
∗(a | s)− log µ̂∗(a | s)|

+γ

∣∣∣∣∣∑
s′

∑
b′

(ν(b′ | s)P (s′ | s, a, b′)− ν̂∗(b′ | s)P̂ (s, a, b′))V (s′)

∣∣∣∣∣
+

∣∣∣∣∣∣
∑
b′ ̸=b

R(s, a, b′)(ν∗(b′ | s)− ν̂∗(b | s))

∣∣∣∣∣∣


(i)

≤ 1

ν∗(b | s)ν̂∗(b | s) (λ| logµ
∗(a | s)− log µ̂∗(a | s)|

+γ

∣∣∣∣∣max
b′∈B
|
∑
s′

P (s′ | s, a, b′)− P̂ (s, a, b′))V (s′)

∣∣∣∣∣+
∣∣∣∣∣∣
∑
b′ ̸=b

R(s, a, b′)(ν∗(b′ | s)− ν̂∗(b | s))

∣∣∣∣∣∣


(ii)

≤ 1

ν∗(b | s)ν̂∗(b | s) (λ| logµ
∗(a | s)− log µ̂∗(a | s)|

+γ

∣∣∣∣∣max
b′∈B

∑
s′

P (s′ | s, a, b′)− P̂ (s, a, b′))V (s′)

∣∣∣∣∣+Rmax

∑
b′ ̸=b

|(ν∗(b′ | s)− ν̂∗(b | s))|


≤ 1

ν∗(b | s)ν̂∗(b | s) (λ| logµ
∗(a | s)− log µ̂∗(a | s)|

+γ

∣∣∣∣∣max
b′∈B
|
∑
s′

P (s′ | s, a, b′)− P̂ (s, a, b′))V (s′)

∣∣∣∣∣+Rmax

∑
b′ ̸=b

TV(ν∗, ν̂∗)

 ,

where we used Lemma E.4 for (i), then the assumption that R(s, a, b) is bounded by Rmax in (ii)
and last, we added |ν∗(b | s) − ν̂∗(b | s)| to obtain the definition of the total variation with the
triangle inequality.

We now again, want to use the empirical estimators to do a sample complexity analysis. The part of
the transition probability can be obtained similar to the case of the pure NE, while for the policy we
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need to bound with high probability

| log(µ∗(a | s))− log(µ̂∗(a | s))|, | log(ν∗(a | s))− log(ν̂∗(a | s))|.

Let us first introduce the assumption, also common in single-agent IRL, that the lowest probability of
an action taken from the expert is bounded away from zero by some constant.

Assumption E.6. Let µ∗, ν∗ be the QRE equilibrium expert policies. Then we assume that

min
a∈A,b∈B

(µ∗(a | s), ν∗(b | s)) ≥ ∆min.

Now we are introducing the empirical estimators, used for recovering the MAIRL problem.

For both estimation tasks, the expert policies and the transition probability, we employ empirical
estimators. For each iteration k ∈ [K], let nk(s, a, b, s

′) =
∑k

t=1 1(st,at,bt,s′t)=(s,a,b,s′) denote the
count of visits to the triplet (s, a, b, s′) ∈ S×(A×B)×S , and let nk(s, a, b) =

∑
s′∈S nk(s, a, b, s

′)
denote the count of visits to the state-action pair (s, a). Additionally, we introduce nk(s, a) =∑k

t=1 1(st,at)=(s,a) and nk(s, b) =
∑k

t=1 1(st,bt)=(s,b) as the count of times action a and respectively
b was sampled in state s ∈ S for each agent i, and nk(s) =

∑
a∈A nk(s, a) as the count of visits to

state s for any agent.

It is important to note the distinction here: the count of actions must be done separately for each
agent, whereas the count of state visits needs to be done for both of the agents.

The cumulative count of actions for each agent and the cumulative state visit count are given by:

Nk(s, a, b) =
∑
j∈[k]

nj(s, a, b) N(s) =
∑
j∈[k]

nj(s).

After introducing the empirical counts, we can now state the empirical estimators for the transition
model and the expert’s policy:

P̂k(s
′ | s, a, b) =

{
Nk(s,a,b,s

′)
Nk(s,a,b)

if Nk(s, a, b) > 0
1
S otherwise

(12)

µ̂k(a | s) =
{

Nk(s,a)
Nk(s)

if Nk(s) > 0
1

|A| otherwise.
(13)

ν̂k(b | s) =
{

Nk(s,b)
Nk(s)

if Nk(s) > 0
1
|B| otherwise.

(14)

Next, we state the lemma that derives the good event. Note that here we prove something stronger
regarding the transition model, i.e. that the good event holds for all s, a, b, therefore also for maxb∈B .

Lemma E.7 (Good Event Regularized Games). Let k be the number of iterations and (µ∗, ν∗) be
the QRE expert policies. Furthermore let (µ̂, ν̂) and P̂ be the empirical estimates of the Nash expert
and the transition probability after k iterations as defined in Eq. (13) and Eq. (12) respectively.
Then for δ ∈ (0, 1), define the good event E as the event such that the following inequalities hold
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simultaneously for all (s, a, b) ∈ S ×A× B and k ≥ 1, which holds with probability at least 1− δ:

|log(µ(a | s))− log(µ̂(a | s))| ≤ 1

∆min

√
2 log(10|S||A|(N+

k (s))2/δ)

N+
k (s)

,

∑
s′

∣∣∣(P (s′ | s, a, b)− P̂k(s
′ | s, a, b))V (s′)

∣∣∣ ≤ Rmax

1− γ

√
8lk(s, a, b)

N+
k (s, a, b)

,

∑
s′

∣∣∣(P (s′ | s, a, b)− P̂k(s
′ | s, a, b))V̂ (s′)

∣∣∣ ≤ Rmax

1− γ

√
8lk(s, a, b)

N+
k (s, a, b)

∑
b∈B

|ν(b | s)− ν̂(b | s)| ≤
√

2|B| log(10|S||B|(N+
k (s))2/δ)

N+
k (s)

1

ν̂(b | s)ν(b | s) ≤
1

∆2
min

√
2
log(10|S||B|(N+

k (s))2/δ)

N+
k (s)

where we introduced lk(s, a, b) := log
(

30|S||A||B|(N+
k (s,a,b))2

δ

)
.

Proof. We start the proof by defining the good event for the transition model, which proceeds in a
similar way as already seen in Lemma C.8. We start with bound of the transition dynamics. Note
that here we prove something stronger, that the good event holds for all s, a, b, therefore also for

maxb∈B. Therefore we define lk(s, a, b) := log
(

30|S||A||B|(N+
k (s,a,b))2

δ

)
and additionally we denote

βNk(s,a,b) =
γRmax

1−γ

√
2lk(s,a,b)

N+
k (s,a,b)

. Now we define the set

Etrans :=
{
∀k ∈ N,∀(s, a, b) ∈ S×A×B :

∑
s′

∣∣P (s′ |s, a, b)−P̂ (s′ |s, a, b)
∣∣V (s′) ≤ βNk(s,a,b)

}
.

Then we get for V with probability of 1− δ:

P
(
(E trans)C

)
= P (∃k ≥ 1,∃(s, a, b) ∈ S ×A× B :∑

s′

∣∣∣(P (s′ | s, a, b)− P̂k(s
′ | s, a, b)

)
V (s′)

∣∣∣ > βNk(s,a,b)(s, a, b)

)
(a)

≤
∑

(s,a,b)∈S×A×B

P

(
∃k ≥ 1 :

∑
s′

∣∣∣(P (s′ | s, a, b)− P̂k(s
′ | s, a, b)

)
V (s′)

∣∣∣ > βNk(s,a,b)

)
(b)

≤
∑

(s,a,b)∈S×A×B

P

(
∃m ≥ 0 :

∑
s′

∣∣∣(P (s′ | s, a, b)− P̂k(s
′ | s, a, b)

)
V (s′)

∣∣∣ > βNk(s,a,b)

)
(c)

≤
∑

(s,a,b)∈S×AB

∑
m≥0

2 exp

(
β2
Nk(s,a,b)

m2(1− γ)2

4mγ2R2
max

)

≤
∑

(s,a,b)∈S×A×B

∑
m≥0

δ

15|S||A||B|(m+)2

≤ δ

15

(
1 +

π2

6

)
≤ δ

5
,

where (a) uses a union bound over the state and joint-action space, (b) uses that we only consider
the m-times, where we updated the estimated transition model and (c) uses an union bound over
the update times m and an application of Hoeffding’s inequality combined with the fact that we
can bound the value function, i.e. V i(s′) ≤ γRmax

1−γ for every s′ ∈ S. Next, we will consider the
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first equation regarding estimating the log probability of the expert policy. In a first step we define

β2(s) :=
1

∆min

√
log(10|S||A|(N+

k (s))2/δ)

2N+
k (s)

the following set

E log := {∀k ∈ N, ∀(s, a) ∈ S ×A : |log(µ(a | s))− log(µ̂(a | s))| ≤ β2(s)} .

P
(
(E log)C

)
= P (∃k ≥ 1,∃(s, a) ∈ S ×A : |log(µ(a | s))− log(µ̂k(a | s))| > β2(s))

(a)

≤
∑

(s,a)∈S×A

P (∃k ≥ 1 : |log(µ(a | s))− log(µ̂k(a | s))| > β2(s))

(b)

≤
∑

(s,a)∈S×A

P (∃m ≥ 0 : |log(µ(a | s))− log(µ̂m(a | s))| > β2(s))

(c)

≤
∑

(s,a)∈S×A

∑
m≥0

δ

10|S||A|m2

≤ δ

10

(
1 +

π2

6

)
≤ δ

5
,

where (a) uses a union bound over the state and action space of player 1, (b) uses that we only consider
the m-times, where we updated the estimated transition model and (c) we can applied Lemma H.3.
To be precise, (c) only holds if N is large enough, however, we will late only consider this case,
therefore we use it directly.

For the second last step we define the good event for the total variation

ETV :=

{
∀k ∈ N, ∀(s, b) ∈ S × B : TV(ν, ν̂) ≤

√
|B| log(10|S||B|(N+

k (s))2/δ)

N+
k (s)

}
.

We will the bound the probability of the complement of this event by δ and can then take the
intersection of both events to get the total result. We will skip some intermediate steps, as they are
similar to the ones obtained above.

P((ETV)C) = P

(
∃k ∈ N, ∃(s, b) ∈ S × B : TV(ν, ν̂) >

√
|B| log(10|S||B|(N+

k (s))2/δ)

N+
k (s)

)
(a′′)

≤
∑

(s,a)∈S×A

∑
m≥0

P

(
TV(ν, ν̂) >

√
|B| log(10|S||B|m2/δ)

m

)
(b′′)

≤ δ

5
,

where (a”) uses a union bound over the state and action space, (b”) uses Lemma H.5. Also here to be
precise, (b′′) only holds if N is large enough, however, we will late only consider this case, therefore
we use it directly. To bound the second last event, we can apply Lemma H.4. To complete this proof,

we first define β3(s) :=
1

∆2
min

√
2 log(10|S||B|(N+

k (s))2/δ)

N+
k (s)

and once again apply the same argument for

the good event,

E invprop :=

{
∀k ∈ N, ∀(s, b) ∈ S × B :

1

ν(b | s)ν̂(b | s) ≤ β3(s)

}
,

now combined with Lemma H.4. As all the good events holds with probability δ/5, we get that

P
(
ETV ∩ E log ∩ Etrans ∩ E invprop

)
> 1− δ.

Following, we present the reward uncertainty metric, which allows us to demonstrate that the
difference between the recovered reward function and the true reward function is bounded.

43



Definition E.8 (Reward Uncertainty). Let k be the number of iterations. Then the reward uncertainty
after k iterations for any (s, a, b) ∈ S ×A× B is defined as

Ck(s, a, b) :=
4γRmax

(1− γ)∆2
min

(√
8|B| log(10|S||B|(N+

k (s))2/δ)

N+
k (s)

+

√
2 log(10|S||A|(N+

k (s))2/δ)

N+
k (s)

+

√
2lk(s, a, b)

N+
k (s, a, b)

)
.

Theorem E.9. Let the reward uncertainty be defined as in C.9. Under the good event it holds for any
(s, a, b) ∈ S ×A that:

|Ri(s, a, b)− R̂i(s, a, b)| ≤ Ck(s, a, b).

Proof. The theorem is an application of the error propagation Theorem E.5, followed by Lemma E.7

|Ri(s, a, b)− R̂i(s, a, b)|

≤ 2

ν∗(b | s)ν̂∗(b | s) (λ| logµ
∗(a | s)− log µ̂∗(a | s)|

+γmax
b
|
∑
s′

V (s′)P (s′ | s, a, b)− P̂ (s′ | s, a, b)|+RmaxTV(µ, µ̂)

)

≤ 4Rmax

1− γ

(
1

∆2
min

√
2
log(10|S||B|(N+

k (s))2/δ)

N+
k (s)

+

√
2|B| log(10|S||B|(N+

k (s))2/δ)

N+
k (s)

+
1

∆min

√
2 log(10|S||A|(N+

k (s))2/δ)

N+
k (s)

+ γ

√
2lk(s, a, b)

N+
k (s, a, b)

)

≤ 4γRmax

(1− γ)∆2
min

(√
8|B| log(10|S||B|(N+

k (s))2/δ)

N+
k (s)

+

√
2 log(10|S||A|(N+

k (s))2/δ)

N+
k (s)

+

√
2lk(s, a, b)

N+
k (s, a, b)

)
= Ck(s, a, b).

Before stating the correctness of the algorithm, we want to mention that the derivations of Lemma C.6
also hold for the regularized case. Therefore, we can continue with the the correctness result for the
regularized case.
Corollary E.10. Let k be the number of iterations for any allocation of the samples over the state-
action space S×A. Furthermore, letR(G,πNash) be the true feasible set andR(Ĝ,π̂Nash) the recovered
one. Then the optimality criterion 3.3 holds true, if

1

1− γ
max
(s,a,b)

Ck(s, a, b) ≤
ε

2
.

Proof. We complete the proof for the first case of the optimality criterion, the second one follows
analogously.

sup
R∈R

(G,πNash)

inf
R̂∈R

(Ĝ,π̂Nash)

max{max
µλ

V 1
λ (µ, ν̂)− V 1

λ (µ̂, ν̂), V
1
λ (µ̂, ν̂)−min

νλ

V 1
λ (µ̂, ν)}

≤ 2

1− γ
max
(s,a,b)

Ck(s, a, b) ≤ ε,

where we applied C.6 and we used the fact that a+b ≤ 2max{a, b} followed by the error propagation
Theorem E.5 and then we used C.10.
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We can combine the derived results to now state the main theorem regarding the sample complexity
of the Uniform Sampling
Theorem E.11. Let Assumption 3.8 hold true. Then, allocating the samples uniformly over S×A×B
and using the empirical estimators introduced in Eq. (13) and Eq. (12), we can stop the sampling
procedure with a probability of at least 1 − δ after iteration τ and satisfy the optimality criterion
Definition E.2, where the sample complexity is of order

Õ
(
γ2R2

max|S||A||B|
(1− γ)4ε2∆4

min

)
Proof. We know from C.11, that we need

1

1− γ
max
(s,a,b)

Ck(s, a, b) ≤
εk
2

By the definition of Ck(s, a, b) this is satisfied if

4γRmax

(1− γ)2∆2
min

√
2lk(s, a, b)

N+
k (s, a, b)

≤ εk
6

4γRmax

(1− γ)2∆2
min

√
log(10|S||A|(N+

k (s))2/δ)

N+
k (s)

≤ εk
6
,

4γRmax

(1− γ)2∆2
min

√
8|B| log(|S||B|(N+

k (s))2/δ)

N+
k (s)

≤ εk
6
.

To achieve the first condition, we get

Nk(s, a, b) ≥
R2

max

(1− γ)4∆4
min

γ2242lk(s, a, b)
2

ε2k

=
γ21152R2

max

(1− γ)4∆4
minε

2
k

log

(
12|S|B||A|(N+

k (s, a, b))2

δ

)
Applying Lemma B.8 by Metelli et al. [2021] we get that

Nk(s, a, b) ≤
4608γ2R2

max

(1− γ)4ε2k∆
4
min

log

(
2304γ2R2

max

(1− γ)4ε2k

√
12|S|B||A|

δ

)
.

At each iteration we are allocating the samples uniformly over S × A × B and recalling that
τs,a,b = |S||B||A|Nk(s, a, b) therefore we get

τs,a,b ≤
4608γ2|S|B||A|R2

max

(1− γ)4∆4
minε

2
k

log

(
2304γ2R2

max

(1− γ)4ε2k∆
4
min

√
12|S||B||A|

δ

)
Now we have to achieve the second condition,

Nk(s) ≥
242γ2R2

max

(1− γ)4∆4
min

log(10|S||A|(N+
k (s))2/δ)

ε2k

=
γ2576R2

max

(1− γ)4ε2k∆
4
min

log(10|S||A|(N+
k (s))2/δ)

=
γ2576R2

max

(1− γ)4ε2k∆
4
min

(
log(10|S||A|/δ) + 2 log((N+

k (s)))
)

If we additionally force that Nk(s) ≥ 1 and apply Lemma 15 of Kaufmann et al. [2021] with
1/∆2 =

γ2576R2
max

(1−γ)4ε2k∆
4
min

, a = log(10|S||A|/δ), b = 2, c = 0, d = 1, we get that

Nk(s) ≤ 1 +
γ2576R2

max

(1− γ)4ε2k∆
4
min

(
log(10|S||A|/δ)

+ 2 log

((
γ2576R2

max

(1− γ)4ε2k∆
4
min

)2

(log(10|S||A|/δ) + 2)

))
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As we here need to allocate samples uniformly over the state space only but for every agent separately
and recalling that τs1 = SNk(s), we get

τs1 ≤ |S|+
|S|γ2576R2

max

(1− γ)4ε2k∆
4
min

(
log(10|S||A|/δ)

+ 2 log

((
γ2576R2

max

(1− γ)4ε2k∆
4
min

)2

(log(10|S||A|/δ) + 2)

))
.

Lastly, we can proceed in a similar way compared to the last step,

Nk(s) ≥
R2

max

(1− γ)4∆4
min

γ2242
8|B| log(10|S||B|(N+

k (s))2/δ)

ε2k

=
γ24608R2

max|B|
(1− γ)4ε2k∆

4
min

log(10|S||B|(N+
k (s))2/δ)

If we additionally force that Nk(s) ≥ 1 and again apply Lemma 15 of Kaufmann et al. [2021] with
1/∆2 =

|B|γ24608R2
max

(1−γ)4ε2k∆
4
min

, a = log(10|S||A|/δ), b = 2, c = 0, d = 1 we get that

Nk(s) ≤ 1 +
|B|γ24608R2

max

(1− γ)4ε2k∆
4
min

(
log(10|S||B|/δ)

+ 2 log

(( |B|γ24608R2
max

(1− γ)4ε2k∆
4
min

)2

(log(10|S||B|/δ) + 2)

))
As we here need to allocate samples uniformly over the state space only but for every agent separately
and recalling again that τs2 = SNk(s), we get

τs2 ≤ |S|+
|S||B|γ24608R2

max

(1− γ)4ε2k∆
4
min

(
log(10|S||B|/δ)

+ 2 log

(( |B|γ24608R2
max

(1− γ)4ε2k∆
4
min

)2

(log(10|S||B|/δ) + 2)

))
.

Finally, as τ = τs,a + τs1 + τs2 we get that this is exactly of order

Õ
(
γ2R2

max|S||A||B|
(1− γ)4ε2∆4

min

)

One can see that the problem scales with |A||B|, which is due to the used union bound. Scaling this
up to n-player games the union bound implies that the bound will scale exponentially in the number
of players. Additionally, as we have to bound the inverse probability the term ∆min appears on the
bound. A sufficiently large ∆min can e.g. be obtained if the regularization parameter λ is small.

F Identifiability in multi-agent games?

This appendix provides supplementary details and proofs for the identifiability results discussed in
Section 4. We follow the notation established in the main text, where applicable, using R1(s, a, b) to
denote Player 1’s reward, Rν(s, a) =

∑
b′∈B ν(b′ | s)R1(s, a, b′) for the average reward received by

Player 1 when Player 2 uses policy ν, and P ν
a for the induced transition matrix for Player 1 under ν.

λ1 denotes Player 1’s entropy regularization parameter.

Average identifiability. We start with the case, where we try to identify the average reward function
(up to constants) for any player. The theorem is a direct consequence of Theorem 3 by Rolland et al.
[2022].
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Theorem F.1. Let a Markov game be given with two different opponents ν1, ν2 that induce different
dynamics P ν1 , P ν2 and discount factors γ1, γ2. Suppose that in both Games we observe QRE
equilibrium policy pairs (µ1, ν1) and a different ν2 with a best responding policy µ2 such that they
have same average reward functions Rν1 = Rν2 . Additionally, define P νi

a ∈ RS×S the induced
transition matrix of expert i ∈ {1, 2}. Then, the average reward player 1 receives can be recovered
up to a constant if and only if

rank

 I − γ1P
ν1
a1

I − γ2P
ν2
a1

...
...

I − γ1P
ν1
a|A|

I − γ2P
ν2
a|A|

 = 2|S| − 1.

Analogously this holds for player 2.
Theorem F.2 (Sample Complexity for Induced Transitions). To estimate the induced transition model
P ν∗

for Player 1 (where ν∗ is Player 2’s true policy) such that the maximum L1 error over all (s, a)
rows is bounded by ε, i.e., maxs,a ∥P ν∗

(· | s, a)− P̂ ν̂(· | s, a)∥1 ≤ ε, with probability at least 1− δ,
the total number of samples N is of the order:

O
( |S|2|A||B| log(|S||A||B|/δ)

ε2

)
where P̂ ν̂(s′|s, a) = ∑

b∈B ν̂(b|s)P̂ (s′|s, a, b) uses empirical estimates ν̂ of ν∗ and P̂ of the true
dynamics P .

Proof. The estimated induced transition is P̂ ν̂(·|s, a) =
∑

b ν̂(b|s)P̂ (·|s, a, b). The true induced
transition is P ν∗

(·|s, a) =
∑

b ν
∗(b|s)P (·|s, a, b). We want to bound the L1 error. We use the

triangle inequality and properties of the L1 norm:

∥P ν∗
(·|s, a)− P̂ ν̂(·|s, a)∥1

=

∥∥∥∥∥∑
b

ν∗(b|s)P (·|s, a, b)−
∑
b

ν̂(b|s)P̂ (·|s, a, b)
∥∥∥∥∥
1

=

∥∥∥∥∥∑
b

(ν∗(b|s)− ν̂(b|s))P (·|s, a, b) +
∑
b

ν̂(b|s)(P (·|s, a, b)− P̂ (·|s, a, b))
∥∥∥∥∥
1

≤
∑
b

|ν∗(b|s)− ν̂(b|s)| · ∥P (·|s, a, b)∥1 +
∑
b

ν̂(b|s)∥P (·|s, a, b)− P̂ (·|s, a, b)∥1

Since ∥P (·|s, a, b)∥1 = 1 and
∑

b ν̂(b|s) = 1:

∥P ν∗
(·|s, a)− P̂ ν̂(·|s, a)∥1 ≤ ∥ν∗(·|s)− ν̂(·|s)∥1 +max

b′∈B
∥P (·|s, a, b′)− P̂ (·|s, a, b′)∥1

To ensure ∥P ν∗
(·|s, a)− P̂ ν̂(·|s, a)∥1 ≤ ε with high probability, we need to ensure both terms on

the right are sufficiently small, e.g., ≤ ε/2.

Estimating the multinomial distribution ν∗(·|s) over |B| actions requires Nν(s) samples of Player
2’s actions at state s. Applying Lemma H.5 gives us that to achieve ∥ν∗(·|s)− ν̂(·|s)∥1 ≤ ε/2 with
probability 1− δ′, requires that Nν(s) is of the order O

(
|B|
ε2

)
samples.

Similarly, we can bound the transition dynamics. In particular, if we apply Lemma H.5, then we get
that the amount of samples required to minimize it with high probability is of the orderO

(
|S||A||B|

ε2

)
.

As the part of the transition dynamics dominates, the total number of samples is then of the order is
then given by

O
( |S||A||B|

ε2

)
.

With this result we recover Theorem 8 by Rolland et al. [2022] for every player. For completeness we
restate the result here.
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Theorem F.3. Suppose that we estimate the transition dynamics P ν1
a and P ν1

a by P ν̃1
a and P ν̃2

a such
that ∥P ν1

a − P ν̃1
a ∥1 ≤ ε and ∥P ν2

a − P ν̃2
a ∥1 ≤ ε ∀a ∈ A. Assume that the estimated transition

dynamics satisfy Eq. (3), then the true transition dynamics satisfy Eq. (3), if for the second smallest
eigenvalue σ of the following matrix I − γ1P

ν̃1
a1

I − γ2P
ν̃2
a1

...
...

I − γ1P
ν̃1
a|A|

I − γ2P
ν̃2
a|A|


it holds true that

σ > ε
√

2|A|max{γ1, γ2}.

Reward identification in linear separable Markov games. As the so far discussed theorems only
work for the average reward case, we want to identify conditions that allow us to identify the rewards
in the multi-agent case. As discussed in Section 4 one potential solution to achieve this is to assume
linear separable rewards that naturally disentangle the rewards into a part that only depends on action
a and a part that only depends on action b.

We can immediately see that Rν∗
(s, a) =

∑
b∈B ν∗(b | s)R(s, a, b) = RA(s, a) +

∑
b∈B ν∗(b |

s)RB(s, b). This means, that the average reward equation Eq. (2), can be rewritten. In particular, we
get for every (s, a) ∈ S ×A

RA(s, a) = λ log(µ∗(a | s)) + V (s)− γ
∑
s′

P ν∗
(s′ |, s, a)V (s′)−

∑
b∈B

ν∗(b | s)RB(s, b).

Next, we again consider the case, where we have two Markov games where we have the same reward
function for player 1, in particular for action a. Using the explicit formulation of the reward, we get
the following:

RA(s, a) = λ log(µ∗
1(a | s)) + V1(s)− γ

∑
s′

P
ν∗
1

1 (s′ |, s, a)V1(s
′)−

∑
b∈B

ν∗1 (b | s)RB(s, b)

= λ log(µ∗
2(a | s)) + V2(s)− γ

∑
s′

P
ν∗
2

2 (s′ |, s, a)V2(s
′)−

∑
b∈B

ν∗2 (b | s)RB(s, b)

Let us consider two cases. The first case is that in both environments the opponent policy is the same,
meaning that we have ν∗1 = ν∗2 . Then, we see immediately that

∑
b∈B ν∗(b | s)RB(s, b) cancels out

and we get

λ log(µ∗
1(a | s)) + V1(s)− γ

∑
s′ P

ν∗

1 (s′ | s, a)V1(s
′) = λ log(µ∗

2(a | s)) + V2(s)− γ
∑

s′ P
ν∗

2 (s′ | s, a)V2(s
′).

Therefore, we reconstruct the single-agent case, as we obtain for every (s, a) ∈ S ×A :

V1(s)− V2(s)− γ
∑

s′ P
ν∗

1 (s′ |, s, a)V1(s
′) + γ

∑
s′ P

ν∗

2 (s′ |, s, a)V2(s
′) = λ(log(µ∗

2(a | s))− log(µ∗
1(a | s))).

Therefore, we can again write this as a system of equations but this time for the same ν∗. We can
summarize these findings in the following result.

Proposition F.4. Let a Markov game with a QRE equilibrium policy pair (µ∗
1, ν

∗
1 ) be given. Addi-

tionally, let another Markov game with the same ν∗1 but a different transition Model P2 and discount
factor γ2 and therefore also different best response µ∗

2 be given such that R1
A is the same for both

environments. Then, R1
A is identifiable if and only if

rank


I − γ1P

ν∗
1

1,a1
I − γ2P

ν∗
1

2,a1

...
...

I − γ1P
ν1
1,a|A|

I − γ2P
ν∗
1

2,a|A|

 = 2|S| − 1.

Analogously this holds for player 2.
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For the second case, we assume that the opponent policies are different in the two Markov games,
meaning that ν∗1 ̸= ν∗2 . In this case we need an additional assumption, namely RB(s, b0) = 0. his
constraint fixes the baseline for RB(s, b), allowing us to determine how much player 2’s different
actions contribute to player 1’s reward, relative to this baseline.

V1(s)− V2(s)− γ
∑
s′

P
ν∗
1

1 (s′ |, s, a)V1(s
′) + γ

∑
s′

P
ν∗
2

2 (s′ |, s, a)V2(s
′)

+
∑
b ̸=b0

RB(s, b)(ν
∗
2 (b | s)− ν∗1 (b | s)) = λ log(µ∗

2(a | s))− λ log(µ∗
1(a | s)).

This we can now again express as a system of equations as the above holds for every (s, a) ∈ S ×A1

and we get: MRB
I − γ1P

ν1
a1

I − γ2P
ν2
a1

...
...

...
MRB

I − γ1P
ν1
a|A|

I − γ2P
ν2
a|A|

( RB

V1

V2

)
=

 λ(log(µ2(· | a1))− log(µ1(· | a1)))
...

λ(log(µ2(· | a|A|))− log(µ1(· | a|A|)))

 ,

where RB is the reward vector for every s ∈ S and b ∈ B \ {b0} and each MRB
is an |S| × |S||B|

block diagonal matrix with the following structure

MRB
=


ν(s1) 0 . . . 0
0 ν(s2) . . . 0
...

...
. . .

...
0 0 . . . ν(s|S|)

 ,

where each ν(si) for si ∈ S is a 1× (|B| − 1) row vector where every element is the difference of
the policies for the actions ν2(b | s)− ν1(b | s) for b ∈ B \ {b0}.
This means that the matrix on the left has shape |A||S| × |S|(|B|+ 1). As we require identification
up to constants we need that the matrix has rank |S|(|B|+ 1)− 1. We can conclude our findings in
the following proposition.

Proposition F.5. Let us assume that we have two-player general-sum Markov games with different
transition functions P1, P2 and γ1, γ2 be given. Additionally, assume that the rewards for player 1 are
the same under the QRE (µ∗

1, ν
∗
1 ) and the other observed best responding policy µ∗

2 to ν∗2 . Additionally,
suppose player 1’s reward function is linearly separable: R1(s, a, b) = RA(s, a) + RB(s, b). To
ensure unique decomposition between RA and RB , the normalization RB(s, b0) = 0 is imposed
for some fixed b0 ∈ B and for all s ∈ S. Then, player 1’s reward function R1(s, a, b) (and its
components RA(s, a) and RB(s, b) under the given normalization) can be recovered up to a single
additive constant if and only if:

rank

 MRB
I − γ1P

ν1
a1

I − γ2P
ν2
a1

...
...

...
MRB

I − γ1P
ν1
a|A|

I − γ2P
ν2
a|A|

 = |S|(|B|+ 1)− 1.

G Experimental evaluation

In this section, we first give the details for the figures in Fig. 2 and Fig. 3. Then, we aim to demonstrate
the advantages of IRL in the multi-agent setting compared to Behavior Cloning.

It is important to emphasize that the primary goal of this paper is to address the IRL problem from a
theoretical perspective by defining a new objective and presenting the first algorithm to characterize
the feasible set of rewards. In particular, we will demonstrate the case of pure NE strategies in a
simple environment. Although, we have shown that in the general case one needs to observe multiple
equilibria to infer a meaningful reward function, we will demonstrate that one can still obtain a good
performance in simpler environments. We motivate this simple example given that calculating the
NE is PPAD-hard. The idea is to emphasize the need for MAIRL framework and motivate future
research on computationally more feasible equilibrium solutions.
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G.1 Numerical verifications for Nash and QRE equilibrium observations.

In this section, we give the details for the numerical examples provided in Fig. 2 and Fig. 3 respec-
tively. The idea of both experiments is the same. The considered environment is the one used in
Proposition 3.4 and illustrated in Fig. 2.

Expert observations. In the case of Nash equilibrium experts, we can simply take any Nash
equilibrium solver to calculate the equilibrium for state s0. This holds true because in the following
states the Nash equilibrium actions of the Normal Form Game in s0 are rewarded (s1 and s3), while
the other actions are not s2. Regarding the equilibrium observations for the QRE, we again only
consider state s0 and run a simple algorithm that iteratively computes the expected reward of a
player keeping the other players strategy fixed and then updates the policy. This is repeated until the
strategies of both players are not changing anymore.

Calculating new equilibria and exploitability. For both expert observations, we then use any
IRL algorithm that picks a reward function, such that the observed equilibrium is feasible under this
reward. Then, we compute again the new equilbria and compare the list of original Nash equilibria
with the ones under the recovered reward function. From this list, we then randomly select an
equilibrium and calculate the exploitability of the picked strategy in the original Markov game. This
we repeat for 10000 iterations and compute the average exploitability and the average correlations.

G.2 MAIRL vs. Behavior Cloning.

In this section, we empirically evaluate the benefits of MAIRL compared to BC and describe the
details on the environments in the following paragraphs. One of the advantages of IRL over BC lies
in its ability to transfer the recovered reward function to new environments with different transition
probabilities. This is particularly significant in a multi-agent setting, where even minor changes in
transition probabilities can alter not only the individual behavior of agents but also the interactions
between them.

For our experiments, we utilize the 3× 3 Gridworld example, also considered in Hu and Wellman
[2003]. To recover the feasible reward set and learn the expert policy with BC, we consider a
scenario where the transition probabilities are deterministic. The Nash experts are learned via NashQ-
Learning as proposed in Hu and Wellman [2003]. The resulting Nash Experts and more details on the
environments can be found in G.2.
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Figure 4: Nash Gap in Grid Games for different transition probabilities.

Using the Uniform Sampling algorithm to recover the entire feasible set, we then apply a Random
Max Gap MAIRL algorithm to extract a reward function from the feasible set, similar to the ap-
proach introduced in Appendix C of Metelli et al. [2021]. A detailed description can be found in
Appendix G.2. To test the transferability of the recovered reward function, we alter the transition
probabilities so that in states (0, any) and (any, 2), taking action "up" is only successful with a
probability of 0.5; otherwise, the agent remains in the same state (as in Grid Game 2 in Hu and
Wellman [2003]). In a second scenario, we introduce an obstacle into the environment, that prohibits
the agent from passing through. While in the first scenario, the BC strategy still performs reasonably,
the second altered environment leads to a failure to reach the goal state for agent 1, resulting in the
maximal Nash Gap.
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Figure 5: Multi-agent grid world environments with different transition probabilities and learned NE
path

We observe that while BC may perform better in the original environment, for the first iterations, the
Uniform Sampling Algorithm proves superior when transferring the reward function, especially as
the number of samples increases and the environment changes.

Multi-agent Gridworld. In this section, we describe the environments used for the experiments.
The environments are similar to the ones used in Hu and Wellman [2003]. We adjust them in such
that for the random transition probabilities in the states (0, any) and (2, any) the environment still has
different goals for each agent. Additionally, we introduce the scenario, where an obstacle is added
in the middle of the environment, that bounces the agent back with probability 1. This results in a
failure of reaching the goal for agent 1 in the BC case.
In the left column, we draw the learned Nash path for both agents in the deterministic environment,
when applying the NashQ Learning algorithm to retrieve an expert policy.

Max Gap MAIRL. In this section, we describe the Max Gap MAIRL algorithm, an extension
of the approach presented by Metelli et al. [2021] (see Appendix C in Metelli et al. [2021]) to
the multi-agent setting. This algorithm is chosen due to the limited number of existing works that
address the selection of feasible reward functions in general-sum Markov games with a Nash expert,
particularly without imposing additional assumptions on the reward structure. Given the simplicity of
the chosen environments, the Max Gap MAIRL procedure is a suitable choice.

The algorithm operates as follows: for each agent i ∈ [n], a random reward function R̃i is selected
such that ∥R̃i∥ ≤ Rmax. The next step involves finding a reward function Ri that minimizes the
squared 2-norm distance to the randomly chosen reward R̃i, subject to two constraints: (1) Ri must
belong to the recovered feasible set, and (2) it must maximize the maximal reward gap, thereby
enforcing the feasible reward condition as introduced in C.4. This results in the following constrained
quadratic optimization problem:

max
Ri∈RS ,Ai,π

Ai,π

s.t. (πNash − π̃)(I − γPπNash)−1Ri ≥ Ai,π1{πi,Nash=0}1{π−i,Nash>0}1S×A,

∥Ri∥∞ ≤ Rmax.

H Technical Results

In this section, we present results that were used throughout this work.

Theorem H.1 (compare Theorem 1 in Cao et al. [2021]). For a fixed policy π̄(a|s) > 0, discount
factor γ ∈ [0, 1), and an arbitrary choice of function v : S → R, there is a unique corresponding
reward function

r(s, a) = λ log π̄(a|s)− γ
∑
s′∈S

P (s′|s, a)v(s′) + v(s)

such that the MDP with reward r yields a value function V ∗
λ = v and entropy-regularized optimal

policy π∗
λ = π̄.
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Proof. Fix r as in the statement of the theorem. Then the corresponding value function is given by

V ∗
λ (s) = λ log

∑
a∈A

exp

(
1

λ

(
r(s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗
λ (s

′)

))

= v(s) + λ log
∑
a∈A

π̄(a|s) exp
(
γ

λ

∑
s′∈S

P (s′|s, a)(V ∗
λ (s

′)− v(s′))

)
,

which rearranges to give

exp(g(s)) =
∑
a∈A

π̄(a|s) exp
(
γ
∑
s′∈S

P (s′|s, a)g(s′)
)

(15)

with g(s) = (V ∗
λ (s) − v(s))/λ. Applying Jensen’s inequality, we can see that, for s ∈

argmins∈S g(s),

exp
(
min
s

g(s)
)
= exp (g(s)) ≥ exp

γ
∑

a∈A,s′∈S
π̄(a|s)P (s′|s, a)g(s′)

 .

However, the sum on the right is a weighted average of the values of g, so∑
a∈A,s′∈S

π̄(a|s)P (s′|s, a)g(s′) ≥ min
s

g(s).

Combining these inequalities, along with the fact γ < 1, we conclude that g(s) ≥ 0 for all s ∈ S.

Again applying Jensen’s inequality to Eq. (15), for s̄ ∈ argmaxs∈S g(s) we have

max
s
{exp (g(s))} = exp (g(s̄)) ≤

∑
a∈A,s′∈S

π̄(a|s̄)P (s′|s̄, a) exp (γg(s′)) .

As the sum on the right is a weighted average, we know∑
a∈A,s′∈S

π̄(a|s̄)P (s′|s̄, a) exp (γg(s′)) ≤ max
s
{exp (γg(s))} .

Hence, as γ < 1, we conclude that g(s) ≤ 0 for all s ∈ S.

Combining these results, we conclude that g ≡ 0, that is, V ∗
λ = v. Finally, we substitute the definition

of r and the value function v into (6) to see that the entropy-regularized optimal policy is π∗
λ = π̄.

The next lemma is an extension of Lemma 3 from Zanette et al. [2019] for the multi-agent setting,
accounting that different Nash equilibria can have different values.

Lemma H.2 (Simulation Lemma). Let i ∈ [n] be any agent. Then it holds true that

V̂ i,π(s)− V i,π(s)

=
∑
s,a

wπ
s,a

(
R̂i(s, a)−Ri(s, a) + γ

(∑
s′

(
P̂ (s′ | s, a)− P (s′ | s, a)

)
V i,π(s′)

))

Proof. Let the starting distribution be a dirac measure on some s ∈ S. It then holds that

V̂ i,π(s)− V i,π(s)

= R̂i(s, a)−Ri(s, a) + γ

(∑
s′

P̂ (s′ | s, a)V̂ i,π(s′)− P (s′ | s, a)V i,π(s′)

)
= R̂i(s, a)−Ri(s, a) + γ

(
P̂ (s′ | s, a)− P (s′ | s, a)

)
V i,π(s′)

+ γ
∑
s′

P̂ (s′ | s, a)(V̂ i,π(s′)− V i,π(s′))

The proof follows by induction.

52



Lemma H.3. Let µ∗, ν∗ be the QRE equilibrium expert policies, such that Assumption E.6 holds
true and µ̂∗, ν̂∗ the respective empirical estimators with samples N . Then for δ ∈ (0, 1) it holds true

with probability 1− δ if
√

log(2/δ)

2N+
k (s)

≤ ∆min

2 , that for a ∈ A, b ∈ B

| log(µ∗(a | s))− log(µ̂∗(a | s))| ≤ 2

∆min

√
log(2/δ)

2N

| log(ν∗(a | s))− log(ν̂∗(a | s))| ≤ 2

∆min

√
log(2/δ)

2N

Proof. The difference in logarithms can be bounded using the inequality:

|log(µ(a | s))− log(µ̂(a | s))| ≤ |µ(a | s)− µ̂(a | s)|
min(µ(a | s), µ̂(a | s)) .

This follows from the fact that the derivative of log(x) is 1/x, so the difference in logarithms is
controlled by the relative difference in probabilities.

By Hoeffding’s inequality, for any (s, a) ∈ S ×A, with probability at least 1− δ/(SA), we have:

|µ(a | s)− µ̂(a | s)| ≤
√

log(2/δ)

2N+
k (s)

.

Since µ(a | s) ≥ ∆min, and assuming µ̂(a | s) is close to µ(a | s), we have:

µ̂(a | s) ≥ µ(a | s)−
√

log(2/δ)

2N+
k (s)

≥ ∆min −
√

log(2SA/δ)

2N+
k (s)

.

To ensure µ̂(a | s) > 0, we require: √
log(2/δ)

2N+
k (s)

< ∆min.

Under this condition, the denominator satisfies:

min(µ(a | s), µ̂(a | s)) ≥ ∆min −
√

log(2/δ)

2N+
k (s)

.

Substitute the bounds for |µ(a | s)− µ̂(a | s)| and min(µ(a | s), µ̂(a | s)) into the inequality for the
difference in logarithms:

|log(µ(a | s))− log(µ̂(a | s))| ≤

√
log(2/δ)

2N+
k (s)

∆min −
√

log(2/δ)

2N+
k (s)

.

If
√

log(2/δ)

2N+
k (s)

≤ ∆min

2 , then:

|log(µ(a | s))− log(µ̂(a | s))| ≤
2

√
log(2/δ)

2N+
k (s)

∆min
.

Lemma H.4. Let pi be a probability such that pi ≥ ∆min > 0, and let p̂i be the empirical estimate
of pi based on n independent samples. Then, for any δ ∈ (0, 1), with probability at least 1− δ, the
following bound holds: ∣∣∣∣ 1pi − 1

p̂i

∣∣∣∣ ≤
√

log(2/δ)
2n

∆min

(
∆min −

√
log(2/δ)

2n

) .
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Furthermore, if
√

log(2/δ)
2n ≤ ∆min

2 , the bound simplifies to:

∣∣∣∣ 1pi − 1

p̂i

∣∣∣∣ ≤ 2
√

log(2/δ)
2n

∆2
min

.

Proof. The difference can be rewritten as:∣∣∣∣ 1pi − 1

p̂i

∣∣∣∣ = |p̂i − pi|
pip̂i

.

By Hoeffding’s inequality, for any δ ∈ (0, 1), with probability at least 1− δ, we have:

|p̂i − pi| ≤
√

log(2/δ)

2n
.

Let ε =
√

log(2/δ)
2n . Then, with high probability:

|p̂i − pi| ≤ ε.

Since pi ≥ ∆min and |p̂i − pi| ≤ ε, we have:

p̂i ≥ pi − ε ≥ ∆min − ε.

To ensure p̂i > 0, we require ε < ∆min.

Using pi ≥ ∆min and p̂i ≥ ∆min − ε, the denominator satisfies:

pip̂i ≥ ∆min(∆min − ε).

Substitute the bounds for |p̂i − pi| and pip̂i into the expression for the difference:∣∣∣∣ 1pi − 1

p̂i

∣∣∣∣ = |p̂i − pi|
pip̂i

≤ ε

∆min(∆min − ε)
.

This gives the first part of the lemma.

If ε ≤ ∆min

2 , then ∆min − ε ≥ ∆min

2 , and the bound simplifies to:∣∣∣∣ 1pi − 1

p̂i

∣∣∣∣ ≤ ε

∆min · ∆min

2

=
2ε

∆2
min

.

Substituting ε =
√

log(2/δ)
2n , we obtain:

∣∣∣∣ 1pi − 1

p̂i

∣∣∣∣ ≤ 2
√

log(2/δ)
2n

∆2
min

.

This completes the proof of the lemma.

Lemma H.5 (Concentration Inequality for Total Variation Distance, see e.g. Thm 2.1 by Berend
and Kontorovich [2012]). Let X = {1, 2, · · · , |X |} be a finite set. Let P be a distribution on X .
Furthermore, let P̂ be the empirical distribution given m i.i.d. samples x1, x2, · · · , xn from P , i.e.,

P̂ (j) =
1

n

n∑
i=1

I{xi = j}.

Then, with probability at least 1− δ, we have that

∥P − P̂∥1 :=
∑
x∈X
|P (x)− P̂ (x)| ≤

√
2|X | log(1/δ)

n
.
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Proof. Define the function f(x1, . . . , xn) =
∑

x∈X |P̂ (x) − P (x)|, where P̂ is the empirical dis-
tribution. Replacing one sample xi can change f by at most 2/n, since the empirical frequencies
change by at most 1/n per coordinate and total variation sums these differences.

By McDiarmid’s inequality, we have for any ε > 0,

Pr (f − E[f ] ≥ ε) ≤ exp

(
−nε2

2

)
.

Berend and Kontorovich (2013) show that E[f ] ≤
√

|X |
n . Setting the failure probability to δ, we

solve

exp

(
−nε2

2

)
= δ =⇒ ε =

√
2 log(1/δ)

n
.

Therefore, with probability at least 1− δ,

∥P − P̂∥1 ≤
√
|X |
n

+

√
2 log(1/δ)

n
≤
√

2|X | log(1/δ)
n

,
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