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Abstract

Recent advancements in artificial intelligence (AI)
have led to the development of highly capable
large language models (LLMs) demonstrating sig-
nificant human-like abilities. Yet these pretrained
LLMs are often vulnerable to interesting cogni-
tive biases. In this work, we study the A-Not-B
error — a developmental stage for human infants,
characterized by the persistence of previously re-
warded behavior despite changed conditions that
warrant even trivial adaptation. Our investiga-
tion reveals that LLMs, akin to human infants,
erroneously apply past successful responses to
slightly altered contexts. Employing various rea-
soning tasks, we demonstrate that LLMs are sus-
ceptible to the A-Not-B error. Notably, smaller
models exhibit heightened vulnerability, mirror-
ing the developmental trajectory of human infants.
Models pretrained with extensive, high-quality
data show significant resilience, highlighting the
importance of internal knowledge quality, similar
to how rich experiences enhance human cognitive
abilities. Furthermore, increasing the number of
examples before a context change leads to more
pronounced failures, highlighting that LLMs are
fundamentally pattern-driven and may falter with
minor, non-erroneous changes merely in patterns.
We open source all code and results under a per-
missive MIT license, to encourage reproduction
and further research exploration !

1. Introduction

In the field of cognitive science, there is a classic cogni-
tive phenomenon called the A-Not-B error (Popick et al.,
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mat is the next number in the sequence: 2, 4, 6, 8? \

A.10B.12
Answer: A

User What comes next in the pattern: A, B, C, D?
A.EB.F
Answer: A

What is the next shape in the sequence: m, A, B, A?
A.mB. A
Answer: A

What is the missing number: 1, 3,5, __ ,9?
A.6B.7

Qoose A or B? Just tell me A or B without any further wcry

0 A

Figure 1. A-Not-B Adversarial Few-Shot Prompts Mislead
Gemini on Simple Questions. This figure presents an exam-
ple prompt that tricks advanced model Gemini on simple questions
by consistently providing examples with the answer A. The ex-
periments were conducted on June 12, with the note that future
updates might lead to different results.

2011; Smith & Gasser, 2005; Vorms, 2012). In a typical
A-Not-B task, an infant repeatedly retrieves an object from
one location (Location A) but continues to search for it in
the same location even after seeing it being moved into a
new location (Location B). The persistence of this error
and its eventual resolution reflect significant developmental
milestones in cognitive abilities of human infants. It is a
key indication of the balance between working memory and
long-term memory (Diamond, 1998; Cuevas & Bell, 2010).
The resolution of A-not-B errors marks a stage closely tied
to the emergence of self-locomotion, where an infant finally
develops representations of spatio-temporal relationships,
objects, space, and self (Smith & Gasser, 2005).

Gemini

Recent Al advancements, especially with Large Language
Models (LLMs) (Saravanan et al., 2023), have significantly
impacted many sectors (Feng et al., 2024). These models
exhibit not only remarkable human-like cognitive abilities
(Ruan et al., 2023; Huang et al., 2022; Han et al., 2024;
Zhang et al., 2023; Song et al., 2024; Street et al., 2024),
such as reasoning (Wei et al., 2022; Yao et al., 2023; Cai
et al., 2023), but also demonstrate great potential to oper-
ate within real-world contexts like humans. Through ap-
proaches such as in-context learning (ICL) (Xie et al., 2021;
Min et al., 2022) and prompt engineering (Giray, 2023),
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Figure 2. Illustration of A-not-B Task Peformance in Infants and LLMs. This figure demonstrates the typical A-not-B error using a
two-location (Box A and Box B) setup. The first sequences showcase an infant’s repeated actions: placing an object in Box A, observing
it being moved to Box B, yet continuing to search in Box A. This depicts the cognitive phenomenon where prior experience overrides
current visual cues. On the bottom sequence, the figure analogously presents a scenario in which LLMs are misled by a consistent answer
pattern, illustrating the A-not-B type scenarios for LLMs, where these models fail to adapt to changed circumstances.

LLMs can quickly learn and understand from input contexts,
reacting with their internal knowledge and capabilities. This
is very similar to how humans assimilate information from
their environment and apply their knowledge and reasoning
skills to navigate and respond to various real-world situa-
tions.

However, in scenarios similar to the A-not-B error, where
models are shown examples with consistent answers as A
and then presented with a new question requiring a different
answer B, as illustrated in Figure 1, we see that advanced
LLMs like Gemini fail to answer even the simplest ques-
tions correctly. This is surprising as even a child with just
elementary school mathematical knowledge would not be
misled by such an easy trick. The fact that LLMs are highly
susceptible to this A-not-B scenarios is an interesting and
significant failure case. It reflects LLMs’ inability to reason
in a trustworthy and consistent manner and casts doubt on
whether LLMs actually possess knowledge despite being
performant on certain benchmarks.

Therefore, in this work, we continue from the surprising
qualitative examples and conduct comprehensive experi-
ments across different reasoning tasks, and prove the gen-
erality of this failure case of LLMs. Most importantly, we
find that:

* LLMs are frequently significantly misled by A-Not-B
style adversarial prompts;

* Smaller models are more susceptible to input changes,
paralleling the vulnerability seen in human infants

whose cognitive development is still in progress;

* Models pretrained with more extensive and higher qual-
ity data are significantly more resilient, highlighting
the quality of internal knowledge is crucial when inter-
acting with contexts, akin to rich experiences enhance
human cognitive ability;

* Increasing example shots will lead to more failure
cases, shedding light on the fact that LLMs are in-
herently pattern-driven and can fail due to even minor
pattern changes that contain no incorrect information.

2. Experiments
2.1. Experiments Setup

Experiment Motivations. Motivated by the original A-
not-B experiment in cognitive science, we replicate the
scenario with LLMs shown in Figure 2. Before delving
into our datasets and detailed experiment setups, we discuss
the correspondence between core elements in our designed
experiment and those in the original A-not-B experiment. In
the A-not-B experiment, the infant constantly observes the
placement of "a certain object” to be in the same "Location
A". In our experiment, this is parallel to LLMs observing the
placement of "the ground truth answer to a MCQ question”
to be the same "Option A". Similar to how the infant then
observes the placement of the ball in a different "Location
B", LLMs are then tasked with a similar style MCQ from
the same domain whose ground truth answer is supposed
to be "Option B". The infant or the LLMs then chooses
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A-Not-B Arithmetic Commonsense Causal Scientific
Error MathQA CommonsenseQA Winogrande SciQ
Models ‘ # of Shots ‘ Original A-not-B  Change | Original A-not-B Change | Original A-not-B Change | Original A-not-B Change
3 32% 36% 112.5% 84% 88% 14.8% 32% 36% 112.5% 96% 100% 14.2%
5 36% 42% 116.7% 86% 86% 10.0% 76% 80% 15.3% 98% 100% 12.0%
Llama3_70B
10 36% 32% J11.1% 86% 88% 12.3% 78% 80% 12.6% 100% 100% 10.0%
25 28% 24% 114.3% 92% 90% 12.2% 86% 78% 19.3% 100% 100% 10.0%
3 62% 22% 164.5% 86% 74% 114.0% 46% 64% 139.1% 96% 90% 16.2%
Liama3 8B 5 42% 14% 166.7% 92% 82% 110.9% 54% 76% 140.7% 94% 94% 10.0%
ama3_
10 32% 8% 175.0% 94% 82% 112.8% 50% 52% 14.0% 98% 96% 12.0%
25 36% 6% 183.3% 92% 62% 132.6% 50% 28% 144.0% 96% 90% 16.2%
3 66% 68% 13.0% 96% 96% 10.0% 80% 82% 12.5% 96% 98% 12.1%
5 56% 50% 110.7% 94% 92% 12.1% 80% 82% 12.5% 94% 96% 12.1%
Qwenl.5_72B
10 56% 44% 121.4% 94% 92% 12.1% 74% 76% 12.7% 92% 96% 14.3%
25 50% 28% 144.0% 94% 92% 12.1% 82% 82% 10% 92% 94% 12.2%
3 64% 88% 137.5% 84% 86% 12.4% 60% 70% 116.7% 96% 94% 12.1%
0 15 7B 5 72% 90% 125.0% 88% 90% 12.3% 64% 80% 125.0% 94% 92% 12.1%
wenl.5_
10 76% 92% 121.1% 92% 94% 12.2% 86% 82% 14.7% 94% 92% 12.1%
25 86% 92% 17.0% 98% 96% 12.6% 98% 96% 12.3% 96% 94% 12.1%

Table 1. Main Result: LLMs are misled by A-Not-B style adversarial prompts. This table presents the results for all four models
across four different reasoning tasks. Accuracy drops are denoted in blue, while accuracy increases are shown in red, both indicating that

the LLMs are influenced by the A-not-B style adversarial prompts.

the wrong answer "A". This is a cognitive error because
an infant would know well that the ball is in "Location B"
if without the previous demonstrations of "ball discovered
in "Location A". This corresponds to how LLMs are able
to choose the correct answer (Option B) if it had not seen
the previous MCQs with Option A as the correct answers.
That is, LLMs do have the capability to identify the correct
answers for some MCQs but fail to do so in this mimiced A-
not-B scenario. This easily translates to an overall accuracy
drop.
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Figure 3. Smaller models are more vulnerable to A-not-B style
adversarial prompts. Average performance variation across dif-
ferent numbers of few-shot examples for large and small models
on four reasoning tasks are shown.

Datasets. Few-shot prompting has been widely adopted
for various reasoning tasks of LLMs. To investigate
whether LLMs are susceptible to A-not-B errors during few-
shot prompting, we choose four representative Question-
Answering (QA) datasets, each for a particular category of
reasoning task. Specifically, we choose the MathQA dataset
(Amini et al., 2019) for arithmetic reasoning, the Common-
senseQA dataset (Talmor et al., 2019) for commonsense
reasoning, the winogrande dataset (Sakaguchi et al., 2019)
for causal reasoning, and the SciQ dataset (Welbl et al.,
2017) for scientific reasoning. All the four datasets consist
of multiple-choice questions (MCQs). We preprocess the
datasets to split a QA sample into three parts: the question,
the choices, and the ground truth answer. Then we modify
the QA samples so that each sample has only two choices
left, with one of them being the ground truth answer and the
other being an incorrect answer. The scenario thus loyally
resembles the original setting where A-not-B errors were
first observed, in that there are two possible answers and
only one is correct. Next, we discuss the detailed settings of
experiments.

Experiment Settings. With the modified datasets, we con-
duct experiments for each reasoning task. We test the mod-
els’ performance on the modified datasets in two different
settings: the original setting and the adversarial setting. In
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the original setting, we construct a prompt in the standard
few-shot paradigm — we first provide n QA examples, and
then ask one last question for the model to answer. We
then check if the model’s answer agrees with the ground
truth. The adversarial setting differs from the original set-
ting mainly in the few shots provided before the question.
As shown in Figure 2, in the adversarial setting, we reorder
the options so that the answers for all the examples we pro-
vide are the first one (Choice A). Then for the final question
being asked, we similarly reorder the options so that the
ground truth is the second option (Choice B).

With the qualitative examples we reported from state-of-the-
art closed-source models such as GPT-4 (OpenAl, 2024)
and Gemini (Team, 2024) in Figure 1, we proceed to the
larger-scale experiments using representative open-source
models such as Llama3 (Al@Meta, 2024) and QWen-1.5
(Bai et al., 2023). For each model family, we experiment
with both larger and smaller size models, to investigate
the relationship between the impact of A-not-B errors and
model size. Specifically, we experiment with Llama3_70B
(Llama large), Llama3_8B (Llama small), Qwen-1.5_72B
(Qwen large), Qwen-1.5_7B (Qwen small). For each model,
we test both the original and the adversarial settings we
describe above. For each setting, we test each model on 100
data samples per task, and calculate the success rate. We
report the success rates as percentages in Table 1, and then
calculate the rate of change as

Adversarial — Original

Change = —
& Original

‘We mark an accuracy drop with a downside arrow and blue
color, while an accuracy increase is noted by an upside
arrow and red color. We will analyze the results in detail in
the coming subsection.

3. Results

Impact of Model Size. In Figure 3, we compare the
average rate of change across different numbers of few-
shot examples for all four reasoning tasks between large
(Llama3_70B and Qwen-1.5_72B) and small (Llama3_8B
and Qwen-1.5_7B) models. The rate of change counts both
accuracy increase and accuracy drop, which is implemented
by taking the absolute values of individual chanages and av-
eraging them. Results in Figure 3 show that model size sig-
nificantly impacts performance, with smaller models show-
ing much greater rates of change. Specifically, the absolute
rate of change for smaller models ranges from 15.5% to
22.5%, while for larger models it ranges from 5% to 10.1%.
This indicates that smaller models are more susceptible to
the A-not-B style adversarial prompts.

Number of Few-Shot Examples. In Figure 4, we com-
pare the average performance of large (Llama3_70B and
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Figure 4. More Few-Shot Examples Lead to Significant Drop
in Model Accuracy. This figure shows the performance impact of
increasing few-shot examples on large and small models. Negative
values represent a decline in accuracy due to adversarial prompts,
emphasizing that additional A-not-B styled prompts consistently
decrease accuracy across both model sizes.

Qwen-1.5_72B) and small (Llama3_8B and Qwen-1.5_7B)
models with different numbers of few-shot examples. Since
the model performance is of interest, we calculate the per-
formance change assigned numbers. In Figure 4, a negative
number indicates that the model’s success rate on the dataset
drops for the A-not-B style adversarial prompt, compared
to the original case. A positive number shows the opposite,
where the model’s success rate increases from the original
case. Naturally, as the number of few-shot examples in the
A-not-B style adversarial prompts increases, both large and
small language models are significantly more likely to suffer
from an accuracy drop.

Reasoning Tasks. During the experiments, we observed
that model performance and vulnerability to adversarial
prompts varied across different reasoning tasks. The change
in model performance when seeing A-not-B style prompts is
most pronounced in the arithmetic reasoning dataset. Arith-
metic reasoning generally requires complex abilities, which
may make it likely for LLMs to attempt to identify and
rely on patterns when they are unsure about solving the
problem (We further explore LLMs’ self-explanation on this
challenging task in the Ablation experiments, see Section
B). This effect is slightly less obvious in the commonsense
and causal reasoning datasets, though significant fluctua-
tions are still evident. Commonsense and causal reasoning
are generally less complicated than arithmetic reasoning,
as they usually involve a certain amount of, if not merely,
memorization of certain facts. Yet certain reasoning steps
can still be necessary to solve the problems. However, the
variation is not as evident in the scientific reasoning dataset.
Since this coincides with extremely high accuracy num-
bers, we suspect this could be attributed to possible data
contamination. Another possible explanation can be that
many specific terms and technologies in scientific reason-
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Figure 5. Pretraining Quality Affects Model Resilience to
A-not-B Errors. The performance change of Llama3_70B,
Llama3_8B, and Llama2_70B across different numbers of shots
is compared to understand the influence of pretraining datasets on
models’ resistance to the A-not-B error. Despite having the same
model size, Llama2_70B shows significantly greater performance
degradation than Llama3_70B and even Llama3_8B, highlighting
the significance of specific pretraining data and mechanisms.

ing questions are present in the models already, which can
help LLMs make accurate predictions confidently, thus less
likely to be impacted by the A-not-B style prompts.

Impact from Model Pretraining. To better understand
how model pretraining, particularly the pretraining datasets,
can influence models’ resistance to the A-not-B type er-
ror, we compare the rate of change in accuracy across
different shot numbers for Llama3_70B, Llama3_8B, and
Llama2_70B, as shown in Figure 5. These models share
similar fundamental architectures, but the Llama3 models
have been trained on significantly larger, novel, and higher-
quality datasets compared to Llama2 70B. As illustrated in
Figure 5, although Llama2_70B has the same model size
as Llama3_70B, it is much more significantly impacted. In
fact, Llama2_70B is less resilient compared to the smaller
Llama3_8B, especially with larger numbers of shots. This
suggests that the quality and quantity of pretraining data
play crucial roles in enhancing model robustness and perfor-
mance, even surpassing the benefits of model size alone.

4. Conclusion

In this paper, we have explored the intriguing cognitive phe-
nomenon of A-Not-B errors within the domain of LLMs.
Our findings illustrate that, akin to human infants, even
sophisticated models like LLMs are prone to persist in pre-
viously successful responses despite changed contexts—a
vulnerability that reveals fundamental limitations in their
reasoning capabilities.

Notably, our experiments demonstrate that smaller LLMs,
analogous to younger human cognitive development stages,
exhibit heightened susceptibility to such errors. This aligns
with developmental psychology insights, emphasizing the

parallel between increasing model size and human cognitive
maturity. Moreover, the robustness of models pre-trained
with extensive, diverse datasets underscores the importance
of quality and variety in training data, mirroring the way
rich human experiences can bolster cognitive flexibility.

The discussion and ablation studies, detailed in the ap-
pendix, extend these insights by dissecting the models’ re-
sponses under varied experimental conditions, including
self-explanation and many-shot scenarios. They also pro-
vide further insights into the connections between human
A-not-B errors and LLMs, as well as the learning paradigms
LLMs use to interact with the environment.

We encourage future research into the cognitive aspects
of AI, where we hope understanding the connections and
differences between human and Al will guide the creation of
better-designed models and frameworks, and these models
can more accurately mimic human reasoning and be more
adept at handling real-world complexities.
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A. Related Work

A-Not-B Error and Human Development. The A-not-B error (Vorms, 2012) is a classic cognitive phenomenon observed
in infants typically between the ages of 8 to 12 months. This error occurs during a task where an infant repeatedly retrieves
an object from a location (A), but continues to search for it at this initial location even after observing it being hidden at
a new location (B) (Popick et al., 2011; Smith & Gasser, 2005; Vorms, 2012) as presented in Figure 2. The persistence
of this error and its eventual resolution reflect significant developmental milestones in an infant’s cognitive abilities. Its
disappearance marks a critical phase in the maturation of memory systems, particularly working memory and spatial memory,
and highlights the evolving capacity for cognitive control. Moreover, overcoming the A-not-B error is closely linked to the
successful development of object permanence — the understanding that objects continue to exist even when they cannot be
seen, heard, or touched (Diamond, 1998; Cuevas & Bell, 2010). This cognitive milestone is essential for the formation of a
coherent sense of the physical world and for the development of logical thinking(Smith & Gasser, 2005). Thus, the A-not-B
error serves as a key indicator of an infant’s progressing neurological maturation and an emerging adeptness at integrating
memory, attention, and perceptual capabilities (Sumers et al., 2023).

LLM and Cognition. Historically, researchers have strived to create computational models that mirror human cognition
(Rescorla, 2020; Kriegeskorte & Douglas, 2018), aiming to replicate the way humans think, reason, learn, and solve
problems. Despite notable progress in fields like symbolic Al (Susskind et al., 2021; Bottou, 2011), neural networks
(Schmidhuber, 2015), and pattern recognition (He et al., 2015), early models often failed to generalize beyond narrow
task-specific applications, and lacked broad reasoning and planning capabilities (Chen et al., 2024; Berglund et al., 2024).
However, the recent advent of LLMs has marked a significant shift towards models that more closely resemble human
cognitive processes (Feng et al., 2024). LLMs, such as the GPT (Generative Pre-trained Transformer) models (OpenAl,
2024), exhibit extraordinary language skills and abilities in task planning (Ruan et al., 2023; Huang et al., 2022), reasoning
(Wei et al., 2022; Yang et al., 2024a; Song et al., 2024), problem-solving (Han et al., 2024; Zhang et al., 2023), decision
making (Wang et al., 2023; Yao et al., 2023), tool use (Cai et al., 2023; Schick et al., 2024), etc. More interestingly,
researchers have demonstrated LLMs’ emergent capacities (Kaplan et al., 2020) to engage in Theory of Mind (ToM) (Sumers
et al., 2023; Street et al., 2024), a cognitive ability essential for attributing mental states and understanding the perspectives
of others, which is pivotal to humans and all intelligent living creatures. Recent research has shown that LLMs can achieve
some ToM skills comparable to those of seven-year-olds (Sumers et al., 2023), suggesting a profound potential for these
models to understand and predict human behavior. This capability allows LLMs to function not merely as tools but as
intelligent agents capable of operating in complex, human-centric environments (Park et al., 2023).

LLMs and Contexts. Among all the progresses, LLMs’ capability to interacting with the real-world contexts through
methods like ICL is exciting. It allows LLMs to perform tasks by conditioning on input examples and contexts without
explicit parameter updates (Min et al., 2022). This capacity highlights LLMs’ proficiency in leveraging context to infer
patterns and generate appropriate outputs, emulating a form of learning from experience. Given the pretraining distribution
p, the model uses the prompt conditioned on a shared prompt concept, to refine its posterior distribution over concepts,
p(concept | prompt), effectively “learning” the concept (Xie et al., 2021; Min et al., 2022; Olsson et al., 2022). Empirical
studies suggest that methods like ICL exhibits robustness (Dong et al., 2022) and can elicit reasoning abilities in LLMs
(Wei et al., 2022; Long, 2023; Yang et al., 2024b). This highlights the model’s capacity for rapid learning and adaptation,
balancing context with internal knowledge, much like the crucial human cognitive process of balancing working memory
and long-term memory.

LLM Failure Mode. However, despite the impressive capabilities demonstrated by LLMs, research has shown that
these models, primarily as language-based pattern predictors, often fail even in surprisingly simple cases (Nezhurina
et al., 2024; Berglund et al., 2024; Gambardella et al., 2024). Although they exhibit advanced abilities in certain contexts,
LLMs frequently struggle with tasks that even young children can perform successfully, such as understanding basic logic
(Berglund et al., 2024), commonly used analogies and metaphors (Li et al., 2024), and some elementary ToM tests (Wei
et al., 2024; Stewart et al., 2023). Additionally, while LLMs can utilize and benefit from contexts through techniques
like ICL, they are also highly susceptible to being misled by prompts (Deng et al., 2023; Shi et al., 2022). Furthermore,
these models are prone to hallucinations or generating inaccurate or false information (Xu et al., 2024; Huang et al., 2023),
highlighting their detachment from the physical world. Efforts to ground LLMs in reality and enhance trustworthy and
robust LLM reasoning have been made (Wei et al., 2022; Long, 2023; Yang et al., 2024b), yet researchers find that these
models can still produce misleading outputs, struggle with embodiment, and remain susceptible to being misled or attacked
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MODEL\SHOTS 0 3 5 10 25
LLAMA3 8B 48% 36% 24% 16% 18%

Table 2. Ineffectiveness of Self-Explanation in Mitigating A-not-B Errors in Llama3_8B. This table illustrates the declining perfor-
mance of the Llama3_8B model on A-not-B error tasks, despite attempts at self-explanation. Notably, accuracy decreases as the number
of example shots increases, emphasizing the model’s inability to self-correct under conditions designed to elicit cognitive biases.

through specifically crafted inputs (Zou et al., 2023). These challenges lead to significant questions and concerns about
whether language-based models truly approximate human cognitive processes. While language ability is a crucial aspect
of cognition, human intelligence encompasses much more than linguistic capabilities, and not all knowledge needs to be
linguistically encoded or represented (Acad et al.; Fedorenko et al., 2024).

B. Ablation

Self-explanation fails to overcome A-not-B errors in challenging arithmetic reasoning tasks. Having observed that
state-of-the-art open and close LLMs fail in both embarrassingly simple A-not-B type questions and standard datasets
rearranged in the A-not-B fashion, we move a step forward to investigate if LLMs can self-correct such errors. That is, we
raise this question: Can LLMs self-explain to mitigate A-not-B type errors?

To answer this question, we choose the most challenging reasoning task as we discussed in Section 2 — arithmetic reasoning.
Different from previous experiments, we now require LLMs to provide complete reasoning in addition to answers to the
MCQ questions. Results are shown in Table 2. A significant drop in accuracy is still observed as the number of shots
increase, which align with our main results in Section 2. This indicates that LLMs are not able to easily overcome A-not-B
errors through self-explanation.

Many-shot prompting exhibits generalized versions of
A-not-B errors. Generalized from the standard A-not-
B scenario, we further investigate if LLMs can overcome
A-not-B errors in the less challenging case of many-shot
multi-choice setting. That is, rather than providing LLMs
with two options and constantly showing one of them as
the correct answer, we provide LLMs with four or five
options. All but the correct option can appear to have
been chosen in the offered examples, whereas in the final Llama3 70B -
question the correct answer is the only option that has yet

to appear.

Many Shots for Arithmetic Reasoning

Llama3 70B

Llama3 8B -

Llama3 8B Original
In accordance with the increased options, we increase Adversarial

the number of examples provided. Rather than few-shot :
experiments, we conduct many-shot experiments to offer
LLMs sufficient demonstrations. This setting is clearly
less challenging than the standard A-not-B cases we re-
port in Section 2, because more options and more exam-
ples are provided in this generalized form of A-not-B
scenario. We then raise this question: Can LLMs over-
come the A-not-B error in this generalized scenario?

Accuracy (%)

Figure 6. Persistent Vulnerability of LLMs to A-not-B Errors in
Many-Shot Scenarios. This figure shows the performance of large
(70B) and small (8B) Llama3 models in a many-shot arithmetic rea-
soning test for A-not-B errors. Despite more options and examples
to reduce cognitive biases, both models exhibit significant accuracy
We follow the same experiment settings as in Section 2, declines, especially the smaller model, highlighting persistent chal-
except for providing more options for each question and ~ 1enges in general cases.

more example demonstrations in the prompts. We again

choose arithmetic reasoning, the most challenging reason-

ing task as we discussed in Section 2 to investigate this generalized setting. The exact number of many-shot examples is 80.
In the original many-shot scenario, 16 examples are provided for each of the five possible options (A, B, C, D, E) as the
correct answer. In the A-not-B style many-shot scenario, 20 examples are provided for A, B, C, and D, whereas the final
question being asked has E as its correct answer. The exact prompt can be found in in Figure 9 and 10 in the appendix.
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Results are reported in Figure 6. Significant accuracy drops can still be observed for both large (70B) and small (8B) Llama3
models, with the small model suffering more. The results agree with the main experiments we report in Section 2, indicating
that LLMs fail even in this generalized and less challening version of many-shot A-not-B scenarios.

C. Discussions
C.1. Connection between Human A-Not-B error and LLMs.

Model Size as a Parallel to Cognitive Maturation. Among our models, Llama3_70B and Llama3_8B, as well as
Qwen-1.5_72B and Qwen-1.5_7B, are trained on the same datasets with identical architectures. Howeyver, it is noticed that
models with smaller scales and fewer parameters are more susceptible to adversarial prompts. This increased vulnerability
mirrors the A-not-B error, where infants’ long-term memory or understanding of object permanence can be easily overridden
by their current working memory. Just as infants repeatedly search for an object at the initial location A even after observing
it being moved to a new location B, smaller language models can be easily misled by A-not-B style adversarial prompts that
elicit their working memory. This susceptibility indicates that smaller models, like infants whose cognitive development is
still in progress, have a fragile understanding that can be easily influenced or disrupted by minor changes in inputs even
when the changes do not contain any incorrect contents at all. In contrast, larger models, akin to adults with more developed
cognitive capacities, exhibit greater resistance to such A-not-B type minor changes. This comparison underscores the critical
roles of model size and parameter count in ensuring the robustness and reliability of language models in multiple reasoning
tasks, paralleling the developmental milestones that enhance cognitive control and memory integration in humans.

Pretraining Quality as the Equivalent of Enriched Life Experiences. From the experiment with Llama family models,
we observe that with better quality and larger quantity data, a much smaller model (Llama3_8B) can be more resilient to
A-not-B type adversarial prompts than Llama2_70B. When encountering input prompts or contexts, an LLM must apply
its internal knowledge and skills (derived from pretraining distributions) to predict the next tokens. This process parallels
human cognitive abilities, where individuals rely on their accumulated knowledge and experiences to navigate and respond
to new situations. While the impact of model size on resilience to adversarial prompts mirrors the biological maturation
in humans—where an adult’s cognitive capacities are more developed than those of a child—the influence of pretraining
quality and quantity is more akin to the social and environmental aspects of human development. Just as enriched social
interactions and diverse experiences can significantly enhance a person’s cognitive resilience and adaptability, high-quality
and extensive pretraining data equip language models with a better foundation of knowledge. This enables them to handle
misleading prompts more effectively and perform robustly across various tasks.

C.2. Contexts and Internal Knowledge of LLMs

LLMs Interacting with the World. With approaches like ICL, LLMs demonstrate their ability to work with contexts and
utilize internal knowledge. Research has shown that this capability can be viewed as a Bayesian inference of a latent concept,
where the model uses the prompt to locate and apply the relevant concept it has learned during pretraining to perform
tasks (Xie et al., 2021). Empirical studies further reinforce that even amidst noise and randomness, LLMs remain effective,
highlighting their potential to balance contexts and internal knowledge when interacting with the environment. However, the
challenges posed by A-not-B type adversarial prompts not only reveal the susceptibility of LLMs to specific patterns of
input but also their limited ability to apply learned knowledge in new and contextually appropriate ways, raising questions
about the models’ capacity to engage in what might be considered ‘true’ cognitive processes akin to human reasoning.

LLMs as Pattern Driven. With more few-shot examples showing the A-not-B style pattern, both small and large models
are significantly more likely to be misled. This may support the notion that the nature of LLMs is pattern learners rather than
truly reasoning entities. While LLMs demonstrate remarkable performance across a variety of tasks, they fundamentally
operate by recognizing and replicating patterns from their training data, and even from inputs during the inference time. They
may not possess a genuine understanding of concepts and context beyond the statistical correlations they have learned. This
pattern-driven nature is particularly evident when models encounter A-not-B style adversarial prompts designed to exploit
these patterns. The models’ responses are influenced by the frequency and style of patterns they have been exposed to, rather
than by engaging in true reasoning or logical deduction processes. As a result, while LLMs can effectively mimic human
language and behavior in certain scenarios, their reliance on pattern recognition without deep comprehension suggests
limitations in their cognitive capabilities, raising important questions about the extent to which LLMs can be considered as
being able to reason, and underscores the need for continued research to enhance their cognitive robustness.
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D. Prompt Formats

Here we present the prompt templates used during our main and ablation experiments. Figure 7 shows the format for a
few-shot prompt in our original setting, and Figure 8 shows that in the A-not-B style adversarial setting. Figure 9 shows
the format for many-shots prompt in our original setting in the ablation experiment, and Figure 10 shows the format for
many-shots prompt in our A-not-B style adversarial setting in the ablation experiment.

E. Code and Experiment Replication

We have made all the code and results publicly available via an open-source repository anonymously, accessible at:
https://github.com/Peiyang-Song/LLM-A-Not-B-Errors.

This repository includes:

1. Datasets: Processed datasets across all four reasoning categories.
2. Graphs: Source code and the graphs presented in the paper.

3. Experiments: Code for all experiments, including ablation studies.

All experiments were conducted using the togetherAl API (https://docs.together.ai/docs/inference-models).

F. Data and Model License

All datasets and models utilized in this study are open source and publicly accessible. We have ensured to cite each one
comprehensively, providing detailed references and acknowledgment of their respective sources.
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Original Few-Shot Example Prompt Format:

Examples:
What is the answer for: Question<Replace with the Actual Question>
A) <Replace with the Actual Option A>, B) <Replace with the Acttual Option B>

Choose <Replace with the Actual Ground Truth A or B >

Examples:
What is the answer for: Question<Replace with the Actual Question>
A) <Replace with the Actual Option A>, B) <Replace with the Actual Option B>

Choose <Replace with the Actual Ground Truth A or B >

Question:
What is the answer for: Question<Replace with the Actual Question>

A) <Replace with the Actual Option A>, B) <Replace with the Actual Option B>

Choose A or B? Just give me a single letter (A or B) without any further words.

Figure 7. Original Few-Shot Example Prompt Format. This figure presents the few-shot prompt format used for the original setting,
where questions are demonstrated with the original answers (without manually setting all the correct answers to A).
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Adversarial Few-Shot Example Prompt Format:

Examples:
What is the answer for: Question<Replace with the Actual Question>
A) <Replace with the Actual Option A>, B) <Replace with the Actual Option B>

Choose A

Examples:
What is the answer for: Question<Replace with the Actual Question>
A) <Replace with the Actual Option A>, B) <Replace with the Actual Option B>

Choose A

Question:
What is the answer for: Question<Replace with the Actual Question>
A) <Replace with the Actual Option A>, B) <Replace with the Actual Option B>

Choose A or B? Just give me a single letter (A or B) without any further words.

Figure 8. Adversarial Few-Shot Example Prompt Format. This figure presents the few-shot prompt format used for the adversarial
setting, where questions are demonstrated with the correct answer manually set to A by reordering the options.
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Original Many-Shots Example Prompt Format:
Examples:

What is the answer for: Question<Replace with the Actual Question>

A) <Replace with the Actual Option A>,
B) <Replace with the Actual Option B>,
C) <Replace with the Actual Option C>,
D) <Replace with the Actual Option D>,
E) <Replace with the Actual Option E>

Choose <Replace with the Actual Ground Truth A or B or C or D>

Examples:
What is the answer for: Question<Replace with the Actual Question>

A) <Replace with the Actual Option A>,
B) <Replace with the Actual Option B>,
C) <Replace with the Actual Option C>,
D) <Replace with the Actual Option D>,
E) <Replace with the Actual Option E>

Choose <Replace with the Actual Ground Truth A or B or C or D>

Question:
What is the answer for: Question<Replace with the Actual Question>

A) <Replace with the Actual Option A>,
B) <Replace with the Actual Option B>,
C) <Replace with the Actual Option C>,
D) <Replace with the Actual Option D>,
E) <Replace with the Actual Option E>

Choose A or B or C or D or E? Just give me a single letter (A or B or C or D or
E) without any further words.

Figure 9. Original Many-Shots Example Prompt Format. This figure presents the many-shots prompt used in the original settings
of the ablation experiment; see Section B. Among the 80 examples, 16 examples each correspond to ground truths A, B, C, D, and E,
arranged in a random order. The correct answer for the final question is E.
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Adversarial Many-Shots Example Prompt Format:
Examples:

What is the answer for: Question<Replace with the Actual Question>

A) <Replace with the Actual Option A>,
B) <Replace with the Actual Option B>,
C) <Replace with the Actual Option C>,
D) <Replace with the Actual Option D>,
E) <Replace with the Actual Option E>

Choose <Replace with the Actual Ground Truth A or B or C or D or E>

Examples:
What is the answer for: Question<Replace with the Actual Question>

A) <Replace with the Actual Option A>,
B) <Replace with the Actual Option B>,
C) <Replace with the Actual Option C>,
D) <Replace with the Actual Option D>,
E) <Replace with the Actual Option E>

Choose <Replace with the Actual Ground Truth A or B or C or D or E>

Question:
What is the answer for: Question<Replace with the Actual Question>

A) <Replace with the Actual Option A>,
B) <Replace with the Actual Option B>,
C) <Replace with the Actual Option C>,
D) <Replace with the Actual Option D>,
E) <Replace with the Actual Option E>

Choose Aor B or C or D or E? Just give me a single letter (Aor B or C or D or
E) without any further words.

Figure 10. Adversarial Many-Shots Example Prompt Format. This figure presents the many-shots prompt used in the adversarial
A-not-B settings of the ablation experiment; see Section B. Among the 80 examples, 20 examples each correspond to ground truths A, B,
C, and D, arranged in a random order. The correct answer for the final question is E.
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