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Abstract

Online, real-time, and fine-grained 3D segmentation constitutes a fundamental capa-
bility for embodied intelligent agents to perceive and comprehend their operational
environments. Recent advancements employ predefined object queries to aggregate
semantic information from Vision Foundation Models (VFMs) outputs that are
lifted into 3D point clouds, facilitating spatial information propagation through
inter-query interactions. Nevertheless, perception, whether human or robotic, is an
inherently dynamic process, rendering temporal understanding a critical yet over-
looked dimension within these prevailing query-based pipelines. This deficiency in
temporal reasoning can exacerbate issues such as the over-segmentation commonly
produced by VFMs, necessitating more handcrafted post-processing. Therefore,
to further unlock the temporal environmental perception capabilities of embodied
agents, our work reconceptualizes online 3D segmentation as an instance track-
ing problem (AutoSeg3D). Our core strategy involves utilizing object queries for
temporal information propagation, where long-term instance association promotes
the coherence of features and object identities, while short-term instance update
enriches instant observations. Given that viewpoint variations in embodied robotics
often lead to partial object visibility across frames, this mechanism aids the model in
developing a holistic object understanding beyond incomplete instantaneous views.
Furthermore, we introduce spatial consistency learning to mitigate the fragmenta-
tion problem inherent in VFMs, yielding more comprehensive instance information
for enhancing the efficacy of both long-term and short-term temporal learning. The
temporal information exchange and consistency learning facilitated by these sparse
object queries not only enhance spatial comprehension but also circumvent the
computational burden associated with dense temporal point cloud interactions. Our
method establishes a new state-of-the-art, surpassing ESAM by 2.8 AP on Scan-
Net200 and delivering consistent gains on ScanNet, SceneNN, and 3RScan datasets,
corroborating that identity-aware temporal reasoning is a crucial, previously under-
emphasized component for robust 3D segmentation in real-time embodied intelli-
gence. Code is at https://github.com/AutoLab-SAI-SJTU/AutoSeg3D.

1 Introduction

The ability to perform online, real-time, and fine-grained 3D instance segmentation is a cornerstone for
embodied intelligent agents to perceive and comprehend their operational environments. Autonomous
robots and embodied assistants increasingly depend on such systems for exploring and interacting
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with complex scenes. Early approaches predominantly adopts an offline paradigm, which involved
accumulating complete point clouds prior to processing, thereby incurring prohibitive latency and
memory costs. In pursuit of faster and online perception capabilities, recent research has begun to
explore paradigms assisted by Vision Foundation Models (VFMs) such as SAM [1].

Current online VFM-assisted models are engineered to process streaming inputs by initially predicting
segmentation results with VFMs and subsequently lifting the generated masks and recorded depth
to superpoint representations. However, these pipelines simply concatenate global point features
across scans and omit instance level temporal modeling, which worsens fragmentation and over
segmentation by VFMs. Post hoc non-maximum suppression only partially corrects these errors and
introduces the concurrent loss of valid information not as expected.

Seeking to address these limitations, we draw inspiration from established methodologies for main-
taining temporal coherence in online perception. Classical multi-object tracking (MOT) methods,
for instance, achieve consistent identity assignment by exploiting spatial continuity and appearance
affinities to link detections across frames [2, 3]. Similarly, video instance segmentation frameworks
like VisTR [4] and 3D detection models such as Sparse4D [5] employ query-based memory banks
to propagate and update object features over time, enabling each instance to maintain a persistent
representation robust to occlusion and partial views. The core design principle underpinning these
diverse approaches is the explicit maintenance and evolution of instance-specific representations
across temporal sequences. Inspired by this paradigm, we recast online 3D instance segmentation as
an instance-tracking task. By integrating object-level temporal priors directly into the segmentation
pipeline, our approach aims to concurrently rectify over-segmentation errors and enforce identity
consistency, thereby substantially enhancing overall segmentation performance and robustness.

More specifically, we introduce a novel, tracking-centric pipeline that directly addresses the two
core limitations of VFM-based methods. Our framework decomposes into three lightweight and
synergistic modules. First, the Long-Term Memory (LTM) maintains a bounded track bank and
employs Hungarian assignment based on confidence-gated affinity matrix to recover identities after
prolonged occlusions with constant overhead. Second, the Short-Term Memory (STM) refines in-
stance embeddings via distance-aware cross-frame attention to inject immediate temporal context
while filtering out background noise. Third, Spatial Consistency Learning (SCL) merges high-affinity
mask fragments at inference by jointly reasoning over 2D appearance and 3D geometry, while con-
currently employing one-to-many fragment supervision during training to mitigate over-segmentation
and generate coherent, high-fidelity queries for LTM and STM. Together, these components form
a cohesive, real-time 3D instance segmentation system that enforces consistent object identities
across frames, injects immediate temporal context while filtering out background noise, and merges
high-affinity fragments to directly counteract VFM over-segmentation. By integrating these modules,
our framework preserves real-time throughput while delivering a 2.8 AP gain over recent ESAM [6]
on ScanNet200 [7]. Extensive evaluations on both ScanNet200 and ScanNet [8], as well as zero-shot
assessments on SceneNN [9] and 3RScan [10] demonstrate consistent performance gains.

In summary, our contributions are as follows: 1) We recast online 3D instance segmentation as a
continuous instance tracking problem by treating each VFM-derived mask as a track query within a
unified framework. 2) We propose a lightweight architecture with three synergistic modules where
LTM propagates identities across frames to ensure continuity, STM injects short-term temporal
context while filtering background noise, and SCL merges overlapping fragments to counteract
over-segmentation and enrich instance embeddings. 3) Our framework achieves new state-of-the-art
results on ScanNet200, ScanNet, SceneNN, and 3RScan while sustaining real-time throughput, and
ablation studies verify the contribution of each component.

2 Related Work

VFM-assisted 3D Scene Segmentation. Vision foundation models (VFMs) have emerged as a
promising cornerstone for 3D scene understanding in embodied intelligence, especially in the con-
struction and reasoning of 3D spatial information [11, 12, 13, 14, 1, 15, 16, 17, 18]. Large-scale
pretrained VFMs such as SAM [1] and CLIP [12] exhibit powerful open-vocabulary segmentation and
semantic alignment capabilities, which have been extensively leveraged in downstream 3D perception
pipelines. SAM3D [19] first predicts 2D instance masks with SAM and then lifts them to 3D via depth
and camera parameters, followed by geometric merging. CLIP2Scene [20] distills multimodal knowl-
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edge from CLIP into a 3D backbone through semantic and spatio-temporal consistency regularization,
enabling label-efficient scene parsing. OpenMask3D [21] combines CLIP-extracted visual features
with SAM-refined masks to generate discriminative per-instance embeddings for open-vocabulary
3D instance segmentation. Despite these advances, several studies have highlighted that the 2D
masks produced by VFMs are often over-segmented. SAI3D [22], for example, decomposes the
reconstructed mesh into 3D primitives, assigns semantic scores to 2D masks via Semantic-SAM [15],
and aggregates the primitives through a graph-based region-growing algorithm. Nevertheless, existing
approaches still rely on heuristic post-hoc fusion of projected 3D masks, which often proves brittle
in cluttered or dynamically changing robotic environments. In this work, we propose a learnable
fusion module that jointly reasons over over-segmentation hypotheses in both 2D and 3D spaces. By
optimizing fusion in an end-to-end manner, our method mitigates the impact of erroneous 2D masks
and delivers more robust and scalable 3D scene understanding.

Online 3D Scene Perception. Driven by the rapid advancements in autonomous driving and
embodied AI, robotic tasks are increasingly demanding higher levels of 3D scene understanding.
In these scenarios, the ability to process information in real time, adapt to diverse conditions, and
achieve perception is crucial. However, most of the common instance segmentation methods [23,
24, 25, 26, 27, 28, 29, 21, 30, 31, 32, 33] are offline. They can handle large-scale datasets but are
highly dependent on the quality of preprocessing and data augmentation, which makes it difficult
to apply them to complex and ever-changing robotic environments. Recently, online 3D scene
perceptions [34, 35, 36, 37, 38, 39] have attracted increasing attention. INS-Conv [38] proposes an
incremental sparse convolutional network for online 3D segmentation, which achieves efficient and
accurate inference by processing only the residuals between consecutive frames and incorporating
an uncertainty term to adaptively select which residuals to update. MemAda [40] proposes an
adapter-based model that equips mainstream offline frameworks with the competence to perform
online scene perception, enabling them to process real-time RGB-D sequences efficiently. Building
on this foundation, ESAM [6] further advances the field by achieving online scene segmentation
and designing a dual-layer decoder along with auxiliary tasks to facilitate the merging of 3D masks.
While prevailing methods fuse dense features (e.g., raw point clouds) temporally, they often lack the
semantic context crucial for instance-level tasks. We address this by recasting online segmentation
as instance tracking, which allows us to propagate semantically rich instance information across
frames. This focus on semantic consistency through time yields significantly more precise instance
segmentation results, while also being computationally efficient.

3 Method

3.1 Overall Architecture

Fig. 3.1 illustrates our tracking-centric online 3D segmentation framework. The design draws
inspiration from the brain’s complementary learning systems [41, 42, 43, 44, 45]. Specifically, the
hippocampus rapidly forms episodic memories, allowing quick adaptation to novel contexts and
interaction with recent experience, whereas the neocortex consolidates these transient traces into
durable representations through slow, cumulative learning, producing a stable store of knowledge.
This dual mechanism not only enhances adaptability but also ensures the coherence and persistence
of memory. Mirroring this division, we decompose our framework into long-term memory for
instance association and short-term memory for instance update, realised by three lightweight yet
synergistic modules: 1) Long-term memory (LTM), detailed in Sec. 3.2, matches instance identities
over extended periods, enabling recovery after prolonged occlusion. 2) Short-term memory (STM),
detailed in Sec. 3.3, recurrently updates each instance’s representation with information from the
immediately preceding frame. 3) Spatial Consistency Learning (SCL) includes Learning-Based
Mask Integration at inference and Instance-Consistency Mask Supervision during training, detailed
in Sec. 3.4, respectively counteract VFM’s intrinsic over-segmentation, thereby reducing query
redundancy and furnishing STM and LTM with coherent, high-fidelity mask representations.

3.2 Long-Term Memory for Instance Association

Online 3D segmentation requires that all point-cloud observations of the same instance, collected
across successive frames, be fused into a single temporally coherent instance. To improve the
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Figure 1: This diagram delineates the operational mechanisms of our constituent modules.
Spatial Consistency Learning (SCL) mitigates the over-segmentation tendencies of VFM by employ-
ing a one-to-many supervision strategy during the training phase and utilizing learning-based mask
integration at the inference stage. The Short-term Memory (STM) module enriches current instance
representations by integrating observational data from prior frames. Furthermore, the Long-term
Memory (LTM) module is engineered to associate instances, segmented by the Visual Front-end
Module (VFM), with established tracklets in memory, consequently enhancing temporal consistency.

temporal consistancy, we recast instance aggregation as an explicit instance tracking problem with
supervised matching, confidence gating, and Hungarian assignment.

Concretely, at the first frame (t = 1), we obtain N1 instance queries that derived from 3D mask
(Eq. 5) and their corresponding embeddings Q1 ∈ RN1×d that derived by applying a MLP to instance
queries, and predicted 3D bounding boxes B1 ∈ RN1×6. Each box is axis-aligned and specified
by its minimum and maximum coordinates (xmin, ymin, zmin, xmax, ymax, zmax). Similarly, for
every subsequent frame t containing Nt segments, we obtain the instance embeddings Qt ∈ RNt×d,
the corresponding boxes Bt ∈ RNt×6, and the instance embeddings from the tracklets in memory
QTrk ∈ RNTrk×d. Here, NTrk represents the number of active tracklets up to now. Critically, the
embedding associated with each tracklet is not merely derived from the immediately preceding frame
t− 1, instead, it encapsulates richer temporal information accumulated across the sequence, thereby
reflecting a more comprehensive long-term history (see Sec. 3.3 for more details). Then we measure
the similarity between instances (segments) from current frames with tracklets by,

Eapp
ij = Qt[i]⊙QTrk[j], Egeo

ij = MLP
(
IoU(Bt[i],B

Trk[j])
)
, Eij = Eapp

ij +Egeo
ij , (1)

where Eapp,Egeo,E ∈ RNt×NTrk×d respectively correspond to the appearance, geometric, and
fused affinity features. We then project the fused affinity features using learned w,w′ ∈ Rd,

Mij =
exp

(
w⊤Eij

)∑
j′ exp

(
w⊤Eij′

) , Cij = σ
(
w′⊤Eij

)
, Aij = Mij Cij. (2)

where Mij is a row-normalised affinity obtained via softmax, which represents the relative similarity
that segmented instance i corresponds to tracklet j. Since each row sums to 1, every segment allocates
its entire probability mass across the set of candidate tracklets. To modulate this raw affinity we
introduce a sigmoid-based confidence gate Cij = σ(·), which down-weights uncertain matches and
suppresses spurious associations. To convert these probabilities into one-to-one correspondences, we
formulate a bipartite matching problem. Specifically, segments and tracklets form a bipartite graph
with edges weighted by gated affinities Aij. Solving this assignment with the Hungarian algorithm
selects the set of pairs (i, j) that maximises the summed weights while ensuring that every segment
and every track is used at most once. For each matched pair, the track state is updated by,

BTrk[j]← αj B
Trk[j] +Bt[i]

αj + 1
, QTrk[j]← αj Q

Trk[j] +Qt[i]

αj + 1
, αj ← αj + 1, (3)

where αj is the track age. Unmatched instances initialise new tracklets with α = 1. Tracks that
remain unmatched for more than Tlife frames are marked stale, removed from the active set, and
pushed into a fixed-capacity queue, the oldest entry is evicted when the buffer overflows. At every
time step t, any segment that remains unassigned after the active-track matching stage is subsequently
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matched against the LTM buffer with the identical Hungarian solver. A successful match reactivates
the stored tracklet, restoring its state and resetting its age, thereby recovering instances that reappear
after extended occlusion. By coupling confidence-gated Hungarian assignment with a bounded
long-term memory, the proposed strategy suppresses spurious instances, maintains identities through
prolonged occlusions, and guarantees constant computational overhead.

3.3 Short-Term Memory for Instance Update

In online 3D segmentation, the inherent scene continuity, where instances visible in frame t− 1 often
reappear in frame t, naturally motivates the use of cross-frame attention mechanisms to integrate
historical context. For embodied agents, which frequently experience rapid and significant viewpoint
variations, the effective fusion of object-level appearance information gathered from these diverse
perspectives is particularly crucial. This capability to integrate multi-view object-centric features
allows the agent to build a more robust and consistent understanding of instances over time, despite
substantial changes in their observed appearance. Therefore, we design a instance update module that
reuses and continually refines instance-centric embeddings.

We recognize that applying global cross-attention between all Nt current queries and the instance
embeddings from the previous frame can introduce substantial noise. This occurs because background
queries often form irrelevant associations with prior instance features, thereby degrading the fusion
process. To instill explicit instance awareness and mitigate this, we introduce the distance-aware Short-
Term Memory (STM). Specifically, to filter out irrelevant interactions we adopt the distance-aware
attention, which gates attention by Euclidean distance between instance centroids,

Attn(Q′
t,Kt−1,Vt−1) = Softmax

(Q′
t K

⊤
t−1√
d

− diag(τ t)D
(t−1,t)

)
Vt−1, (4)

where Q′
t ∈RNt×d denotes current instance queries, the memory key Kt−1 ∈RNt−1×d and value

Vt−1 ∈RNt−1×d are derived from Qt−1, D(t−1,t) ∈RNt×Nt−1 stores pairwise centroid distances
and τ t = [τ1, . . . , τNt

]⊤ contains query-specific receptive-field scales. We predict these scales with
a shared linear layer, τ t = Linear(Q′

t), so each query adaptively narrows or widens its spatial scope.
Large τi suppress attention to distant memory slots, encouraging local refinement, whereas small τi
retain a global context when necessary. By suppressing attention to remote regions and modulating
each query’s receptive field, short-term memory yields temporally enhanced embeddings Qt.

3.4 Spatial Consistency Learning for Robust Association

As illustrated in Fig 2, VFMs like SAM [1] frequently fragments a single instance into several
neighbouring masks. This fragmentation compromises effective cross-frame instance association.
Previous methods [6] ignore this, resulting in degraded spatial coherence. To mitigate this gap, we
introduce learning-based mask integration (LMI) at inference to merge high-affinity fragments and
instance consistency mask supervision (ICMS) during training to apply one-to-many supervision.

Learning-Based Mask Integration. To recover coherent masks, we learn an affinity matrix that
merges masks belonging to the same instance at every frame t. Given point cloud features Pt and
corresponding 2D masks setMt, we can get query features Qt and position Xt through

(Qt,Xt) = Pool(Pt,Mt), Mt = {mi}Nt

i=1, (5)

where Pool aggregates point features within each mask. We then predicts axis-aligned bounding
boxes Bt = MLP(Qt) ∈ RNt×6, since the boxes generated by corresponding 3D mask may not be
a complete object [6]. For each pair (i, j) we compute the affinity feature Eij and Aij as in Sec. 3.2.
We first perform hierarchical clustering to identify mask groups whose pairwise affinities Aij all
exceed δ. We then merge the masks within each such group to form M̃t, and finally re-pool features
over these merged masks,

(Q′
t,X

′
t) = Pool

(
Pt,M̃t

)
. (6)

The mask-aggregation module is invoked only at inference. During training we intentionally refrain
from merging masks to leverage fragment diversity as implicit data augmentation, detailed below.

Instance Consistency Mask Supervision. In addition to retaining fragmented masks as implicit data
augmentation, each fragment can also provides a complementary view of the same object. Therefore,
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we supervise corresponding fragments (many) with each ground-truth instance (one). This strategy
improves robustness to low-quality masks, yields more consistent predictions for fragmented queries,
and simplifies duplicate removal, which is vital for instance association in Sec. 3.2.

To formalise this supervision, consider a ground-truth instance gk and its corresponding query set

Qk =
{
qi

∣∣ |P(mi)∩P(gk)|
|P(mi)| > 0.5

}
, (7)

where P(·) denotes the pixel-set of a mask mi and its corresponding query qi. We then enforce
consistency across these fragments via

L1:N =

Ngt∑
k=1

∑
qi∈Qk

ℓ
(
f(qi),yk

)
. (8)

where ℓ is the loss and yk denotes the ground-truth. However, as shown in Tab. 8, naively replacing
the original one-to-one loss with L1:N leads to a consistent drop in segmentation accuracy. Our
experiments demonstrate that this modification erodes the model’s capacity to select the highest-
quality fragment, which is supported by the self-attention mechanism. To satisfy both objectives, we
configure the decoder in two distinct branches. In the first branch we enable self-attention and employ
standard one-to-one supervision in order to preserve fragment selection capability. In the second
branch we disable self-attention and apply one-to-many supervision in order to strengthen robustness
across diverse fragments. Notably, this dual-branch mechanism is active only during training and
incurs no additional computational cost at inference time.

3.5 Loss Functions

Our framework is trained end-to-end by minimising:

L = Lseg + βltm Lltm + βagg Lagg, (9)

where the scalars β∗ weight the contribution of each term.

Segmentation loss Lseg. The dual-decoder architecture described in Sec. 3.4 yields three sub-losses:

Lseg = L1:1 + λL1:N + γ Lbg, (10)

where L1:1 enforces one-to-one assignment, L1:N ensures consistency across masks through multi-
target supervision , and Lbg penalizes background masks.

Long-term memory loss Lltm. We introduce a matrix yij, where yij = 1 if query qi and track tj refer
to the same ground-truth instance, and yij = 0 otherwise. We compute a one-to-one assignment π∗

by applying the Hungarian algorithm to the cost matrix − log M̂ij. The matching loss becomes

Lmatch = − 1

Nt

∑
(i,j)∈π∗

log M̂ij. (11)

To generate the sigmoid gate Cij for confidence we add

Lconf = −
1

NtNt−1

∑
i,j

[
yij logCij + (1− yij) log(1− Cij)

]
. (12)

The full long-term memory loss is then

Lltm = Lmatch + βconf Lconf , (13)

Mask-aggregation loss Lagg. To supervise the affinity predictor in LMI, we employ binary cross-
entropy over positive pairs P and negative pairs N :

Lagg = − 1

|P|
∑

(i,j)∈P

logAij −
1

|N |
∑

(i,j)∈N

log
(
1−Aij

)
. (14)

Pairs whose masks overlap a ground-truth instance by over 50 % are positive, all others are negative.
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Table 1: Class-agnostic 3D instance segmentation results of different methods on ScanNet200 dataset.
Method Present at Type VFM AP AP50 AP25 FPS

SAMPro3D [46] 3DV’2025 Offline SAM 18.0 32.8 56.1 –
Open3DIS [47] CVPR’2024 Offline GroundedSAM 34.6 43.1 48.5 –
SAI3D [22] CVPR’2024 Offline SemanticSAM 28.2 47.2 67.9 –

SAM3D [19] ICCVW’2023 Online SAM 20.2 35.7 55.5 0.4
ESAM [6] ICLR’2025 Online SAM 42.2 63.7 79.6 0.7
AutoSeg3D (Ours) - Online SAM 45.5 66.7 81.0 0.7

ESAM-E ICLR’2025 Online FastSAM 43.4 65.4 80.9 10.6
AutoSeg3D (Ours) - Online FastSAM 46.2 67.9 81.7 10.1

Table 2: 3D instance segmentation results of different methods on ScanNet and SceneNN datasets. ∗

denotes represent the results we reproduced following the official released config.

Method Present at Type ScanNet SceneNN

AP AP50 AP25 AP AP50 AP25

TD3D [48] ICME’2024 Offline 46.2 71.1 81.3 – – –
Oneformer3D [49] CVPR’2024 Offline 59.3 78.8 86.7 – – –

INS-Conv [38] CVPR’2022 Online – 57.4 – – – –
TD3D-MA [48] ICME’2024 Online 39.0 60.5 71.3 26.0 42.8 59.2
ESAM [6]∗ ICLR’2025 Online 41.6 59.6 75.2 30.3 47.6 63.4
AutoSeg3D (Ours) - Online 43.4 62.5 77.4 33.1 52.6 63.8

4 Experiments

4.1 Experiment Settings

Following our baseline ESAM [6], we begin by training a single-view perception model on
ScanNet(200)-25k, a subset of ScanNet200 [7] with RGB-D frames. Then we fine-tune it on
RGB-D sequences with full loss functions and randomly sample 8 RGB-D frames per scene at each
training step. For the optimization settings, we use an AdamW optimizer with a learning rate of
0.0001 and a weight decay of 0.05 and the batch size is set to 4. All experiments are conducted
using PyTorch on a single NVIDIA Tesla A100 GPU. Our experiments are conducted on ScanNet [8],
ScanNet200 [7], SceneNN [9], and 3RScan [10] datasets.

4.2 Comparison with State-of-the-arts

Results on ScanNet200 of Class-agnostic Setting. Tab. 1 details the class-agnostic results on
ScanNet200, demonstrating the superiority of our approach over existing state-of-the-art methods.
Specifically, when SAM serves as the 2D segmentation model, our method achieves gains of 3.3 in
AP, 3.0 in AP50, and 1.4 in AP25 compared to the recent ESAM [6]. The consistent performance im-
provements, even with a more lightweight 2D segmentation model such as FastSAM [50], underscore
the effectiveness and generalizability of our method.

Results on ScanNet and SceneNN. Following the experimental setup of ESAM [6], Tab. 2 reports
the results of our method, which is trained on ScanNet and subsequently evaluated on both ScanNet
and SceneNN to assess its generalization performance. The notable improvements across multiple
evaluation metrics and datasets strongly demonstrate the effectiveness and generalizability of our
approach. Specifically, our method achieves significant gains of 1.8 in AP, 2.9 in AP50, and 2.2 in
AP25 on ScanNet evaluation compared to ESAM.

Results on SceneNN and 3RScan. Tab. 3 reports the results of our method, trained on ScanNet200
and evaluated on SceneNN and 3RScan, which again demonstrate its strong generalization capabilities.
Our approach surpasses previous methods, achieving significantly higher AP50 and AP25 scores. This
underscores the effectiveness and adaptability of our method for robotic applications.
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Table 3: Results of transferring different methods trained on ScanNet200 to SceneNN and 3RScan.
“-E” indicates using FastSAM instead of SAM for 2D segmentation.

Method Present at Type ScanNet200→SceneNN ScanNet200→3RScan

AP AP50 AP25 AP AP50 AP25

SAMPro3D [46] 3DV’2025 Offline 12.6 25.8 53.2 3.9 8.0 21.0
Open3DIS [47] CVPR’2024 Offline 18.2 32.2 48.9 9.5 21.8 47.0
SAI3D [22] CVPR’2024 Offline 18.6 34.7 65.7 8.1 16.9 37.0

SAM3D [19] ICCVW’2023 Online 15.1 30.0 51.8 6.2 13.0 33.9
ESAM [6] ICLR’2025 Online 28.8 52.2 69.3 14.1 31.2 59.6
AutoSeg3D (Ours) - Online 29.7 53.6 71.9 16.0 32.4 60.7

ESAM-E [6] ICLR’2025 Online 28.6 50.4 71.0 13.9 29.4 58.8
AutoSeg3D (Ours) - Online 30.2 54.1 72.8 16.8 34.3 61.0

4.3 Ablation Studies and Further Analysis

Table 4: Component-wise ablation.

LTM STM LMI ICMS AP AP50 AP25

① – – – – 41.6 62.9 78.7
② ✓ – – – 44.1 65.8 80.7
③ – ✓ – – 42.9 63.8 80.0
④ ✓ ✓ – – 44.8 66.7 81.0
⑤ ✓ ✓ – ✓ 45.6 66.9 81.2
⑥ ✓ ✓ ✓ – 45.5 67.0 81.3
⑦ ✓ ✓ ✓ ✓ 46.2 67.9 81.7

Component-wise Ablation. To further investi-
gate the effects of our designs, we conduct an
ablation studies on the ScanNet200. As depicted
in Tab. 4, the introduction of long-term memory
obtains gains of 2.5 and 2.9 in AP and AP50 (②
vs. ①), because of its effectiveness in instance
association. The integrating of short-term mem-
ory enhances our model’s ability to capture posi-
tional and content details from previous frames,
resulting in performance improvements of 1.3
and 0.9 in AP and AP50 respectively (③ vs. ①).
⑤ and ⑥ proves the effectiveness of components
in the proved spatial consistency learning. The synergistic combination of all proposed elements
constitutes an effective tracking-centric 3D segmentation framework, as in ⑦.

Table 5: Ablation for LTM.

Strategy AP AP50 AP25

① w/o LTM 43.2 64.8 80.4
② + Geometric 43.7 65.4 80.5
③ + Appearance 45.0 66.5 81.3
④ + Confidence 45.5 67.2 81.5
⑤ + Recall 46.2 67.9 81.7

Long-Term Memory. As shown in Tab. 5, com-
pared to the baseline without LTM, adding geo-
metric and appearance cues leads to steady gains
(② vs. ①). Incorporating confidence estimation
brings a notable boost, while further combin-
ing the recall mechanism achieves the highest
scores, with AP increasing from 43.2 to 46.2
(+3.0), AP50 from 64.8 to 67.9 (+3.1), and AP25
from 80.4 to 81.7 (+1.3) (⑤ vs. ①). The recall
and confidence strategies enable the model to
effectively handle challenging cases such as long-term occlusions and ambiguous matches, resulting
in more reliable temporal consistency throughout the sequence.

Table 6: Ablation for STM.

Strategy AP AP50 AP25

① w/o STM 44.7 66.4 81.3
② + cross 45.1 66.5 81.2
③ + distance 45.8 67.5 81.6
④ + scale 46.2 67.9 81.7

Short-Term Memory. As shown in Tab. 6, start-
ing from the baseline without STM, solely in-
troducing cross-frame attention brings limited
improvement due to potential noise from irrele-
vant associations (② vs. ①). By further incorpo-
rating our distance-aware attention, which gates
memory updates based on instance centroid dis-
tances, we observe a clear performance boost (③
vs. ①). Equipped with query-specific receptive-
field scales, the final STM boosts AP from 44.7 to 46.2 (+1.5), AP50 from 66.4 to 67.9 (+1.5),
and AP25 from 81.3 to 81.7 (+0.4) (④ vs. ①). These results demonstrate that explicitly modeling
spatial proximity and adaptive receptive fields effectively suppresses noisy associations and enhances
instance update accuracy in dynamic scenes.
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Figure 2: Visualization of segmentation results on ScanNet200 dataset.

Table 7: Ablation for LMI.

Strategy AP AP50 AP25

① w/o LMI 45.6 66.9 81.0
② train and infer. 44.5 66.1 80.4
③ infer. only 46.2 67.9 81.7

Learning-Based Mask Integration. As shown
in Tab. 7, applying Learning-Based Mask Inte-
gration (LMI) only during inference yields the
best performance, improving AP from 45.6 to
46.2 (+0.6), AP50 from 66.9 to 67.9 (+1.0) (③
vs. ①). By contrast, incorporating LMI during
training degrades performance, as early-stage
inaccuracies introduce false mask fusions that hinder model convergence (② vs. ①).

Table 8: Ablation of ICMS.

Strategy TopK AP AP50 AP25

① w/o ICMS – 45.5 67.0 81.3
② single-branch 4 44.2 65.8 80.6
③ dual-branch 2 46.2 67.4 81.4
④ dual-branch 4 46.2 67.9 81.7
⑤ dual-branch 6 46.1 67.3 81.3
⑥ dual-branch 8 46.1 67.2 81.4

Instance Consistency Mask Supervision. As
shown in Tab. 8, introducing Instance Con-
sistency Mask Supervision (IMCS) with dual
branches and TopK=4 achieves the best perfor-
mance, improving AP from 45.5 to 46.2 (+0.7)
(④vs.①). Here, setting K=4 indicating chosing
the four masks exhibiting the highest similarity
scores when compared to the ground truth of
one object. By contrast, the single-branch con-
figuration incurs a substantial drop in all metrics,
underscoring the importance of combining one-to-one and one-to-many supervision signals.

Qualitative Analysis. We present a qualitative analysis conducted on the ScanNet validation set,
with illustrative examples provided in Fig. 2. These results further substantiate the superior instance
segmentation capabilities of our proposed model. The visualizations demonstrate that our model not
only accurately segments target objects but also effectively rectifies over-segmented masks.

5 Conclusion and Limitation

Conclusion. In this paper, we present a novel, tracking-centric framework for online, real-time,
and fine-grained 3D instance segmentation. By recasting the task as continuous instance tracking,
our approach integrates Long-Term Memory for robust identity propagation, Short-Term Memory
for immediate temporal context, and Spatial Consistency Learning to suppress over-segmentation.
Extensive experiments on multiple benchmarks demonstrate that our lightweight system achieves
state-of-the-art accuracy while maintaining real-time efficiency. Limitation. Both our and previous
methods do not explicitly model relative motion of moving objects. We leave this for future research.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

14



Justification: Please refer to Sec. 3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
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to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: Code and raw results will be publicly available upon acceptance.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to Sec. 4.1.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: It would be too computationally expensive to report Error bars.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Sec. 4.1.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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didn’t make it into the paper).
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NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Justification: We have reviewed the NeurIPS Code of Ethics and we confirm that the research
conducted in the paper conforms, in every respect, with the NeurIPS Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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Question: Does the paper discuss both potential positive societal impacts and negative
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Answer: [Yes]
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
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feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The assets used in this paper are credited and the license is respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Code and raw results will be publicly available upon acceptance and we will
include details about training, license, limitations, etc.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research in this paper does not involve crowdsourcing nor research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research in this paper does not involve crowdsourcing nor research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We have reviewed the LLM policy and we confirm that the core method
development in this research does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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