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ABSTRACT

Reinforcement Learning (RL) has demonstrated its potential to improve the reason-
ing ability of Large Language Models (LLMs), yet most existing Reinforcement
Finetuning (RFT) methods are inherently on-policy RL, failing to reuse historical
data and thus preventing efficient scaling. In this work, we explore the potential
of off-policy RL to leverage historical data for rollout-efficient RFT. Specifically,
we propose Reincarnating Mix-policy Proximal Policy Gradient (ReMix), which
enables on-policy RFT methods to leverage off-policy data. ReMix consists of
three major components: (1) Mix-policy proximal policy gradient with an increased
Update-To-Data (UTD) ratio that utilizes the data from both current and past poli-
cies for efficient training; (2) KL-Convex policy constraint that combines the KL
constraints on the base and precedent model to balance stability and flexibility;
(3) Policy reincarnation that replaces the base model with the mix-policy RFT
model in the mid way of training and restarts on-policy training, to achieve a seam-
less transition from early efficiency to steady convergence. In our experiments,
we train a series of ReMix models based on PPO, GRPO from 1.5B, 7B base
models. On five math reasoning benchmarks (i.e., AIME’24, AMC’23, Minerva,
OlympiadBench, and MATH500), ReMix achieves an average Pass@1 accuracy
of 52.10% (with 0.079M rollouts) and 64.39% (with 0.011M rollouts) on 1.5B
and 7B models, respectively. Compared with 15 recent advanced models, ReMix
shows SOTA-level performance with an over 30x to 450x reduction in training
cost in terms of rollout data volume, demonstrating superior training efficiency.
Additionally, our multifaceted analysis reveals insightful findings, including the
implicit preference for shorter responses of off-policy RFT, the collapse mode of
self-reflection under severe off-policyness, etc.

1 INTRODUCTION

The emergence of Large Language Models (LLMs) has lifted artificial intelligence to a next level,
with the milestone works like (OpenAI, 2022; Jaech et al., 2024; Bai et al., 2022a; Trung et al.,
2024; Guo et al., 2025). Consistent efforts are being made to push forward the limits of LLMs in
performing deeper thinking and solving more complex tasks (Li et al., 2025b). Recently, Large
Reasoning Models (LRMs) (Jaech et al., 2024; Guo et al., 2025; Kimi et al., 2025; Yang et al.,
2025a) have taken the stage and attracted great attention, showing that a significant improvement of
problem-solving ability can be achieved by a long human-like reasoning process (i.e., slow thinking),
especially in scenarios like Math, Coding, Scientific Q&A, etc. One of the central recipes of LRMs is
Reinforcement Finetuning (RFT) (Trung et al., 2024). By treating the LLM as a policy model, the
LLM can follow the philosophy of Reinforcement Learning (RL) (Sutton & Barto, 1998) and learn to
reason and answer the queries according to the reward signals, e.g., either from a verifiable reward
function (Guo et al., 2025) or a learned reward model (Bai et al., 2022a).

Although RFT opens another space for more powerful reasoning ability of LLMs, the longstanding
and notorious shortcoming of RL — sample inefficiency — still exists. In another word, RFT
usually needs significantly more computational cost (e.g., rollouts and training) than SFT due to
its trial-and-error nature. The inefficiency of RL poses a stringent bottleneck on time and cost,
consequently preventing further scaling of model size and response length of LLMs. Currently, policy
gradient algorithms like PPO (Schulman et al., 2017), GRPO (Shao et al., 2024), RLOO (Ahmadian
et al., 2024) are widely adopted for RFT of LLMs due to their stable learning performance and
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Figure 1: Efficiency-performance comparison for 1.5B models (left) and 7B models (right) in
terms of Rollout Data Volume (i.e., total number of responses generated during training) v.s., Average
Pass@1 Accuracy on five math reasoning benchmarks. An ideal model should appear in the top-left.

friendliness to engineering. However, they are all on-policy algorithms, which are known to be
sample inefficient as the data generated by the online policy is dropped after each iteration. In the
literature of RL, off-policy algorithms are naturally more sample efficient since they also learns from
the data generated by historical policies (i.e., experience) (Sutton & Barto, 1998; Silver & Sutton,
2025). Following this direction, recent research has begun to incorporate off-policy data in RFT in
different ways, including using nonuniform replay strategies (Li et al., 2025a), learning from positive
and negative signals asymmetrically (Roux et al., 2025; Arnal et al., 2025), proposing new learning
objectives based on generation consistency (Tang et al., 2025; Cohen et al., 2025), and learning from
demonstrations of superior models (Yan et al., 2025), etc. Despite the efforts made by these works,
off-policy RFT remains underexplored in two aspects: (1) None of these methods was compared with
SOTA models on multiple mainstream math reasoning benchmarks, leaving training efficiency and
final performance of these methods untested thoroughly; (2) The influence of off-policy learning on
the learning process of reasoning ability remains unknown, which impedes essential understanding of
off-policy learning for RFT and advancement of effective methodologies.

In this paper, we study off-policy RL for post-training finetuning of LLMs, aiming to achieve SOTA-
level reasoning ability efficiently and unbox the effects of off-policy learning for useful insights. We
propose Reincarnating Mix-policy Proximal Policy Optimization (ReMix), a general approach to
enable on-policy proximal policy gradient methods to leverage off-policy data efficiently. ReMix
consists of three major components: (1) Mix-policy proximal policy gradient with an increased
Update-To-Data (UTD) ratio (Chen et al., 2021) leverages the data generated by both current policy
and past polices for efficient training; (2) KL-Convex policy constraint (Ma et al., 2024b) combines
the KL constraints on the base model and the precedent model to balance the trade-off between
stability and flexibility during training; (3) Policy reincarnation (Agarwal et al., 2022) replaces the
base model with the mix-policy RFT model in the mid way of training and restarts on-policy training,
to achieve a seamless transition from efficient early-stage learning to steady asymptotic improvement.
Under the synergy of the three components, ReMix is able to improve the reasoning ability of LLMs
efficiently while retaining a stable and flexible training process.

In our experiments, we adopt PPO and GRPO as representative on-policy methods and implement
ReMix-PPO and ReMix-GRPO. We use DeepSeek-R1-Distill-Qwen-1.5B and -7B (Guo
et al., 2025) as the base models, and train our models based on DeepScaleR-Preview-Dataset (Luo
et al., 2025). We conduct a range of comparative evaluations against 15 recent advanced models on
five math reasoning benchmarks, including AIME’24, AMC’23, Minerva (Lewkowycz et al., 2022),
OlympiadBench (He et al., 2024), and MATH500 (Hendrycks et al., 2021). Figure 1 summarizes
the experimental results in a view of efficiency-performance comparison. Our method achieves an
average Pass@1 accuracy of 52.10% (for 1.5B model) with 0.079M response rollouts, 350 training
steps and achieves 63.27%/64.39% (for 7B model) with 0.007M/0.011M response rollouts, 50/75
training steps respectively, showing SOTA-level performance and an over 30x to 450x training cost
reduction in terms of rollout data volume. Moreover, to gain a better understanding of off-policy
learning for RFT, we conduct multifaceted studies and analysis, revealing insightful findings including
the implicit preference for shorter responses due to the Whipping Effect of off-policy discrepancy, the
collapse mode of self-reflection behavior under the presence of severe off-policyness, the performance
under response length constraint, the impact of prompt format, etc.
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2 PRELIMINARIES

Reinforcement Learning for LLM Fine-tuning Reinforcement Fine-Tuning (RFT) is a paradigm
for adapting pre-trained LLMs to specific downstream tasks using RL (Trung et al., 2024; Jaech
et al., 2024). In this paradigm, text generation is modeled as a Markov Decision Process (MDP)
M = (S,A, P,R, γ), where a state st = (q, y1:t) ∈ S is the prompt with the output generated so
far, and the action at ∈ A is the next token selected from the vocabulary V . Hence, the transition
P (st+1|st, at) is deterministic in this context. An episode start from a prompt s0 (out of a predefined
set D0) and terminate at an end-of-sequence token or by the maximum sequence length H .

The reward R(st, at) signal is issued by either a rule-based reward function or a learned reward
model. In the scope of this paper, we consider the verifiable reward function. For any non-terminal
timestep t < T − 1, R(st, at) is 0; on completion, the terminal reward, denoted by R(τ) for the
whole sequence, equals 1 if τ produces a correct and well-formatted answer and 0 otherwise. The
policy πθ(at | st) in the MDP is the LLM itself, parameterized by θ, and it defines a probability
distribution of next-token generation. We use dπθ

τ to denote the distribution of the output sequence
τ generated by πθ and use dπθ

s,a, d
πθ
s for the state-action pairs (s, a) and the state respectively. The

learning objective of an RL policy is to maximize the reward function, i.e., π∗ = argmaxπθ
J(πθ).

Proximal Policy Gradient Methods for RFT Proximal Policy Optimization (PPO) (Schulman
et al., 2017) is a canonical Policy Gradient (PG) method (Sutton & Barto, 1998) to maximize
J(πθ), which offers stable training and implementation simplicity. PPO is further developed to be
GRPO (Shao et al., 2024) with a group-based advantage estimator. The policy optimization objective
of PPO is formulated as:

LCLIP(θ) = −E
s,a∼d

πθold
s,a

[
min

(
rθ(s, a)Â(s, a), clip(rθ(s, a), 1− ϵ, 1 + ϵ)Â(s, a)

) ]
, (1)

where rθ(s, a) =
πθ(a|s)
πθold (a|s)

represents the importance sampling ratio between the current policy πθ

and the old policy πθold (i.e., the policy before the update), Â(s, a) is an estimator of the advantage
function with GAE (Schulman et al., 2016) as a popular choice, and the clip ratio ϵ defines the
clipping range that determines the proximity of policy update, thereby enhancing stability. When
applying RL for LLM, a KL-divergence penalty is often added to prevent the policy from deviating
too far from a reference model πbase, e.g., the SFT model. The complete objective is:

LPPO(θ) = E
s∼d

πθold
s,a

[
LCLIP(θ) + cH[πθ](s)

]
+ β · E

s∼d
πθold
s

[DKL(πθ(· | s)||πbase(· | s))]︸ ︷︷ ︸
LKL(θ;πbase)

, (2)

where H[πθ](s) is the entropy of the policy πθ at state s, DKL is the KL metric, and c, β are weighting
coefficients. In this work, we view both PPO, GRPO, and other variants of PPO as Proximal Policy
Gradient (PPG) methods.

3 REINCARNATING MIX-POLICY PROXIMAL POLICY OPTIMIZATION

In this section, we introduce our method, Reincarnating Mix-policy Proximal Policy Optimization
(ReMix), for efficient and stable RFT of LLMs. Specifically, ReMix consists of three synergistic
innovations: (1) Mix-policy proximal policy gradient with an increased Update-To-Data (UTD) ratio
for efficient training (Section 3.1); (2) KL-Convex policy constraint to balance stability and flexibility
(Section 3.2); (3) Policy Reincarnation for a smooth transition from efficient early learning to stable
asymptotic improvement (Section 3.3). We introduce the three components below.

3.1 MIX-POLICY PROXIMAL POLICY GRADIENT WITH INCREASED UTD RATIO

While proximal policy gradient methods like PPO, GRPO deliver strong performance in RFT, the
on-policy nature of these methods leads to a significant bottleneck on data utilization. To address this
inefficiency, we trace back to the off-policy RL literature. To be specific, we revisit the generalized
proximal gradient theory (Queeney et al., 2021), which allows proximal gradient methods to make
use of historical trajectories generated during the past policy optimization process.

In this work, we launch the renaissance of off-policy RL for RFT and introduce an On-/Off-policy
Mixed Proximal Policy Gradient method (Mix-PPG) that strategically leverages both off-policy and
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Figure 2: The conceptual illustration of RFT for LLMs with different proximal policy gradient
(PPG) methods. Starting from a base model, (1) on-policy PPG methods (e.g., PPO, GRPO) train
stably, yet uses data inefficiently. (2) Off-policy PPG is data-efficient. However, naively adopting
it leads to a collapse. (3) To strike a balance, we introduce Mix-PPG, which boosts early-stage
performance but still faces a slow asymptotic improvement and even a collapse when adopting a high
UTD ratio. (4) Therefore, we propose policy reincarnation and introduce ReMix, which achieves
better efficiency at no compromise of final performance.

on-policy data within a unified objective function. Formally, for policy at training step k, the mini-
batch training data are sampled from a mixture of sources: the trajectories generated by historical
policies (i.e., πk−i for i ∼ ν), and the trajectories of the current policy (i.e., πk). This hybrid sampling
strategy balances two competing purposes: (1) Data Reuse: Exploiting past trajectories reduces the
autoregressive rollout and inference overhead; (2) Distribution Alignment: Maintaining sufficient
on-policy samples prevents training instability and degradation due to the divergence from the current
state-action distribution. The policy optimization objective function can be formalized as:

LMix-PPG
k (θ) = −Ei∼ν

[
E
(s,a)∼d

πk−i
s,a

min
(
rk−i
θ (s, a)Aπk(s, a),

clip
(
rk−i
θ (s, a),

πk(a | s)
πk−i(a | s)

− ϵ,
πk(a | s)
πk−i(a | s)

+ ϵ

)
Aπk(s, a)

)]
, (3)

where i ∼ ν with i ∈ {0, 1, . . . , N} is a combined distribution over historical policy indices πk−i

and the current policy πk (i.e., when i = 0), the importance sampling ratio rk−i
θ (s, a) = πθ(a|s)

πk−i(a|s) .
Notably, we incorporate a sampling strategy to strike a balance between training stability and efficient
data utilization by using a portion p of off-policy data drawn from πk−i and 1 − p on-policy data
drawn from πk with p ∈ [0, 1]. A theoretical discussion on ν can be found in Appendix D.2. Now, we
are ready to replace the on-policy policy optimization objective, e.g., the LClip(θ) term in Eq. 2, with
the Mix-PPG objective LMix-PPG

k (θ) for efficient data utilization. One thing to note is, we found that
explicitly maintaining the portion of on-policy data at a sufficient level is critical to effective training,
as much off-policyness data will lead to a degradation or even collapse (as depicted in Figure 2).

To further improve sample efficiency, we leverage an increased Update-To-Data (UTD) ratio (Chen
et al., 2021), defined originally as the number of gradient updates per environment interaction step.
Specifically, we use a UTD ratio m, i.e., performing repeated gradient updates on sampled data
batches for m times, thereby further reducing fresh environment interaction demands.

3.2 KL-CONVEX POLICY CONSTRAINT

Conventional RFT imposes a static KL-constraint regularization on deviations from the base pre-
trained model πbase. This rigid static constraint fails to accommodate evolving policy distributions,
which could lead to suboptimal updates during the dynamic learning process.

Inspired by the recent study (Ma et al., 2024b), we propose to dynamically update the anchor objective
to a convex combination of πk−1 and πbase. On the one hand, by constraining the policy within the
support of πbase, we enforce behavioral consistency with foundational capabilities, thereby preventing
catastrophic forgetting of core skills. On the other hand, the constraint imposed on πk−1 serves as a
dynamic adaptation to the policy’s current knowledge frontier. It facilitates iterative refinement of the
policy and enables the policy to continuously evolve and improve steadily. With this mechanism, the
policy can leverage the strengths of both the pre-trained model and the iterative refinement process.
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Specifically, we reconcile the KL-constraint in RFT via a KL-convex policy constraint (KLC),
which modifies the essential optimization objective described in Eq. 2 by replacing the conventional
LKL(θ;πbase) with the KL-convex constraint term as formulated below:

LKLC(θ;πbase, k) = Es

[
λDKL

(
πθ(·|s) ∥ πbase(·|s)

)
+ (1− λ)DKL

(
πθ(·|s) ∥ πk−1(·|s)

)]
, (4)

where λ ∈ [0, 1] balances base-model alignment and behavioral consistency with recent policy πk−1.
This convex combination preserves foundational capabilities while enabling targeted adaptation, act-
ing as a conservative regularizer against over-specialization. We provide more theoretical discussion
on KLC loss in Appendix D.3. Empirically, we found that using a decaying λ consistently beat a
fixed one. A linear decay schedule works well while other forms (e.g., exponential decay) did not
make a significant difference.

3.3 POLICY REINCATENATION

While the mix-policy proximal PG method proposed above accelerates early-stage training, the off-
policy bias in it can inevitably limit the asymptotic performance, as the empirical evidence later shown
in Figure 4. Inspired by Reincarnating RL (Agarwal et al., 2022), we propose Policy Reincarnation
in the context of RFT for LLMs, to seamlessly combine the advantage of both off-policy RL and
on-policy RL, thus being more efficient at no cost of asymptotic performance.

To be specific, the training process consists of the Mix-PPG stage and the reincarnating on-policy PPG
stage. First, the initial policy model is trained for a predetermined T steps of gradient update according
to the proposed Mix-PPG algorithm for quick improvement of policy performance. Thereafter, the
reincarnation happens through two changes to the training setting: (1) reset the base model from
the initial reference model πbase to the current policy model πT (which alters the conventional KL
constraint term), and (2) switch Mix-PPG to a on-policy PPG method (e.g., PPO or GRPO).

Finally, by composing Mix-PPG (Eq. 3), KL-convex policy constraint (Eq. 4), and policy reincarna-
tion, we arrive at the complete method proposed in this paper, i.e., Reincarnating Mix-policy Proximal
Policy Optimization (ReMix), as follows:

LReMix(θ) =

{
Ed

πθ
s,a

[
LMix-PPG(θ) + cH[πθ](s)

]
+ β · LKLC(θ;πbase, t) if t ≤ T ;

Ed
πθ
s,a

[
LPPO(θ) + cH[πθ](s)

]
+ β · LKLC(θ;πT , t) otherwise.

(5)

Note that t is the number of batch training steps and the two changes that occur upon policy
reincarnation are highlighted in blue and red respectively. In Eq. 5, we use PPO as the on-policy PPG
method for demonstration. For the case of GRPO, one can replace the advantage estimation in both
LMix-PPG and LPPO with the group-based estimation, as done in our experiments.

The efficacy of ReMix is two-fold. First, it leverages the advantages of Mix-PPG and on-policy PPG
in boosting early-stage training and stable asymptotic improvement respectively, by establishing a
seamless transition between the two stages. Second, the KL-convex policy constraint and the reset
of the base reference model for KL constraint (i.e., πbase → πT ) upon policy reincarnation offers
a dynamics and looser constraint compared to the conventional static KL constraint, allowing fast
policy training and a larger policy optimization space. For an intuitive understanding, we provide a
conceptual illustration of RFT with different proximal PG methods in Figure 2.

4 EXPERIMENTS

In this section, we empirically evaluate the efficacy of ReMix on a range of commonly adopted Math
reasoning benchmarks in terms of both accuracy and efficiency (Section 4.2), along with ablation
studies (Section 4.3) and multifaceted analyses (Section 4.4 and Appendix L). In addition, we provide
extensive evaluation regarding more evaluation metrics, code generation, base RFT algorithms, etc.

4.1 EXPERIMENTAL SETUP

Training We use DeepSeek-R1-Distill-Qwen-1.5B and -7B (Guo et al., 2025) as the
base models in our experiments. For implementation, we adopt PPO and GRPO as two representative
on-policy proximal PG methods in our experiments, resulting in ReMix-PPO and ReMix-GRPO.
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We use DeepScaleR-Preview-Dataset (Luo et al., 2025), which comprises approximately 40,000
unique problem-answer pairs sourced from AIME (1984–2023), AMC (prior to 2023), the Omni-
MATH dataset (Gao et al., 2025), and the Still dataset (Min et al., 2024). We use the DeepScaleR’s
prompt format by default, instructing the LLM to follow structured step-by-step reasoning and
produce a verifiable \boxed{} final answer. Full templates and instances are provided in Appendix G.

Our experiments are conducted using the verl1 framework and the codebase derived from
tinyzero2. For ReMix, we use an off-policy data portion p = 0.4, a UTD ratio m = 2, a
historical policy window size N = 2, and we set the policy reincarnation step point to T ∈ {50, 100}
for ReMix-PPO and T = 50 for ReMix-GRPO. The KL-Convex coefficient λ decays with training
steps t as λ(t) = max(1− 0.1 · ⌈max(t− 50, 0)/10⌉, 0.5). We use these configurations by default,
except in hyperparameter analysis. Prompts are truncated to 766 tokens, and the maximum generation
length is 8,192 tokens. The detailed hyperparameter choices are presented in Table 9.

Evaluation We evaluate the performance of different models on a series of mathematical reasoning
benchmarks, including AIME’24, AMC’23, Minerva (Lewkowycz et al., 2022), OlympiadBench (He
et al., 2024), and MATH500 ((Lightman et al., 2023)) (None of these datasets are contained in our
train set). During evaluation, we feed the entire context into the evaluation function. The models
in comparison use the same generation settings as in training, except the do sample parameter
is set to false, resulting in greedy decoding. For the evaluation of baseline methods, we use the
officially released checkpoints from HuggingFace to ensure fair results; for our models, we use the
best checkpoints obtained within a specific training step budget, e.g., ReMix-PPO (200 Steps).

In our experiments, we focus on the evaluation of ReMix in terms of both model performance and
training efficiency. For model performance, we mainly use Pass@1 accuracy, and Avg@32 for small
datasets (AIME’24 and AMC’23) in Appendix J. For training efficiency, we evaluate the models
mainly in terms of rollout data volume, defined as the total number of rollouts generated by the
model during training, which is usually the dominant source of computational cost during training in
practice. We also use training steps (i.e., the number of rollout prompt batches) and training duration
(i.e., the actual elapsed wall-clock time) as additional aspects for efficiency evaluation.

The detailed introduction of the compared baselines is provided in Appendix F. We also provide the
discussion on related off-policy methods that are infeasible to compare with in Appendix F.3. For
other training details, please refer to Appendix I.

4.2 PERFORMANCE EVALUATION FOR MATH REASONING

The performance evaluation in terms of Pass@1 accuracy on five math reasoning benchmarks are
shown in Table 1 and Table 2, our method ReMix achieves consistent and substantial improvements
over the base 1.5B/7B model on all five benchmarks. For ReMix-PPO, it achieves an average
performance gain of 14.52 points and 12.31 points over 1.5B and 7B base models respectively,
achieving the second-best average score for 1.5B and the best for 7B among all the baselines.
In addition, compared with PPO (900 Steps, 1.5B) and PPO (200 Steps, 7B), our model achieves
higher average scores within 100 steps for 1.5B and 50 steps for 7B. Similarly, our model exceeds
GRPO (100 Steps, 1.5B) and GRPO (200 Steps, 1.5B) within 50 and 200 training steps, respectively.
This indicates that ReMix is able to achieve competitive reasoning ability efficiently with overall no
compromise in accuracy and even showing a higher accuracy.

More importantly, we move on to the evaluation in terms of training efficiency. This is shown in the
last volume (i.e., Cost) of Table 1 and 2, and notably, Figure 1 illustrates the efficiency–accuracy
trade-off in terms of rollout data volume (log10 scale) versus average Pass@1 accuracy, where
the scores are out of Table 1 and 2 (i.e., Avg. and Cost). In the ideal case, the model should appear in
the top-left corner of the plot. To ensure a fair comparison, the rollout data volume of square-marked
models (which means the models fine-tuned upon DeepScaleR) includes the data cost of training
DeepScaleR itself. For ReMix-GRPO and GRPO, we report results after 200 training steps due to
computational resource constraints.

Specifically, for 1.5B models, ReMix-PPO matches DeepScaleR, the strongest competitor, with
just 0.079M vs. 2.519M rollouts, over a 30× reduction in rollout data volume. Also, ReMix-PPO

1https://github.com/volcengine/verl
2https://github.com/Jiayi-Pan/TinyZero
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Table 1: Pass@1 accuracy (%) and training cost (in terms of Rollout Data Volume) of 1.5B
models. Bolded and underlined values denote the highest and the second-highest scores in each
dataset (i.e., column). ‘-’ denotes that not enough information was found. ReMix achieves better
average scores than both the standard PPO and GRPO in a significantly more efficient manner.

Model AIME’24 AMC’23 MATH500 Minerva Olympiad Avg. Cost
R1-Distill-Qwen-1.5B (Base) 33.33 43.37 67.40 16.54 27.26 37.58 N/A

Open-RS1 23.33 42.17 64.20 16.18 27.11 34.60 0.058M
Open-RS2 16.67 45.78 65.00 18.38 26.96 34.56 0.029M
Open-RS3 16.67 44.58 67.60 15.64 25.48 33.99 0.029M
AdaptThink 13.33 57.83 78.60 23.90 38.07 42.35 0.643M
II-Thought 26.67 56.63 73.00 23.16 40.89 44.07 -
FASTCuRL-preview 26.67 60.24 74.20 20.22 32.59 42.78 0.676M
FASTCuRL-V3 36.67 66.27 84.40 28.67 43.56 51.91 2.478M
L1-Exact* 23.33 71.08 84.00 29.41 44.59 50.48 3.953M
L1-Max* 20.00 69.88 83.00 29.04 46.37 49.66 2.764M
DeepScaleR 40.00 65.06 83.20 29.04 43.41 52.14 2.519M

GRPO (100 Steps) 30.00 56.63 75.80 25.37 38.22 45.20 0.205M
GRPO (200 Steps) 36.67 61.45 80.00 25.37 39.70 48.64 0.410M
ReMix-GRPO (50 Steps) 23.33 57.83 80.40 26.10 39.70 45.47 0.061M
ReMix-GRPO (100 Steps) 23.33 62.65 82.00 28.68 39.70 47.27 0.163M
ReMix-GRPO (200 Steps) 33.33 65.06 84.60 26.10 43.55 50.53 0.368M

PPO (500 Steps) 36.67 62.65 82.60 25.73 40.14 49.56 0.128M
PPO (900 Steps) 30.00 69.88 84.00 25.74 43.41 50.61 0.230M
ReMix-PPO (100 Steps) 43.33 63.86 79.60 26.84 39.41 50.61 0.020M
ReMix-PPO (200 Steps) 46.67 62.65 82.20 26.10 40.74 51.67 0.041M
ReMix-PPO (350 Steps) 36.67↑3.34 69.88 ↑26.51 82.00↑14.60 30.15↑13.61 41.78↑14.52 52.10↑14.52 0.079M

Table 2: Pass@1 accuracy (%) and training cost (in terms of Rollout Data Volume) of 7B models.
ReMix-PPO achieves the best average score within 75 training steps.

Model AIME’24 AMC’23 MATH500 Minerva Olympiad Avg. Cost
R1-Distill-Qwen-7B (Base) 33.33 68.68 83.80 30.15 44.44 52.08 N/A

ReasonFlux-F1 20.00 54.22 77.20 29.04 37.04 43.50 -
Light-R1 30.00 66.27 87.00 34.56 47.56 53.08 -
Skywork-OR1-Preview 43.33 63.86 84.40 29.41 46.22 53.44 >8.192M
Polaris 40.00 63.86 87.60 36.40 48.00 55.17 -
AdaptThink 46.67 75.90 87.60 33.46 50.22 58.77 0.307M
AceReason-Nemotron 60.00 80.72 89.00 36.40 50.07 63.24 >3.584M

ReMix-GRPO (75 Steps) 63.88 90.60 80.72 40.07 53.78 65.81 0.046M
ReMix-GRPO (200 Steps) 64.37 91.60 81.93 39.34 53.19 66.09 0.163M

PPO (50 Steps) 33.33 71.08 87.20 36.03 48.00 55.13 0.013M
PPO (100 Steps) 40.00 77.11 90.00 35.66 51.56 58.87 0.026M
PPO (200 Steps) 53.33 78.31 87.00 34.19 48.88 60.34 0.051M
ReMix-PPO (25 Steps) 36.67 78.31 89.00 38.24 50.22 58.49 0.003M
ReMix-PPO (50 Steps) 56.66 79.52 88.60 38.97 52.59 63.27 0.007M
ReMix-PPO (75 Steps) 63.33↑30.00 78.31↑9.63 90.20↑6.40 37.50↑7.35 52.59↑8.15 64.39↑12.31 0.011M

reaches 50.61 after 0.020M rollouts, 10× fewer than PPO (50.61 at 0.230M), highlighting rapid early
gains. For 7B models, ReMix-PPO topping AceReason-Nemotron with over a 450× reduction
in rollout data volume, and outperforming PPO with a 6× reduction. Notably, the average rollout
response length of ReMix is lower than the baseline models (see Fig. 4), hence the exact efficiency
should be higher. The corresponding detailed factors associated with computational cost for training
all compared models above are shown in Appendix I.

Takeaway 1. ReMix can learn strong reasoning ability in a highly efficient way.

ReMix achieves SOTA-level accuracies at 1.5B and 7B scales on five math reasoning bench-
marks, with an over 6x to 10x reduction in rollout data volume when outperforming PPO and
an over 30x to 450x reduction when performing on par with (or exceeding) the best baseline.

4.3 ABLATION STUDIES

To assess the contribution of each components in ReMix, we conduct ablation studies focusing on
both training dynamics and final performance. We use ReMix-PPO for the ablation studies.

The results of the ablation studies regarding Pass@1 accuracy are presented in Table 3. First, when
Mix-PPG, the core of ReMix, is ablated, the method degenerates to PPO since it does not make sense
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Table 3: Ablation studies regarding Pass@1 accuracy. The three components of ReMix work in
synergy for both efficiency and final performance.

Model AIME’24 AMC’23 MATH500 Minerva Olympiad Avg.
R1-Distill-Qwen-1.5B (Base Model) 33.33 43.37 67.40 16.54 27.26 37.58

PPO (500 Steps) 36.67 62.65 82.60 25.73 40.14 49.56
ReMix-PPO (350 Steps) 36.67 69.88 82.00 30.15 41.78 52.10
ReMix-PPO w/o UTD 36.67 62.65 82.20 28.68 42.96 50.63
ReMix-PPO w/o KL-Convex 30.00 65.06 81.60 27.94 42.22 49.36
ReMix-PPO w/o Policy Reincarnation 20.00 67.47 82.00 26.84 40.00 47.26
ReMix-PPO w/o UTD, KL-Convex, Policy Reincarnation 40.00 57.83 80.40 25.74 39.55 48.70
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Figure 3: Training efficiency comparison for ReMix-PPO and PPO (1.5B) on Olympiad. We
evaluate training efficiency across three dimensions: rollout data volume, training steps, and training
duration. ReMix achieves a score above 40%, around 4× to 6× faster than PPO.

any longer to apply other components of ReMix. Removing any single component among increased
UTD, KL-Convex, and policy reincarnation leads to a final average score comparable to PPO but
lower than ReMix within 500 training steps, Dropping policy reincarnation hurt the most among the
three ablations. Further, when Mix-PPG works solely, it leads to an even lower score.

This reflects the off-policy nature in Mix-PPG: although it significantly increases the training effi-
ciency, the off-policyness bias may hinder the convergence performance. The superiority in efficiency
brought by Mix-PPG can be observed by referring to the first subplot of Figure 4: Mix-PPG shows a
somewhat surprising boost of Pass@1 accuracy within the first 100 training steps, which an increased
UTD further enhances it; while the KL-Convex and policy reincarnation in ReMix contribute to the
steady asymptotic improvement.

Takeaway 2. The three components work in synergy for efficiency and final performance.

Mix-PPG with an increased UTD boosts early-stage training significantly, while policy
reincarnation plays a critical role to ensure asymptotic improvement.

Training Curves In addition to the efficiency evaluation in terms of rollout data volume, we present
the training curves for ReMix-PPO and PPO in Figure 3 on Olympiad regarding two more efficiency
aspects, i.e., training steps and wall-clock time. Our method demonstrates superior training efficiency
by achieving a score above 40 on Olympiad with a 6x and 4x reduction in rollout data volume and
wall-clock time. We provide more training curves for the other four benchmarks in Appendix K.

4.4 ANALYSIS ON THE EFFECTS OF OFF-POLICY RL FOR LLM RFT

In this subsection, we present an empirical analysis to gain better understanding of the effects of
off-policy RL on LLM RFT. For convenience, we use ReMix-PPO for the analysis in the following.

To delve into the influence of off-policy RL enabled by ReMix on the reasoning behaviors during the
learning process of LLMs, we make use of two more metrics: relative response length (against the
training dynamics of PPO), and self-reflection rate that is calculated according to the occurrence of
reflection tokens (e.g., ‘verify’, ‘check’, ‘but’, ‘wait’, etc.). Moreover, we compare PPO, ReMix-PPO,
Mix-PPG and Mix-PPG with an increased UTD. The results are shown in Figure 4.

The vanilla PPO shows a steady increase of Pass@1 accuracy as well as a decrease in response
length, while maintaining a self-reflection rate near 1. Mix-PPG accelerates early training but yields
inferior asymptotic performance (see more in Figure 9), with a clear drop in response length and
self-reflection rate. When applying an increased UTD ratio, Mix-PPG speeds further yet shows a
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Figure 4: Training dynamics regarding accuracy, response length, self-reflection rate for on-
policy v.s. off-policy training. ReMix shows a merged learning behavior and perfectly combines
the superior efficiency and the asymptotic improvement thanks to the policy reincarnation.

destructive degradation after 200 steps, accompanied by a sharp decrease in response length and
self-reflection rate. This pathology drives the model to generate a final answer without adequate
intermediate deliberation, resulting in a drop of accuracy. Please see Appendix N for detailed cases.

ReMix seems to perfectly combine the early-stage efficiency of Mix-PPG with an increased UTD and
the asymptotic improvement of PPO, thanks to policy reincarnation. Throughout training, ReMix first
quickly decreases the response length and improve its accuracy in the early stage; it then lengthens
responses and uses more reflection for careful exploration and further improvement of accuracy.

Takeaway 3. A trade-off between efficiency and final performance needs to be balanced
when incorporating off-policy training in RFT.

More off-policy training leads to a faster early-stage boost with a larger policy shift, leading to
shorter responses and quicker unlearning of self-reflection, consequently damaging reasoning
performance. ReMix well leverages off-policy efficiency at no compromise of final accuracy.

The Implicit Preference of Off-policy Learning for Shorter Responses To take a further step
on why off-policy learning leads to the observed reasoning behaviors, we conduct a formal analysis
on the learning dynamics when optimizing the Mix-PPG loss function LMix-PPG

k (θ) (shown in Eq. 3).
Similarly as in (Fatemi et al., 2025), the average loss of Mix-PPG can be formulated below:

LMix-PPG
Avg =

1

H

H∑
h=0

LMix-PPG
h ∝ − 1

H

H∑
h=0

rk−i
θ Aπk

h (6)

A simple derivation is provided in Appendix D.4. With the equation above, we can find: when the
advantage estimate is negative, the model learns to minimize the loss by steering its policy to achieve
a lower importance sampling ratio. As the policy loss is almost always positive (as in Figure 10), the
advantage estimates are negative most of the time in our experiments. Also, the importance sampling
ratio stays above one empirically (as in Figure 9), directly amplifies the loss term. Since the average
loss is computed based on the data of historical policy πk−i, there apparently exists a Whipping Effect:
the longer the response is, the larger the distribution shift should be on later states. Consequently, the
model tends to prefer shorter responses to reduce the loss associated with long rollout trajectories.
This tendency is further amplified as the proportion of off-policy data increases.

4.5 MORE RESULTS ON PASS@K METRICS, CODE GENERATION, OTHER BASE ALGORITHMS

Pass@K Evaluation In the experiments above, we mainly use Pass@1 accuracy (as well as
Avg@32) as the evaluation metric. As advocated in (Yue et al., 2025), we extend our evaluation by

Table 4: Pass@8 / Pass@16 accuracy (%) of 1.5B models on five reasoning benchmarks.
Model AIME’24 AMC’23 MATH500 Minerva Olympiad Avg.
R1-Distill-Qwen-1.5B (Base, Pass@8) 20.00 44.58 73.00 19.12 31.70 37.68
ReMix-PPO (Pass@8) 30.00 68.67 84.60 28.68 46.67 51.72

R1-Distill-Qwen-1.5B (Base, Pass@16) 20.00 48.19 75.40 18.75 32.59 38.99
ReMix-PPO (Pass@16) 30.00 72.29 86.80 30.15 46.96 53.24

9
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Table 5: Pass@8 / Pass@16 accuracy (%) of 7B models on five reasoning benchmarks.
Model AIME’24 AMC’23 MATH500 Minerva Olympiad Avg.
R1-Distill-Qwen-7B (Base, Pass@8) 63.33 83.13 93.80 47.79 55.11 68.63
ReMix-PPO (Pass@8) 76.67 92.77 95.80 50.74 63.70 75.94

R1-Distill-Qwen-7B (Base, Pass@16) 73.33 85.54 94.80 51.10 57.19 72.39
ReMix-PPO (Pass@16) 80.00 92.77 95.40 53.31 65.33 77.36

Table 6: Performance evaluation of ReMix based on Dr.GRPO. Pass@1 accuracy (%) on five
benchmarks (Avg@32 for AIME’24/AMC’23). The max response length is 4096.

Model AIME’24 AMC’23 MATH500 Minerva Olympiad Avg. Cost
R1-Distill-Qwen-1.5B (Base Model) 9.38 32.42 63.40 18.75 22.67 29.32 N/A

Dr.GRPO (350 steps) 21.25 63.10 79.40 27.21 41.33 46.48 0.358 M
Dr.GRPO (400 steps) 26.25 59.94 80.60 26.57 41.03 46.86 0.409 M
ReMix-Dr.GRPO (325 steps) 26.25 63.25 81.60 27.21 41.63 47.09 0.291 M
ReMix-Dr.GRPO (400 steps) 28.75 62.65 82.00 27.74 42.96 48.42 0.368 M

using Pass@8/16 accuracy here. The results are summarized in Table 4 and 5. We can observe that
ReMix-PPO effectively improves both the Pass@8 and Pass@16 accuracies of the base model.

ReMix for Dr.GRPO To further examine the generalization of ReMix regarding different base
algorithms, we evaluate the effect of ReMix based on Dr.GRPO (Liu et al., 2025b). For the con-
venience of experimentation, we use DeepSeek-R1-Distill-Qwen-1.5B as the base model
and set the max response length to 4096. We evaluate the models with sampling temperature of 0.7.
All other experimental settings follow those in Section 4.1. The results show that ReMix-Dr.GRPO
delivers consistent improvements over Dr.GRPO with higher efficiency, mirroring the finding in our
main evaluation above. This demonstrates the generality of ReMix as an effective drop-in method.

Table 7: Performance evaluation of ReMix
for code generation. Pass@1 accuracy (%) on
LiveCodeBench(8/1/24-2/1/25).

Model LiveCodeBench Cost
R1-Distill-Qwen-1.5B (Base) 12.09 N/A

PPO (375 Steps) 19.35 0.096M
ReMix-PPO (300 Steps) 20.07 0.066M
ReMix-PPO (475 Steps) 24.01 0.111M

R1-Distill-Qwen-7B (Base) 26.16 N/A

PPO (200 Steps) 33.33 0.051M
ReMix-PPO (100 Steps) 34.41 0.015M

ReMix for Code Generation Beyond Math
reasoning, we move on to code generation to
evaluate the domain generalization of ReMix.
We use Skywork-OR1-RL-Data (He et al., 2025)
for training. We set the max prompt length
to 1600 because coding prompts are longer
than math tasks. We evaluate our models
on LiveCodeBench(8/1/24-2/1/25) (Jain et al.,
2025) with sampling temperature of 0.7. All
other experimental settings follow those in Sec-
tion 4.1. The results are shown in Table 7. For
both 1.5B and 7B scales, ReMix-PPO improves
PPO while using much less cost, which aligns with our observation in the Math reasoning domain.
This demonstrates the generalization ability of our method across both domains.

ReMix for Llama-series Base Model In addition to the Qwen-series base model used above, we
also evaluate the effect of ReMix based on DeepSeek-R1-Distill-Llama-8B in Table 16 in
the appendix. Similarly, we found that ReMix-PPO improves the performance of the base model and
outperforms PPO in terms of both score and efficiency.

Other Analysis We provide more analysis on the performance under response length constraint,
the impact of prompt format, etc. Please refer to Appendix L for complete analysis results.

5 CONCLUSION

In this paper, we aim to address the notorious drawback of on-policy RFT methods (e.g., PPO and
GRPO) on training inefficiency and prohibitive computational cost. We launch the renaissance of
off-policy RL and propose Reincarnating Mix-policy Proximal Policy Gradient (ReMix), a general
approach to enable on-policy RFT methods like PPO and GRPO to leverage off-policy data. In our
experiments, we implement ReMix upon PPO, GRPO, and 1.5B-, 7B-scale base models. Through
evaluating the reasoning accuracy and training efficiency of ReMix on five math reasoning benchmarks
against 15 recent advanced baseline models, we demonstrate the superiority of ReMix in improving
training efficiency and achieving SOTA-level reasoning performance with a great reduction in training
cost. Due to the space constraint, we provide the discussion on limitations in Appendix C.
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LLM using reinforcement learning to improve mathematical reasoning, which involves no human
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available. These resources contain no personally identifiable information or otherwise harmful
information.

To mitigate potential risk, our release will be research-only. The authors declare no conflicts of
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For reproducibility, we release an anonymous repository (https://anonymous.4open.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs only for coding and writing assistance. During experimentation, we consulted the
LLM for code debugging. All algorithmic designs, implementations, and results were produced
and verified by the authors, and LLM suggestions were reviewed and tested. After completing the
manuscript, we used LLMS solely to polish the language (grammar and phrasing) without generating
new scientific content. The authors remain fully responsible for the paper’s contents.

B RELATED WORK

Post-training enhancement of LLM reasoning capabilities predominantly follows two paradigms (Li
et al., 2025b). The first, inference-time optimization, improves reasoning without updating model
parameters through techniques like Chain-of-Thought (CoT) prompting (Wei et al., 2022), parellel
reasoning and itegration (Wang et al., 2022), self-reflection (Ji et al., 2023), tree-based search (Zhang
et al., 2024), and macro-action-guided cognitive reasoning (Liu et al., 2025a). Despite their effec-
tiveness, the performance of these methods is fundamentally constrained by the model’s inherent
capabilities. The second paradigm, parameter fine-tuning, aims to enhance these intrinsic abilities
into LLM. While SFT on high-quality reasoning data is a common approach, its effectiveness is often
limited by data availability and scalability (Zelikman et al., 2024). Consequently, RLVR has emerged
as a powerful alternative, learning directly from reward signals to unlock superior performance, as
demonstrated by models like DeepSeek-R1 (Guo et al., 2025). Notably, this differs from preference-
based RL which learns from a reward model trained on human/AI feedback (Bai et al., 2022a;b; Liu
et al., 2024), as the RLVR here utilizes direct, verifiable reward signals. Our work is situated within
the RFT paradigm, especially under varifirable reward.

The majority of existing RFT research has relied on on-policy RL algorithms prized for their
training stability, such as PPO (Schulman et al., 2017). Some recent approaches have sought to
improve efficiency by modifying the RL architecture (e.g., GRPO (Shao et al., 2024)) or relaxing
optimization constraints (Seed et al., 2025). However, these on-policy RL methods exhibit severe
sample inefficiency, as they require fresh samples for each iteration of gradient updates. To alleviate
this, recent research has begun to incorporate off-policy data in RL training. Tang et al. (2025)
propose AGRO for a unified algorithm to leverage any-generation data, encompassing both on- and
off-policy samples. However, their experimental results show that off-policy training is inferior to
on-policy training, underscoring the non-trivial challenge of achieving stable and effective off-policy
training for LLMs. Tapered Off-Policy REINFORCE (Roux et al., 2025) introduces a novel variant
of importance sampling to downweight negative trajectories that are not likely under the current
policy, while allowing positive trajectories to be upweighted. This enables the utilization of both
off-policy and on-policy rollout trajectories. The method is trained and evaluated on GSM8K and
MATH, leaving its efficacy on broader reasoning tasks unknown.

Recently, concurrent to our work, Based on REINFORCE, AsymRE (Arnal et al., 2025) is proposed
to leverage both off-policy and on-policy data by introducing a tunable baseline. An asymmetry is
presented that while on-policy updates safely leverage both positive and negative signals, off-policy
updates benefit more from positive rewards, which to some extent echoes the idea proposed in (Roux
et al., 2025). AsymRE is trained and evaluated on MATH. SRPO (Zhang et al., 2025b) builds on
GRPO with a two-stage curriculum that first trains on math and then on code. Besides, SRPO adopts
historical resampling discards groups with uniform rewards to avoid zero gradients and retains hard
samples for later replay. Using the same base model, SRPO outperforms DeepSeek-R1-Zero-Qwen-
32B while using only one-tenth of the training steps. Similarly, RePO (Li et al., 2025a) also exploits
historical data. SRPO’s resampling chiefly targets the quality of samples, while RePO emphasizes
efficiency and systematically analyzes the impact of replay strategies. RePO is proposed upon GRPO
to replay both historical off-policy data and on-policy data together during typical GRPO training.
Different off-policy data replay strategies are studied, among which recency-based and reward-based
strategies show improved performance. The RePO models are trained with a maximum response
length of 1,024, thus showing limited performance on math reasoning benchmarks.

By following the principle of Soft RL, SPO (Cohen et al., 2025)) is proposed to leverage both off-
policy and on-policy data based on Cumulative Q-Parameterization. SPO is trained and evaluated for
code contests and demonstrates superior performance to the standard PPO. In contrast, LUFFY (Yan
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et al., 2025) uses off-policy samples from superior models (e.g., DeepSeek-R1) and employing policy
shaping. However, in essence, this is more akin to learning from demonstrations rather than the
canonical off-policy RL where the behavior policy is often one of the historical policies or a separate
inferior policy. Moreover, the idea of off-policy guidance is orthogonal to our method.

While early efforts have conducted first-step explorations on realizing off-policy learning for RFT,
they have primarily focused on adapting existing on-policy methods (e.g., PPO, GRPO, REINFORCE)
to off-policy data from the angles of modifying importance sampling, leveraging data or trajectories
asymmetrically, etc. These initial steps have not investigated the essential effects of off-policy learning
on reasoning behaviors, while leaving the potential of existing off-policy RL techniques unexplored.
In the broader field of RL, methods such as Rainbow (Hessel et al., 2018), TD3 (Fujimoto et al.,
2018), and SAC (Haarnoja et al., 2018) have set a precedent for leveraging historical data to improve
sample efficiency. Building on this, advanced research has pursued maximizing data utilization
through high UTD ratios, managing the resultant estimation errors with techniques like ensemble
learning, as seen in REDQ (Chen et al., 2021), DroQ (Hiraoka et al., 2021), and SPEQ (Romeo et al.,
2021). Concurrently, novel approaches have emerged, including hybrid methods that seek an optimal
balance between the stability of on-policy learning and the efficiency of off-policy methods (Queeney
et al., 2021), as well as fully offline algorithms designed to mitigate extrapolation errors from static
datasets (Ma et al., 2024b; 2023). The value of ReMix lies in its departure from simply implementing
off-policy RL in the context of RFT. Instead, by drawing inspiration from rich RL literature, our
research aims to conduct an in-depth investigation of different off-policy RL techniques and integrate
them to improve the RFT process effectively, thereby significantly enhancing the efficiency and
performance of LLM fine-tuning.

C LIMITATIONS

Due to resource constraints, our experiments were limited to models up to 7B. While this provides
a strong proof-of-concept, performance on larger-scale models is yet to be explored. To support
this future work, we provide open-source code and models for community validation. We also note
that the principle of using off-policy data to improve sample efficiency is general and not inherently
tied to model scale. For the utilization of off-policy data, we use fixed proportions in this work,
although we believe an adaptive control on the proportion of off-policy data should be possible and
favorable. Moreover, our method is orthogonal to many of the advanced RFT methods considered
and not considered in our experiments, while we do not explore the combination of them. We believe
that integrating off-policy learning and other advanced techniques is promising to realize new LLM
models that are more efficient and powerful at the same time. We leave these potential angles for the
future.

D ALGORITHM AND RELATED DISCUSSION

D.1 THE PSEUDOCODE OF REMIX

The pseudocode of ReMix is presented in Algorithm 1.

D.2 THEORETICAL DISCUSSION ON THE HISTORICAL POLICY DISTRIBUTION ν

The distribution of policy index i, where i ∈ {0, 1, . . . , N}, is denoted by ν. The theoretical
explanation for the influence of different choices of ν should trace back to how Trust-Region Policy
Optimization (TRPO) (Schulman et al., 2015) approximates the trust region.

For i = 0, i.e., the standard PPO (on-policy case), the trust region α2 = [maxs TV (πk, π)(s)]
2 or its

upper bound DKL(πk, π) (this is can be found in Theorem 1, Eq.8 in TRPO paper) is approximated
by using the expectation regarding dπk to replace the maximum case. In turn, the approximate trust
region is α̃2 = [Es∼dπkTV (πk, π)(s)]

2. In the practices of PPO and TRPO, this approximation
works well in many problems. Intuitively, this is because the new policy π (post-update) should
not differ a lot with the current policy πk (prior-update), the distribution dπk works as an effective
surrogate.
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Algorithm 1 Reincarnating Mix-Policy Proximal Policy Gradient Method (ReMix)
1: [Input]: Base model πbase, and on-policy proximal PG method A (e.g., PPO, GRPO)
2: Set training batch size B, off-policy data portion p, UTD ratio m, historical policy window size N , policy

reincarnation step point T
3: Init the model πθ = πbase and the historical policy set H = ∅
4: # Stage 1: Mix-policy Proximal PG Training
5: for step t = 1, 2, 3, ..., T do
6: Sample a batch of questions q ∼ D0 with size (1− p)B and generate fresh responses according to πθ

and A
7: Reuse historical responses from H with size pB and form the mixed training batch
8: Save πθ to H with its responses and logprob data, drop the oldest policy if |H| > N
9: Repeatedly update πθ with the mixed training batch according to Mix-PPG and A (the first row, Eq. 5)

for m times
10: end for
11: # Stage Transition: Policy Reincarnation
12: Reset the base reference model from πbase to πT , and drop the historical policy set H
13: # Stage 2: Reincarnating On-policy Proximal PG Training
14: for step t = T + 1, T + 2, T + 3, ... do
15: Sample a batch of questions q ∼ D0 with size B and generate responses according to πθ and A
16: Construct a training batch with the fresh responses, and update πθ according to A (the second row, Eq. 5)
17: end for

When it moves on to the off-policy case where i > 0 (Queeney et al., 2021), the approximation
for the trust region could be no longer effective for stable policy optimization due to the increasing
discrepancy between dπ and dπk−i as the increase of i (i.e., for older historical policies). In our work,
we empirically found that using too old historical policies can introduce large off-policyness which
makes the training unstable.

Our empirical observation aligns with our discussion on the theoretical explanation of the approxima-
tion of trust region above. Therefore, in practice, we use N = 2, p = 0.4 and a uniform distribution
for off-policy data. This is equivalent to the policy index distribution ν = [0.6, 0.2, 0.2]. We believe
that one important future direction is to study how to replay off-policy data better instead of replaying
in a uniform manner.

D.3 THEORETICAL DISCUSSION ON THE KL-CONVEX LOSS

The KL-convex loss is theoretically grounded in Conservative Policy Iteration (CPI) (Ma et al.,
2024a). The CPI paper proves that iteratively refining the reference policy guarantees monotonic
improvement (Proposition 1: V π̄∗

(s) ≥ V π̄(s)) and support preservation (π̄∗(a|s) = 0 wherever
π̄(a|s) = 0). Our convex combination LKLC = λDKL(πθ||πbase)+ (1−λ)DKL(πθ||πk−1) directly
implements this — where the πk−1 term acts as CPI’s dynamic reference policy to prevent OOD
queries, while the πbase term extends the framework to preserve foundational capabilities.

Furthermore, CPI’s Theorem 1 identifies that multi-step actor-critic implementations suffer from
high variance, and the authors explicitly recommend adding behavior regularization (their Eq. 6) to
constrain policies to data support. Our decaying λ(t) schedule dynamically balances this trade-off,
shifting from conservative exploration to aggressive refinement. Thus, KLC inherits CPI’s theoretical
guarantees of improvement and convergence while addressing practical stability challenges in iterative
LLM fine-tuning.

D.4 THE DERIVATION OF EQUATION 6

We conduct the formal analysis of off-policy PPG in Section 4.4 by using a similar form of average
loss as in (Fatemi et al., 2025). Here, we provide the complete derivation of Equation 6 below.

Starting from Equation 3, that is the definition of the loss function for Mix-PPG, we rewrite the loss
function from the original per-sample expectation (i.e., (s, a) ∼ dπk−i) form to the per-trajectory

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

expectation form (i.e., τ ∼ dπk−i ). This derives:

LMix-PPG
Avg (θ) =− Ei∼ν

[
Eτ∼dπk−i

1

Hτ
ΣHτ

h=0 min
(
rk−i
θ (sh, ah)A

πk(sh, ah),

clip
(
rk−i
θ (sh, ah),

πk(ah | sh)
πk−i(ah | sh)

− ϵ,
πk(ah | sh)
πk−i(ah | sh)

+ ϵ

)
Aπk(sh, ah)

)]
,

(7)

where Hτ is response length for trajectory τ . By dropping the clipping range (i.e., ignoring the out-
of-clipping range cases which have no gradient) and simplifying the expression by omitting subscript
notations, expectation notations, etc., we only keep the proportional relationship for the analysis.
This then leads to: LMix-PPG

Avg = − 1
HΣH

h=0r
k−i
θ Aπk , which is the exact form used in Equation 6.

D.5 SENSITIVITY ANALYSIS OF THE CHOICES OF POLICY REINCARNATION TRIGGER STEP T

In our pipeline, T is the hand-over step that switches from the off-policy Mix-PPG phase to the
on-policy phase with reference model changed too. We use it to harvest early data-efficiency from
replay historical data and then let on-policy optimization continue improving stably. To address
the reviewer’s concern about how the trigger step T was chosen and how sensitive performance is
to this choice, we provide a controlled sweep T ∈ {25, 50, 100, 200} with 500-step runs, whose
experimental settings are all the same as those of the main text. The results are shown in the table
below. For (T = 25), we report two checkpoints per run, the first time the macro average reaches
≥ 49 (”early lift”) and the final plateau.

The pattern is consistent: a very small T (25) slows down performance improvement; a very large T
(200) lifts early but later stalls due to amplified off-policyness; a moderate T (50–100) yields both a
strong early lift and the best final averages. We also find this choice to broadly work well across our
experimental cases, achieving a favorable efficiency-performance trade-off.

Table 8: Pass@1 accuracy (%) of 1.5 B model under different policy reincarnation trigger step
T .

Model AIME’24 AMC’23 MATH500 Minerva Olympiad Avg.
T = 25 (at 350 steps) 33.33 65.06 81.20 27.57 39.26 49.29
T = 50 (at 75 steps) 43.33 63.86 79.60 26.84 39.41 50.61
T = 50 (at 500 steps) 40.00 63.86 83.00 26.84 43.70 51.52
T = 100 (at 225 steps) 30.00 69.88 81.80 24.63 41.78 49.62
T = 100 (at 325 steps) 36.67 69.88 82.00 30.15 41.78 52.09
T = 200 (at 100 steps) 30.00 66.27 81.00 29.41 43.26 49.99
T = 200 (at 500 steps) 16.67 49.40 77.00 16.67 38.67 40.76

E ADVANTAGE ESTIMATION

To enable stable off-policy training, we adopt a V-trace (Espeholt et al., 2018) formulation for
generalized advantage estimation (GAE) (Schulman et al., 2016), which incorporates truncated
importance sampling ratios to correct for policy mismatch. We first compute the temporal-difference
error(TD-error) at each time step t as

δVt = r(st, at) + γV (st+1)− V (st), (8)

and define the truncated importance sampling weight ct = min
(
c̄, πk(a|s)

πk−i(a|s)

)
, where c̄ is a clipping

threshold to limit the variance of the correction, we use c̄ = 1 in our implement.

The advantage at step t is estimated recursively using the V-trace correction as

At = δVt + γλctAt+1, (9)

and the return-to-go is computed by combining the advantage estimate with the baseline value:

RTGt = At · ct + V (st). (10)

This V-trace corrected GAE formulation ensures that the estimated advantages remain stable and
consistent under significant off-policy drift, which is critical in our training regime involving long-
horizon trajectories and evolving policies.
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F A BRIEF OVERVIEW OF BASELINE MODELS

F.1 1.5B MODELS

• Open-RS Series (Dang & Ngo, 2025): The Open-RS series employs the GRPO algorithm
to train language models, using datasets constructed by filtering and combining existing
corpora. Specifically, Open-RS1 utilizes dataset with 18,615 samples with accuracy and
format rewards, Open-RS2 incorporates dataset with 7,000 samples and shorter maximum
response length while retaining the same reward functions. Compared to Open-RS2, Open-
RS3 replaces the accuracy reward with a cosine reward and adds an English-only instruction
to the system prompt.

• DeepScaleR (Luo et al., 2025): DeepScaleR is obtained via a two-phase training process
with the GRPO algorithm: starting with 8k context for efficient reasoning, then scaling up to
16k and 24k contexts to address more challenging problems.

• II-Thought (Intelligent-Internet, 2025): Based on a systematic analysis of existing public
datasets, the authors constructed a large-scale, high-quality dataset comprising over 300,000
reasoning problems across multiple domains. Each sample was rigorously filtered and
deduplicated. Subsequently, the models were trained on this curated dataset, using the
GRPO algorithm.

• FastCuRL Series (Song et al., 2025): The FastCuRL Series adopts a multi-stage training
process where both context length and data complexity (defined by input prompt length) are
progressively increased. Training starts with short-context and low-complexity data, then
moves to longer contexts with medium and high-complexity datasets.

• L1 Series (Aggarwal & Welleck, 2025): The L1 Series trains models using Length-
Controlled Policy Optimization (LCPO), a method that encourages correct answers while
matching a target output length specified in the prompt (measured by input prompt length).
L1-Exact enforces exact-length generation by penalizing deviation from the target length,
while L1-Max applies a soft maximum-length constraint, allowing shorter outputs when
appropriate but discouraging overruns.

• AdaptThink (Zhang et al., 2025a): AdaptThink is an RFT method that trains reasoning
models to choose between two modes — Thinking and NoThinking — based on problem
difficulty. It uses a constrained optimization objective to encourage NoThinking while
maintaining performance, and an importance sampling strategy to balance both modes
during training.

F.2 7B MODELS

• ReasonFlux-F1 (Yang et al., 2025b): ReasonFlux-F1 is an SFT model obtained by fine-
tuning an R1-Distill model3 based on template-augmented reasoning trajectories collected
by ReasonFlux-v1. These trajectories are first enhanced with structured templates, then
transformed into a long chain-of-thought format.

• Light-R1 (Wen et al., 2025): Light-R1 is a multi-stage post-training framework. It be-
gins with curriculum-based supervised fine-tuning (SFT) using progressively harder data,
followed by Direct Preference Optimization (DPO) and an RFT process with GRPO on a
filtered dataset. Light-R1-7B-DS is trained only in the second SFT stage of the frame-
work. Thus, the Light-R1 7B baseline model used in our experiments is an SFT model rather
than an RFT model.

• Skywork-OR1-Preview (He et al., 2025): Skywork-OR1-Preview is trained on a curated
dataset of math and coding problems, selected through model-aware difficulty estimation
and quality filtering. The training process modifies GRPO by incorporating both offline
and online difficulty-based filtering, rejection sampling, and a multi-stage curriculum with
adaptive entropy control.

• Polaris (An et al., 2025): Polaris adopts a multi-stage RL training approach with careful data
difficulty control, using a data distribution with a slight bias toward challenging problems and

3https://github.com/Gen-Verse/ReasonFlux/blob/main/ReasonFlux_F1/README.
md
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dynamically adjusting question difficulty during training. It initializes sampling temperature
based on rollout diversity and gradually increases it during training. It employs length
extrapolation techniques, enabling longer CoT generation at inference while keeping training
rollouts short.

• AdaptThink (Zhang et al., 2025a): The methodology for the AdaptThink 7B model is
identical to that of the AdaptThink 1.5B model, as previously described.

• AceReason-Nemotron (Chen et al., 2025): AceReason-Nemotron adopts the GRPO al-
gorithm without KL divergence and avoids entropy collapse through controlled updates.
The model is first trained on math-only prompts, then on code-only prompts, following a
curriculum with progressively increasing response lengths.

F.3 EXCLUSION RATIONALE FOR OFF-POLICY BASELINES

For existing off-policy RFT methods, we do not include RePO (Li et al., 2025a) because their models
are trained under a maximum response length of 1,024 tokens, thus showing limited performance
on math reasoning tasks. We do not include LUFFY (Yan et al., 2025) since the usage of off-
policy guidance from a superior model (e.g., DeepSeek-R1) is orthogonal to ReMix, which is also
viewed as a different setting where extrinsic guidance or demonstrations are accessible. We exclude
SRPO (Zhang et al., 2025b) since its publicly released model is not at the same scale as ours. In
addition, we did not find public checkpoints for SPO (Cohen et al., 2025) (which is also trained
for code contests), AGRO (Tang et al., 2025), AsymRE (Arnal et al., 2025) and Tapered Off-policy
REINFORCE (Roux et al., 2025), thus, we do not include them in our experiments. Please refer to
Section B for detailed discussions on related off-policy RFT methods.

G SYSTEM PROMPT

Following the standard DeepScaler data processing approach, each prompt in the training set was
prefixed with ”<|User|>” and suffixed with the instruction ”Let’s think step by step and output
the final answer within \boxed{}. <|Assistant|><think>” . This structure encourages the model
to engage in step-by-step reasoning and produce final answers encapsulated within LaTeX boxed
expressions. One example of the DeepScaler prompt format is shown below. The blue text indicates
the fixed template used during inference, while the black text represents the instance-specific question
inserted into the prompt.

System Prompt (Standard)

<|begin of sentence|><|User|> Xenia and Sergey play the following game. Xenia thinks
of a positive integer N not exceeding 5000. Then she fixes 20 distinct positive integers
a1, a2, . . . , a20 such that, for each k = 1, 2, . . . , 20, the numbers N and ak are congruent
modulo k. By a move, Sergey tells Xenia a set S of positive integers not exceeding 20,
and she tells him back the set {ak : k ∈ S} without spelling out which number corresponds
to which index. How many moves does Sergey need to determine for sure the number
Xenia thought of? Let’s think step by step and output the final answer within \boxed{}.
<|Assistant|><think>

H KEY OBSERVATIONS FROM FIGURE 1: EFFICIENCY–ACCURACY

For clarity, we summarize the major observations in Figure 1 below:

• (1.5B) ReMix-PPO v.s., DeepScaleR: DeepScaleR, the strongest 1.5B competitor, requires
around 2.519M rollouts to reach its final score (i.e., 52.14), whereas ReMix-PPO (350 Steps)
achieves a comparable score (i.e., 52.10) with 0.079M rollouts — over a 30x reduction in
rollout data volume.

• (1.5B) ReMix-PPO v.s., PPO: We trace the performance of ReMix-PPO at 100, 200, and
350 training steps (denoted by the yellow curve in Figure 1), corresponding to rollout data
volumes of roughly 0.020M, 0.041M, and 0.079M, respectively. Even after generating just
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0.020M rollout samples, ReMix-PPO achieves a score of 50.61, which has already surpasses
most baselines. Compared to PPO (900 Steps), which achieves an average score of 50.61
with 0.230M rollouts, our model shows over a 10x reduction in rollout data volume.

• (1.5B) ReMix-GRPO v.s., GRPO: We also trace the performance of ReMix-GRPO at 50,
100, and 200 training steps (denoted by the cyan curve in Figure 1), corresponding to rollout
data volumes of roughly 0.061M, 0.163M, and 0.368M, respectively. After generating
0.061M rollout samples, our model achieves the score 45.47 that exceeds the score 45.20 of
standard GRPO trained for 100 steps with 0.205M rollout samples. Compared to GRPO
(200 Steps), which achieves an average score of 48.64 with 0.410M rollouts, ReMix-GRPO
achieves a much higher score of 50.53 within 200 training steps, i.e., 0.368M rollouts,
showing a superior final performance with less computational cost.

• (7B) ReMix-PPO v.s., AceReason-Nemotron: AceReason-Nemotron, the strongest 7B
baseline method in our comparison, requires over 3.584M rollouts to reach its final score
(i.e., 63.24)4, whereas ReMix-PPO (50, 75 Steps) achieves a slightly higher accuracy (i.e.,
63.27, 64.39) with 0.007M, 0.011M rollouts — over a 450x reduction in rollout data
volume.

• (7B) ReMix-PPO v.s., AdaptThink: AdaptThink, the second strongest 7B baseline method,
requires around 0.307M rollouts to reach its final score (i.e., 58.77), whereas ReMix-PPO
(25 Steps) achieves a comparable accuracy (i.e., 58.49) with 0.003M rollouts — over an
80x reduction in rollout data volume.

• (7B) ReMix-PPO v.s., PPO: Compared to PPO (200 Steps) that achieves an average score
of 60.34 with 0.051M rollouts, ReMix-PPO achieves a higher score of 63.27 within 50
training steps, i.e., 0.007M rollouts, showing a 6x reduction in rollout data volume.

Besides, when do sample is set to true, Open-RS series models (i.e., -RS1, -RS2, -RS3) show
better scores 40.62, 40.08, 39.31 respectively, and II-Thought can achieve a score 51.474. For
other models, we found similar scores in our experiments, which do not change the conclusions.

I TRAINING DETAILS

Hyperparmeters The major hyperparameter choices are shown in Table 9.

Compute Resource The 1.5B model was trained for 50 hours on 2 NVIDIA A800-SXM4-80GB
GPUs, while the 7B model required 75 hours on 8 such GPUs. The evaluation of each model was
also conducted using the same number of GPUs as in their respective training setups.

Comparison of Training Detail on Computational Cost for 1.5B Models The corresponding
detailed factors associated with computational cost for training the 1.5B models in the comparison
above are shown in Table 10. Compared to most baselines, our method uses nearly half the number
of training steps (500 v.s. ≥ 860) while delivering superior performance. Furthermore, our entire
training run is executed on a single node with just two A800 GPUs over 52 hours, amounting to
104 A800 GPU hours. This finding shows that state-of-the-art gains can be achieved with markedly
reduced compute requirements.

Comparison of Training Detail on Computational Cost for 7B Models Table 11 shows the
training details of 7B models. However, we failed to find complete training details for all the 7B
models, so we did not plot the efficiency-performance trade-off for the 7B models due to missing
information.

J EXTENDED EVALUATION OF AIME’24 AND AMC’23

For two small and high-variance benchmarks (i.e. AIME’24 and AMC’23), we report Pass@1 as the
average over 32 independent runs (Avg@32). Here we use use stochastic decoding (temperature
0.1) for evaluation. We include these results in Table 12 and Table 13 to provide a robust estimate on
small datasets. ReMix-PPO maintains the similar performance observed in Table 1 and Table 2 under
greedy decoding, showing consistent gains under the Avg@32 protocol.

4The score of AceReason-Nemotron is obtained by evaluating the official checkpoint, and the rollout data
volume is estimated according to the text and Figure 3 in (Chen et al., 2025).
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Table 9: Hyperparameter setups for PPO, GRPO and ReMix trainer.

Parameter Value
Training Configuration

temperature 1.0
top-p 1.0
top-k -1
critic warmup 0
learning rate 1e-6
clip ratio 0.2
lam 1
tau 0.95
entropy coeff 0.001
clipping gradient true
do sample true
test freq 25

Training Configuration for ReMix-GRPO and GRPO

kl loss coef 0.001
kl loss type low var kl
n (gen per prompt) 8

Table 10: RFT training details associated with computational cost for 1.5B models. All the
models are trained upon DeepSeek-R1-distill-Qwen2.5 base model, except for L1 series
models, which are fine-tuned on top of DeepScaleR (denoted by superscript *). Accordingly, their
total training cost should be considered as the sum of DeepScaleR’s cost and the resources reported
in this table. Italicized entries indicate values not directly reported in the original papers, but instead
retrieved from associated official training scripts. The underlined values denote the fresh on-policy
rollout in addition to off-policy data reuse in ReMix.

Model Traing Steps Rollout Batch Size Gen per Prompt Max Responses Length Number of GPUs
DeepScaleR 1750 steps 128,128,128 8,16,16 8k,16k,24k 8,32,32
FASTCuRL-preview 860 steps 128,64,64,64 8,8,8,16 8k,16k,24k,16k 8
FASTCuRL-v3 2620 steps 128,64,64,64,64 8,8,8,16,16 8k,16k,24k,16k,16k 8
II-Thought - 1024 5 32k 8
adapt think 314 steps 128 16 16k 8
Open-RS1 100 steps 96 6 4k 4
Open-RS2 50 steps 96 6 4k 4
Open-RS3 50 steps 96 6 4k 4
L1-Exact* 700 steps 128 16 4k 8
L1-Max* 120 steps 128 16 4k 8

ReMix-PPO 500 steps 152,256 1 8k 2
ReMix-GRPO 200 steps 152,256 8 8k 2

Table 11: RFT training details associated with computational cost for 7B models. All methods are
trained upon DeepSeek-R1-Distill-Qwen-7B base model. Italicized entries indicate values
not directly reported in the original papers, but instead retrieved from associated official training
scripts. The underlined values denote the fresh on-policy rollout in addition to off-policy data reuse
in ReMix. Note that ReasonFlux-F1 and Light-R1 (7B) are SFT models as detailed in Appendix F.2,
hence we do not include them in this table.

Model Traing Steps Rollout Batch Size Gen per Prompt Maximum Responses Length Number of GPUs
Skywork-OR1-Preview >2000 steps 256 16 8k,16k,32k 8
AceReason-Nemotron >2000 steps 128 8,16,16,16 8k,16k,24k,32k 128
AdaptThink 150 steps 128 16 16k 8
Polaris >1400 steps - - 16k,24k,32k -

ReMix-PPO 500 steps 152,256 1 8k 8
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Table 12: Pass@1 accuracy (%) on AIME’24 and AMC’23 (Avg@32) of 1.5B models. ReMix-
PPO shows performance consistent with the greedy-decoding results (Table 1). Bolded and underlined
values denote the highest and the second-highest scores in each dataset (i.e., column).

Model AIME’24 AMC’23
R1-Distill-Qwen-1.5B (Base) 17.92 44.58

Open-RS1 17.60 45.44
Open-RS2 17.62 44.92
Open-RS3 18.65 43.98
AdaptThink 19.06 56.81
II-Thought 28.65 59.72
FASTCuRL-preview 25.94 54.27
FASTCuRL-V3 33.44 63.63
L1-Exact* 25.1 66.57
L1-Max* 23.13 66.79
DeepScaleR 31.96 63.58

ReMix-GRPO (75 Steps) 25.10 60.17
ReMix-PPO (350 Steps) 29.08 64.04

Table 13: Pass@1 accuracy (%) on AIME’24 and AMC’23 (Avg@32) of 7B models. ReMix-PPO
reach SOTA-level on both benchmarks.

Model AIME’24 AMC’23
R1-Distill-Qwen-7B (Base) 37.53 66.55

ReasonFlux-F1 20.19 53.07
Light-R1 40.00 66.73
Skywork-OR1-Preview 36.31 61.60
Polaris 39.71 67.40
AdaptThink 47.62 74.20
AceReason-Nemotron 50.00 77.48

ReMix-GRPO (200 Steps) 49.48 82.12
ReMix-PPO (75 Steps) 50.31 77.78

K MORE TRAINING CURVES

Training Curves for Efficiency Comparison In addition to the efficiency comparison between
ReMix-PPO and PPO for Olympiad in Figure 3, the remaining curves for the other four math
reasoning benchmarks are presented in Figure 5, 6, 7, 8.
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Figure 5: Training efficiency comparison for ReMix-PPO and PPO (1.5B) on Minerva.ReMix
achieves a score above 26%, around 3× to 6× faster than PPO.

Training Curves under Varying Proportions of Off-policy Data We vary the off-policy propor-
tion p ∈ {0.1, 0.2, 0.3, 0.4, 0.5} (the UTD ratio is set to 1 here for isolation) to isolate the effect of
historical data reuse. In addition to the Pass@1 accuracy, we use three more metrics: the importance
sampling ratio rk−i

θ , ratio πk

πk−i
that quantifies the distributional shift between current and historical

policies, and the response length that reflects the reasoning behavior of the model.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100 120
Rollout Data Volume(K)

0.45

0.50

0.55

0.60

0.65

Pa
ss

@
1

Rollout Data Volume

0 100 200 300 400 500
Steps

0.45

0.50

0.55

0.60

0.65

Training Steps

0 10 20 30 40 50
Time(hours)

0.45

0.50

0.55

0.60

0.65

Training Duration

ReMix-PPO PPO

6x 4x 3x

Figure 6: Training efficiency comparison for ReMix-PPO and PPO (1.5B) on AMC’23. ReMix
achieves a score above 60%, around 3× to 6× faster than PPO.
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Figure 7: Training efficiency comparison for ReMix-PPO and PPO (1.5B) on AIME’24. ReMix
achieves a score above 35%, around 1.2× to 1.6× faster than PPO.

For importance sampling ratio, we observe that larger p yields slightly wilder importance-sampling
swings. Notably, the consistently slight decrease of the importance sampling in Figure 9 can also be
explained by the shortening of response length, as the whipping effect (detailed in Subsection 4.4)
gradually diminishes.

Training Curves for Policy Loss Figure 10 shows that during the training process, the policy loss
predominantly remains positive, which means a larger importance ratio will lead to a larger policy
loss.

L VARIOUS ANALYSIS

In this section, we further analysis the effects of ReMix, including the performance under response
length constraint, the impact of prompt format.
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Figure 8: Training efficiency comparison for ReMix-PPO and PPO (1.5B) on MATH500. ReMix
achieves a score above 80%, around 3× to 5× faster than PPO.
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Figure 9: Training dynamics regarding importance sampling ratio, accuracy, and response
length under varying proportions of off-policy data p for Mix-PPG. Leveraging more off-policy
data leads to a larger policy distribution shift, a faster early boost in accuracy yet worse later-stage
performance, and a shorter response length.
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Figure 10: Policy loss under varying proportions of off-policy data p for Mix-PPG. Leveraging
more off-policy data leads to larger policy loss.

L.1 THE PERFORMANCE UNDER CONSTRAINED MAXIMUM RESPONSE LENGTH

Since ReMix shows a feature in generating more concise responses as discovered above, we conduct
an additional experiment to evaluate the performance of our model when the maximum response
length is constrained. Different from the default evaluation setting of 8,192 maximum response
length, we halve the maximum response length to 4,196 tokens for ReMix during evaluation. For
comparison, we evaluate ReMix-PPO (1.5B) with the base model, DeepScaleR, and PPO under the
halved maximum response length. The results are summarized in Table 14.

Table 14: Performance evaluation of 1.5B models with 4k maximum response length. The
arrow ↓ denotes the accuracy degradation compared to the results with 8k maximum response length
(referring to the results in Table 1). All the models are negatively influenced by the halved maximum
response length. Compared with DeepScaleR, ReMix-PPO exhibits the smallest decrease in model
performance and performs the best, thanks to its concise and shorter reasoning behaviors.

Model AIME’24 AMC’23 MATH500 Minerva Olympiad Avg.
Maximum response length: 4096 tokens

R1-Distill-Qwen-1.5B (Base Model) 20.00 37.35 60.40 13.24 22.37 30.67↓6.91
DeepScaleR 10.00 49.4 75.00 21.32 34.22 37.99↓14.15
PPO (500 Steps) 20.00 48.19 77.60 25.00 38.96 41.95↓7.61

ReMix-PPO (350 Steps) 23.33 59.04 79.00 27.57 39.11 45.61↓6.49

All the models are negatively influenced by the halved maximum response length, which matches the
intuition. Notably, DeepScaleR, the best 1.5B baseline model used in our work, suffers a significant
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performance drop when the maximum response length is limited to 4,192 tokens. In contrast, ReMix-
PPO exhibits the smallest decrease in model performance and performs the best in this constrained
setting. This finding underscores the resilience of the preference for a concise and shorter reasoning
process learned via off-policy training of ReMix in handling the constraints on response length.

Takeaway 4. ReMix favors concise reasoning and is resilient to constraints on response
length.

The constraint on maximum response length greatly degrades the test-time reasoning per-
formance of LLM models, while ReMix suffers less thanks to its preference for a concise
reasoning process.

L.2 THE IMPACT OF GUIDE TOKENS IN PROMPT TEMPLATE

In addition, we investigate the critical role of the prompt template for response generation used
during training and evaluation. To establish a comparison, we make use of a prompt template
without guide tokens (as shown below). Recall the standard prompt template we presented in
Section 4.1, the difference is that the prompt template without guide tokens does not contain the
guide tokens that appear as the prefix (i.e., <begin of sentence><|User|>) and the suffix
(i.e., <|Assistant|><think>).

System Prompt (Without Guide Tokens)

<|begin of sentence|><|User|>Xenia and Sergey play the following game. Xenia thinks
of a positive integer N not exceeding 5000. Then she fixes 20 distinct positive integers
a1, a2, . . . , a20 such that, for each k = 1, 2, . . . , 20, the numbers N and ak are congruent
modulo k. By a move, Sergey tells Xenia a set S of positive integers not exceeding 20,
and she tells him back the set {ak : k ∈ S} without spelling out which number corresponds
to which index. How many moves does Sergey need to determine for sure the number
Xenia thought of? Let’s think step by step and output the final answer within \boxed{}.
<|Assistant|><think>

To investigate the impact of different prompt templates, we define a response as format-correct if
it includes content enclosed within paired <think> </think>. Parallel to the 1.5B base model
and ReMix-PPO, we consider a variant of ReMix-PPO that is trained without guide tokens, denoted
as ReMix-PPO w/o Guide Tokens. We evaluate the performance of the candidate models in terms
of Pass@1 accuracy5 and format correctness on MATH500, when using the standard template (i.e.,
with guide tokens) and the modified template without guide tokens. The purpose of this experiment
is to answer two questions: (1) whether the models trained with guide tokens (i.e., the base model,
ReMix-PPO) can also perform well when the guide tokens are not prompted during evaluation; (2)
whether the model trained without guide tokens can also obey the format and output the solution. The
results are summarized in Table 15.

Table 15: Performance evaluation of 1.5B models with and without guide t okens on MATH500.
Both the base model and ReMix-PPO show a 0 format correctness when the guide tokens are missing
during evaluation, while ReMix-PPO exhibits a smaller drop in the accuracy. For the variant of
ReMix trained without the guide tokens, it performs well under both the two template settings. ↑
means higher is better and ↓ means lower is better.

Model Eval w/ Standard Temp. (↑) Eval w/o Guide Tokens (↑) Relative Decrease (↓)
Pass@1 Format Cor. Pass@1 Format Cor. Pass@1 Format Cor.

R1-Distill-Qwen-1.5B (Base Model) 67.40 70.00 52.00 0 15.40 70.00
ReMix-PPO (350 Steps) 82.00 93.60 71.00 0 11.00 93.60
ReMix-PPO w/o Guide Tokens (500 Steps) 82.00 92.20 77.60 91.20 4.40 1.00

5Note that the correct answer with a wrong format is still counted as correct for Pass@1 accuracy here.
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The results show that the base model yields a format correctness of 0 when evaluated without the
guide tokens, accompanied by a decrease of 15.40 points in Pass@1 accuracy. Similarly, ReMix-PPO
also exhibits a 0 format correctness yet a smaller decrease of 11.00 in the accuracy. This indicates
that the presence of the <think> token in the prompt helps the model to autonomously generate a
closing </think> tag, maintaining format consistency. Thus, it delivers a negative answer to the
first question above, while ReMix shows a better robustness to the absence of the guide tokens.

In contrast, the variant trained without the guide tokens also performs well when using the standard
template, and achieves an increase from 77.60 to 82.00, reaching the same performance as ReMix
that is trained with the guide tokens explicitly. It also maintains consistently high format correctness.
This shows a good robustness to prompt change. We found similar results for the other four math
reasoning tasks as well.

We hypothesize that removing the guide tokens during the training of ReMix allows the model to
explore a broader distribution, rather than overfitting to the explicit guide tokens in the standard
template. Such flexibility encourages the model to internalize reasoning behavior in a robust and
general manner, instead of relying on external structural cues too much. As a result, it becomes
more robust to prompt variation at inference time. The smaller relative degradation observed in both
accuracy and format correctness supports this view.

Takeaway 5. ReMix is more robust to the variation of prompt template.

Removing explicit guide tokens in the standard template significantly cripples the performance
of the base model, while ReMix exhibits better robustness and compatability to the absence
of the guide tokens during both training and evaluation.

M REMIX FOR LLAMA-SERIES BASE MODEL

Table 16: Pass@1 accuracy (%) of R1-Distill-Llama-8B.
Model AIME’24 AMC’23 MATH500 Minerva Olympiad Avg. Cost
R1-Distill-Llama-8B (Base Model) 26.46 62.69 82.00 25.37 42.67 47.84 N/A

PPO (50 steps) 34.58 70.63 85.40 26.10 45.18 52.38 0.013 M
ReMix-PPO (25 steps) 39.48 88.00 87.04 28.68 48.74 55.99 0.004 M

N CASE STUDY

To better understand model’s reasoning behavior, we present a case study centered on a representative
example that the base model is able to solve correctly. Figure compares the responses produced by
three variants trained under distinct strategies: PPO, Mix-PPG, and Mix-PPG with an Increased UTD
ratio. Notably, the three outputs differ significantly in length, with the PPO-trained model producing
the longest response, followed by Mix-PPG, and Mix-PPG with an Increased UTD ratio yielding the
shortest.

With a sufficiently long response window, the model engages in explicit self-reflection and follows
a structured step-by-step reasoning process to arrive at the correct answer. In contrast, the UTD-2
model, exhibits minimal or no reflective behavior and tends to bypass intermediate reasoning steps,
leading to a more direct but less interpretable answer. These observations suggest that adequate
response length plays a critical role in enabling reflective, multi-step reasoning.
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Question

Prompt
Five points $A$, $B$, $C$, $D$, and $O$ lie on a flat field. $A$ is directly north of
$O$, $B$ is directly west of $O$, $C$ is directly south of $O$, and $D$ is directly east
of $O$. The distance between $C$ and $D$ is 140 m. A hot-air balloon is positioned in
the air at $H$ directly above $O$. The balloon is held in place by four ropes $HA$, $HB$,
$HC$, and $HD$. Rope $HC$ has length 150 m and rope $HD$ has length 130 m. [asy]
size(250);
pair A, B, C, D, O, H, W, X, Y, Z;
O=(0,0);
A=(1,1);
D=(1.5,-.3);
B=(-1.5,.3);
C=(-1,-1);
H=(0,2.5);
W=(5/3)*(A+D);
X=(5/3)*(A+B);
Y=(-1)*(W);
Z=(-1)*(X);
draw(W--X--Y--Z--W);
draw(A--C);
draw(B--D);
draw(O--H, linewidth(1));
draw(A--H, dashed);
draw(B--H, dashed);
draw(C--H, dashed);
draw(D--H, dashed);
dot(A);
dot(B);
dot(C);
dot(D);
dot(O);
dot(H);
label("A", A, NE);
label("B", B, SW);
label("C", C, SE);
label("D", D, NE);
label("O", O, SE);
label("H", H, NW);
[/asy]
To reduce the total length of rope used, rope $HC$ and rope $HD$ are to be replaced by a
single rope $HP$ where $P$ is a point on the straight line between $C$ and $D$. (The
balloon remains at the same position $H$ above $O$ as described above.) Determine the
greatest length of rope that can be saved.

Correct Answer
160

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Case 1: PPO (1/5)

## Stage 1 - Question Rehearsal
Okay, so I have this problem with five points on a flat field: A, B, C, D, and O. A is
directly north of O, B is directly west of O, C is directly south of O, and D is directly
east of O. The distance between C and D is 140 meters. There’s a hot-air balloon at point
H directly above O. The balloon is held by four ropes: HA, HB, HC, and HD.

Now, the problem says that rope HC is 150 meters long and rope HD is 130 meters long. We
need to reduce the total length of rope used by replacing HC and HD with a single rope HP,
where P is a point on the straight line between C and D. The balloon stays at the same
position H above O. We need to find the greatest length of rope that can be saved.

## Stage 2 - Spatial Configuration and Equation Derivation
First, I need to visualize the setup. Points A, B, C, D are all around O, which is the
center. A is north, B is west, C is south, D is east. So, if I imagine a coordinate
system with O at (0,0), then A would be at (0, a), B at (-b, 0), C at (0, -c), and D at
(d, 0). But wait, actually, since A is directly north of O, B is directly west, C is
directly south, and D is directly east, the coordinates can be set as follows:

Let’s assume O is at (0,0). Then, A is at (0, h), B is at (-k, 0), C is at (0, -m), and D
is at (n, 0). But actually, the distances between C and D is given as 140 meters. Since C
is directly south of O and D is directly east of O, the distance between C and D would be
the hypotenuse of the triangle formed by OC and OD. So, OC is the distance from O to C,
which is m, and OD is the distance from O to D, which is n. Therefore, the distance
between C and D is sqrt(n² + m²) = 140 meters.

But we don’t know m and n yet. However, we know the lengths of HC and HD. Let me recall
that H is directly above O, so its coordinates are (0, h). The distance from H to C is
150 meters, and the distance from H to D is 130 meters.

## Stage 3 - Step-by-Step Computation
So, let’s write the distance formulas:

Distance HC: sqrt((0 - 0)² + (h - (-m))²) = sqrt((h + m)²) = |h + m| = 150. Since h and m
are positive distances, h + m = 150.

Similarly, distance HD: sqrt((0 - n)² + (h - 0)²) = sqrt(n² + h²) = 130. So, sqrt(n² + h²)
= 130.

We also know that the distance between C and D is 140 meters, which is sqrt(n² + m²) = 140.

So, we have three equations:

1. h + m = 150
2. sqrt(n² + h²) = 130
3. sqrt(n² + m²) = 140

We can square the third equation to get n² + m² = 140² = 19600.

From the first equation, h = 150 - m.

Substitute h into the second equation:

sqrt(n² + (150 - m)²) = 130

Square both sides:

n² + (150 - m)² = 130² = 16900
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Case 2: PPO (2/5)

We also have n² + m² = 19600.

Let’s subtract the second equation from the first:

(n² + (150 - m)²) - (n² + m²) = 16900 - 19600

Expanding (150 - m)²:

n² + 22500 - 300m + m² - n² - m² = -2700

Simplify:

22500 - 300m = -2700

So, 22500 + 2700 = 300m

25200 = 300m

Divide both sides by 300:

m = 25200 / 300 = 84

So, m = 84 meters.

Then, from the first equation, h = 150 - m = 150 - 84 = 66 meters.

Now, from the third equation, n² + m² = 19600

We know m = 84, so n² + 84² = 19600

Calculate 84²: 84*84 = 7056

So, n² = 19600 - 7056 = 12544

Therefore, n = sqrt(12544) = 112 meters.

So, we have:

- m = 84 meters (distance from O to C)
- n = 112 meters (distance from O to D)
- h = 66 meters (height of H above O)

## Stage 4 - Optimization Strategy
Now, we need to replace ropes HC and HD with a single rope HP, where P is a point on CD.
We need to find the position of P such that the total length of HP is minimized, thus
maximizing the length saved.

So, the original total length is HC + HD = 150 + 130 = 280 meters.

## Stage 5 - Critical Point Analysis
We need to find the minimal possible length of HP, where P is on CD. Then, the greatest
length saved would be 280 - minimal HP.

To find the minimal length of HP, we can model this as a reflection problem. In
optimization problems where you have to find the shortest path that reflects off a line,
you can use the method of reflection.

In this case, we can think of point H and point P on CD. We need to find the point P on CD
such that the distance HP is minimized.
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Case 3: PPO (3/5)

## Stage 6 - Step-by-Step Computation
Alternatively, we can model this as a reflection of H across CD, and then the minimal
distance from H to P to D would be the straight line distance from H to the reflection
of D across CD.

Wait, actually, since P is on CD, we can reflect H across CD to get a point H’, and then
the minimal distance from H to P to D is the same as the distance from H’ to D. But since
P is on CD, the minimal HP is the distance from H to the line CD, but I might be mixing
things up.

Wait, perhaps a better approach is to parametrize point P on CD and then find the minimal
distance HP.

Let’s set up a coordinate system.

Let’s place O at (0,0). Then, C is at (0, -84), D is at (112, 0). H is at (0, 66).

We need to find a point P on CD such that HP is minimized.

Parametrize CD: from C (0, -84) to D (112, 0). Let’s let t be the parameter from 0 to 1,
where t=0 is C and t=1 is D.

So, the coordinates of P can be expressed as:

x = 112t

y = -84 + 84t

So, P = (112t, -84 + 84t)

Now, the distance HP is the distance between H (0,66) and P (112t, -84 + 84t).

So, distance squared is:

(112t - 0)ˆ2 + (-84 + 84t - 66)ˆ2

Simplify:

(112t)ˆ2 + (-150 + 84t)ˆ2

Let’s compute this:

(12544t²) + (22500 - 2*150*84t + 7056t²)

Compute each term:

12544t² + 22500 - 25200t + 7056t²

Combine like terms:

(12544 + 7056)t² - 25200t + 22500

Calculate 12544 + 7056:

12544 + 7056 = 19600

So, distance squared is 19600t² - 25200t + 22500

To find the minimum, take derivative with respect to t and set to zero.
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Case 4: PPO (4/5)

Let’s denote f(t) = 19600t² - 25200t + 22500

f’(t) = 39200t - 25200

Set f’(t) = 0:

39200t - 25200 = 0

39200t = 25200

t = 25200 / 39200

Simplify:

Divide numerator and denominator by 2800:

25200 / 2800 = 9

39200 / 2800 = 14

So, t = 9/14

Therefore, the point P is at:

x = 112*(9/14) = 112*(9)/14 = 8*9 = 72

y = -84 + 84*(9/14) = -84 + (84*9)/14 = -84 + (6*9) = -84 + 54 = -30

So, P is at (72, -30)

Now, compute the distance HP:

Distance = sqrt((72 - 0)ˆ2 + (-30 - 66)ˆ2) = sqrt(72² + (-96)ˆ2)

Compute 72²: 5184

Compute (-96)ˆ2: 9216

Sum: 5184 + 9216 = 14400

So, distance HP = sqrt(14400) = 120 meters

Therefore, the minimal length of HP is 120 meters.

Originally, HC + HD = 150 + 130 = 280 meters.

So, the greatest length of rope that can be saved is 280 - 120 = 160 meters.
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Case 5: PPO (5/5)

## Stage 7 - Final Result
**Final Answer**
The greatest length of rope that can be saved is \boxed{160} meters.
</think>

Given five points \(A\), \(B\), \(C\), \(D\), and \(O\) on a flat field, where \(A\) is
directly north of \(O\), \(B\) is directly west of \(O\), \(C\) is directly south of \(O\),
and \(D\) is directly east of \(O\). The distance between \(C\) and \(D\) is 140 meters.
A hot-air balloon is positioned at \(H\) directly above \(O\). The balloon is held by
four ropes \(HA\), \(HB\), \(HC\), and \(HD\). The lengths of ropes \(HC\) and \(HD\) are
150 meters and 130 meters, respectively. We need to determine the greatest length of rope
that can be saved by replacing \(HC\) and \(HD\) with a single rope \(HP\) where \(P\) is
a point on the straight line between \(C\) and \(D\).

First, we set up the coordinates for the points:
- \(O\) is at \((0, 0)\).
- \(A\) is at \((0, h)\), \(B\) is at \((-k, 0)\), \(C\) is at \((0, -m)\), and \(D\) is
at \((n, 0)\).

Given:
- The distance between \(C\) and \(D\) is 140 meters, so \(\sqrt{nˆ2 + mˆ2} = 140\).
- The distance \(HC\) is 150 meters, so \(h + m = 150\).
- The distance \(HD\) is 130 meters, so \(\sqrt{nˆ2 + hˆ2} = 130\).

Solving these equations, we find:
- \(h = 66\) meters, \(m = 84\) meters, and \(n = 112\) meters.

To minimize the length of rope \(HP\), we parametrize point \(P\) on \(CD\) and find the
point \(P\) that minimizes the distance \(HP\). Using calculus, we find the optimal
parameter \(t = \frac{9}{14}\), leading to the coordinates of \(P\) as \((72, -30)\).

The minimal length of rope \(HP\) is calculated as 120 meters. The original total length
of ropes \(HC\) and \(HD\) is 280 meters, so the greatest length of rope that can be saved
is \(280 - 120 = 160\) meters.

\[
\boxed{160}
\]<|end_of_sentence|>

(3012 tokens)
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Case 2: Mix-PPG(1/4)

## Stage 1 - Question Rehearsal
Okay, so I have this problem with five points: A, B, C, D, and O on a flat field. A is
north of O, B is west of O, C is south of O, and D is east of O. The distance between C
and D is 140 meters. There’s a hot-air balloon at point H directly above O. The balloon
is held by four ropes: HA, HB, HC, and HD.

Rope HC is 150 meters long, and HD is 130 meters long. The problem says we need to reduce
the total length of rope by replacing HC and HD with a single rope HP, where P is
somewhere on the line between C and D. I need to find the greatest length of rope that
can be saved.

## Stage 2 - Spatial Configuration and Equation Derivation
First, let me visualize this. Points A, B, C, D form a rectangle with O at the center. H
is directly above O, so it’s like a vertical pole. The ropes HA, HB, HC, HD are all
connected to H and go to each of these points.

Given that HC is 150 m and HD is 130 m. So the total length before replacement is 150 +
130 = 280 m. After replacement, it’s just one rope HP. So the maximum length we can save
is 280 - length of HP. So I need to find the minimum possible length of HP, which would
give the maximum saving.

So, to minimize HP, point P should be chosen such that the distance from H to P is as
small as possible. Since P is on CD, which is a straight line between C and D, which
are 140 meters apart.

Let me assign coordinates to make this easier. Let’s place O at (0,0). Then, since A is
north of O, A is (0, a) for some a. Similarly, B is west of O, so B is (-b, 0) for some b.
C is south of O, so C is (0, -c), and D is east of O, so D is (d, 0).

## Stage 3 - Step-by-Step Computation
Given that the distance between C and D is 140 m. Since C is (0, -c) and D is (d, 0), the
distance between them is sqrt((d - 0)ˆ2 + (0 - (-c))ˆ2) = sqrt(dˆ2 + cˆ2) = 140. So dˆ2 +
cˆ2 = 140ˆ2 = 19600.

Now, the balloon is at H, which is directly above O, so H is (0, h) for some h.

Given that HC is 150 m. So the distance from H to C is sqrt((0 - 0)ˆ2 + (-c - h)ˆ2) =
| -c - h | = |c + h| = 150. So c + h = 150. Similarly, HD is 130 m. So the distance from
H to D is sqrt((d - 0)ˆ2 + (0 - h)ˆ2) = sqrt(dˆ2 + hˆ2) = 130. So dˆ2 + hˆ2 = 130ˆ2 =
16900.

So now, we have two equations:

1. c + h = 150
2. dˆ2 + hˆ2 = 16900
3. cˆ2 + dˆ2 = 19600

From equation 1, c = 150 - h. Plug this into equation 3:

(150 - h)ˆ2 + dˆ2 = 19600

Expand (150 - h)ˆ2: 22500 - 300h + hˆ2

So 22500 - 300h + hˆ2 + dˆ2 = 19600
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Case 2: Mix-PPG(2/4)

But from equation 2, dˆ2 = 16900 - hˆ2. Substitute that in:

22500 - 300h + hˆ2 + (16900 - hˆ2) = 19600

Simplify:

22500 - 300h + hˆ2 + 16900 - hˆ2 = 19600

The hˆ2 terms cancel:

22500 + 16900 - 300h = 19600

Compute 22500 + 16900: 39400

So 39400 - 300h = 19600

Subtract 19600 from both sides:

39400 - 19600 - 300h = 0

19800 - 300h = 0

So 300h = 19800

h = 19800 / 300 = 66

So h is 66 meters. Then c = 150 - h = 150 - 66 = 84 meters.

Then from equation 2, dˆ2 + hˆ2 = 16900

dˆ2 + 66ˆ2 = 16900

66ˆ2 is 4356, so dˆ2 = 16900 - 4356 = 12544

So d = sqrt(12544) = 112 meters.

So now, we have h = 66, c = 84, d = 112.

## Stage 4 - Optimization Strategy
Now, point P is somewhere on CD. Let’s parameterize point P. Since CD is from C (0, -84)
to D (112, 0). So the line CD can be parameterized as (112t, -84(1 - t)) where t is from 0
to 1.

So point P is (112t, -84(1 - t)).

We need to find t such that the distance from H (0,66) to P (112t, -84(1 - t)) is
minimized.

## Stage 5 - Step-by-Step Computation
Compute the distance squared:

(112t - 0)ˆ2 + (-84(1 - t) - 66)ˆ2

= (112t)ˆ2 + (-84(1 - t) - 66)ˆ2
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Case 2: Mix-PPG (3/4)

Compute each part:

First term: (112t)ˆ2 = 12544 tˆ2

Second term: (-84 + 84t - 66) = (-150 + 84t). So squared: (-150 + 84t)ˆ2

Compute (-150 + 84t)ˆ2: 150ˆ2 - 2*150*84t + (84t)ˆ2 = 22500 - 25200t + 7056 tˆ2

So total distance squared is:

12544 tˆ2 + 22500 - 25200t + 7056 tˆ2

Combine like terms:

(12544 + 7056) tˆ2 - 25200t + 22500

Compute 12544 + 7056: 19600

So distance squared is 19600 tˆ2 - 25200t + 22500

To find the minimum, take derivative with respect to t and set to zero.

Let f(t) = 19600 tˆ2 - 25200t + 22500

f’(t) = 39200 t - 25200

Set to zero:

39200 t - 25200 = 0

39200 t = 25200

t = 25200 / 39200

Simplify: divide numerator and denominator by 2800: 25200 / 2800 = 9, 39200 / 2800 = 14

So t = 9/14

So t is 9/14. So point P is at (112*(9/14), -84*(1 - 9/14)).

Compute 112*(9/14): 112 divided by 14 is 8, so 8*9=72. So x-coordinate is 72.

Compute -84*(1 - 9/14): 1 - 9/14 = 5/14. So -84*(5/14) = -6*5 = -30. So y-coordinate is
-30.

So point P is (72, -30).

Now, compute the distance HP.

Coordinates of H: (0,66). Coordinates of P: (72, -30).

Distance squared: (72 - 0)ˆ2 + (-30 - 66)ˆ2 = 72ˆ2 + (-96)ˆ2

Compute 72ˆ2: 5184

Compute (-96)ˆ2: 9216
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Case 2: Mix-PPG(4/4)

Total distance squared: 5184 + 9216 = 14400

So distance is sqrt(14400) = 120 meters.

So the length of HP is 120 meters. Therefore, the total length saved is 280 - 120 = 160
meters.

## Stage 6 - Final Answer
**Final Answer**
The greatest length of rope that can be saved is \boxed{160} meters.
</think>

Given five points \(A\), \(B\), \(C\), \(D\), and \(O\) on a flat field, where \(A\) is
directly north of \(O\), \(B\) is directly west of \(O\), \(C\) is directly south of \(O\),
and \(D\) is directly east of \(O\). The distance between \(C\) and \(D\) is 140 meters.
A hot-air balloon is positioned at \(H\)
directly above \(O\). The balloon is held by four ropes \(HA\), \(HB\), \(HC\), and \(HD\).
Rope \(HC\) is 150 meters and rope \(HD\) is 130 meters. We need to determine the greatest
length of rope that can be saved by replacing \(HC\) and \(HD\) with a single rope \(HP\)
where \(P\) is a point on the straight line between \(C\) and \(D\).

First, we assign coordinates to the points. Let \(O\) be at \((0,0)\). Points \(A\), \(B\),
\(C\), and \(D\) are at \((0, a)\), \((-b, 0)\), \((0, -c)\), and \((d, 0)\) respectively.
The distance between \(C\) and \(D\) is 140 meters, giving us the equation \(dˆ2 +
cˆ2 = 19600\).

Given the distances \(HC = 150\) meters and \(HD = 130\) meters, we have:
1. \(c + h = 150\)
2. \(dˆ2 + hˆ2 = 16900\)
3. \(cˆ2 + dˆ2 = 19600\)

Solving these equations, we find:
- \(c = 84\) meters
- \(h = 66\) meters
- \(d = 112\) meters

Point \(P\) on \(CD\) is parameterized as \((112t, -84(1 - t))\). The distance from \(H\)
to \(P\) is minimized by finding the value of \(t\) that minimizes the distance squared
function. The minimum occurs at \(t = \frac{9}{14}\), giving point \(P\) as \((72, -30)\).

The distance \(HP\) is calculated as:
- Distance squared: \(72ˆ2 + (-96)ˆ2 = 14400\)
- Distance: \(\sqrt{14400} = 120\) meters

Thus, the greatest length of rope that can be saved is \(280 - 120 = 160\) meters.

The final answer is \(\boxed{160}\).<|end_of_sentence|>

(2830 tokens)
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Case 3: Mix-PPG with an Increased UTD Ratio

## Stage 1 - Quetion Rehearsal
First, I identify the initial lengths of ropes HC and HD. Both are given as 150 m and
130 m respectively, totaling 280 m.

Next, I analyze the new rope HP. Point P lies somewhere on the line segment CD. Since C
and D are directly south and north of O respectively, CD is a vertical line. The balloon
is positioned directly above O, so the horizontal distance from O to H is the same as the
height of the balloon.

## Stage 2 - Spatial Configuration
Using the Pythagorean theorem for triangle HCP, where HC is 150 m and CP is the variable
distance from C to P, I set up the equation:
Sqrt(140² + h²) = 150 m.

Solving for h, the height of the balloon, I find h = Sqrt(150² - 140²) = Sqrt(22100) ˜=˜
148.66 m.

Then, for triangle HDP, with DP = CD - CP = 140 - x, I set up the equation:
Sqrt(130² + h²) = Sqrt(130² + 22100).

Calculating this gives the new length of HP as sqrt(16900 + 22100) = sqrt(38200) ˜=˜
195.44 m.

Adding both new lengths gives approximately 390.88 m, compared to the original 280 m. The
difference is approximately 110.88 m, which is the maximum length of rope that can be
saved.
</think>

## Stage 3 - Step-by-Step Computation
To determine the maximum length of rope that can be saved by replacing ropes HC and HD
with a single rope HP, we analyze the situation step by step.

**Initial Setup:**
- **Ropes HC and HD:** Given lengths are 150 m and 130 m, respectively.
- **Total Initial Length:** \( 150\, \text{m} + 130\, \text{m} = 280\, \text{m} \).

**After Replacement:**
- **New Rope HP:** Point \( P \) lies on segment \( CD \), replacing \( HC \) and \( HD \).
- **Coordinates and Distances:**
- Assume \( O \) is at the origin, \( H \) is vertically above \( O \) at \( (0, h) \).
- \( C \) and \( D \) are vertically aligned with \( C \) below and \( D \) above \( O \).
- Using Pythagoras for triangles \( HCP \) and \( HDP \):
1. For \( HC \): \( \sqrt{140ˆ2 + hˆ2} = 150 \) -> \( h = \sqrt{150ˆ2 - 140ˆ2} ˜=˜ 148.66\,
\text{m} \).
2. For \( DP \): \( \sqrt{130ˆ2 + hˆ2} = \sqrt{130ˆ2 + 148.66ˆ2} ˜=˜ 195.44\, \text{m} \).

**Calculation of Savings:**
- **Total New Length:** \( 150\, \text{m} + 195.44\, \text{m} ˜=˜ 349.44\, \text{m} \).
- **Savings:** \( 280\, \text{m} - 349.44\, \text{m} = 68.56\, \text{m} \).

However, precise calculation shows maximum saving occurs when \( P \) is optimally placed,
yielding exact **60*Sqrt(10) m** (˜=˜ 187.08 m total, saving ˜=˜ 92.92 m). But standard
approach gives approximate **110.88 m** saving.

## Stage 4 - Final Answer
**Final Answer:**
\[
\boxed{110.88}
\]<|end_of_sentence|>
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