
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SQUEEZE THE SOAKED SPONGE: EFFICIENT OFF-
POLICY RFT FOR LARGE LANGUAGE MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning (RL) has demonstrated its potential to improve the reason-
ing ability of Large Language Models (LLMs), yet most existing Reinforcement
Finetuning (RFT) methods are inherently on-policy RL, failing to reuse historical
data and thus preventing efficient scaling. In this work, we explore the potential
of off-policy RL to leverage historical data for rollout-efficient RFT. Specifically,
we propose Reincarnating Mix-policy Proximal Policy Gradient (ReMix), which
enables on-policy RFT methods to leverage off-policy data. ReMix consists of
three major components: (1) Mix-policy proximal policy gradient with an increased
Update-To-Data (UTD) ratio that utilizes the data from both current and past poli-
cies for efficient training; (2) KL-Convex policy constraint that combines the KL
constraints on the base and precedent model to balance stability and flexibility;
(3) Policy reincarnation that replaces the base model with the mix-policy RFT
model in the mid way of training and restarts on-policy training, to achieve a seam-
less transition from early efficiency to steady convergence. In our experiments,
we train a series of ReMix models based on PPO, GRPO from 1.5B, 7B base
models. On five math reasoning benchmarks (i.e., AIME’24, AMC’23, Minerva,
OlympiadBench, and MATH500), ReMix achieves an average Pass@1 accuracy
of 52.10% (with 0.079M rollouts) and 64.39% (with 0.011M rollouts) on 1.5B
and 7B models, respectively. Compared with 15 recent advanced models, ReMix
shows SOTA-level performance with an over 30x to 450x reduction in training
cost in terms of rollout data volume, demonstrating superior training efficiency.
Additionally, our multifaceted analysis reveals insightful findings, including the
implicit preference for shorter responses of off-policy RFT, the collapse mode of
self-reflection under severe off-policyness, etc.

1 INTRODUCTION

The emergence of Large Language Models (LLMs) has lifted artificial intelligence to a next level,
with the milestone works like (OpenAI, 2022; Jaech et al., 2024; Bai et al., 2022a; Trung et al.,
2024; Guo et al., 2025). Consistent efforts are being made to push forward the limits of LLMs in
performing deeper thinking and solving more complex tasks (Li et al., 2025b). Recently, Large
Reasoning Models (LRMs) (Jaech et al., 2024; Guo et al., 2025; Kimi et al., 2025; Yang et al.,
2025a) have taken the stage and attracted great attention, showing that a significant improvement of
problem-solving ability can be achieved by a long human-like reasoning process (i.e., slow thinking),
especially in scenarios like Math, Coding, Scientific Q&A, etc. One of the central recipes of LRMs is
Reinforcement Finetuning (RFT) (Trung et al., 2024). By treating the LLM as a policy model, the
LLM can follow the philosophy of Reinforcement Learning (RL) (Sutton & Barto, 1998) and learn to
reason and answer the queries according to the reward signals, e.g., either from a verifiable reward
function (Guo et al., 2025) or a learned reward model (Bai et al., 2022a).

Although RFT opens another space for more powerful reasoning ability of LLMs, the longstanding
and notorious shortcoming of RL — sample inefficiency — still exists. In another word, RFT
usually needs significantly more computational cost (e.g., rollouts and training) than SFT due to
its trial-and-error nature. The inefficiency of RL poses a stringent bottleneck on time and cost,
consequently preventing further scaling of model size and response length of LLMs. Currently, policy
gradient algorithms like PPO (Schulman et al., 2017), GRPO (Shao et al., 2024), RLOO (Ahmadian
et al., 2024) are widely adopted for RFT of LLMs due to their stable learning performance and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

4.0 4.5 5.0 5.5 6.0 6.5 7.0
Rollout Data Volume (Log10)

32

36

40

44

48

52

56

Av
er

ag
e

Pe
rfo

rm
an

ce
 (P

as
s@

1)

1.5B Models

3 4 5 6 7
Rollout Data Volume (Log10)

50

55

60

65

7B Models

Models Trained on R1-Distilled Models Trained on DeepScaleR Ours

ReMix-PPO

ReMix-GRPO

ReMix-PPO

Open-RS2

Open-RS3 Open-RS1

GRPO

PPO

AdaptThink

AdaptThink

AceReason

Skywork-OR1-Preview

FastCuRL-Preview

FastCuRL-V3 DeepScaleR

L1-Max L1-Exact(100)

(100)
(100)

(200)

(350)

(500)

(900)
(200)

(50)

(50)

(200)

(75)

(25)

Figure 1: Efficiency-performance comparison for 1.5B models (left) and 7B models (right) in
terms of Rollout Data Volume (i.e., total number of responses generated during training) v.s., Average
Pass@1 Accuracy on five math reasoning benchmarks. An ideal model should appear in the top-left.

friendliness to engineering. However, they are all on-policy algorithms, which are known to be
sample inefficient as the data generated by the online policy is dropped after each iteration. In the
literature of RL, off-policy algorithms are naturally more sample efficient since they also learns from
the data generated by historical policies (i.e., experience) (Sutton & Barto, 1998; Silver & Sutton,
2025). Following this direction, recent research has begun to incorporate off-policy data in RFT in
different ways, including using nonuniform replay strategies (Li et al., 2025a), learning from positive
and negative signals asymmetrically (Roux et al., 2025; Arnal et al., 2025), proposing new learning
objectives based on generation consistency (Tang et al., 2025; Cohen et al., 2025), and learning from
demonstrations of superior models (Yan et al., 2025), etc. Despite the efforts made by these works,
off-policy RFT remains underexplored in two aspects: (1) None of these methods was compared with
SOTA models on multiple mainstream math reasoning benchmarks, leaving training efficiency and
final performance of these methods untested thoroughly; (2) The influence of off-policy learning on
the learning process of reasoning ability remains unknown, which impedes essential understanding of
off-policy learning for RFT and advancement of effective methodologies.

In this paper, we study off-policy RL for post-training finetuning of LLMs, aiming to achieve SOTA-
level reasoning ability efficiently and unbox the effects of off-policy learning for useful insights. We
propose Reincarnating Mix-policy Proximal Policy Optimization (ReMix), a general approach to
enable on-policy proximal policy gradient methods to leverage off-policy data efficiently. ReMix
consists of three major components: (1) Mix-policy proximal policy gradient with an increased
Update-To-Data (UTD) ratio (Chen et al., 2021) leverages the data generated by both current policy
and past polices for efficient training; (2) KL-Convex policy constraint (Ma et al., 2024b) combines
the KL constraints on the base model and the precedent model to balance the trade-off between
stability and flexibility during training; (3) Policy reincarnation (Agarwal et al., 2022) replaces the
base model with the mix-policy RFT model in the mid way of training and restarts on-policy training,
to achieve a seamless transition from efficient early-stage learning to steady asymptotic improvement.
Under the synergy of the three components, ReMix is able to improve the reasoning ability of LLMs
efficiently while retaining a stable and flexible training process.

In our experiments, we adopt PPO and GRPO as representative on-policy methods and implement
ReMix-PPO and ReMix-GRPO. We use DeepSeek-R1-Distill-Qwen-1.5B and -7B (Guo
et al., 2025) as the base models, and train our models based on DeepScaleR-Preview-Dataset (Luo
et al., 2025). We conduct a range of comparative evaluations against 15 recent advanced models on
five math reasoning benchmarks, including AIME’24, AMC’23, Minerva (Lewkowycz et al., 2022),
OlympiadBench (He et al., 2024), and MATH500 (Hendrycks et al., 2021). Figure 1 summarizes
the experimental results in a view of efficiency-performance comparison. Our method achieves an
average Pass@1 accuracy of 52.10% (for 1.5B model) with 0.079M response rollouts, 350 training
steps and achieves 63.27%/64.39% (for 7B model) with 0.007M/0.011M response rollouts, 50/75
training steps respectively, showing SOTA-level performance and an over 30x to 450x training cost
reduction in terms of rollout data volume. Moreover, to gain a better understanding of off-policy
learning for RFT, we conduct multifaceted studies and analysis, revealing insightful findings including
the implicit preference for shorter responses due to the Whipping Effect of off-policy discrepancy, the
collapse mode of self-reflection behavior under the presence of severe off-policyness, the performance
under response length constraint, the impact of prompt format, etc.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

Reinforcement Learning for LLM Fine-tuning Reinforcement Fine-Tuning (RFT) is a paradigm
for adapting pre-trained LLMs to specific downstream tasks using RL (Trung et al., 2024; Jaech
et al., 2024). In this paradigm, text generation is modeled as a Markov Decision Process (MDP)
M = (S,A, P,R, γ), where a state st = (q, y1:t) ∈ S is the prompt with the output generated so
far, and the action at ∈ A is the next token selected from the vocabulary V . Hence, the transition
P (st+1|st, at) is deterministic in this context. An episode start from a prompt s0 (out of a predefined
set D0) and terminate at an end-of-sequence token or by the maximum sequence length H .

The reward R(st, at) signal is issued by either a rule-based reward function or a learned reward
model. In the scope of this paper, we consider the verifiable reward function. For any non-terminal
timestep t < T − 1, R(st, at) is 0; on completion, the terminal reward, denoted by R(τ) for the
whole sequence, equals 1 if τ produces a correct and well-formatted answer and 0 otherwise. The
policy πθ(at | st) in the MDP is the LLM itself, parameterized by θ, and it defines a probability
distribution of next-token generation. We use dπθ

τ to denote the distribution of the output sequence
τ generated by πθ and use dπθ

s,a, d
πθ
s for the state-action pairs (s, a) and the state respectively. The

learning objective of an RL policy is to maximize the reward function, i.e., π∗ = argmaxπθ
J(πθ).

Proximal Policy Gradient Methods for RFT Proximal Policy Optimization (PPO) (Schulman
et al., 2017) is a canonical Policy Gradient (PG) method (Sutton & Barto, 1998) to maximize
J(πθ), which offers stable training and implementation simplicity. PPO is further developed to be
GRPO (Shao et al., 2024) with a group-based advantage estimator. The policy optimization objective
of PPO is formulated as:

LCLIP(θ) = −E
s,a∼d

πθold
s,a

[
min

(
rθ(s, a)Â(s, a), clip(rθ(s, a), 1− ϵ, 1 + ϵ)Â(s, a)

)]
, (1)

where rθ(s, a) =
πθ(a|s)
πθold (a|s)

represents the importance sampling ratio between the current policy πθ

and the old policy πθold (i.e., the policy before the update), Â(s, a) is an estimator of the advantage
function with GAE (Schulman et al., 2016) as a popular choice, and the clip ratio ϵ defines the
clipping range that determines the proximity of policy update, thereby enhancing stability. When
applying RL for LLM, a KL-divergence penalty is often added to prevent the policy from deviating
too far from a reference model πbase, e.g., the SFT model. The complete objective is:

LPPO(θ) = E
s∼d

πθold
s,a

[
LCLIP(θ) + cH[πθ](s)

]
+ β · E

s∼d
πθold
s

[DKL(πθ(· | s)||πbase(· | s))]︸ ︷︷ ︸
LKL(θ;πbase)

, (2)

where H[πθ](s) is the entropy of the policy πθ at state s, DKL is the KL metric, and c, β are weighting
coefficients. In this work, we view both PPO, GRPO, and other variants of PPO as Proximal Policy
Gradient (PPG) methods.

3 REINCARNATING MIX-POLICY PROXIMAL POLICY OPTIMIZATION

In this section, we introduce our method, Reincarnating Mix-policy Proximal Policy Optimization
(ReMix), for efficient and stable RFT of LLMs. Specifically, ReMix consists of three synergistic
innovations: (1) Mix-policy proximal policy gradient with an increased Update-To-Data (UTD) ratio
for efficient training (Section 3.1); (2) KL-Convex policy constraint to balance stability and flexibility
(Section 3.2); (3) Policy Reincarnation for a smooth transition from efficient early learning to stable
asymptotic improvement (Section 3.3). We introduce the three components below.

3.1 MIX-POLICY PROXIMAL POLICY GRADIENT WITH INCREASED UTD RATIO

While proximal policy gradient methods like PPO, GRPO deliver strong performance in RFT, the
on-policy nature of these methods leads to a significant bottleneck on data utilization. To address this
inefficiency, we trace back to the off-policy RL literature. To be specific, we revisit the generalized
proximal gradient theory (Queeney et al., 2021), which allows proximal gradient methods to make
use of historical trajectories generated during the past policy optimization process.

In this work, we launch the renaissance of off-policy RL for RFT and introduce an On-/Off-policy
Mixed Proximal Policy Gradient method (Mix-PPG) that strategically leverages both off-policy and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

On-policy PPG

Mix-PPG

ReMix

Mix-PPG

Off-policy PPG
Mix-PPG

w/ high UTD

Space of Good Models

Base
Model

Figure 2: The conceptual illustration of RFT for LLMs with different proximal policy gradient
(PPG) methods. Starting from a base model, (1) on-policy PPG methods (e.g., PPO, GRPO) train
stably, yet uses data inefficiently. (2) Off-policy PPG is data-efficient. However, naively adopting
it leads to a collapse. (3) To strike a balance, we introduce Mix-PPG, which boosts early-stage
performance but still faces a slow asymptotic improvement and even a collapse when adopting a high
UTD ratio. (4) Therefore, we propose policy reincarnation and introduce ReMix, which achieves
better efficiency at no compromise of final performance.

on-policy data within a unified objective function. Formally, for policy at training step k, the mini-
batch training data are sampled from a mixture of sources: the trajectories generated by historical
policies (i.e., πk−i for i ∼ ν), and the trajectories of the current policy (i.e., πk). This hybrid sampling
strategy balances two competing purposes: (1) Data Reuse: Exploiting past trajectories reduces the
autoregressive rollout and inference overhead; (2) Distribution Alignment: Maintaining sufficient
on-policy samples prevents training instability and degradation due to the divergence from the current
state-action distribution. The policy optimization objective function can be formalized as:

LMix-PPG
k (θ) = −Ei∼ν

[
E
(s,a)∼d

πk−i
s,a

min
(
rk−i
θ (s, a)Aπk(s, a),

clip
(
rk−i
θ (s, a),

πk(a | s)
πk−i(a | s)

− ϵ,
πk(a | s)
πk−i(a | s)

+ ϵ

)
Aπk(s, a)

)]
, (3)

where i ∼ ν with i ∈ {0, 1, . . . , N} is a combined distribution over historical policy indices πk−i

and the current policy πk (i.e., when i = 0), the importance sampling ratio rk−i
θ (s, a) = πθ(a|s)

πk−i(a|s) .
Notably, we incorporate a sampling strategy to strike a balance between training stability and efficient
data utilization by using a portion p of off-policy data drawn from πk−i and 1 − p on-policy data
drawn from πk with p ∈ [0, 1]. A theoretical discussion on ν can be found in Appendix D.2. Now, we
are ready to replace the on-policy policy optimization objective, e.g., the LClip(θ) term in Eq. 2, with
the Mix-PPG objective LMix-PPG

k (θ) for efficient data utilization. One thing to note is, we found that
explicitly maintaining the portion of on-policy data at a sufficient level is critical to effective training,
as much off-policyness data will lead to a degradation or even collapse (as depicted in Figure 2).

To further improve sample efficiency, we leverage an increased Update-To-Data (UTD) ratio (Chen
et al., 2021), defined originally as the number of gradient updates per environment interaction step.
Specifically, we use a UTD ratio m, i.e., performing repeated gradient updates on sampled data
batches for m times, thereby further reducing fresh environment interaction demands.

3.2 KL-CONVEX POLICY CONSTRAINT

Conventional RFT imposes a static KL-constraint regularization on deviations from the base pre-
trained model πbase. This rigid static constraint fails to accommodate evolving policy distributions,
which could lead to suboptimal updates during the dynamic learning process.

Inspired by the recent study (Ma et al., 2024b), we propose to dynamically update the anchor objective
to a convex combination of πk−1 and πbase. On the one hand, by constraining the policy within the
support of πbase, we enforce behavioral consistency with foundational capabilities, thereby preventing
catastrophic forgetting of core skills. On the other hand, the constraint imposed on πk−1 serves as a
dynamic adaptation to the policy’s current knowledge frontier. It facilitates iterative refinement of the
policy and enables the policy to continuously evolve and improve steadily. With this mechanism, the
policy can leverage the strengths of both the pre-trained model and the iterative refinement process.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Specifically, we reconcile the KL-constraint in RFT via a KL-convex policy constraint (KLC),
which modifies the essential optimization objective described in Eq. 2 by replacing the conventional
LKL(θ;πbase) with the KL-convex constraint term as formulated below:

LKLC(θ;πbase, k) = Es

[
λDKL

(
πθ(·|s) ∥ πbase(·|s)

)
+ (1− λ)DKL

(
πθ(·|s) ∥ πk−1(·|s)

)]
, (4)

where λ ∈ [0, 1] balances base-model alignment and behavioral consistency with recent policy πk−1.
This convex combination preserves foundational capabilities while enabling targeted adaptation, act-
ing as a conservative regularizer against over-specialization. We provide more theoretical discussion
on KLC loss in Appendix D.3. Empirically, we found that using a decaying λ consistently beat a
fixed one. A linear decay schedule works well while other forms (e.g., exponential decay) did not
make a significant difference.

3.3 POLICY REINCATENATION

While the mix-policy proximal PG method proposed above accelerates early-stage training, the off-
policy bias in it can inevitably limit the asymptotic performance, as the empirical evidence later shown
in Figure 4. Inspired by Reincarnating RL (Agarwal et al., 2022), we propose Policy Reincarnation
in the context of RFT for LLMs, to seamlessly combine the advantage of both off-policy RL and
on-policy RL, thus being more efficient at no cost of asymptotic performance.

To be specific, the training process consists of the Mix-PPG stage and the reincarnating on-policy PPG
stage. First, the initial policy model is trained for a predetermined T steps of gradient update according
to the proposed Mix-PPG algorithm for quick improvement of policy performance. Thereafter, the
reincarnation happens through two changes to the training setting: (1) reset the base model from
the initial reference model πbase to the current policy model πT (which alters the conventional KL
constraint term), and (2) switch Mix-PPG to a on-policy PPG method (e.g., PPO or GRPO).

Finally, by composing Mix-PPG (Eq. 3), KL-convex policy constraint (Eq. 4), and policy reincarna-
tion, we arrive at the complete method proposed in this paper, i.e., Reincarnating Mix-policy Proximal
Policy Optimization (ReMix), as follows:

LReMix(θ) =

{
Ed

πθ
s,a

[
LMix-PPG(θ) + cH[πθ](s)

]
+ β · LKLC(θ;πbase, t) if t ≤ T ;

Ed
πθ
s,a

[
LPPO(θ) + cH[πθ](s)

]
+ β · LKLC(θ;πT , t) otherwise.

(5)

Note that t is the number of batch training steps and the two changes that occur upon policy
reincarnation are highlighted in blue and red respectively. In Eq. 5, we use PPO as the on-policy PPG
method for demonstration. For the case of GRPO, one can replace the advantage estimation in both
LMix-PPG and LPPO with the group-based estimation, as done in our experiments.

The efficacy of ReMix is two-fold. First, it leverages the advantages of Mix-PPG and on-policy PPG
in boosting early-stage training and stable asymptotic improvement respectively, by establishing a
seamless transition between the two stages. Second, the KL-convex policy constraint and the reset
of the base reference model for KL constraint (i.e., πbase → πT) upon policy reincarnation offers
a dynamics and looser constraint compared to the conventional static KL constraint, allowing fast
policy training and a larger policy optimization space. For an intuitive understanding, we provide a
conceptual illustration of RFT with different proximal PG methods in Figure 2.

4 EXPERIMENTS

In this section, we empirically evaluate the efficacy of ReMix on a range of commonly adopted Math
reasoning benchmarks in terms of both accuracy and efficiency (Section 4.2), along with ablation
studies (Section 4.3) and multifaceted analyses (Section 4.4 and Appendix L). In addition, we provide
extensive evaluation regarding more evaluation metrics, code generation, base RFT algorithms, etc.

4.1 EXPERIMENTAL SETUP

Training We use DeepSeek-R1-Distill-Qwen-1.5B and -7B (Guo et al., 2025) as the
base models in our experiments. For implementation, we adopt PPO and GRPO as two representative
on-policy proximal PG methods in our experiments, resulting in ReMix-PPO and ReMix-GRPO.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We use DeepScaleR-Preview-Dataset (Luo et al., 2025), which comprises approximately 40,000
unique problem-answer pairs sourced from AIME (1984–2023), AMC (prior to 2023), the Omni-
MATH dataset (Gao et al., 2025), and the Still dataset (Min et al., 2024). We use the DeepScaleR’s
prompt format by default, instructing the LLM to follow structured step-by-step reasoning and
produce a verifiable \boxed{} final answer. Full templates and instances are provided in Appendix G.

Our experiments are conducted using the verl1 framework and the codebase derived from
tinyzero2. For ReMix, we use an off-policy data portion p = 0.4, a UTD ratio m = 2, a
historical policy window size N = 2, and we set the policy reincarnation step point to T ∈ {50, 100}
for ReMix-PPO and T = 50 for ReMix-GRPO. The KL-Convex coefficient λ decays with training
steps t as λ(t) = max(1− 0.1 · ⌈max(t− 50, 0)/10⌉, 0.5). We use these configurations by default,
except in hyperparameter analysis. Prompts are truncated to 766 tokens, and the maximum generation
length is 8,192 tokens. The detailed hyperparameter choices are presented in Table 9.

Evaluation We evaluate the performance of different models on a series of mathematical reasoning
benchmarks, including AIME’24, AMC’23, Minerva (Lewkowycz et al., 2022), OlympiadBench (He
et al., 2024), and MATH500 ((Lightman et al., 2023)) (None of these datasets are contained in our
train set). During evaluation, we feed the entire context into the evaluation function. The models
in comparison use the same generation settings as in training, except the do sample parameter
is set to false, resulting in greedy decoding. For the evaluation of baseline methods, we use the
officially released checkpoints from HuggingFace to ensure fair results; for our models, we use the
best checkpoints obtained within a specific training step budget, e.g., ReMix-PPO (200 Steps).

In our experiments, we focus on the evaluation of ReMix in terms of both model performance and
training efficiency. For model performance, we mainly use Pass@1 accuracy, and Avg@32 for small
datasets (AIME’24 and AMC’23) in Appendix J. For training efficiency, we evaluate the models
mainly in terms of rollout data volume, defined as the total number of rollouts generated by the
model during training, which is usually the dominant source of computational cost during training in
practice. We also use training steps (i.e., the number of rollout prompt batches) and training duration
(i.e., the actual elapsed wall-clock time) as additional aspects for efficiency evaluation.

The detailed introduction of the compared baselines is provided in Appendix F. We also provide the
discussion on related off-policy methods that are infeasible to compare with in Appendix F.3. For
other training details, please refer to Appendix I.

4.2 PERFORMANCE EVALUATION FOR MATH REASONING

The performance evaluation in terms of Pass@1 accuracy on five math reasoning benchmarks are
shown in Table 1 and Table 2, our method ReMix achieves consistent and substantial improvements
over the base 1.5B/7B model on all five benchmarks. For ReMix-PPO, it achieves an average
performance gain of 14.52 points and 12.31 points over 1.5B and 7B base models respectively,
achieving the second-best average score for 1.5B and the best for 7B among all the baselines.
In addition, compared with PPO (900 Steps, 1.5B) and PPO (200 Steps, 7B), our model achieves
higher average scores within 100 steps for 1.5B and 50 steps for 7B. Similarly, our model exceeds
GRPO (100 Steps, 1.5B) and GRPO (200 Steps, 1.5B) within 50 and 200 training steps, respectively.
This indicates that ReMix is able to achieve competitive reasoning ability efficiently with overall no
compromise in accuracy and even showing a higher accuracy.

More importantly, we move on to the evaluation in terms of training efficiency. This is shown in the
last volume (i.e., Cost) of Table 1 and 2, and notably, Figure 1 illustrates the efficiency–accuracy
trade-off in terms of rollout data volume (log10 scale) versus average Pass@1 accuracy, where
the scores are out of Table 1 and 2 (i.e., Avg. and Cost). In the ideal case, the model should appear in
the top-left corner of the plot. To ensure a fair comparison, the rollout data volume of square-marked
models (which means the models fine-tuned upon DeepScaleR) includes the data cost of training
DeepScaleR itself. For ReMix-GRPO and GRPO, we report results after 200 training steps due to
computational resource constraints.

Specifically, for 1.5B models, ReMix-PPO matches DeepScaleR, the strongest competitor, with
just 0.079M vs. 2.519M rollouts, over a 30× reduction in rollout data volume. Also, ReMix-PPO

1https://github.com/volcengine/verl
2https://github.com/Jiayi-Pan/TinyZero

6

https://github.com/volcengine/verl
https://github.com/Jiayi-Pan/TinyZero

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Pass@1 accuracy (%) and training cost (in terms of Rollout Data Volume) of 1.5B
models. Bolded and underlined values denote the highest and the second-highest scores in each
dataset (i.e., column). ‘-’ denotes that not enough information was found. ReMix achieves better
average scores than both the standard PPO and GRPO in a significantly more efficient manner.

Model AIME’24 AMC’23 MATH500 Minerva Olympiad Avg. Cost
R1-Distill-Qwen-1.5B (Base) 33.33 43.37 67.40 16.54 27.26 37.58 N/A

Open-RS1 23.33 42.17 64.20 16.18 27.11 34.60 0.058M
Open-RS2 16.67 45.78 65.00 18.38 26.96 34.56 0.029M
Open-RS3 16.67 44.58 67.60 15.64 25.48 33.99 0.029M
AdaptThink 13.33 57.83 78.60 23.90 38.07 42.35 0.643M
II-Thought 26.67 56.63 73.00 23.16 40.89 44.07 -
FASTCuRL-preview 26.67 60.24 74.20 20.22 32.59 42.78 0.676M
FASTCuRL-V3 36.67 66.27 84.40 28.67 43.56 51.91 2.478M
L1-Exact* 23.33 71.08 84.00 29.41 44.59 50.48 3.953M
L1-Max* 20.00 69.88 83.00 29.04 46.37 49.66 2.764M
DeepScaleR 40.00 65.06 83.20 29.04 43.41 52.14 2.519M

GRPO (100 Steps) 30.00 56.63 75.80 25.37 38.22 45.20 0.205M
GRPO (200 Steps) 36.67 61.45 80.00 25.37 39.70 48.64 0.410M
ReMix-GRPO (50 Steps) 23.33 57.83 80.40 26.10 39.70 45.47 0.061M
ReMix-GRPO (100 Steps) 23.33 62.65 82.00 28.68 39.70 47.27 0.163M
ReMix-GRPO (200 Steps) 33.33 65.06 84.60 26.10 43.55 50.53 0.368M

PPO (500 Steps) 36.67 62.65 82.60 25.73 40.14 49.56 0.128M
PPO (900 Steps) 30.00 69.88 84.00 25.74 43.41 50.61 0.230M
ReMix-PPO (100 Steps) 43.33 63.86 79.60 26.84 39.41 50.61 0.020M
ReMix-PPO (200 Steps) 46.67 62.65 82.20 26.10 40.74 51.67 0.041M
ReMix-PPO (350 Steps) 36.67↑3.34 69.88 ↑26.51 82.00↑14.60 30.15↑13.61 41.78↑14.52 52.10↑14.52 0.079M

Table 2: Pass@1 accuracy (%) and training cost (in terms of Rollout Data Volume) of 7B models.
ReMix-PPO achieves the best average score within 75 training steps.

Model AIME’24 AMC’23 MATH500 Minerva Olympiad Avg. Cost
R1-Distill-Qwen-7B (Base) 33.33 68.68 83.80 30.15 44.44 52.08 N/A

ReasonFlux-F1 20.00 54.22 77.20 29.04 37.04 43.50 -
Light-R1 30.00 66.27 87.00 34.56 47.56 53.08 -
Skywork-OR1-Preview 43.33 63.86 84.40 29.41 46.22 53.44 >8.192M
Polaris 40.00 63.86 87.60 36.40 48.00 55.17 -
AdaptThink 46.67 75.90 87.60 33.46 50.22 58.77 0.307M
AceReason-Nemotron 60.00 80.72 89.00 36.40 50.07 63.24 >3.584M

ReMix-GRPO (75 Steps) 63.88 90.60 80.72 40.07 53.78 65.81 0.046M
ReMix-GRPO (200 Steps) 64.37 91.60 81.93 39.34 53.19 66.09 0.163M

PPO (50 Steps) 33.33 71.08 87.20 36.03 48.00 55.13 0.013M
PPO (100 Steps) 40.00 77.11 90.00 35.66 51.56 58.87 0.026M
PPO (200 Steps) 53.33 78.31 87.00 34.19 48.88 60.34 0.051M
ReMix-PPO (25 Steps) 36.67 78.31 89.00 38.24 50.22 58.49 0.003M
ReMix-PPO (50 Steps) 56.66 79.52 88.60 38.97 52.59 63.27 0.007M
ReMix-PPO (75 Steps) 63.33↑30.00 78.31↑9.63 90.20↑6.40 37.50↑7.35 52.59↑8.15 64.39↑12.31 0.011M

reaches 50.61 after 0.020M rollouts, 10× fewer than PPO (50.61 at 0.230M), highlighting rapid early
gains. For 7B models, ReMix-PPO topping AceReason-Nemotron with over a 450× reduction
in rollout data volume, and outperforming PPO with a 6× reduction. Notably, the average rollout
response length of ReMix is lower than the baseline models (see Fig. 4), hence the exact efficiency
should be higher. The corresponding detailed factors associated with computational cost for training
all compared models above are shown in Appendix I.

Takeaway 1. ReMix can learn strong reasoning ability in a highly efficient way.

ReMix achieves SOTA-level accuracies at 1.5B and 7B scales on five math reasoning bench-
marks, with an over 6x to 10x reduction in rollout data volume when outperforming PPO and
an over 30x to 450x reduction when performing on par with (or exceeding) the best baseline.

4.3 ABLATION STUDIES

To assess the contribution of each components in ReMix, we conduct ablation studies focusing on
both training dynamics and final performance. We use ReMix-PPO for the ablation studies.

The results of the ablation studies regarding Pass@1 accuracy are presented in Table 3. First, when
Mix-PPG, the core of ReMix, is ablated, the method degenerates to PPO since it does not make sense

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Ablation studies regarding Pass@1 accuracy. The three components of ReMix work in
synergy for both efficiency and final performance.

Model AIME’24 AMC’23 MATH500 Minerva Olympiad Avg.
R1-Distill-Qwen-1.5B (Base Model) 33.33 43.37 67.40 16.54 27.26 37.58

PPO (500 Steps) 36.67 62.65 82.60 25.73 40.14 49.56
ReMix-PPO (350 Steps) 36.67 69.88 82.00 30.15 41.78 52.10
ReMix-PPO w/o UTD 36.67 62.65 82.20 28.68 42.96 50.63
ReMix-PPO w/o KL-Convex 30.00 65.06 81.60 27.94 42.22 49.36
ReMix-PPO w/o Policy Reincarnation 20.00 67.47 82.00 26.84 40.00 47.26
ReMix-PPO w/o UTD, KL-Convex, Policy Reincarnation 40.00 57.83 80.40 25.74 39.55 48.70

0 20 40 60 80 100 120
Rollout Data Volume(K)

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Pa
ss

@
1

Rollout Data Volume

0 100 200 300 400 500
Steps

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
Training Steps

0 10 20 30 40 50
Time(hours)

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
Training Duration

ReMix-PPO PPO

6x 4x 4x

Figure 3: Training efficiency comparison for ReMix-PPO and PPO (1.5B) on Olympiad. We
evaluate training efficiency across three dimensions: rollout data volume, training steps, and training
duration. ReMix achieves a score above 40%, around 4× to 6× faster than PPO.

any longer to apply other components of ReMix. Removing any single component among increased
UTD, KL-Convex, and policy reincarnation leads to a final average score comparable to PPO but
lower than ReMix within 500 training steps, Dropping policy reincarnation hurt the most among the
three ablations. Further, when Mix-PPG works solely, it leads to an even lower score.

This reflects the off-policy nature in Mix-PPG: although it significantly increases the training effi-
ciency, the off-policyness bias may hinder the convergence performance. The superiority in efficiency
brought by Mix-PPG can be observed by referring to the first subplot of Figure 4: Mix-PPG shows a
somewhat surprising boost of Pass@1 accuracy within the first 100 training steps, which an increased
UTD further enhances it; while the KL-Convex and policy reincarnation in ReMix contribute to the
steady asymptotic improvement.

Takeaway 2. The three components work in synergy for efficiency and final performance.

Mix-PPG with an increased UTD boosts early-stage training significantly, while policy
reincarnation plays a critical role to ensure asymptotic improvement.

Training Curves In addition to the efficiency evaluation in terms of rollout data volume, we present
the training curves for ReMix-PPO and PPO in Figure 3 on Olympiad regarding two more efficiency
aspects, i.e., training steps and wall-clock time. Our method demonstrates superior training efficiency
by achieving a score above 40 on Olympiad with a 6x and 4x reduction in rollout data volume and
wall-clock time. We provide more training curves for the other four benchmarks in Appendix K.

4.4 ANALYSIS ON THE EFFECTS OF OFF-POLICY RL FOR LLM RFT

In this subsection, we present an empirical analysis to gain better understanding of the effects of
off-policy RL on LLM RFT. For convenience, we use ReMix-PPO for the analysis in the following.

To delve into the influence of off-policy RL enabled by ReMix on the reasoning behaviors during the
learning process of LLMs, we make use of two more metrics: relative response length (against the
training dynamics of PPO), and self-reflection rate that is calculated according to the occurrence of
reflection tokens (e.g., ‘verify’, ‘check’, ‘but’, ‘wait’, etc.). Moreover, we compare PPO, ReMix-PPO,
Mix-PPG and Mix-PPG with an increased UTD. The results are shown in Figure 4.

The vanilla PPO shows a steady increase of Pass@1 accuracy as well as a decrease in response
length, while maintaining a self-reflection rate near 1. Mix-PPG accelerates early training but yields
inferior asymptotic performance (see more in Figure 9), with a clear drop in response length and
self-reflection rate. When applying an increased UTD ratio, Mix-PPG speeds further yet shows a

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500
Steps

0.60

0.65

0.70

0.75

0.80

0.85

Pa
ss

@
1

Math500 Accuracy

0 100 200 300 400 500
Steps

1000

2000

3000

4000

5000

6000

To
ke

ns

Response Length

0 100 200 300 400 500
Steps

3000

2500

2000

1500

1000

500

0

500

1000

To
ke

ns

Relative Response Length

0 100 200 300 400 500
Steps

0.5

0.6

0.7

0.8

0.9

1.0
Self-Reflection

PPO ReMix-PPO Mix-PPG Mix-PPG with an Increased UTD Ratio

Figure 4: Training dynamics regarding accuracy, response length, self-reflection rate for on-
policy v.s. off-policy training. ReMix shows a merged learning behavior and perfectly combines
the superior efficiency and the asymptotic improvement thanks to the policy reincarnation.

destructive degradation after 200 steps, accompanied by a sharp decrease in response length and
self-reflection rate. This pathology drives the model to generate a final answer without adequate
intermediate deliberation, resulting in a drop of accuracy. Please see Appendix N for detailed cases.

ReMix seems to perfectly combine the early-stage efficiency of Mix-PPG with an increased UTD and
the asymptotic improvement of PPO, thanks to policy reincarnation. Throughout training, ReMix first
quickly decreases the response length and improve its accuracy in the early stage; it then lengthens
responses and uses more reflection for careful exploration and further improvement of accuracy.

Takeaway 3. A trade-off between efficiency and final performance needs to be balanced
when incorporating off-policy training in RFT.

More off-policy training leads to a faster early-stage boost with a larger policy shift, leading to
shorter responses and quicker unlearning of self-reflection, consequently damaging reasoning
performance. ReMix well leverages off-policy efficiency at no compromise of final accuracy.

The Implicit Preference of Off-policy Learning for Shorter Responses To take a further step
on why off-policy learning leads to the observed reasoning behaviors, we conduct a formal analysis
on the learning dynamics when optimizing the Mix-PPG loss function LMix-PPG

k (θ) (shown in Eq. 3).
Similarly as in (Fatemi et al., 2025), the average loss of Mix-PPG can be formulated below:

LMix-PPG
Avg =

1

H

H∑
h=0

LMix-PPG
h ∝ − 1

H

H∑
h=0

rk−i
θ Aπk

h (6)

A simple derivation is provided in Appendix D.4. With the equation above, we can find: when the
advantage estimate is negative, the model learns to minimize the loss by steering its policy to achieve
a lower importance sampling ratio. As the policy loss is almost always positive (as in Figure 10), the
advantage estimates are negative most of the time in our experiments. Also, the importance sampling
ratio stays above one empirically (as in Figure 9), directly amplifies the loss term. Since the average
loss is computed based on the data of historical policy πk−i, there apparently exists a Whipping Effect:
the longer the response is, the larger the distribution shift should be on later states. Consequently, the
model tends to prefer shorter responses to reduce the loss associated with long rollout trajectories.
This tendency is further amplified as the proportion of off-policy data increases.

4.5 MORE RESULTS ON PASS@K METRICS, CODE GENERATION, OTHER BASE ALGORITHMS

Pass@K Evaluation In the experiments above, we mainly use Pass@1 accuracy (as well as
Avg@32) as the evaluation metric. As advocated in (Yue et al., 2025), we extend our evaluation by

Table 4: Pass@8 / Pass@16 accuracy (%) of 1.5B models on five reasoning benchmarks.
Model AIME’24 AMC’23 MATH500 Minerva Olympiad Avg.
R1-Distill-Qwen-1.5B (Base, Pass@8) 20.00 44.58 73.00 19.12 31.70 37.68
ReMix-PPO (Pass@8) 30.00 68.67 84.60 28.68 46.67 51.72

R1-Distill-Qwen-1.5B (Base, Pass@16) 20.00 48.19 75.40 18.75 32.59 38.99
ReMix-PPO (Pass@16) 30.00 72.29 86.80 30.15 46.96 53.24

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 5: Pass@8 / Pass@16 accuracy (%) of 7B models on five reasoning benchmarks.
Model AIME’24 AMC’23 MATH500 Minerva Olympiad Avg.
R1-Distill-Qwen-7B (Base, Pass@8) 63.33 83.13 93.80 47.79 55.11 68.63
ReMix-PPO (Pass@8) 76.67 92.77 95.80 50.74 63.70 75.94

R1-Distill-Qwen-7B (Base, Pass@16) 73.33 85.54 94.80 51.10 57.19 72.39
ReMix-PPO (Pass@16) 80.00 92.77 95.40 53.31 65.33 77.36

Table 6: Performance evaluation of ReMix based on Dr.GRPO. Pass@1 accuracy (%) on five
benchmarks (Avg@32 for AIME’24/AMC’23). The max response length is 4096.

Model AIME’24 AMC’23 MATH500 Minerva Olympiad Avg. Cost
R1-Distill-Qwen-1.5B (Base Model) 9.38 32.42 63.40 18.75 22.67 29.32 N/A

Dr.GRPO (350 steps) 21.25 63.10 79.40 27.21 41.33 46.48 0.358 M
Dr.GRPO (400 steps) 26.25 59.94 80.60 26.57 41.03 46.86 0.409 M
ReMix-Dr.GRPO (325 steps) 26.25 63.25 81.60 27.21 41.63 47.09 0.291 M
ReMix-Dr.GRPO (400 steps) 28.75 62.65 82.00 27.74 42.96 48.42 0.368 M

using Pass@8/16 accuracy here. The results are summarized in Table 4 and 5. We can observe that
ReMix-PPO effectively improves both the Pass@8 and Pass@16 accuracies of the base model.

ReMix for Dr.GRPO To further examine the generalization of ReMix regarding different base
algorithms, we evaluate the effect of ReMix based on Dr.GRPO (Liu et al., 2025b). For the con-
venience of experimentation, we use DeepSeek-R1-Distill-Qwen-1.5B as the base model
and set the max response length to 4096. We evaluate the models with sampling temperature of 0.7.
All other experimental settings follow those in Section 4.1. The results show that ReMix-Dr.GRPO
delivers consistent improvements over Dr.GRPO with higher efficiency, mirroring the finding in our
main evaluation above. This demonstrates the generality of ReMix as an effective drop-in method.

Table 7: Performance evaluation of ReMix
for code generation. Pass@1 accuracy (%) on
LiveCodeBench(8/1/24-2/1/25).

Model LiveCodeBench Cost
R1-Distill-Qwen-1.5B (Base) 12.09 N/A

PPO (375 Steps) 19.35 0.096M
ReMix-PPO (300 Steps) 20.07 0.066M
ReMix-PPO (475 Steps) 24.01 0.111M

R1-Distill-Qwen-7B (Base) 26.16 N/A

PPO (200 Steps) 33.33 0.051M
ReMix-PPO (100 Steps) 34.41 0.015M

ReMix for Code Generation Beyond Math
reasoning, we move on to code generation to
evaluate the domain generalization of ReMix.
We use Skywork-OR1-RL-Data (He et al., 2025)
for training. We set the max prompt length
to 1600 because coding prompts are longer
than math tasks. We evaluate our models
on LiveCodeBench(8/1/24-2/1/25) (Jain et al.,
2025) with sampling temperature of 0.7. All
other experimental settings follow those in Sec-
tion 4.1. The results are shown in Table 7. For
both 1.5B and 7B scales, ReMix-PPO improves
PPO while using much less cost, which aligns with our observation in the Math reasoning domain.
This demonstrates the generalization ability of our method across both domains.

ReMix for Llama-series Base Model In addition to the Qwen-series base model used above, we
also evaluate the effect of ReMix based on DeepSeek-R1-Distill-Llama-8B in Table 16 in
the appendix. Similarly, we found that ReMix-PPO improves the performance of the base model and
outperforms PPO in terms of both score and efficiency.

Other Analysis We provide more analysis on the performance under response length constraint,
the impact of prompt format, etc. Please refer to Appendix L for complete analysis results.

5 CONCLUSION

In this paper, we aim to address the notorious drawback of on-policy RFT methods (e.g., PPO and
GRPO) on training inefficiency and prohibitive computational cost. We launch the renaissance of
off-policy RL and propose Reincarnating Mix-policy Proximal Policy Gradient (ReMix), a general
approach to enable on-policy RFT methods like PPO and GRPO to leverage off-policy data. In our
experiments, we implement ReMix upon PPO, GRPO, and 1.5B-, 7B-scale base models. Through
evaluating the reasoning accuracy and training efficiency of ReMix on five math reasoning benchmarks
against 15 recent advanced baseline models, we demonstrate the superiority of ReMix in improving
training efficiency and achieving SOTA-level reasoning performance with a great reduction in training
cost. Due to the space constraint, we provide the discussion on limitations in Appendix C.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We adhere to the code of ethics and the general principles. Our study fine-tunes publicly released
LLM using reinforcement learning to improve mathematical reasoning, which involves no human
subjects, user studies, or personal data. All datasets used for training and evaluation are publicly
available. These resources contain no personally identifiable information or otherwise harmful
information.

To mitigate potential risk, our release will be research-only. The authors declare no conflicts of
interest and no sponsorship that would unduly influence the research.

REPRODUCIBILITY STATEMENT

For reproducibility, we release an anonymous repository (https://anonymous.4open.
science/r/anonymous-remix-2025) containing evaluation pipelines and our trained mod-
els. All experimental settings, hyperparameters and datasets are listed in Subsection 4.1 and Ap-
pendix I; descriptions of compared baselines can be seen in Appendix F. All datasets, base models
and baselines we used are publicly available in HuggingFace.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, and Marc G. Bellemare.
Reincarnating reinforcement learning: Reusing prior computation to accelerate progress. In
NeurIPS, 2022.

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce-style optimization for learning
from human feedback in llms. In ACL, pp. 12248–12267, 2024.

Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing
Xu, Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. Polaris: A post-training recipe for
scaling reinforcement learning on advanced reasoning models, 2025. URL https://hkunlp.
github.io/blog/2025/Polaris.

Charles Arnal, GaĂŤtan Narozniak, Vivien Cabannes, Yunhao Tang, Julia Kempe, and Remi Munos.
Asymmetric reinforce for off-policy reinforcement learning: Balancing positive and negative
rewards. arXiv preprint arXiv:2506.20520, 2025.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022a.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
from ai feedback. arXiv preprint arXiv:2212.08073, 2022b.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W Ross. Randomized ensembled double q-learning:
Learning fast without a model. In ICLR, 2021.

Yang Chen, Zhuolin Yang, Zihan Liu, Chankyu Lee, Peng Xu, Mohammad Shoeybi, Bryan Catanzaro,
and Wei Ping. Acereason-nemotron: Advancing math and code reasoning through reinforcement
learning. arXiv preprint arXiv:2505.16400, 2025.

Taco Cohen, David W Zhang, Kunhao Zheng, Yunhao Tang, Remi Munos, and Gabriel Synnaeve. Soft
policy optimization: Online off-policy rl for sequence models. arXiv preprint arXiv:2503.05453,
2025.

Quy-Anh Dang and Chris Ngo. Reinforcement learning for reasoning in small llms: What works and
what doesn’t. arXiv preprint arXiv:2503.16219, 2025.

11

https://anonymous.4open.science/r/anonymous-remix-2025
https://anonymous.4open.science/r/anonymous-remix-2025
https://hkunlp.github.io/blog/2025/Polaris
https://hkunlp.github.io/blog/2025/Polaris

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA:
scalable distributed deep-rl with importance weighted actor-learner architectures. In ICML,
volume 80, pp. 1406–1415, 2018.

Mehdi Fatemi, Banafsheh Rafiee, Mingjie Tang, and Kartik Talamadupula. Concise reasoning via
reinforcement learning. arXiv preprint arXiv:2504.05185, 2025.

S. Fujimoto, H. v. Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In ICML, volume 80, pp. 1582–1591, 2018.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghaoran Quan,
Ge Zhang, Lei Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, and Baobao Chang. Omni-math:
A universal olympiad level mathematic benchmark for large language models. In ICLR, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In ICML, pp. 1861–1870.
Pmlr, 2018.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. OlympiadBench: A
challenging benchmark for promoting AGI with olympiad-level bilingual multimodal scientific
problems. In ACL, pp. 3828–3850, 2024.

Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang
Zhang, Jiacheng Xu, Wei Shen, Siyuan Li, Liang Zeng, Tianwen Wei, Cheng Cheng, Bo An, Yang
Liu, and Yahui Zhou. Skywork open reasoner 1 technical report. arXiv preprint arXiv:2505.22312,
2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
NeurIPS, 2021.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In Sheila A. McIlraith and Kilian Q. Weinberger
(eds.), AAAI, pp. 3215–3222, 2018.

Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and Yoshimasa Tsuruoka.
Dropout q-functions for doubly efficient reinforcement learning. arXiv preprint arXiv:2110.02034,
2021.

Intelligent-Internet. Ii-thought. https://ii.inc/web/blog/post/ii-thought, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. In ICLR, 2025.

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung. Towards mitigating
hallucination in large language models via self-reflection. arXiv preprint arXiv:2310.06271, 2023.

Kimi, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao,
Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with llms.
arXiv preprint arXiv:2501.12599, 2025.

12

https://ii.inc/web/blog/post/ii-thought

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. NeurIPS, 35:3843–3857, 2022.

Siheng Li, Zhanhui Zhou, Wai Lam, Chao Yang, and Chaochao Lu. Repo: Replay-enhanced policy
optimization. arXiv preprint arXiv:2506.09340, 2025a.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of
reasoning large language models. arXiv preprint arXiv:2502.17419, 2025b.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Jinyi Liu, Yifu Yuan, Jianye Hao, Fei Ni, Lingzhi Fu, Yibin Chen, and Yan Zheng. Enhancing
robotic manipulation with ai feedback from multimodal large language models. arXiv preprint
arXiv:2402.14245, 2024.

Jinyi Liu, Yan Zheng, Rong Cheng, Qiyu Wu, Wei Guo, Fei Ni, Hebin Liang, Yifu Yuan, Hangyu
Mao, Fuzheng Zhang, et al. From chaos to order: The atomic reasoner framework for fine-grained
reasoning in large language models. arXiv preprint arXiv:2503.15944, 2025a.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025b.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
with a 1.5b model by scaling rl, 2025.

Yi Ma, Hongyao Tang, Dong Li, and Zhaopeng Meng. Reining generalization in offline reinforcement
learning via representation distinction. NeurIPS, 36:40773–40785, 2023.

Yi Ma, Jianye Hao, Xiaohan Hu, Yan Zheng, and Chenjun Xiao. Iteratively refined behavior
regularization for offline reinforcement learning. In NeurIPS, 2024a.

Yi Ma, Jianye Hao, Xiaohan Hu, Yan Zheng, and Chenjun Xiao. Iteratively refined behavior
regularization for offline reinforcement learning. NeurIPS, 37:56215–56243, 2024b.

Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen, Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng Wang,
Xiaoxue Cheng, Huatong Song, Wayne Xin Zhao, Zheng Liu, Zhongyuan Wang, and Ji-Rong Wen.
Imitate, explore, and self-improve: A reproduction report on slow-thinking reasoning systems,
2024.

OpenAI. Gpt-3.5. Technical report, OpenAI, 2022. URL https://platform.openai.com/
docs/models/gpt-3-5.

James Queeney, Yannis Paschalidis, and Christos G. Cassandras. Generalized proximal policy
optimization with sample reuse. In NeurIPS, pp. 11909–11919, 2021.

Carlo Romeo, Girolamo Macaluso, Alessandro Sestini, and Andrew D Bagdanov. Speq: Offline
stabilization phases for efficient q-learning in high update-to-data ratio reinforcement learning. In
RLC, 2021.

Nicolas Le Roux, Marc G Bellemare, Jonathan Lebensold, Arnaud Bergeron, Joshua Greaves,
Alex Fréchette, Carolyne Pelletier, Eric Thibodeau-Laufer, Sándor Toth, and Sam Work. Ta-
pered off-policy reinforce: Stable and efficient reinforcement learning for llms. arXiv preprint
arXiv:2503.14286, 2025.

John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust region
policy optimization. In ICML, volume 37, pp. 1889–1897, 2015.

13

https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In ICLR, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

ByteDance Seed, Jiaze Chen, Tiantian Fan, Xin Liu, Lingjun Liu, Zhiqi Lin, Mingxuan Wang,
Chengyi Wang, Xiangpeng Wei, Wenyuan Xu, et al. Seed1. 5-thinking: Advancing superb
reasoning models with reinforcement learning. arXiv preprint arXiv:2504.13914, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300, 2024.

David Silver and Richard S. Sutton. Welcome to the era of experience, 2025.

Mingyang Song, Mao Zheng, Zheng Li, Wenjie Yang, Xuan Luo, Yue Pan, and Feng Zhang. Fastcurl:
Curriculum reinforcement learning with progressive context extension for efficient training r1-like
reasoning models. arXiv preprint arXiv:2503.17287, 2025.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an introduction. Adaptive
computation and machine learning. MIT Press, 1998. ISBN 978-0-262-19398-6.

Yunhao Tang, Taco Cohen, David W Zhang, Michal Valko, and Rémi Munos. Rl-finetuning llms
from on-and off-policy data with a single algorithm. arXiv preprint arXiv:2503.19612, 2025.

Luong Trung, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Reasoning
with reinforced fine-tuning. In ACL, pp. 7601–7614, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. NeurIPS, 35:
24824–24837, 2022.

Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu
Tang, Xiaowei Lv, Haosheng Zou, Yongchao Deng, Shousheng Jia, and Xiangzheng Zhang.
Light-r1: Curriculum sft, DPO and RL for long COT from scratch and beyond. arXiv preprint
arXiv::2503.10460, 2025.

Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
Learning to reason under off-policy guidance. arXiv preprint arXiv:2504.14945, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025a.

Ling Yang, Zhaochen Yu, Bin Cui, and Mengdi Wang. Reasonflux: Hierarchical llm reasoning via
scaling thought templates. arXiv preprint arXiv:2502.06772, 2025b.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao Huang.
Does reinforcement learning really incentivize reasoning capacity in llms beyond the base model?
arXiv preprint arXiv:2504.13837, 2025.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D Goodman. Star: Self-taught reasoner bootstrapping
reasoning with reasoning. In NeurIPS, volume 1126, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search. NeurIPS, 37:64735–64772, 2024.

Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adaptthink: Reasoning models can
learn when to think. arXiv preprint arXiv:2505.13417, 2025a.

Xiaojiang Zhang, Jinghui Wang, Zifei Cheng, Wenhao Zhuang, Zheng Lin, Minglei Zhang, Shaojie
Wang, Yinghan Cui, Chao Wang, Junyi Peng, et al. Srpo: A cross-domain implementation of
large-scale reinforcement learning on llm. arXiv preprint arXiv:2504.14286, 2025b.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

CONTENTS OF APPENDIX

A The Use of Large Language Models (LLMs) 17

B Related Work 17

C Limitations 18

D Algorithm and Related Discussion 18

D.1 The pseudocode of ReMix . 18

D.2 Theoretical Discussion on The Historical Policy Distribution ν 18

D.3 Theoretical Discussion on The KL-convex Loss 19

D.4 The Derivation of Equation 6 . 19

D.5 Sensitivity Analysis of The Choices of Policy Reincarnation Trigger Step T 20

E Advantage Estimation 20

F A Brief Overview of Baseline Models 21

F.1 1.5B Models . 21

F.2 7B Models . 21

F.3 Exclusion Rationale for Off-Policy Baselines . 22

G System Prompt 22

H Key Observations from Figure 1: Efficiency–Accuracy 22

I Training Details 23

J Extended Evaluation of AIME’24 and AMC’23 23

K More Training Curves 25

L Various Analysis 26

L.1 The Performance under Constrained Maximum Response Length 27

L.2 The Impact of Guide Tokens in Prompt Template 28

M ReMix for Llama-series Base Model 29

N Case Study 29

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs only for coding and writing assistance. During experimentation, we consulted the
LLM for code debugging. All algorithmic designs, implementations, and results were produced
and verified by the authors, and LLM suggestions were reviewed and tested. After completing the
manuscript, we used LLMS solely to polish the language (grammar and phrasing) without generating
new scientific content. The authors remain fully responsible for the paper’s contents.

B RELATED WORK

Post-training enhancement of LLM reasoning capabilities predominantly follows two paradigms (Li
et al., 2025b). The first, inference-time optimization, improves reasoning without updating model
parameters through techniques like Chain-of-Thought (CoT) prompting (Wei et al., 2022), parellel
reasoning and itegration (Wang et al., 2022), self-reflection (Ji et al., 2023), tree-based search (Zhang
et al., 2024), and macro-action-guided cognitive reasoning (Liu et al., 2025a). Despite their effec-
tiveness, the performance of these methods is fundamentally constrained by the model’s inherent
capabilities. The second paradigm, parameter fine-tuning, aims to enhance these intrinsic abilities
into LLM. While SFT on high-quality reasoning data is a common approach, its effectiveness is often
limited by data availability and scalability (Zelikman et al., 2024). Consequently, RLVR has emerged
as a powerful alternative, learning directly from reward signals to unlock superior performance, as
demonstrated by models like DeepSeek-R1 (Guo et al., 2025). Notably, this differs from preference-
based RL which learns from a reward model trained on human/AI feedback (Bai et al., 2022a;b; Liu
et al., 2024), as the RLVR here utilizes direct, verifiable reward signals. Our work is situated within
the RFT paradigm, especially under varifirable reward.

The majority of existing RFT research has relied on on-policy RL algorithms prized for their
training stability, such as PPO (Schulman et al., 2017). Some recent approaches have sought to
improve efficiency by modifying the RL architecture (e.g., GRPO (Shao et al., 2024)) or relaxing
optimization constraints (Seed et al., 2025). However, these on-policy RL methods exhibit severe
sample inefficiency, as they require fresh samples for each iteration of gradient updates. To alleviate
this, recent research has begun to incorporate off-policy data in RL training. Tang et al. (2025)
propose AGRO for a unified algorithm to leverage any-generation data, encompassing both on- and
off-policy samples. However, their experimental results show that off-policy training is inferior to
on-policy training, underscoring the non-trivial challenge of achieving stable and effective off-policy
training for LLMs. Tapered Off-Policy REINFORCE (Roux et al., 2025) introduces a novel variant
of importance sampling to downweight negative trajectories that are not likely under the current
policy, while allowing positive trajectories to be upweighted. This enables the utilization of both
off-policy and on-policy rollout trajectories. The method is trained and evaluated on GSM8K and
MATH, leaving its efficacy on broader reasoning tasks unknown.

Recently, concurrent to our work, Based on REINFORCE, AsymRE (Arnal et al., 2025) is proposed
to leverage both off-policy and on-policy data by introducing a tunable baseline. An asymmetry is
presented that while on-policy updates safely leverage both positive and negative signals, off-policy
updates benefit more from positive rewards, which to some extent echoes the idea proposed in (Roux
et al., 2025). AsymRE is trained and evaluated on MATH. SRPO (Zhang et al., 2025b) builds on
GRPO with a two-stage curriculum that first trains on math and then on code. Besides, SRPO adopts
historical resampling discards groups with uniform rewards to avoid zero gradients and retains hard
samples for later replay. Using the same base model, SRPO outperforms DeepSeek-R1-Zero-Qwen-
32B while using only one-tenth of the training steps. Similarly, RePO (Li et al., 2025a) also exploits
historical data. SRPO’s resampling chiefly targets the quality of samples, while RePO emphasizes
efficiency and systematically analyzes the impact of replay strategies. RePO is proposed upon GRPO
to replay both historical off-policy data and on-policy data together during typical GRPO training.
Different off-policy data replay strategies are studied, among which recency-based and reward-based
strategies show improved performance. The RePO models are trained with a maximum response
length of 1,024, thus showing limited performance on math reasoning benchmarks.

By following the principle of Soft RL, SPO (Cohen et al., 2025)) is proposed to leverage both off-
policy and on-policy data based on Cumulative Q-Parameterization. SPO is trained and evaluated for
code contests and demonstrates superior performance to the standard PPO. In contrast, LUFFY (Yan

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

et al., 2025) uses off-policy samples from superior models (e.g., DeepSeek-R1) and employing policy
shaping. However, in essence, this is more akin to learning from demonstrations rather than the
canonical off-policy RL where the behavior policy is often one of the historical policies or a separate
inferior policy. Moreover, the idea of off-policy guidance is orthogonal to our method.

While early efforts have conducted first-step explorations on realizing off-policy learning for RFT,
they have primarily focused on adapting existing on-policy methods (e.g., PPO, GRPO, REINFORCE)
to off-policy data from the angles of modifying importance sampling, leveraging data or trajectories
asymmetrically, etc. These initial steps have not investigated the essential effects of off-policy learning
on reasoning behaviors, while leaving the potential of existing off-policy RL techniques unexplored.
In the broader field of RL, methods such as Rainbow (Hessel et al., 2018), TD3 (Fujimoto et al.,
2018), and SAC (Haarnoja et al., 2018) have set a precedent for leveraging historical data to improve
sample efficiency. Building on this, advanced research has pursued maximizing data utilization
through high UTD ratios, managing the resultant estimation errors with techniques like ensemble
learning, as seen in REDQ (Chen et al., 2021), DroQ (Hiraoka et al., 2021), and SPEQ (Romeo et al.,
2021). Concurrently, novel approaches have emerged, including hybrid methods that seek an optimal
balance between the stability of on-policy learning and the efficiency of off-policy methods (Queeney
et al., 2021), as well as fully offline algorithms designed to mitigate extrapolation errors from static
datasets (Ma et al., 2024b; 2023). The value of ReMix lies in its departure from simply implementing
off-policy RL in the context of RFT. Instead, by drawing inspiration from rich RL literature, our
research aims to conduct an in-depth investigation of different off-policy RL techniques and integrate
them to improve the RFT process effectively, thereby significantly enhancing the efficiency and
performance of LLM fine-tuning.

C LIMITATIONS

Due to resource constraints, our experiments were limited to models up to 7B. While this provides
a strong proof-of-concept, performance on larger-scale models is yet to be explored. To support
this future work, we provide open-source code and models for community validation. We also note
that the principle of using off-policy data to improve sample efficiency is general and not inherently
tied to model scale. For the utilization of off-policy data, we use fixed proportions in this work,
although we believe an adaptive control on the proportion of off-policy data should be possible and
favorable. Moreover, our method is orthogonal to many of the advanced RFT methods considered
and not considered in our experiments, while we do not explore the combination of them. We believe
that integrating off-policy learning and other advanced techniques is promising to realize new LLM
models that are more efficient and powerful at the same time. We leave these potential angles for the
future.

D ALGORITHM AND RELATED DISCUSSION

D.1 THE PSEUDOCODE OF REMIX

The pseudocode of ReMix is presented in Algorithm 1.

D.2 THEORETICAL DISCUSSION ON THE HISTORICAL POLICY DISTRIBUTION ν

The distribution of policy index i, where i ∈ {0, 1, . . . , N}, is denoted by ν. The theoretical
explanation for the influence of different choices of ν should trace back to how Trust-Region Policy
Optimization (TRPO) (Schulman et al., 2015) approximates the trust region.

For i = 0, i.e., the standard PPO (on-policy case), the trust region α2 = [maxs TV (πk, π)(s)]
2 or its

upper bound DKL(πk, π) (this is can be found in Theorem 1, Eq.8 in TRPO paper) is approximated
by using the expectation regarding dπk to replace the maximum case. In turn, the approximate trust
region is α̃2 = [Es∼dπkTV (πk, π)(s)]

2. In the practices of PPO and TRPO, this approximation
works well in many problems. Intuitively, this is because the new policy π (post-update) should
not differ a lot with the current policy πk (prior-update), the distribution dπk works as an effective
surrogate.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 1 Reincarnating Mix-Policy Proximal Policy Gradient Method (ReMix)
1: [Input]: Base model πbase, and on-policy proximal PG method A (e.g., PPO, GRPO)
2: Set training batch size B, off-policy data portion p, UTD ratio m, historical policy window size N , policy

reincarnation step point T
3: Init the model πθ = πbase and the historical policy set H = ∅
4: # Stage 1: Mix-policy Proximal PG Training
5: for step t = 1, 2, 3, ..., T do
6: Sample a batch of questions q ∼ D0 with size (1− p)B and generate fresh responses according to πθ

and A
7: Reuse historical responses from H with size pB and form the mixed training batch
8: Save πθ to H with its responses and logprob data, drop the oldest policy if |H| > N
9: Repeatedly update πθ with the mixed training batch according to Mix-PPG and A (the first row, Eq. 5)

for m times
10: end for
11: # Stage Transition: Policy Reincarnation
12: Reset the base reference model from πbase to πT , and drop the historical policy set H
13: # Stage 2: Reincarnating On-policy Proximal PG Training
14: for step t = T + 1, T + 2, T + 3, ... do
15: Sample a batch of questions q ∼ D0 with size B and generate responses according to πθ and A
16: Construct a training batch with the fresh responses, and update πθ according to A (the second row, Eq. 5)
17: end for

When it moves on to the off-policy case where i > 0 (Queeney et al., 2021), the approximation
for the trust region could be no longer effective for stable policy optimization due to the increasing
discrepancy between dπ and dπk−i as the increase of i (i.e., for older historical policies). In our work,
we empirically found that using too old historical policies can introduce large off-policyness which
makes the training unstable.

Our empirical observation aligns with our discussion on the theoretical explanation of the approxima-
tion of trust region above. Therefore, in practice, we use N = 2, p = 0.4 and a uniform distribution
for off-policy data. This is equivalent to the policy index distribution ν = [0.6, 0.2, 0.2]. We believe
that one important future direction is to study how to replay off-policy data better instead of replaying
in a uniform manner.

D.3 THEORETICAL DISCUSSION ON THE KL-CONVEX LOSS

The KL-convex loss is theoretically grounded in Conservative Policy Iteration (CPI) (Ma et al.,
2024a). The CPI paper proves that iteratively refining the reference policy guarantees monotonic
improvement (Proposition 1: V π̄∗

(s) ≥ V π̄(s)) and support preservation (π̄∗(a|s) = 0 wherever
π̄(a|s) = 0). Our convex combination LKLC = λDKL(πθ||πbase)+ (1−λ)DKL(πθ||πk−1) directly
implements this — where the πk−1 term acts as CPI’s dynamic reference policy to prevent OOD
queries, while the πbase term extends the framework to preserve foundational capabilities.

Furthermore, CPI’s Theorem 1 identifies that multi-step actor-critic implementations suffer from
high variance, and the authors explicitly recommend adding behavior regularization (their Eq. 6) to
constrain policies to data support. Our decaying λ(t) schedule dynamically balances this trade-off,
shifting from conservative exploration to aggressive refinement. Thus, KLC inherits CPI’s theoretical
guarantees of improvement and convergence while addressing practical stability challenges in iterative
LLM fine-tuning.

D.4 THE DERIVATION OF EQUATION 6

We conduct the formal analysis of off-policy PPG in Section 4.4 by using a similar form of average
loss as in (Fatemi et al., 2025). Here, we provide the complete derivation of Equation 6 below.

Starting from Equation 3, that is the definition of the loss function for Mix-PPG, we rewrite the loss
function from the original per-sample expectation (i.e., (s, a) ∼ dπk−i) form to the per-trajectory

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

expectation form (i.e., τ ∼ dπk−i). This derives:

LMix-PPG
Avg (θ) =− Ei∼ν

[
Eτ∼dπk−i

1

Hτ
ΣHτ

h=0 min
(
rk−i
θ (sh, ah)A

πk(sh, ah),

clip
(
rk−i
θ (sh, ah),

πk(ah | sh)
πk−i(ah | sh)

− ϵ,
πk(ah | sh)
πk−i(ah | sh)

+ ϵ

)
Aπk(sh, ah)

)]
,

(7)

where Hτ is response length for trajectory τ . By dropping the clipping range (i.e., ignoring the out-
of-clipping range cases which have no gradient) and simplifying the expression by omitting subscript
notations, expectation notations, etc., we only keep the proportional relationship for the analysis.
This then leads to: LMix-PPG

Avg = − 1
HΣH

h=0r
k−i
θ Aπk , which is the exact form used in Equation 6.

D.5 SENSITIVITY ANALYSIS OF THE CHOICES OF POLICY REINCARNATION TRIGGER STEP T

In our pipeline, T is the hand-over step that switches from the off-policy Mix-PPG phase to the
on-policy phase with reference model changed too. We use it to harvest early data-efficiency from
replay historical data and then let on-policy optimization continue improving stably. To address
the reviewer’s concern about how the trigger step T was chosen and how sensitive performance is
to this choice, we provide a controlled sweep T ∈ {25, 50, 100, 200} with 500-step runs, whose
experimental settings are all the same as those of the main text. The results are shown in the table
below. For (T = 25), we report two checkpoints per run, the first time the macro average reaches
≥ 49 (”early lift”) and the final plateau.

The pattern is consistent: a very small T (25) slows down performance improvement; a very large T
(200) lifts early but later stalls due to amplified off-policyness; a moderate T (50–100) yields both a
strong early lift and the best final averages. We also find this choice to broadly work well across our
experimental cases, achieving a favorable efficiency-performance trade-off.

Table 8: Pass@1 accuracy (%) of 1.5 B model under different policy reincarnation trigger step
T .

Model AIME’24 AMC’23 MATH500 Minerva Olympiad Avg.
T = 25 (at 350 steps) 33.33 65.06 81.20 27.57 39.26 49.29
T = 50 (at 75 steps) 43.33 63.86 79.60 26.84 39.41 50.61
T = 50 (at 500 steps) 40.00 63.86 83.00 26.84 43.70 51.52
T = 100 (at 225 steps) 30.00 69.88 81.80 24.63 41.78 49.62
T = 100 (at 325 steps) 36.67 69.88 82.00 30.15 41.78 52.09
T = 200 (at 100 steps) 30.00 66.27 81.00 29.41 43.26 49.99
T = 200 (at 500 steps) 16.67 49.40 77.00 16.67 38.67 40.76

E ADVANTAGE ESTIMATION

To enable stable off-policy training, we adopt a V-trace (Espeholt et al., 2018) formulation for
generalized advantage estimation (GAE) (Schulman et al., 2016), which incorporates truncated
importance sampling ratios to correct for policy mismatch. We first compute the temporal-difference
error(TD-error) at each time step t as

δVt = r(st, at) + γV (st+1)− V (st), (8)

and define the truncated importance sampling weight ct = min
(
c̄, πk(a|s)

πk−i(a|s)

)
, where c̄ is a clipping

threshold to limit the variance of the correction, we use c̄ = 1 in our implement.

The advantage at step t is estimated recursively using the V-trace correction as

At = δVt + γλctAt+1, (9)

and the return-to-go is computed by combining the advantage estimate with the baseline value:

RTGt = At · ct + V (st). (10)

This V-trace corrected GAE formulation ensures that the estimated advantages remain stable and
consistent under significant off-policy drift, which is critical in our training regime involving long-
horizon trajectories and evolving policies.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F A BRIEF OVERVIEW OF BASELINE MODELS

F.1 1.5B MODELS

• Open-RS Series (Dang & Ngo, 2025): The Open-RS series employs the GRPO algorithm
to train language models, using datasets constructed by filtering and combining existing
corpora. Specifically, Open-RS1 utilizes dataset with 18,615 samples with accuracy and
format rewards, Open-RS2 incorporates dataset with 7,000 samples and shorter maximum
response length while retaining the same reward functions. Compared to Open-RS2, Open-
RS3 replaces the accuracy reward with a cosine reward and adds an English-only instruction
to the system prompt.

• DeepScaleR (Luo et al., 2025): DeepScaleR is obtained via a two-phase training process
with the GRPO algorithm: starting with 8k context for efficient reasoning, then scaling up to
16k and 24k contexts to address more challenging problems.

• II-Thought (Intelligent-Internet, 2025): Based on a systematic analysis of existing public
datasets, the authors constructed a large-scale, high-quality dataset comprising over 300,000
reasoning problems across multiple domains. Each sample was rigorously filtered and
deduplicated. Subsequently, the models were trained on this curated dataset, using the
GRPO algorithm.

• FastCuRL Series (Song et al., 2025): The FastCuRL Series adopts a multi-stage training
process where both context length and data complexity (defined by input prompt length) are
progressively increased. Training starts with short-context and low-complexity data, then
moves to longer contexts with medium and high-complexity datasets.

• L1 Series (Aggarwal & Welleck, 2025): The L1 Series trains models using Length-
Controlled Policy Optimization (LCPO), a method that encourages correct answers while
matching a target output length specified in the prompt (measured by input prompt length).
L1-Exact enforces exact-length generation by penalizing deviation from the target length,
while L1-Max applies a soft maximum-length constraint, allowing shorter outputs when
appropriate but discouraging overruns.

• AdaptThink (Zhang et al., 2025a): AdaptThink is an RFT method that trains reasoning
models to choose between two modes — Thinking and NoThinking — based on problem
difficulty. It uses a constrained optimization objective to encourage NoThinking while
maintaining performance, and an importance sampling strategy to balance both modes
during training.

F.2 7B MODELS

• ReasonFlux-F1 (Yang et al., 2025b): ReasonFlux-F1 is an SFT model obtained by fine-
tuning an R1-Distill model3 based on template-augmented reasoning trajectories collected
by ReasonFlux-v1. These trajectories are first enhanced with structured templates, then
transformed into a long chain-of-thought format.

• Light-R1 (Wen et al., 2025): Light-R1 is a multi-stage post-training framework. It be-
gins with curriculum-based supervised fine-tuning (SFT) using progressively harder data,
followed by Direct Preference Optimization (DPO) and an RFT process with GRPO on a
filtered dataset. Light-R1-7B-DS is trained only in the second SFT stage of the frame-
work. Thus, the Light-R1 7B baseline model used in our experiments is an SFT model rather
than an RFT model.

• Skywork-OR1-Preview (He et al., 2025): Skywork-OR1-Preview is trained on a curated
dataset of math and coding problems, selected through model-aware difficulty estimation
and quality filtering. The training process modifies GRPO by incorporating both offline
and online difficulty-based filtering, rejection sampling, and a multi-stage curriculum with
adaptive entropy control.

• Polaris (An et al., 2025): Polaris adopts a multi-stage RL training approach with careful data
difficulty control, using a data distribution with a slight bias toward challenging problems and

3https://github.com/Gen-Verse/ReasonFlux/blob/main/ReasonFlux_F1/README.
md

21

https://github.com/Gen-Verse/ReasonFlux/blob/main/ReasonFlux_F1/README.md
https://github.com/Gen-Verse/ReasonFlux/blob/main/ReasonFlux_F1/README.md

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

dynamically adjusting question difficulty during training. It initializes sampling temperature
based on rollout diversity and gradually increases it during training. It employs length
extrapolation techniques, enabling longer CoT generation at inference while keeping training
rollouts short.

• AdaptThink (Zhang et al., 2025a): The methodology for the AdaptThink 7B model is
identical to that of the AdaptThink 1.5B model, as previously described.

• AceReason-Nemotron (Chen et al., 2025): AceReason-Nemotron adopts the GRPO al-
gorithm without KL divergence and avoids entropy collapse through controlled updates.
The model is first trained on math-only prompts, then on code-only prompts, following a
curriculum with progressively increasing response lengths.

F.3 EXCLUSION RATIONALE FOR OFF-POLICY BASELINES

For existing off-policy RFT methods, we do not include RePO (Li et al., 2025a) because their models
are trained under a maximum response length of 1,024 tokens, thus showing limited performance
on math reasoning tasks. We do not include LUFFY (Yan et al., 2025) since the usage of off-
policy guidance from a superior model (e.g., DeepSeek-R1) is orthogonal to ReMix, which is also
viewed as a different setting where extrinsic guidance or demonstrations are accessible. We exclude
SRPO (Zhang et al., 2025b) since its publicly released model is not at the same scale as ours. In
addition, we did not find public checkpoints for SPO (Cohen et al., 2025) (which is also trained
for code contests), AGRO (Tang et al., 2025), AsymRE (Arnal et al., 2025) and Tapered Off-policy
REINFORCE (Roux et al., 2025), thus, we do not include them in our experiments. Please refer to
Section B for detailed discussions on related off-policy RFT methods.

G SYSTEM PROMPT

Following the standard DeepScaler data processing approach, each prompt in the training set was
prefixed with ”<|User|>” and suffixed with the instruction ”Let’s think step by step and output
the final answer within \boxed{}. <|Assistant|><think>” . This structure encourages the model
to engage in step-by-step reasoning and produce final answers encapsulated within LaTeX boxed
expressions. One example of the DeepScaler prompt format is shown below. The blue text indicates
the fixed template used during inference, while the black text represents the instance-specific question
inserted into the prompt.

System Prompt (Standard)

<|begin of sentence|><|User|> Xenia and Sergey play the following game. Xenia thinks
of a positive integer N not exceeding 5000. Then she fixes 20 distinct positive integers
a1, a2, . . . , a20 such that, for each k = 1, 2, . . . , 20, the numbers N and ak are congruent
modulo k. By a move, Sergey tells Xenia a set S of positive integers not exceeding 20,
and she tells him back the set {ak : k ∈ S} without spelling out which number corresponds
to which index. How many moves does Sergey need to determine for sure the number
Xenia thought of? Let’s think step by step and output the final answer within \boxed{}.
<|Assistant|><think>

H KEY OBSERVATIONS FROM FIGURE 1: EFFICIENCY–ACCURACY

For clarity, we summarize the major observations in Figure 1 below:

• (1.5B) ReMix-PPO v.s., DeepScaleR: DeepScaleR, the strongest 1.5B competitor, requires
around 2.519M rollouts to reach its final score (i.e., 52.14), whereas ReMix-PPO (350 Steps)
achieves a comparable score (i.e., 52.10) with 0.079M rollouts — over a 30x reduction in
rollout data volume.

• (1.5B) ReMix-PPO v.s., PPO: We trace the performance of ReMix-PPO at 100, 200, and
350 training steps (denoted by the yellow curve in Figure 1), corresponding to rollout data
volumes of roughly 0.020M, 0.041M, and 0.079M, respectively. Even after generating just

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0.020M rollout samples, ReMix-PPO achieves a score of 50.61, which has already surpasses
most baselines. Compared to PPO (900 Steps), which achieves an average score of 50.61
with 0.230M rollouts, our model shows over a 10x reduction in rollout data volume.

• (1.5B) ReMix-GRPO v.s., GRPO: We also trace the performance of ReMix-GRPO at 50,
100, and 200 training steps (denoted by the cyan curve in Figure 1), corresponding to rollout
data volumes of roughly 0.061M, 0.163M, and 0.368M, respectively. After generating
0.061M rollout samples, our model achieves the score 45.47 that exceeds the score 45.20 of
standard GRPO trained for 100 steps with 0.205M rollout samples. Compared to GRPO
(200 Steps), which achieves an average score of 48.64 with 0.410M rollouts, ReMix-GRPO
achieves a much higher score of 50.53 within 200 training steps, i.e., 0.368M rollouts,
showing a superior final performance with less computational cost.

• (7B) ReMix-PPO v.s., AceReason-Nemotron: AceReason-Nemotron, the strongest 7B
baseline method in our comparison, requires over 3.584M rollouts to reach its final score
(i.e., 63.24)4, whereas ReMix-PPO (50, 75 Steps) achieves a slightly higher accuracy (i.e.,
63.27, 64.39) with 0.007M, 0.011M rollouts — over a 450x reduction in rollout data
volume.

• (7B) ReMix-PPO v.s., AdaptThink: AdaptThink, the second strongest 7B baseline method,
requires around 0.307M rollouts to reach its final score (i.e., 58.77), whereas ReMix-PPO
(25 Steps) achieves a comparable accuracy (i.e., 58.49) with 0.003M rollouts — over an
80x reduction in rollout data volume.

• (7B) ReMix-PPO v.s., PPO: Compared to PPO (200 Steps) that achieves an average score
of 60.34 with 0.051M rollouts, ReMix-PPO achieves a higher score of 63.27 within 50
training steps, i.e., 0.007M rollouts, showing a 6x reduction in rollout data volume.

Besides, when do sample is set to true, Open-RS series models (i.e., -RS1, -RS2, -RS3) show
better scores 40.62, 40.08, 39.31 respectively, and II-Thought can achieve a score 51.474. For
other models, we found similar scores in our experiments, which do not change the conclusions.

I TRAINING DETAILS

Hyperparmeters The major hyperparameter choices are shown in Table 9.

Compute Resource The 1.5B model was trained for 50 hours on 2 NVIDIA A800-SXM4-80GB
GPUs, while the 7B model required 75 hours on 8 such GPUs. The evaluation of each model was
also conducted using the same number of GPUs as in their respective training setups.

Comparison of Training Detail on Computational Cost for 1.5B Models The corresponding
detailed factors associated with computational cost for training the 1.5B models in the comparison
above are shown in Table 10. Compared to most baselines, our method uses nearly half the number
of training steps (500 v.s. ≥ 860) while delivering superior performance. Furthermore, our entire
training run is executed on a single node with just two A800 GPUs over 52 hours, amounting to
104 A800 GPU hours. This finding shows that state-of-the-art gains can be achieved with markedly
reduced compute requirements.

Comparison of Training Detail on Computational Cost for 7B Models Table 11 shows the
training details of 7B models. However, we failed to find complete training details for all the 7B
models, so we did not plot the efficiency-performance trade-off for the 7B models due to missing
information.

J EXTENDED EVALUATION OF AIME’24 AND AMC’23

For two small and high-variance benchmarks (i.e. AIME’24 and AMC’23), we report Pass@1 as the
average over 32 independent runs (Avg@32). Here we use use stochastic decoding (temperature
0.1) for evaluation. We include these results in Table 12 and Table 13 to provide a robust estimate on
small datasets. ReMix-PPO maintains the similar performance observed in Table 1 and Table 2 under
greedy decoding, showing consistent gains under the Avg@32 protocol.

4The score of AceReason-Nemotron is obtained by evaluating the official checkpoint, and the rollout data
volume is estimated according to the text and Figure 3 in (Chen et al., 2025).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 9: Hyperparameter setups for PPO, GRPO and ReMix trainer.

Parameter Value
Training Configuration

temperature 1.0
top-p 1.0
top-k -1
critic warmup 0
learning rate 1e-6
clip ratio 0.2
lam 1
tau 0.95
entropy coeff 0.001
clipping gradient true
do sample true
test freq 25

Training Configuration for ReMix-GRPO and GRPO

kl loss coef 0.001
kl loss type low var kl
n (gen per prompt) 8

Table 10: RFT training details associated with computational cost for 1.5B models. All the
models are trained upon DeepSeek-R1-distill-Qwen2.5 base model, except for L1 series
models, which are fine-tuned on top of DeepScaleR (denoted by superscript *). Accordingly, their
total training cost should be considered as the sum of DeepScaleR’s cost and the resources reported
in this table. Italicized entries indicate values not directly reported in the original papers, but instead
retrieved from associated official training scripts. The underlined values denote the fresh on-policy
rollout in addition to off-policy data reuse in ReMix.

Model Traing Steps Rollout Batch Size Gen per Prompt Max Responses Length Number of GPUs
DeepScaleR 1750 steps 128,128,128 8,16,16 8k,16k,24k 8,32,32
FASTCuRL-preview 860 steps 128,64,64,64 8,8,8,16 8k,16k,24k,16k 8
FASTCuRL-v3 2620 steps 128,64,64,64,64 8,8,8,16,16 8k,16k,24k,16k,16k 8
II-Thought - 1024 5 32k 8
adapt think 314 steps 128 16 16k 8
Open-RS1 100 steps 96 6 4k 4
Open-RS2 50 steps 96 6 4k 4
Open-RS3 50 steps 96 6 4k 4
L1-Exact* 700 steps 128 16 4k 8
L1-Max* 120 steps 128 16 4k 8

ReMix-PPO 500 steps 152,256 1 8k 2
ReMix-GRPO 200 steps 152,256 8 8k 2

Table 11: RFT training details associated with computational cost for 7B models. All methods are
trained upon DeepSeek-R1-Distill-Qwen-7B base model. Italicized entries indicate values
not directly reported in the original papers, but instead retrieved from associated official training
scripts. The underlined values denote the fresh on-policy rollout in addition to off-policy data reuse
in ReMix. Note that ReasonFlux-F1 and Light-R1 (7B) are SFT models as detailed in Appendix F.2,
hence we do not include them in this table.

Model Traing Steps Rollout Batch Size Gen per Prompt Maximum Responses Length Number of GPUs
Skywork-OR1-Preview >2000 steps 256 16 8k,16k,32k 8
AceReason-Nemotron >2000 steps 128 8,16,16,16 8k,16k,24k,32k 128
AdaptThink 150 steps 128 16 16k 8
Polaris >1400 steps - - 16k,24k,32k -

ReMix-PPO 500 steps 152,256 1 8k 8

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 12: Pass@1 accuracy (%) on AIME’24 and AMC’23 (Avg@32) of 1.5B models. ReMix-
PPO shows performance consistent with the greedy-decoding results (Table 1). Bolded and underlined
values denote the highest and the second-highest scores in each dataset (i.e., column).

Model AIME’24 AMC’23
R1-Distill-Qwen-1.5B (Base) 17.92 44.58

Open-RS1 17.60 45.44
Open-RS2 17.62 44.92
Open-RS3 18.65 43.98
AdaptThink 19.06 56.81
II-Thought 28.65 59.72
FASTCuRL-preview 25.94 54.27
FASTCuRL-V3 33.44 63.63
L1-Exact* 25.1 66.57
L1-Max* 23.13 66.79
DeepScaleR 31.96 63.58

ReMix-GRPO (75 Steps) 25.10 60.17
ReMix-PPO (350 Steps) 29.08 64.04

Table 13: Pass@1 accuracy (%) on AIME’24 and AMC’23 (Avg@32) of 7B models. ReMix-PPO
reach SOTA-level on both benchmarks.

Model AIME’24 AMC’23
R1-Distill-Qwen-7B (Base) 37.53 66.55

ReasonFlux-F1 20.19 53.07
Light-R1 40.00 66.73
Skywork-OR1-Preview 36.31 61.60
Polaris 39.71 67.40
AdaptThink 47.62 74.20
AceReason-Nemotron 50.00 77.48

ReMix-GRPO (200 Steps) 49.48 82.12
ReMix-PPO (75 Steps) 50.31 77.78

K MORE TRAINING CURVES

Training Curves for Efficiency Comparison In addition to the efficiency comparison between
ReMix-PPO and PPO for Olympiad in Figure 3, the remaining curves for the other four math
reasoning benchmarks are presented in Figure 5, 6, 7, 8.

0 20 40 60 80 100 120
Rollout Data Volume(K)

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

Pa
ss

@
1

Rollout Data Volume

0 100 200 300 400 500
Steps

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30
Training Steps

0 10 20 30 40 50
Time(hours)

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30
Training Duration

ReMix-PPO PPO

6x 4x 3x

Figure 5: Training efficiency comparison for ReMix-PPO and PPO (1.5B) on Minerva.ReMix
achieves a score above 26%, around 3× to 6× faster than PPO.

Training Curves under Varying Proportions of Off-policy Data We vary the off-policy propor-
tion p ∈ {0.1, 0.2, 0.3, 0.4, 0.5} (the UTD ratio is set to 1 here for isolation) to isolate the effect of
historical data reuse. In addition to the Pass@1 accuracy, we use three more metrics: the importance
sampling ratio rk−i

θ , ratio πk

πk−i
that quantifies the distributional shift between current and historical

policies, and the response length that reflects the reasoning behavior of the model.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100 120
Rollout Data Volume(K)

0.45

0.50

0.55

0.60

0.65

Pa
ss

@
1

Rollout Data Volume

0 100 200 300 400 500
Steps

0.45

0.50

0.55

0.60

0.65

Training Steps

0 10 20 30 40 50
Time(hours)

0.45

0.50

0.55

0.60

0.65

Training Duration

ReMix-PPO PPO

6x 4x 3x

Figure 6: Training efficiency comparison for ReMix-PPO and PPO (1.5B) on AMC’23. ReMix
achieves a score above 60%, around 3× to 6× faster than PPO.

0 20 40 60 80 100 120
Rollout Data Volume(K)

0.20

0.25

0.30

0.35

0.40

Pa
ss

@
1

Rollout Data Volume

0 100 200 300 400 500
Steps

0.20

0.25

0.30

0.35

0.40

Training Steps

0 10 20 30 40 50
Time(hours)

0.20

0.25

0.30

0.35

0.40

Training Duration

ReMix-PPO PPO

4x 3x 3x

Figure 7: Training efficiency comparison for ReMix-PPO and PPO (1.5B) on AIME’24. ReMix
achieves a score above 35%, around 1.2× to 1.6× faster than PPO.

For importance sampling ratio, we observe that larger p yields slightly wilder importance-sampling
swings. Notably, the consistently slight decrease of the importance sampling in Figure 9 can also be
explained by the shortening of response length, as the whipping effect (detailed in Subsection 4.4)
gradually diminishes.

Training Curves for Policy Loss Figure 10 shows that during the training process, the policy loss
predominantly remains positive, which means a larger importance ratio will lead to a larger policy
loss.

L VARIOUS ANALYSIS

In this section, we further analysis the effects of ReMix, including the performance under response
length constraint, the impact of prompt format.

0 20 40 60 80 100 120
Rollout Data Volume(K)

0.675

0.700

0.725

0.750

0.775

0.800

0.825

Pa
ss

@
1

Rollout Data Volume

0 100 200 300 400 500
Steps

0.675

0.700

0.725

0.750

0.775

0.800

0.825

Training Steps

0 10 20 30 40 50
Time(hours)

0.675

0.700

0.725

0.750

0.775

0.800

0.825

Training Duration

ReMix-PPO PPO

3x5x 3x

Figure 8: Training efficiency comparison for ReMix-PPO and PPO (1.5B) on MATH500. ReMix
achieves a score above 80%, around 3× to 5× faster than PPO.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500
Steps

1.0000

1.0002

1.0004

1.0006

Importance Sampling

0 100 200 300 400 500
Steps

0.9998

1.0000

1.0002

1.0004

1.0006

1.0008
k

k i

0 100 200 300 400 500
Steps

0.16

0.18

0.20

0.22

0.24

0.26

0.28

Pa
ss

@
1

Minerva Accuracy

0 100 200 300 400 500
Steps

2000

3000

4000

5000

6000

To
ke

ns

Response Length

0.1 0.2 0.3 0.4 0.5

Figure 9: Training dynamics regarding importance sampling ratio, accuracy, and response
length under varying proportions of off-policy data p for Mix-PPG. Leveraging more off-policy
data leads to a larger policy distribution shift, a faster early boost in accuracy yet worse later-stage
performance, and a shorter response length.

0 100 200 300 400 500
Steps

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Policy Loss

0.1
0.2
0.3
0.4
0.5

Figure 10: Policy loss under varying proportions of off-policy data p for Mix-PPG. Leveraging
more off-policy data leads to larger policy loss.

L.1 THE PERFORMANCE UNDER CONSTRAINED MAXIMUM RESPONSE LENGTH

Since ReMix shows a feature in generating more concise responses as discovered above, we conduct
an additional experiment to evaluate the performance of our model when the maximum response
length is constrained. Different from the default evaluation setting of 8,192 maximum response
length, we halve the maximum response length to 4,196 tokens for ReMix during evaluation. For
comparison, we evaluate ReMix-PPO (1.5B) with the base model, DeepScaleR, and PPO under the
halved maximum response length. The results are summarized in Table 14.

Table 14: Performance evaluation of 1.5B models with 4k maximum response length. The
arrow ↓ denotes the accuracy degradation compared to the results with 8k maximum response length
(referring to the results in Table 1). All the models are negatively influenced by the halved maximum
response length. Compared with DeepScaleR, ReMix-PPO exhibits the smallest decrease in model
performance and performs the best, thanks to its concise and shorter reasoning behaviors.

Model AIME’24 AMC’23 MATH500 Minerva Olympiad Avg.
Maximum response length: 4096 tokens

R1-Distill-Qwen-1.5B (Base Model) 20.00 37.35 60.40 13.24 22.37 30.67↓6.91
DeepScaleR 10.00 49.4 75.00 21.32 34.22 37.99↓14.15
PPO (500 Steps) 20.00 48.19 77.60 25.00 38.96 41.95↓7.61

ReMix-PPO (350 Steps) 23.33 59.04 79.00 27.57 39.11 45.61↓6.49

All the models are negatively influenced by the halved maximum response length, which matches the
intuition. Notably, DeepScaleR, the best 1.5B baseline model used in our work, suffers a significant

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

performance drop when the maximum response length is limited to 4,192 tokens. In contrast, ReMix-
PPO exhibits the smallest decrease in model performance and performs the best in this constrained
setting. This finding underscores the resilience of the preference for a concise and shorter reasoning
process learned via off-policy training of ReMix in handling the constraints on response length.

Takeaway 4. ReMix favors concise reasoning and is resilient to constraints on response
length.

The constraint on maximum response length greatly degrades the test-time reasoning per-
formance of LLM models, while ReMix suffers less thanks to its preference for a concise
reasoning process.

L.2 THE IMPACT OF GUIDE TOKENS IN PROMPT TEMPLATE

In addition, we investigate the critical role of the prompt template for response generation used
during training and evaluation. To establish a comparison, we make use of a prompt template
without guide tokens (as shown below). Recall the standard prompt template we presented in
Section 4.1, the difference is that the prompt template without guide tokens does not contain the
guide tokens that appear as the prefix (i.e., <begin of sentence><|User|>) and the suffix
(i.e., <|Assistant|><think>).

System Prompt (Without Guide Tokens)

<|begin of sentence|><|User|>Xenia and Sergey play the following game. Xenia thinks
of a positive integer N not exceeding 5000. Then she fixes 20 distinct positive integers
a1, a2, . . . , a20 such that, for each k = 1, 2, . . . , 20, the numbers N and ak are congruent
modulo k. By a move, Sergey tells Xenia a set S of positive integers not exceeding 20,
and she tells him back the set {ak : k ∈ S} without spelling out which number corresponds
to which index. How many moves does Sergey need to determine for sure the number
Xenia thought of? Let’s think step by step and output the final answer within \boxed{}.
<|Assistant|><think>

To investigate the impact of different prompt templates, we define a response as format-correct if
it includes content enclosed within paired <think> </think>. Parallel to the 1.5B base model
and ReMix-PPO, we consider a variant of ReMix-PPO that is trained without guide tokens, denoted
as ReMix-PPO w/o Guide Tokens. We evaluate the performance of the candidate models in terms
of Pass@1 accuracy5 and format correctness on MATH500, when using the standard template (i.e.,
with guide tokens) and the modified template without guide tokens. The purpose of this experiment
is to answer two questions: (1) whether the models trained with guide tokens (i.e., the base model,
ReMix-PPO) can also perform well when the guide tokens are not prompted during evaluation; (2)
whether the model trained without guide tokens can also obey the format and output the solution. The
results are summarized in Table 15.

Table 15: Performance evaluation of 1.5B models with and without guide t okens on MATH500.
Both the base model and ReMix-PPO show a 0 format correctness when the guide tokens are missing
during evaluation, while ReMix-PPO exhibits a smaller drop in the accuracy. For the variant of
ReMix trained without the guide tokens, it performs well under both the two template settings. ↑
means higher is better and ↓ means lower is better.

Model Eval w/ Standard Temp. (↑) Eval w/o Guide Tokens (↑) Relative Decrease (↓)
Pass@1 Format Cor. Pass@1 Format Cor. Pass@1 Format Cor.

R1-Distill-Qwen-1.5B (Base Model) 67.40 70.00 52.00 0 15.40 70.00
ReMix-PPO (350 Steps) 82.00 93.60 71.00 0 11.00 93.60
ReMix-PPO w/o Guide Tokens (500 Steps) 82.00 92.20 77.60 91.20 4.40 1.00

5Note that the correct answer with a wrong format is still counted as correct for Pass@1 accuracy here.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

The results show that the base model yields a format correctness of 0 when evaluated without the
guide tokens, accompanied by a decrease of 15.40 points in Pass@1 accuracy. Similarly, ReMix-PPO
also exhibits a 0 format correctness yet a smaller decrease of 11.00 in the accuracy. This indicates
that the presence of the <think> token in the prompt helps the model to autonomously generate a
closing </think> tag, maintaining format consistency. Thus, it delivers a negative answer to the
first question above, while ReMix shows a better robustness to the absence of the guide tokens.

In contrast, the variant trained without the guide tokens also performs well when using the standard
template, and achieves an increase from 77.60 to 82.00, reaching the same performance as ReMix
that is trained with the guide tokens explicitly. It also maintains consistently high format correctness.
This shows a good robustness to prompt change. We found similar results for the other four math
reasoning tasks as well.

We hypothesize that removing the guide tokens during the training of ReMix allows the model to
explore a broader distribution, rather than overfitting to the explicit guide tokens in the standard
template. Such flexibility encourages the model to internalize reasoning behavior in a robust and
general manner, instead of relying on external structural cues too much. As a result, it becomes
more robust to prompt variation at inference time. The smaller relative degradation observed in both
accuracy and format correctness supports this view.

Takeaway 5. ReMix is more robust to the variation of prompt template.

Removing explicit guide tokens in the standard template significantly cripples the performance
of the base model, while ReMix exhibits better robustness and compatability to the absence
of the guide tokens during both training and evaluation.

M REMIX FOR LLAMA-SERIES BASE MODEL

Table 16: Pass@1 accuracy (%) of R1-Distill-Llama-8B.
Model AIME’24 AMC’23 MATH500 Minerva Olympiad Avg. Cost
R1-Distill-Llama-8B (Base Model) 26.46 62.69 82.00 25.37 42.67 47.84 N/A

PPO (50 steps) 34.58 70.63 85.40 26.10 45.18 52.38 0.013 M
ReMix-PPO (25 steps) 39.48 88.00 87.04 28.68 48.74 55.99 0.004 M

N CASE STUDY

To better understand model’s reasoning behavior, we present a case study centered on a representative
example that the base model is able to solve correctly. Figure compares the responses produced by
three variants trained under distinct strategies: PPO, Mix-PPG, and Mix-PPG with an Increased UTD
ratio. Notably, the three outputs differ significantly in length, with the PPO-trained model producing
the longest response, followed by Mix-PPG, and Mix-PPG with an Increased UTD ratio yielding the
shortest.

With a sufficiently long response window, the model engages in explicit self-reflection and follows
a structured step-by-step reasoning process to arrive at the correct answer. In contrast, the UTD-2
model, exhibits minimal or no reflective behavior and tends to bypass intermediate reasoning steps,
leading to a more direct but less interpretable answer. These observations suggest that adequate
response length plays a critical role in enabling reflective, multi-step reasoning.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Question

Prompt
Five points A, B, C, D, and O lie on a flat field. A is directly north of
O, B is directly west of O, C is directly south of O, and D is directly east
of O. The distance between C and D is 140 m. A hot-air balloon is positioned in
the air at H directly above O. The balloon is held in place by four ropes HA, HB,
HC, and HD. Rope HC has length 150 m and rope HD has length 130 m. [asy]
size(250);
pair A, B, C, D, O, H, W, X, Y, Z;
O=(0,0);
A=(1,1);
D=(1.5,-.3);
B=(-1.5,.3);
C=(-1,-1);
H=(0,2.5);
W=(5/3)*(A+D);
X=(5/3)*(A+B);
Y=(-1)*(W);
Z=(-1)*(X);
draw(W--X--Y--Z--W);
draw(A--C);
draw(B--D);
draw(O--H, linewidth(1));
draw(A--H, dashed);
draw(B--H, dashed);
draw(C--H, dashed);
draw(D--H, dashed);
dot(A);
dot(B);
dot(C);
dot(D);
dot(O);
dot(H);
label("A", A, NE);
label("B", B, SW);
label("C", C, SE);
label("D", D, NE);
label("O", O, SE);
label("H", H, NW);
[/asy]
To reduce the total length of rope used, rope HC and rope HD are to be replaced by a
single rope HP where P is a point on the straight line between C and D. (The
balloon remains at the same position H above O as described above.) Determine the
greatest length of rope that can be saved.

Correct Answer
160

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Case 1: PPO (1/5)

Stage 1 - Question Rehearsal
Okay, so I have this problem with five points on a flat field: A, B, C, D, and O. A is
directly north of O, B is directly west of O, C is directly south of O, and D is directly
east of O. The distance between C and D is 140 meters. There’s a hot-air balloon at point
H directly above O. The balloon is held by four ropes: HA, HB, HC, and HD.

Now, the problem says that rope HC is 150 meters long and rope HD is 130 meters long. We
need to reduce the total length of rope used by replacing HC and HD with a single rope HP,
where P is a point on the straight line between C and D. The balloon stays at the same
position H above O. We need to find the greatest length of rope that can be saved.

Stage 2 - Spatial Configuration and Equation Derivation
First, I need to visualize the setup. Points A, B, C, D are all around O, which is the
center. A is north, B is west, C is south, D is east. So, if I imagine a coordinate
system with O at (0,0), then A would be at (0, a), B at (-b, 0), C at (0, -c), and D at
(d, 0). But wait, actually, since A is directly north of O, B is directly west, C is
directly south, and D is directly east, the coordinates can be set as follows:

Let’s assume O is at (0,0). Then, A is at (0, h), B is at (-k, 0), C is at (0, -m), and D
is at (n, 0). But actually, the distances between C and D is given as 140 meters. Since C
is directly south of O and D is directly east of O, the distance between C and D would be
the hypotenuse of the triangle formed by OC and OD. So, OC is the distance from O to C,
which is m, and OD is the distance from O to D, which is n. Therefore, the distance
between C and D is sqrt(n² + m²) = 140 meters.

But we don’t know m and n yet. However, we know the lengths of HC and HD. Let me recall
that H is directly above O, so its coordinates are (0, h). The distance from H to C is
150 meters, and the distance from H to D is 130 meters.

Stage 3 - Step-by-Step Computation
So, let’s write the distance formulas:

Distance HC: sqrt((0 - 0)² + (h - (-m))²) = sqrt((h + m)²) = |h + m| = 150. Since h and m
are positive distances, h + m = 150.

Similarly, distance HD: sqrt((0 - n)² + (h - 0)²) = sqrt(n² + h²) = 130. So, sqrt(n² + h²)
= 130.

We also know that the distance between C and D is 140 meters, which is sqrt(n² + m²) = 140.

So, we have three equations:

1. h + m = 150
2. sqrt(n² + h²) = 130
3. sqrt(n² + m²) = 140

We can square the third equation to get n² + m² = 140² = 19600.

From the first equation, h = 150 - m.

Substitute h into the second equation:

sqrt(n² + (150 - m)²) = 130

Square both sides:

n² + (150 - m)² = 130² = 16900

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Case 2: PPO (2/5)

We also have n² + m² = 19600.

Let’s subtract the second equation from the first:

(n² + (150 - m)²) - (n² + m²) = 16900 - 19600

Expanding (150 - m)²:

n² + 22500 - 300m + m² - n² - m² = -2700

Simplify:

22500 - 300m = -2700

So, 22500 + 2700 = 300m

25200 = 300m

Divide both sides by 300:

m = 25200 / 300 = 84

So, m = 84 meters.

Then, from the first equation, h = 150 - m = 150 - 84 = 66 meters.

Now, from the third equation, n² + m² = 19600

We know m = 84, so n² + 84² = 19600

Calculate 84²: 84*84 = 7056

So, n² = 19600 - 7056 = 12544

Therefore, n = sqrt(12544) = 112 meters.

So, we have:

- m = 84 meters (distance from O to C)
- n = 112 meters (distance from O to D)
- h = 66 meters (height of H above O)

Stage 4 - Optimization Strategy
Now, we need to replace ropes HC and HD with a single rope HP, where P is a point on CD.
We need to find the position of P such that the total length of HP is minimized, thus
maximizing the length saved.

So, the original total length is HC + HD = 150 + 130 = 280 meters.

Stage 5 - Critical Point Analysis
We need to find the minimal possible length of HP, where P is on CD. Then, the greatest
length saved would be 280 - minimal HP.

To find the minimal length of HP, we can model this as a reflection problem. In
optimization problems where you have to find the shortest path that reflects off a line,
you can use the method of reflection.

In this case, we can think of point H and point P on CD. We need to find the point P on CD
such that the distance HP is minimized.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Case 3: PPO (3/5)

Stage 6 - Step-by-Step Computation
Alternatively, we can model this as a reflection of H across CD, and then the minimal
distance from H to P to D would be the straight line distance from H to the reflection
of D across CD.

Wait, actually, since P is on CD, we can reflect H across CD to get a point H’, and then
the minimal distance from H to P to D is the same as the distance from H’ to D. But since
P is on CD, the minimal HP is the distance from H to the line CD, but I might be mixing
things up.

Wait, perhaps a better approach is to parametrize point P on CD and then find the minimal
distance HP.

Let’s set up a coordinate system.

Let’s place O at (0,0). Then, C is at (0, -84), D is at (112, 0). H is at (0, 66).

We need to find a point P on CD such that HP is minimized.

Parametrize CD: from C (0, -84) to D (112, 0). Let’s let t be the parameter from 0 to 1,
where t=0 is C and t=1 is D.

So, the coordinates of P can be expressed as:

x = 112t

y = -84 + 84t

So, P = (112t, -84 + 84t)

Now, the distance HP is the distance between H (0,66) and P (112t, -84 + 84t).

So, distance squared is:

(112t - 0)ˆ2 + (-84 + 84t - 66)ˆ2

Simplify:

(112t)ˆ2 + (-150 + 84t)ˆ2

Let’s compute this:

(12544t²) + (22500 - 2*150*84t + 7056t²)

Compute each term:

12544t² + 22500 - 25200t + 7056t²

Combine like terms:

(12544 + 7056)t² - 25200t + 22500

Calculate 12544 + 7056:

12544 + 7056 = 19600

So, distance squared is 19600t² - 25200t + 22500

To find the minimum, take derivative with respect to t and set to zero.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Case 4: PPO (4/5)

Let’s denote f(t) = 19600t² - 25200t + 22500

f’(t) = 39200t - 25200

Set f’(t) = 0:

39200t - 25200 = 0

39200t = 25200

t = 25200 / 39200

Simplify:

Divide numerator and denominator by 2800:

25200 / 2800 = 9

39200 / 2800 = 14

So, t = 9/14

Therefore, the point P is at:

x = 112*(9/14) = 112*(9)/14 = 8*9 = 72

y = -84 + 84*(9/14) = -84 + (84*9)/14 = -84 + (6*9) = -84 + 54 = -30

So, P is at (72, -30)

Now, compute the distance HP:

Distance = sqrt((72 - 0)ˆ2 + (-30 - 66)ˆ2) = sqrt(72² + (-96)ˆ2)

Compute 72²: 5184

Compute (-96)ˆ2: 9216

Sum: 5184 + 9216 = 14400

So, distance HP = sqrt(14400) = 120 meters

Therefore, the minimal length of HP is 120 meters.

Originally, HC + HD = 150 + 130 = 280 meters.

So, the greatest length of rope that can be saved is 280 - 120 = 160 meters.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Case 5: PPO (5/5)

Stage 7 - Final Result
Final Answer
The greatest length of rope that can be saved is \boxed{160} meters.
</think>

Given five points \(A\), \(B\), \(C\), \(D\), and \(O\) on a flat field, where \(A\) is
directly north of \(O\), \(B\) is directly west of \(O\), \(C\) is directly south of \(O\),
and \(D\) is directly east of \(O\). The distance between \(C\) and \(D\) is 140 meters.
A hot-air balloon is positioned at \(H\) directly above \(O\). The balloon is held by
four ropes \(HA\), \(HB\), \(HC\), and \(HD\). The lengths of ropes \(HC\) and \(HD\) are
150 meters and 130 meters, respectively. We need to determine the greatest length of rope
that can be saved by replacing \(HC\) and \(HD\) with a single rope \(HP\) where \(P\) is
a point on the straight line between \(C\) and \(D\).

First, we set up the coordinates for the points:
- \(O\) is at \((0, 0)\).
- \(A\) is at \((0, h)\), \(B\) is at \((-k, 0)\), \(C\) is at \((0, -m)\), and \(D\) is
at \((n, 0)\).

Given:
- The distance between \(C\) and \(D\) is 140 meters, so \(\sqrt{nˆ2 + mˆ2} = 140\).
- The distance \(HC\) is 150 meters, so \(h + m = 150\).
- The distance \(HD\) is 130 meters, so \(\sqrt{nˆ2 + hˆ2} = 130\).

Solving these equations, we find:
- \(h = 66\) meters, \(m = 84\) meters, and \(n = 112\) meters.

To minimize the length of rope \(HP\), we parametrize point \(P\) on \(CD\) and find the
point \(P\) that minimizes the distance \(HP\). Using calculus, we find the optimal
parameter \(t = \frac{9}{14}\), leading to the coordinates of \(P\) as \((72, -30)\).

The minimal length of rope \(HP\) is calculated as 120 meters. The original total length
of ropes \(HC\) and \(HD\) is 280 meters, so the greatest length of rope that can be saved
is \(280 - 120 = 160\) meters.

\[
\boxed{160}
\]<|end_of_sentence|>

(3012 tokens)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Case 2: Mix-PPG(1/4)

Stage 1 - Question Rehearsal
Okay, so I have this problem with five points: A, B, C, D, and O on a flat field. A is
north of O, B is west of O, C is south of O, and D is east of O. The distance between C
and D is 140 meters. There’s a hot-air balloon at point H directly above O. The balloon
is held by four ropes: HA, HB, HC, and HD.

Rope HC is 150 meters long, and HD is 130 meters long. The problem says we need to reduce
the total length of rope by replacing HC and HD with a single rope HP, where P is
somewhere on the line between C and D. I need to find the greatest length of rope that
can be saved.

Stage 2 - Spatial Configuration and Equation Derivation
First, let me visualize this. Points A, B, C, D form a rectangle with O at the center. H
is directly above O, so it’s like a vertical pole. The ropes HA, HB, HC, HD are all
connected to H and go to each of these points.

Given that HC is 150 m and HD is 130 m. So the total length before replacement is 150 +
130 = 280 m. After replacement, it’s just one rope HP. So the maximum length we can save
is 280 - length of HP. So I need to find the minimum possible length of HP, which would
give the maximum saving.

So, to minimize HP, point P should be chosen such that the distance from H to P is as
small as possible. Since P is on CD, which is a straight line between C and D, which
are 140 meters apart.

Let me assign coordinates to make this easier. Let’s place O at (0,0). Then, since A is
north of O, A is (0, a) for some a. Similarly, B is west of O, so B is (-b, 0) for some b.
C is south of O, so C is (0, -c), and D is east of O, so D is (d, 0).

Stage 3 - Step-by-Step Computation
Given that the distance between C and D is 140 m. Since C is (0, -c) and D is (d, 0), the
distance between them is sqrt((d - 0)ˆ2 + (0 - (-c))ˆ2) = sqrt(dˆ2 + cˆ2) = 140. So dˆ2 +
cˆ2 = 140ˆ2 = 19600.

Now, the balloon is at H, which is directly above O, so H is (0, h) for some h.

Given that HC is 150 m. So the distance from H to C is sqrt((0 - 0)ˆ2 + (-c - h)ˆ2) =
| -c - h | = |c + h| = 150. So c + h = 150. Similarly, HD is 130 m. So the distance from
H to D is sqrt((d - 0)ˆ2 + (0 - h)ˆ2) = sqrt(dˆ2 + hˆ2) = 130. So dˆ2 + hˆ2 = 130ˆ2 =
16900.

So now, we have two equations:

1. c + h = 150
2. dˆ2 + hˆ2 = 16900
3. cˆ2 + dˆ2 = 19600

From equation 1, c = 150 - h. Plug this into equation 3:

(150 - h)ˆ2 + dˆ2 = 19600

Expand (150 - h)ˆ2: 22500 - 300h + hˆ2

So 22500 - 300h + hˆ2 + dˆ2 = 19600

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Case 2: Mix-PPG(2/4)

But from equation 2, dˆ2 = 16900 - hˆ2. Substitute that in:

22500 - 300h + hˆ2 + (16900 - hˆ2) = 19600

Simplify:

22500 - 300h + hˆ2 + 16900 - hˆ2 = 19600

The hˆ2 terms cancel:

22500 + 16900 - 300h = 19600

Compute 22500 + 16900: 39400

So 39400 - 300h = 19600

Subtract 19600 from both sides:

39400 - 19600 - 300h = 0

19800 - 300h = 0

So 300h = 19800

h = 19800 / 300 = 66

So h is 66 meters. Then c = 150 - h = 150 - 66 = 84 meters.

Then from equation 2, dˆ2 + hˆ2 = 16900

dˆ2 + 66ˆ2 = 16900

66ˆ2 is 4356, so dˆ2 = 16900 - 4356 = 12544

So d = sqrt(12544) = 112 meters.

So now, we have h = 66, c = 84, d = 112.

Stage 4 - Optimization Strategy
Now, point P is somewhere on CD. Let’s parameterize point P. Since CD is from C (0, -84)
to D (112, 0). So the line CD can be parameterized as (112t, -84(1 - t)) where t is from 0
to 1.

So point P is (112t, -84(1 - t)).

We need to find t such that the distance from H (0,66) to P (112t, -84(1 - t)) is
minimized.

Stage 5 - Step-by-Step Computation
Compute the distance squared:

(112t - 0)ˆ2 + (-84(1 - t) - 66)ˆ2

= (112t)ˆ2 + (-84(1 - t) - 66)ˆ2

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Case 2: Mix-PPG (3/4)

Compute each part:

First term: (112t)ˆ2 = 12544 tˆ2

Second term: (-84 + 84t - 66) = (-150 + 84t). So squared: (-150 + 84t)ˆ2

Compute (-150 + 84t)ˆ2: 150ˆ2 - 2*150*84t + (84t)ˆ2 = 22500 - 25200t + 7056 tˆ2

So total distance squared is:

12544 tˆ2 + 22500 - 25200t + 7056 tˆ2

Combine like terms:

(12544 + 7056) tˆ2 - 25200t + 22500

Compute 12544 + 7056: 19600

So distance squared is 19600 tˆ2 - 25200t + 22500

To find the minimum, take derivative with respect to t and set to zero.

Let f(t) = 19600 tˆ2 - 25200t + 22500

f’(t) = 39200 t - 25200

Set to zero:

39200 t - 25200 = 0

39200 t = 25200

t = 25200 / 39200

Simplify: divide numerator and denominator by 2800: 25200 / 2800 = 9, 39200 / 2800 = 14

So t = 9/14

So t is 9/14. So point P is at (112*(9/14), -84*(1 - 9/14)).

Compute 112*(9/14): 112 divided by 14 is 8, so 8*9=72. So x-coordinate is 72.

Compute -84*(1 - 9/14): 1 - 9/14 = 5/14. So -84*(5/14) = -6*5 = -30. So y-coordinate is
-30.

So point P is (72, -30).

Now, compute the distance HP.

Coordinates of H: (0,66). Coordinates of P: (72, -30).

Distance squared: (72 - 0)ˆ2 + (-30 - 66)ˆ2 = 72ˆ2 + (-96)ˆ2

Compute 72ˆ2: 5184

Compute (-96)ˆ2: 9216

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Case 2: Mix-PPG(4/4)

Total distance squared: 5184 + 9216 = 14400

So distance is sqrt(14400) = 120 meters.

So the length of HP is 120 meters. Therefore, the total length saved is 280 - 120 = 160
meters.

Stage 6 - Final Answer
Final Answer
The greatest length of rope that can be saved is \boxed{160} meters.
</think>

Given five points \(A\), \(B\), \(C\), \(D\), and \(O\) on a flat field, where \(A\) is
directly north of \(O\), \(B\) is directly west of \(O\), \(C\) is directly south of \(O\),
and \(D\) is directly east of \(O\). The distance between \(C\) and \(D\) is 140 meters.
A hot-air balloon is positioned at \(H\)
directly above \(O\). The balloon is held by four ropes \(HA\), \(HB\), \(HC\), and \(HD\).
Rope \(HC\) is 150 meters and rope \(HD\) is 130 meters. We need to determine the greatest
length of rope that can be saved by replacing \(HC\) and \(HD\) with a single rope \(HP\)
where \(P\) is a point on the straight line between \(C\) and \(D\).

First, we assign coordinates to the points. Let \(O\) be at \((0,0)\). Points \(A\), \(B\),
\(C\), and \(D\) are at \((0, a)\), \((-b, 0)\), \((0, -c)\), and \((d, 0)\) respectively.
The distance between \(C\) and \(D\) is 140 meters, giving us the equation \(dˆ2 +
cˆ2 = 19600\).

Given the distances \(HC = 150\) meters and \(HD = 130\) meters, we have:
1. \(c + h = 150\)
2. \(dˆ2 + hˆ2 = 16900\)
3. \(cˆ2 + dˆ2 = 19600\)

Solving these equations, we find:
- \(c = 84\) meters
- \(h = 66\) meters
- \(d = 112\) meters

Point \(P\) on \(CD\) is parameterized as \((112t, -84(1 - t))\). The distance from \(H\)
to \(P\) is minimized by finding the value of \(t\) that minimizes the distance squared
function. The minimum occurs at \(t = \frac{9}{14}\), giving point \(P\) as \((72, -30)\).

The distance \(HP\) is calculated as:
- Distance squared: \(72ˆ2 + (-96)ˆ2 = 14400\)
- Distance: \(\sqrt{14400} = 120\) meters

Thus, the greatest length of rope that can be saved is \(280 - 120 = 160\) meters.

The final answer is \(\boxed{160}\).<|end_of_sentence|>

(2830 tokens)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Case 3: Mix-PPG with an Increased UTD Ratio

Stage 1 - Quetion Rehearsal
First, I identify the initial lengths of ropes HC and HD. Both are given as 150 m and
130 m respectively, totaling 280 m.

Next, I analyze the new rope HP. Point P lies somewhere on the line segment CD. Since C
and D are directly south and north of O respectively, CD is a vertical line. The balloon
is positioned directly above O, so the horizontal distance from O to H is the same as the
height of the balloon.

Stage 2 - Spatial Configuration
Using the Pythagorean theorem for triangle HCP, where HC is 150 m and CP is the variable
distance from C to P, I set up the equation:
Sqrt(140² + h²) = 150 m.

Solving for h, the height of the balloon, I find h = Sqrt(150² - 140²) = Sqrt(22100) ˜=˜
148.66 m.

Then, for triangle HDP, with DP = CD - CP = 140 - x, I set up the equation:
Sqrt(130² + h²) = Sqrt(130² + 22100).

Calculating this gives the new length of HP as sqrt(16900 + 22100) = sqrt(38200) ˜=˜
195.44 m.

Adding both new lengths gives approximately 390.88 m, compared to the original 280 m. The
difference is approximately 110.88 m, which is the maximum length of rope that can be
saved.
</think>

Stage 3 - Step-by-Step Computation
To determine the maximum length of rope that can be saved by replacing ropes HC and HD
with a single rope HP, we analyze the situation step by step.

Initial Setup:
- **Ropes HC and HD:** Given lengths are 150 m and 130 m, respectively.
- **Total Initial Length:** \(150\, \text{m} + 130\, \text{m} = 280\, \text{m} \).

After Replacement:
- **New Rope HP:** Point \(P \) lies on segment \(CD \), replacing \(HC \) and \(HD \).
- **Coordinates and Distances:**
- Assume \(O \) is at the origin, \(H \) is vertically above \(O \) at \((0, h) \).
- \(C \) and \(D \) are vertically aligned with \(C \) below and \(D \) above \(O \).
- Using Pythagoras for triangles \(HCP \) and \(HDP \):
1. For \(HC \): \(\sqrt{140ˆ2 + hˆ2} = 150 \) -> \(h = \sqrt{150ˆ2 - 140ˆ2} ˜=˜ 148.66\,
\text{m} \).
2. For \(DP \): \(\sqrt{130ˆ2 + hˆ2} = \sqrt{130ˆ2 + 148.66ˆ2} ˜=˜ 195.44\, \text{m} \).

Calculation of Savings:
- **Total New Length:** \(150\, \text{m} + 195.44\, \text{m} ˜=˜ 349.44\, \text{m} \).
- **Savings:** \(280\, \text{m} - 349.44\, \text{m} = 68.56\, \text{m} \).

However, precise calculation shows maximum saving occurs when \(P \) is optimally placed,
yielding exact **60*Sqrt(10) m** (˜=˜ 187.08 m total, saving ˜=˜ 92.92 m). But standard
approach gives approximate **110.88 m** saving.

Stage 4 - Final Answer
Final Answer:
\[
\boxed{110.88}
\]<|end_of_sentence|>

(908 tokens)

40

	The Use of Large Language Models (LLMs)
	Related Work
	Limitations
	Algorithm and Related Discussion
	The pseudocode of ReMix
	Theoretical Discussion on The Historical Policy Distribution
	Theoretical Discussion on The KL-convex Loss
	The Derivation of Equation 6
	Sensitivity Analysis of The Choices of Policy Reincarnation Trigger Step T

	Advantage Estimation
	A Brief Overview of Baseline Models
	1.5B Models
	7B Models
	Exclusion Rationale for Off-Policy Baselines

	System Prompt
	Key Observations from Figure 1: Efficiency–Accuracy
	Training Details
	Extended Evaluation of AIME'24 and AMC'23
	More Training Curves
	Various Analysis
	The Performance under Constrained Maximum Response Length
	The Impact of Guide Tokens in Prompt Template

	ReMix for Llama-series Base Model
	Case Study

