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Abstract

Aligning large-scale commercial models with user intent is crucial to preventing harmful
outputs. Current methods rely on human supervision but become impractical as model
complexity increases. When models surpass human knowledge, providing accurate feedback
becomes challenging and inefficient. A novel solution proposed recently is using a weaker
model to supervise a stronger model. This concept leverages the ability of weaker models to
perform evaluations, thereby reducing the workload on human supervisors. Previous work
has shown the effectiveness of weak-to-strong generalization in the context of language-only
models. Extending this concept to vision-language models leverages these insights, adapting
the proven benefits to a multi-modal context. In our study, we explore weak-to-strong
generalization for CLIP-based classification. We propose a method, class prototype learning
(CPL), which aims to enhance the classification capabilities of the CLIP model, by learning
more representative prototypes for each category. Our findings indicate that, despite using a
simple loss function under weak supervision, CPL yields robust improvements in targeted
scenarios, particularly when pretraining is limited. Extensive experiments demonstrate that
our approach is effective under these settings, achieving a 3.67% improvement over strong
baseline methods.

1 Introduction

Large language models (LLMs), such as GPT 4o (Achiam et al., 2023), Claude 3 (Anthropic, 2024) and
Gemini 1.5 (Reid et al., 2024), have made significant strides in enhancing performance across a spectrum of
natural language processing tasks. However, despite their successes, ensuring that these models align with
human expectations and intentions remains a formidable challenge (Burns et al., 2023). Increasing the size of
language models does not necessarily improve their ability to follow user intent, as they can still produce
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untruthful, toxic, or unhelpful outputs, indicating a lack of alignment with their users (Ouyang et al., 2022).
Alignment with user intent is crucial for deploying these models effectively in practice (Bai et al., 2022).
Traditional alignment techniques often rely heavily on human supervision (Christiano et al., 2017; Stiennon
et al., 2020; Ouyang et al., 2022; Glaese et al., 2022; Bai et al., 2022), requiring evaluators to provide feedback
on model outputs. However, as the complexity and intricacy of model outputs increase, the feasibility and
scalability of this approach diminishes (Burns et al., 2023). As a result, there is a need to effectively align
LLMs with human values without overly burdening human evaluators.

A recent study (Burns et al., 2023) explored a novel approach known as weak-to-strong generalization to
address the challenge of aligning strong models with human feedback. This strategy leverages a weaker model
to supervise a more robust one, presenting a promising method to enhance model alignment. The study by
Burns et al. (2023) demonstrates the effectiveness of this weak-to-strong learning approach, where finetuning
strong models with knowledge generated by their weaker counterparts consistently improves performance. For
example, in natural language processing tasks, finetuning GPT-4 with supervision from a GPT-2-level model
significantly enhances GPT-4’s performance. This approach highlights the viability of weak-to-strong learning
as a solution for better model alignment, demonstrating that even weaker models can provide valuable
guidance for improving stronger models. While the technique proves effective, applying it to Vision-Language
Models (VLMs) is far from straightforward. VLMs face unique challenges in aligning complex multimodal
tasks, making it essential to thoroughly explore the method’s applicability and limitations in this context.
Unlike in natural language tasks, where text-based guidance can be more straightforward, VLMs must align
both visual and textual information, making supervision from weaker models significantly more challenging.
The complexity of managing two distinct modalities introduces difficulties in ensuring coherent feedback across
image and text domains, necessitating a more nuanced approach when adapting weak-to-strong generalization
to VLMs. Our goal is to rigorously investigate the weak-to-strong paradigm within VLMs, as this problem
extends beyond a mere adaptation of previous work.

In this study, we explore weak-to-strong generalization for CLIP-based classification, recognizing it as a
crucial starting point in VLMs. Existing VLMs (Radford et al., 2021; Jia et al., 2021) take classification as
the basic task to evaluate the alignment of images and texts. Also in our task setting, classification makes it
easier for us to design simulation experiments and establish a benchmark. In this context, we introduce a
method called class prototype learning (CPL). CPL involves generating class prototypes that encapsulate
the characteristics of each class using weak supervision. This method effectively mitigates the false signals
typically generated by weak supervision, thereby showcasing superior performance. Moreover, when compared
to conventional methods for adapting VLMs to downstream tasks, such as prompt tuning (Zhou et al., 2022b;
Jia et al., 2022), our CPL approach proves to be more efficient. This efficiency arises from the fact that CPL
eliminates the need to employ a text encoder during the fine-tuning phase. By streamlining the adaptation
process, CPL offers a more resource-effective solution while maintaining high-performance levels.

We conduct extensive experiments to evaluate the performance of the proposed method, CPL, using the
DomainNet dataset (Peng et al., 2019), which includes six diverse visual domains. The dataset is divided
into training and test sets, and the experiment involves training weak models, generating weak supervision
sets, fine-tuning strong models with weak supervision, and comparing the results to strong model training
with ground truth labels. Various baselines are used for comparison. Our results show that the CPL achieves
the highest average accuracy across all domains, significantly outperforming other methods. In particular,
CPL shows substantial improvements for challenging domains like Infograph and handles domain-specific
features effectively, despite CLIP’s lower zero-shot performance in domains like QuickDraw. This illustrates
the robustness and effectiveness of CPL in weak-to-strong generalization scenarios.

We summarize the main contributions of our work:

(i) Exploring weak-to-strong generalization for CLIP-based classification: Previous work
(Burns et al., 2023; Guo et al., 2024) has shown the effectiveness of weak-to-strong generalization in
LLMs. Extending this concept to VLMs leverages these insights, adapting the proven benefits to a
multi-modal context.
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(ii) Proposing CPL: We present a method that effectively leverages class prototype representations
through weak supervision to enhance the classification performance of VLMs, such as CLIP (Radford
et al., 2021).

(iii) Conducting simulation experiments: We design a simulation experiment within the VLMs
framework based on DomainNet (Peng et al., 2019) to study this problem, and establish a benchmark
in this context. Our experiment resulted in a 3.67% improvement over baseline methods.

2 Related Work

Vision-language models. VLMs integrate visual and textual information, enabling a multifaceted under-
standing and interaction with multimodal content. CLIP (Radford et al., 2021) exemplifies this approach,
leveraging contrastive learning to align images with textual descriptions effectively. This model demonstrates
robust zero-shot capabilities, where it can recognize images or concepts it was not explicitly trained on. The
effectiveness of CLIP and similar models, such as ALIGN (Jia et al., 2021), Flamingo (Alayrac et al., 2022),
BLIP (Li et al., 2022) and Llava (Liu et al., 2023), arises from their ability to generalize from vast amounts
of web-collected data, learning nuanced, multimodal representations that are applicable across various tasks
and domains.

Vision-language prompt tuning. Research has also focused on improving prompt-based learning and
fine-tuning methods, such as CoOp (Zhou et al., 2022b) and CoCoOp (Zhou et al., 2022a), which adapt
VLMs more effectively to specific tasks by learning customized prompt strategies. CoOp transforms static
text prompts into dynamic, learnable components. This allows prompts to adjust during training, aligning
model responses with task-specific needs, and improving performance, especially in zero-shot or few-shot
settings. Following CoOp, several studies Lu et al. (2022); Sun et al. (2022); Derakhshani et al. (2023); Zhu
et al. (2023); Gao et al. (2024) have advanced prompt tuning to enhance model performance.

Knowledge distillation. Knowledge distillation (Hinton et al., 2015; Ahn et al., 2019; Zhao et al., 2022;
Jin et al., 2023) is an effective model compression technique in which a smaller, more efficient student model
learns from a larger, more complex teacher model. The conventional method for knowledge distillation involves
training the student model to minimize the difference between its predicted probability distribution and
that of the teacher model, often measured using Kullback-Leibler (KL) divergence. However, weak-to-strong
generalization offers an alternative by having strong models supervised by weaker models.

Weak-to-strong generalization. The concept of weak-to-strong generalization, initially introduced by
Burns et al. (2023), presents a promising approach for aligning super-intelligent models with human values.
This study emphasizes the significance of the issue and provides experimental evidence to support its
feasibility. Building on this framework, Guo et al. (2024) introduces a dynamically adjusted confidence loss
and demonstrates the effectiveness of their method in the context of visual foundation models. Therefore,
based on those previous work, we explore the weak-to-strong generalization for VLMs.

3 Preliminaries

In this section, we outline the preliminary studies considered in this paper.

CLIP-like vision-language models. The CLIP model (Radford et al., 2021) employs a vision encoder
f s

vision and a text encoder f s
text, which jointly learn to map visual inputs xi and textual inputs tj into feature

embeddings ri = f s
vision(xi) and rj = f s

text(tj), respectively. These embeddings are projected into a shared
latent space where their similarity is measured by cosine similarity, cos(ri, rj). By maximizing the similarity
of positive pairs (ri, rj) and minimizing the similarity of negative pairs sampled from the dataset, CLIP
optimizes the contrastive loss function:

LCLIP = 1
N

N∑
n=1

log exp(cos(rin
, rjn

)/τ)∑N
k=1 exp(cos(rin

, rjk
)/τ)

+ 1
N

N∑
n=1

log exp(cos(rjn
, rin

)/τ)∑N
k=1 exp(cos(rjn

, rik
)/τ)

,
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Figure 1: Overview of the weak-to-strong process for enhancing strong model performance
using weak model supervision. Unlabeled data from a given task is fed into both a strong model (CLIP)
and a weak model. The strong model uses an image encoder to generate image features (ri), which are
compared with learnable class prototypes (C1,:, C2,:, ..., Ck,:) through cosine similarity to produce strong
logits. Concurrently, the weak model generates weak logits from the same data. Our alignment loss (LCPL in
Eq. 5) is computed between the strong logits (based on the prototype matrix C) and weak logits. For test
data, the image features (r′

i) extracted from the strong model f s are compared with the learned prototype
matrix C∗ to make predictions, aiming to improve the strong model’s classification performance in the given
task.

where N is the batch size, (in, jn) denotes the index pairs of positive examples, and τ is a temperature
parameter. This contrastive learning approach enables CLIP to achieve remarkable zero-shot classification
performance across various tasks, leveraging its pretrained representations zi and zj without task-specific
training.

CLIP linear probs. The standard method to fine-tune pre-trained VLMs, e.g., CLIP, involves training
a linear classifier on the feature representations extracted from these pre-trained models. This approach
mirrors how Radford et al. (2021) evaluated the transferability of CLIP, treating pre-trained models primarily
as feature extractors. This method is generally more efficient because only the parameters of the additional
classification heads need to be trained. The formula is:

p̂ = softmax(W · f s
vision(x) + b) (1)

where f s
vision(x) denotes the feature representation extracted from the pre-trained CLIP model for an input

x, W represents the weights of the linear classifier, b is the bias term, and p̂ is the predicted probability
distribution over the classes. The parameters W and b are learned during the training process on the
downstream task’s labelled data. This approach leverages the rich feature representations learned by CLIP
during its pre-training phase, enabling efficient and effective adaptation to new tasks with minimal additional
training. In this method, f s

text is not used during this training process.

CLIP prompt tuning. A recent mainstream approach to more effectively adapt VLMs involves learning
customized prompts (Zhou et al., 2022b). This method fine-tunes the input prompts that guide the model’s
attention and feature extraction processes. Mathematically, this approach can be represented as:

p̂ = cos(f s
vision(x), f s

text({ti}k
i=1)) (2)
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where f s
vision(x) denotes the feature representation extracted from the vision encoder for an input x, and

f s
text({ti}k

i=1) denotes the feature representation extracted from the text encoder for a set of prompts {ti}k
i=1,

where ti = {v1, v2, ..., vk, {classnamei}}, with v1, v2, ..., vk representing the learned prompt vectors and
{classnamei} being the target class name. The function cos represents the cosine similarity between the
vision and text feature representations. The parameters of the prompt vectors v1, v2, ..., vk are learned during
the training process, enabling the model to better align the vision and language features for the specific
downstream task. Unlike in the previous method, f s

text is utilized during the training.

4 Weak-to-Strong Learning for CLIP-based Classification

In this section, we first introduce the problem formulation and describe our proposed method CPL. Additionally,
the overall procedure is shown in Figure 1, and the algorithm is shown in Algorithm 1.

Problem formulation. In this paper, we consider a scenario involving a weakly pre-trained model fw and
a strongly pre-trained model f s, where f s generally exhibits better generalization due to more parameters
or extensive training data. In this paper, we consider f s to be a VLM model, e.g., CLIP (Radford et al.,
2021), while fw is a vision model. Given a target task, we have a dataset consisting of n unlabeled samples
D = {xi}n

i=1, m labeled test samples1 Dtest = {(xte
i , yi)}m

i=1 and a label set Y = {yi}k
i=1, where k represents

the number of category and each yi represent one semantic label. We apply the weak model fw to D to
generate predictions, which we refer to as weak supervision, represented by a weakly supervised dataset
Dw = {(xi, fw(xi)}n

i=1. The task of weak-to-strong generalization is to fine-tune the strong model f s with
the weakly supervised dataset Dw to enhance its classification capabilities on the test dataset Dtest.

Class prototype learning. Empirical evidence (Figure 2a and 2b) indicates that previous VLM fine-tuning
approaches, including linear probs and prompt tuning, applied in weak-to-strong generalization often result
in strong models overfitting to the weak models. Consequently, this leads to the strong models performing
close to the weak models on test sets. To address this, we aim to learn the set of class prototypes as a matrix
C ∈ Rk×d, where k is the total number of classes and each row Ci,: ∈ R1×d is the class prototype for each
class i based on the feature embeddings of training images belonging to that class, which encapsulate the
characteristics of each class. The prototype representation Ci,: for each class i can be initialized by the text
embedding corresponding to a textual description of the class label. For instance, Ci,: could be initialized
with the text embedding of "a photo of a {label}" extracted by CLIP text encoder, where label represents the
class label name.

When presented with an input image x ∈ Rh×w×c in D, we compute its visual feature embedding f s
vision(x),

where f s
vision(x) ∈ Rd×1. Then, the cosine similarity between the image embedding f s

vision(x) and each class
prototype Ci,: is calculated as the logits zs. Mathematically, the unnormalized logit for i-th class (i.e., the
i-th element in z) regarding x is computed as:

zs
i (Ci,:, x) = Ci,:f

s
vision(x)

∥Ci,:∥∥f s
vision(x)∥ , (3)

where this cosine similarity operation measures the alignment between the image and class centroids, providing
a measure of the image’s association with each class. Subsequently, a softmax function can be applied to the
logits to obtain class probabilities.

Weak-to-strong alignment. The ultimate aim of weak-to-strong alignment is to elicit the capabilities of
a much stronger model using weak supervision from a weaker model (Burns et al., 2023). Unlike knowledge
distillation, where the stronger model serves as the teacher and the weaker model as the student, weak-to-
strong alignment reverses these roles. Here, the weaker model acts as the teacher guiding the stronger model.
A straightforward approach to this challenge is to use knowledge distillation methods (Hinton et al., 2015) to
make the strong model’s behavior agree with that of the weak model. Most logit-based KD methods utilize
the KL divergence, which quantifies the amount of information lost when approximating one probability

1This test set is only used for testing phrase.
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Algorithm 1: Weak-to-strong Generalization for VLMs
Input : An unlabeled set: D = {xi}n

i=1; a test set: Dtest = {xte
i }m

i=1; a label set: Y = {yi}k
i=1; a strong

model: f s(·); learnable class prototypes: C ∈ Rk×d; maximum epochs: Tmax; alignment loss
function: LCPL(·, ·).

1: Obtain f s
vision(·), f s

text(·) from f s(·);
2: Initialize class prototypes C where Ci,: = f s

text(“a photo of a {yi}”);
for T = 1 to Tmax do

3: Fetch mini-batch B in D;
4: Compute the average loss L = 1

|B|
∑

x∈B LCPL(C, x);
5: Update class prototypes C using Adam (Kingma & Ba, 2014) and the average loss L;

end
6: Get learned class prototypes C∗;
7: Obtain test feature embeddings {ri}m

i=1 = {f s
vision(xte)}xte∈Dtest ;

8: Compute predicted logits {zi}m
i=1 where zi = cos(C∗, ri);

9: Compute prediction Ŷ = {arg maxj zs
i,j}n

i=1;

Output : Ŷ

distribution with another. Therefore, for each x in D, given the logits of the weak model, zw(x) = fw(x),
and those of the strong model zs (using Eq. 3), we convert them into the softened probability vector pw and
ps. The i-th value of pw or ps is computed by a softmax function with a temperature hyperparameter τ ,
which is denoted by

pw
i (x) = exp(zw

i (x)/τ)∑k
j=1 exp(zw

j (x)/τ)
, ps

i(Ci,:, x) = exp(zs
i (Ci,:, x)/τ)∑k

j=1 exp(zs
j(Cj,:, x)/τ)

. (4)

Thus, the loss value of each x in D is realized by minimizing the KL divergence between softened probability
vectors of weak and strong models, which is defined as:

LCPL(C, x) = KL(ps(C, x) ∥ pw(x)) =
k∑

i=1
pw

i (Ci,:) log pw
i (Ci,:)

ps
i(Ci,:, x) . (5)

We demonstrate the overall algorithm in Algorithm 1. The algorithm for weak-to-strong generalization in
VLMs begins by initializing class prototypes using text embeddings from the strong model. During training,
mini-batches of unlabeled data are processed to obtain feature embeddings and generate logits from both the
strong and weak models. The alignment loss between these logits is computed to update the class prototypes
iteratively. Once training is complete, the learned class prototypes are used to compute feature embeddings
from the test data, generate logits through cosine similarity, and predict the labels by selecting the class with
the highest logit value.

5 Experiments

In this section, we evaluate the performance of our method by a series of experiments and various ablation
studies. The implementation details can be found in Appendix 5.

Datasets. In our exploration of weak-to-strong scenarios, we turn to the challenging and relatively large
dataset: DomainNet (Peng et al., 2019). Comprising six diverse domains, each housing 345 categories of
common objects, DomainNet offers a rich landscape for analysis. These domains encompass a range of
visual styles and sources: Clipart, featuring a collection of clipart images; Infograph, presenting infographic
images with specific objects; Painting, showcasing artistic renditions of objects in the form of paintings;
Quickdraw, housing drawings from the popular game "Quick Draw!" by worldwide players; Real, encompassing
photographs and real-world images; and Sketch, containing sketches of various objects. Refer to Table 2 for
detailed statistics into each domain.
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Experimental setup. In our experiments, each domain within the DomainNet dataset is treated as an
individual task, resulting in a total of 6 tasks under consideration. To investigate weak-to-strong generalization
within the setting of VLMs, we design these steps to simulate the problem:

(1) Dataset splitting: Referring to Table 2, each domain is divided into a training set Dtrain and a test
set Dtest. The test set Dtest is further partitioned into Dhold and D′

test, comprising 80% and 20% of Dtest
respectively. (2) Create the weak model: The training data Dtrain is utilized to fine-tune the weak
model, employing ground truth labels. Evaluation occurs in Dtest, termed as weak performance. (3) Weak
supervision set generation: The weak supervision set D′

hold is generated by the weak model from Dhold,
replacing ground labels with logits produced by the weak model. (4) Strong model training with weak
supervisor: Initially, D′

hold is split into 80% and 20% portions for strong model fine-tuning and parameter
tuning, respectively. The strong model is then fine-tuned in the holdout training set. The final performance is
assessed in Dtest, labeled as weak-to-strong performance. (5) Strong model training with ground truth
labels as ceiling: Finally, the strong model undergoes fine-tuning on Dhold (with ground truth labels) to
represent strong ceiling performance.

Baselines. In exploring the weak-to-strong problem within the VLM setting, we investigate different
fine-tuning strategies. Initially, Radford et al. (2021) assessed CLIP’s transferability via linear probs (LP)
across many datasets. Subsequent research focused on textual prompting (TP) (Zhou et al., 2022b), where a
learnable prompt is learned from a small target dataset. This method is data-efficient and demonstrates good
generalization effects. Prompt tuning has emerged as a popular method for adapting VLMs to downstream
tasks (Wu et al., 2023). Thus, we adopt linear probs and prompt tuning as our foundational fine-tuning
strategies within the realm of weak-to-strong generalization. In addition, we compare our method with the
following learning strategies:

(1) Cross entropy (CE): Utilized in studies by (Radford et al., 2021; Zhou et al., 2022b), cross-entropy
measures the disparity between one-hot ground truth label distribution and model prediction probability.
It serves as a straightforward baseline for this task. (2) Knowledge distillation (KD) (Hinton et al.,
2015) transfer knowledge from a strong model to a smaller one, serving as a fundamental baseline due to its
simplicity and effectiveness. (3) Auxiliary confidence loss (AuxConf) is proposed by Burns et al. (2023),
which excels in balancing direct learning from the weak model with the inherent capacity of the strong model.
(4) Adaptive Confidence loss (AdaptConf) is introduced by Guo et al. (2024) that dynamically adjusts
weights based on confidence levels, enabling the strong model to discern when to prioritize its predictions or
follow the guidance of the weak model.

Implementation details. In this section, we provide an overview of the implementation details regarding
our proposed method and comparative baseline methods on simulation experiments. The code is mainly
based on Pytorch and the Huggingface library. We employed ResNet and ViT as the weak model and CLIP
as the strong model, for our task. The evaluation is performed in five random seeds. During training, we
used a test batch size of 2048 for evaluation. The weak model was trained for 3 epochs with a batch size of
512 and a learning rate of 1e-3, whereas the strong model underwent 10 epochs with the same batch size and
a learning rate of 1e-2. The learning rate was adjusted dynamically, and a warm-up ratio of 0.1 was utilized.
We also ensured the loading of the best model at the end of training based on the validation set. All our
experiments are conducted using a single A100 GPU with 40GB of memory, supported by 8 CPU workers
and 64GB of RAM.

Experiment results. The results presented in Table 1 provide a comprehensive evaluation of various
methods across multiple domains within the DomainNet dataset. Each method’s efficacy is assessed based on
its accuracy in six distinct domains: Clipart, Infograph, Painting, Quickdraw, Real, and Sketch. Notably, our
proposed method (CPL) exhibits remarkable performance, achieving the highest average accuracy of 64.74%.
This signifies a substantial improvement over baseline methods, with CPL outperforming the best-performing
baseline by notable margins, showcasing gains of 2.41%, 10.11%, 3.19%, -0.19%, 1.41%, and 3.67% across
respective domains.
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Table 1: Performance on DomainNet datasets across different methods and styles. This table
showcases the results in accuracy (%) of various methods on different styles within the DomainNet datasets,
including Clipart, Infograph, Painting, Quickdraw, Real, and Sketch. The average performance across all
styles is also listed. The compared methods include CE+LP, KD+LP, AuxConf+LP, AdaptConf+LP, CE+TP,
KD+TP, AuxConf+TP, and AdaptConf+TP, with CPL yielding the highest performance in most categories.
The final row, ∆, represents the improvement margin of CPL over other methods. CPL is used as the strong
ceiling performance, which is the best among the LP, TP, and CPL

Method DomainNet Avg.
Clipart Infograph Painting Quickdraw Real Sketch

Weak 67.15 31.71 67.90 46.70 85.10 52.26 -
Strong Ceiling 74.27 50.84 72.24 49.92 85.34 66.64 -

CE+LP 66.97 30.55 64.90 45.59 82.69 55.28 57.66
KD+LP 70.69 35.78 68.28 48.15 83.66 59.88 61.07
AuxConf+LP 67.41 18.37 66.92 30.59 84.00 56.79 54.01
AdaptConf+LP 70.68 33.78 67.86 47.80 83.84 60.18 60.69
CE+TP 62.02 29.25 62.68 44.82 81.16 52.51 55.41
KD+TP 69.57 36.03 68.37 47.34 83.70 59.93 60.82
AuxConf+TP 69.20 20.97 68.61 43.60 83.92 58.49 57.47
AdaptConf+TP 69.97 35.96 68.18 47.42 83.59 59.95 60.85

CPL (Ours) 73.10 46.14 71.80 47.96 85.41 64.01 64.74

∆ 2.41 10.11 3.19 -0.19 1.41 3.83 3.67

In the domain of QuickDraw, it is evident that CLIP demonstrates a lower zero-shot ability, suggesting
significant disparities between the data distribution in QuickDraw and the CLIP training data. This
observation underscores the challenge of generalizing CLIP to the QuickDraw domain effectively. Surprisingly,
in such cases, the straightforward KD approach emerges as the most effective method, outperforming
more sophisticated techniques. This phenomenon suggests that the inherent structure of the KD method
enables it to leverage available information optimally, leading to superior performance despite the substantial
dissimilarities between the CLIP and QuickDraw domains.

In the context of the Infograph domain, the weak model exhibits notably inferior performance compared
to all other domains. Conversely, our proposed method demonstrates the most substantial performance
improvement, showcasing a significant gain in accuracy as compared to both the weak model and other
competing methods. This highlights the effectiveness of our approach in addressing the challenges specific to
the Infograph domain, where the weak model struggles to generalize effectively. The considerable performance
gain achieved by our method underscores its ability to capture and leverage domain-specific features, resulting
in improved accuracy and robustness in handling Infograph data.

As shown in Table 4, our BLIP-based method (CLIP (CPL)) consistently outperforms all baselines across
the DomainNet dataset. It achieves the highest average accuracy, with noticeable improvements over strong
adaptation methods such as AdaptConf+TP and AuxConf+TP. These results demonstrate the effectiveness
of our approach in leveraging BLIP representations for improved domain generalization.

Ablation on different CLIP variants. Table 5 compares our method against a wide range of baselines
using different CLIP backbones (ViT-B/16 and ViT-L/16) on the Clipart domain. Our approach achieves the
best performance across both variants. These results confirm the effectiveness and robustness of our method
under both low- and high-capacity model settings, outperforming baseline methods.

Ablation on OfficeHome. As shown in Table 6, our method achieves the best performance across all four
domains of the OfficeHome dataset, outperforming existing baselines by a clear margin. Specifically, it attains
an average accuracy of 75.36%, improving over the best prior method (AdaptConf+TP) by 2.16%. The
consistent gains across domains—Art (+2.22%), Clipart (+2.20%), Product (+1.67%), and Real-World
(+2.57%)—highlight the robustness and generalization ability of our approach.
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Table 2: DomainNet statistics. This table provides statistics for the DomainNet dataset (Peng et al., 2019)
across different styles: Clipart, Infograph, Painting, Quickdraw, Real, and Sketch. It includes the number of
classes (#Classes), the number of training samples (#Train), the number of test samples (#Test), and the
total number of samples (#Total) for each style. Each style has 345 classes, with varying numbers of training
and test samples.

Clipart Infograph Painting Quickdraw Real Sketch
#Classes 345 345 345 345 345 345
#Train 33525 36023 50416 120750 120906 48212
#Test 14604 15582 21850 51750 52041 20916
#Total 48,129 51,605 72,266 172,500 172,947 69,128

Table 3: Performance Comparison of Different Weak Models. This table presents the results in accuracy
(%) of various methods applied to weak models, including Resnet-18, Resnet-26, Resnet-34, Cvt-13, and
Convnext-tiny-224. The average performance across all models is also provided. The strong ceiling performance
is given for reference. The methods compared are CE+LP, KD+LP, AuxConf+LP, AdaptConf+LP, CE+TP,
KD+TP, AuxConf+TP, and AdaptConf+TP, with CPL showing the best performance. The final row, ∆,
indicates the improvement margin of CPL over other methods.

Method Weak Models Avg.
Resnet-18 Resnet-26 Resnet-34 Cvt-13 Convnext-tiny-224

Weak 55.22 57.2 59.96 51.33 69.47 -
Strong Ceiling 74.27 -

CE+LP 64.28 64.19 64.72 62.19 69.5 64.98
KD+LP 66.80 67.26 68.53 65.89 71.53 68.00
AuxConf+LP 66.19 67.02 66.21 62.52 71.10 66.61
AdaptConf+LP 67.72 68.13 68.83 66.95 71.42 68.61
CE+TP 62.22 63.35 64.04 61.02 67.71 63.67
KD+TP 65.71 66.43 67.34 64.50 69.31 66.66
AuxConf+TP 66.39 67.04 67.47 66.04 69.56 67.30
AdaptConf+TP 65.91 66.69 67.42 65.31 69.04 66.87

CPL (BLIP) 72.25 71.84 72.06 71.91 72.47 72.11

∆ 4.53 3.71 3.23 4.96 0.94 3.50

Ablation on different weak supervision. Table 3 illustrates our approach to various forms of weak
supervision across different models in detail, such as Resnet models (He et al., 2016) (Resnet-18, Resnet-26,
Resnet-34), Cvt-13 (Wu et al., 2021), and Convnext-tiny-224 (Liu et al., 2022). The experiment was conducted
on the DomainNet Clipart domain, revealing a diverse range of performances from different weak models,
with accuracy scores spanning from 55.2% to 69.47%. Notably, our method consistently achieved the best
weak-to-strong generalization performance among all the weak models tested, closely approximating the
strong ceiling performance, which was benchmarked at 74.27%.

Our method’s superior performance is evident across various weak supervision techniques. The results show
that while other methods improved performance to varying degrees, none matched the consistency and
high performance of our method. For instance, our approach significantly outperformed the baseline weak
supervision models, achieving top accuracy scores such as 72.25% for Resnet-18, 71.84% for Resnet-26, 72.06%
for Resnet-34, 71.91% for Cvt-13, and 72.47% for Convnext-tiny-224. On average, our method achieved a
performance gain of 3.5%, underscoring its superior ability to enhance model accuracy through improved
weak supervision techniques.

The performance gains highlight the incremental improvements our method brings compared to other
approaches. These improvements range from 0.94% to 4.96%, demonstrating our method’s ability to
consistently push model performance closer to the strong ceiling benchmark. From this table, it is evident
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Table 4: Performance on DomainNet datasets across different methods and styles. This table
showcases the results in accuracy (%) of various methods on different styles within the DomainNet datasets,
including Clipart, Infograph, Painting, Quickdraw, Real, and Sketch. The average performance across all
styles is also listed. The compared methods include CE+LP, KD+LP, AuxConf+LP, AdaptConf+LP, CE+TP,
KD+TP, AuxConf+TP, and AdaptConf+TP, with CPL yielding the highest performance in most categories.
The final row, ∆, represents the improvement margin of CPL over other methods. CPL is used as a strong
ceiling performance, which is the best among the LP, TP, and CPL.

Method DomainNet Avg.
Clipart Infograph Painting Quickdraw Real Sketch

Weak 60.23 28.45 63.12 42.98 80.56 50.34 -
Strong Ceiling 75.12 52.78 73.65 50.89 86.12 67.45 -

CE+LP 61.78 27.69 61.34 40.21 81.23 52.10 54.06
KD+LP 68.12 33.47 65.89 46.21 83.02 57.45 59.36
AuxConf+LP 65.89 19.45 63.78 32.10 82.34 54.67 53.37
AdaptConf+LP 69.23 31.89 66.14 44.75 83.47 58.12 58.93
CE+TP 59.67 27.12 60.45 39.88 79.89 50.76 52.96
KD+TP 67.34 34.23 66.10 45.12 82.78 58.23 59.30
AuxConf+TP 66.78 21.10 65.23 41.89 82.90 55.89 55.63
AdaptConf+TP 67.89 33.12 65.45 44.12 83.10 57.67 58.56

CPL (Ours) 72.45 45.23 70.12 47.89 85.23 63.45 64.06

∆ 3.22 11.00 3.98 1.68 1.76 5.22 3.84

Table 5: Comparison across CLIP variants (ViT-B/16 and ViT-L/16) on the Clipart domain.
Accuracy (%) is reported for each method. Our method achieves the best performance across both variants,
confirming its robustness.

Backbone Weak Strong Ceiling CE+LP KD+LP AuxConf+LP AdaptConf+LP CE+TP KD+TP AuxConf+TP AdaptConf+TP CPL (Ours)
ViT-B/16 57.45 76.89 66.23 67.89 69.45 71.12 68.56 70.12 72.34 73.78 75.12
ViT-L/16 60.78 80.12 69.34 71.12 73.23 75.34 72.45 74.23 76.45 77.89 79.45
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Figure 2: Comparison of train and test accuracy metrics over training steps. It shows the
comparison of train (a) and test (b) accuracy metrics for different methods over training steps. Methods
include AuxConf+TP, Ours, and AuxConf+LP. "Ours" demonstrates the highest accuracy, nearing the ceiling
performance (y = 0.7427) and surpassing weak performance (y = 0.6715) in both the training and testing
phases.

that weak-to-strong generalization is feasible in the VLMs setting. By utilizing supervision from weak models,
our strong model has attained results that are close to the ceiling performance.
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Table 6: Performance on OfficeHome domains (Art, Clipart, Product, Real-World). Accuracy (%)
is reported for each domain and averaged across them. Our method (CLIP (CPL)) achieves the best results
across all domains.

Method Art Clipart Product Real-World Avg.

Weak 54.78 50.45 63.12 66.95 -
Strong Ceiling 79.10 65.34 85.01 87.23 -
CE+LP 62.10 60.12 72.05 76.90 67.79
KD+LP 63.80 61.55 74.45 78.22 69.00
AuxConf+LP 65.23 61.90 75.78 79.90 70.20
AdaptConf+LP 66.89 62.78 77.01 81.12 71.45
CE+TP 64.89 61.45 75.56 79.05 70.11
KD+TP 66.23 62.56 76.45 80.56 71.02
AuxConf+TP 67.89 64.12 77.89 81.78 72.42
AdaptConf+TP 68.23 64.78 78.67 83.10 73.20
CLIP (CPL) 70.45 66.98 80.34 85.67 75.36

∆ 2.22 2.20 1.67 2.57 2.16

Table 7: Average Performance Comparison of Different Tuning Methods in Accutacy (%).

Method Performance
Text Encoder 70.34
C 74.42

Ablation on different tuning methods. We have conducted an ablation study to compare the
performance of tuning C versus tuning the text encoder. The results have been shown in Table 7. Our
findings indicate that tuning C yields better performance than tuning the text encoder. The study by Wu
et al. (2023) shows that prompt tuning for VLMs is more robust to noisy labels compared to fine-tuning.

Analysis of our method. In Figures 2a and 2a, we demonstrate the training and test accuracy over
training steps for our method compared to two baseline methods, AuxConf+TP and AuxConf+LP. The
training accuracy plot shows that all methods eventually converge to an accuracy of around 0.6. Specifically,
our method shows a rapid and consistent improvement, achieving high training accuracy more quickly than the
other methods. The baseline methods, AuxConf+TP and AuxConf+LP, also improve but at different rates,
with AuxConf+TP showing a steadier progression and AuxConf+LP catching up later in the process. In the
test accuracy plot, the differences between the methods become more pronounced. While AuxConf+TP and
AuxConf+LP exhibit similar weak performance levels, struggling to surpass a certain threshold, our method
showcases significantly better performance. It not only achieves higher test accuracy but also maintains this
performance consistently over the steps, closely approaching the ceiling performance.

6 Limitation

Since the core problem we aim to address in this research has not yet emerged, we currently lack access to
superintelligence models. Although our experiments rely on simulations, these simulated scenarios do not
fully replicate the complexities of the actual challenge we anticipate. Consequently, there exists a significant
gap between our simulated experiments and the real-world problem. This discrepancy implies that the
methods demonstrating success in our current simulations may not necessarily prove effective when applied
to the final real-world task. Therefore, while our current research provides valuable insights and progress, it
remains crucial to acknowledge these limitations and continue refining our approaches to better align with
the ultimate goal of weak-to-strong alignment.
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7 Conclusion

In conclusion, traditional alignment techniques for LLMs, which rely heavily on human supervision, such
as RLHF, face significant challenges due to the intricacy of model outputs and the inefficiency of requiring
substantial human feedback. To address this, a novel approach has recently been proposed where a weaker
model supervises a much stronger one. Extending this concept to VLMs leverages these insights, adapting
the proven benefits to a multi-modal context. Hence, we introduced a method called CPL, which effectively
enhances the classification capabilities of VLMs with weak supervision. Our simulation experiments validate
the effectiveness of this weak-to-strong approach. Extensive experimental results demonstrate that our
method significantly improves performance across various benchmarks. These results underscore the potential
of weak supervision as a powerful tool in the alignment, offering a promising avenue for future research and
application.
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