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ABSTRACT

Accelerating the sampling speed of diffusion models remains a significant chal-
lenge. Recent score distillation methods distill a heavy teacher model into a stu-
dent generator to achieve one-step generation, which is optimized by calculating
the difference between two score functions on the samples generated by the stu-
dent model. However, there is a score mismatch issue in the early stage of the
score distillation process, since existing methods mainly focus on using the end-
point of pre-trained diffusion models as teacher models, overlooking the impor-
tance of the convergence trajectory between the student generator and the teacher
model. To address this issue, we extend the score distillation process by introduc-
ing the entire convergence trajectory of the teacher model and propose Distribution
Backtracking Distillation (DisBack). DisBask is composed of two stages: Degra-
dation Recording and Distribution Backtracking. Degradation Recording is de-
signed to obtain the convergence trajectory by recording the degradation path from
the pre-trained teacher model to the untrained student generator. The degradation
path implicitly represents the intermediate distributions between the teacher and
the student, and its reverse can be viewed as the convergence trajectory from the
student generator to the teacher model. Then Distribution Backtracking trains the
student generator to backtrack the intermediate distributions along the path to ap-
proximate the convergence trajectory of the teacher model. Extensive experiments
show that DisBack achieves faster and better convergence than the existing distil-
lation method and achieves comparable or better generation performance, with an
FID score of 1.38 on the ImageNet 64×64 dataset. DisBack is easy to implement
and can be generalized to existing distillation methods to boost performance.

(a) (b) (c)

Figure 1: The comparison of the distillation process between existing SOTA score distillation
method Diff-Instruct (Luo et al., 2023c) and our proposed DisBack on (a) CIFAR10, (b) FFHQ
64x64, and (c) ImageNet 64x64 datasets. The first 200 epochs refer to the computational overhead
of the degradation recording stage of the proposed model. DisBack achieves a faster convergence
speed due to the constraint of the entire convergence trajectory between the student generator and
the teacher model.
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1 INTRODUCTION

Recently, generative models have demonstrated remarkable performance across diverse domains
such as images (Kou et al., 2023; Yin et al., 2024a), audio (Evans et al., 2024; Xing et al., 2024),
and videos (Wang et al., 2024; Chen et al., 2024). However, existing models still grapple with the
“trilemma” problem, wherein they struggle to simultaneously achieve high generation quality, fast
generation speed, and high sample diversity (Xiao et al., 2021). Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014) can rapidly produce high-quality samples but often face mode
collapse issues. Variational Autoencoders (VAEs) (Kingma & Welling, 2014) offer stable training
but tend to yield lower-quality samples. Recently, Diffusion models (DMs) have emerged as a
competitive contender in the generative model landscape (Fan et al., 2023; Zhou et al., 2023; Xu
et al., 2024). Diffusion models can generate high-quality, diverse samples but still suffer from slow
sampling speeds due to iterative network evaluations.

To accelerate the sampling speed, the score distillation method tries to distill a heavy teacher model
to a student generator to reduce the sampling cost and achieve the one-step generation (Bao et al.,
2023; Luo et al., 2023c; Yin et al., 2024b). The score distillation method optimizes the student
generator by calculating the difference between two score functions on the samples generated by
the student generator. However, as the generated distribution is far from the training distribution at
the beginning, the generated sample lies outside the training data distribution. Thus, the predicted
score of the generated sample from the teacher model does not match the sample’s real score in
the training distribution. This mismatch issue is reflected by unreliable network predictions of the
teacher model, which prevents the student model from receiving accurate guidance and leads to a
decline in final generative performance. We identified that this issue arises because existing score
distillation methods mainly focus on using the endpoint of the pre-trained diffusion model as the
teacher model, overlooking the importance of the convergence trajectory between the student gener-
ator and the teacher model. Without the constraint of the convergence trajectory, the mismatch issue
causes the student generator to deviate from a reasonable optimization path during training, leading
to convergence to suboptimal solutions and a decline in final performance.

To address this problem, we extend the score distillation process by introducing the entire conver-
gence trajectory of the teacher model and propose Distribution Backtracking Distillation (DisBack)
for a faster and more efficient distillation. The construction of DisBack is based on the following
insights. In practice, the convergence trajectory of most teacher models is inaccessible, particularly
for large models like Stable Diffusion (Rombach et al., 2022). Because the trajectory of distribution
changes is bidirectional, it is possible to construct a degradation path from the teacher model to the
initial student generator, and the reverse of this path can be viewed as the convergence trajectory
of the teacher model. Compared with fitting the teacher model directly, fitting intermediate targets
along the convergence trajectory can mitigate the mismatch issue. Thus, the DisBack incorporates
degradation recording and distribution backtracking stages. In the degradation recording stage, the
teacher model is tuned to fit the distribution of the initial student generator and obtains a distribu-
tion degradation path. The path includes a series of in-between diffusion models to represent the
intermediate distributions of the teacher model implicitly. In the distribution backtracking stage, the
degradation path is reversed and viewed as the convergence trajectory. Then the student generator
is trained to backtrack the intermediate distributions along the path to optimize towards the conver-
gence trajectory of the teacher model. In practice, the degradation recording stage typically requires
only a few hundred iterations. Therefore, the proposed method incurs trivial additional computa-
tional costs. Compared to the existing score distillation method, DisBack exhibits a significantly
increased convergence speed (Fig. 1), and it also delivers superior generation performance (Fig. 2).

Our main contributions are summarized as follows. (1) We extend the score distillation process by
introducing the constraint of the entire convergence trajectory of the teacher model and propose Dis-
tribution Backtracking Distillation (DisBack), which achieves a faster and more efficient distillation
(Sec. 4). (2) Extensive experiments demonstrate that the proposed DisBack accelerates the conver-
gence speed of the score distillation process while achieving comparable or better generation quality
compared to existing methods (Sec. 5). (3) The contribution of DisBack is orthogonal to those of
other distillation methods. Researchers are encouraged to incorporate our DisBack training strategy
into their distillation methods.
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Wolf in space nebula. An ocean made of liquid gold, set in a
glass bottle, a pirate sailing on a leaf.

Donuts and assorted pastries fill this
white plate.

Phoenix emerging from fire with
galaxy. Magical world, valley. A quantic vintage Futurist, Space

rocket air hostess.

A floating island level suspended in
the clouds.

The joker walking through streets of
New York.

A dog laying on its stomach on a
skateboard.

Figure 2: Several examples of 1024×1024 images generated by our proposed one-step DisBack
model distilled from SDXL (Podell et al., 2024).

2 RELATED WORKS

Efficient diffusion models. To improve the efficiency of the diffusion model, existing methods use
the knowledge distillation method to distill a large teacher diffusion model to a small and efficient
student diffusion model (Yang et al., 2022). The progressive distillation model (Salimans & Ho,
2021) progressively distills the entire sampling process into a new diffusion model with half the
number of steps iteratively. Building on this, the classifier-guided distillation model (Sun et al.,
2023) introduces a dataset-independent classifier to focus the student model on the crucial features to
enhance the distillation process. Guided-distillation model (Meng et al., 2023) proposes a classifier-
free guiding framework to avoid the computational cost of additional classifiers and achieve high-
quality sampling in only 2-4 steps. Recently, the Consistency Model (Song et al., 2023) uses the self-
consistency of the ODE generation process to achieve one-step distillation, but this is at the expense
of generation quality. To mitigate the surface of the sample quality caused by the acceleration, the
Consistency Trajectory Model (Kim et al., 2024) combines the adversarial training and denoising
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score matching loss to further improve the performance. Latent Adversarial Diffusion Distillation
(Sauer et al., 2024) leverages generative features from pre-trained latent diffusion models to achieve
high-resolution, multi-aspect ratio, few-step image generation.

Score distillation for one-step generation. Diff-Instruct (Luo et al., 2023c) proposes a distilla-
tion method from the pre-trained diffusion model to the one-step generator that involves optimizing
the generator by the gradient of the difference between two score functions. One score function
represents the pre-trained diffusion distribution, while the other represents the generated distribu-
tion. Adversarial Score Distillation (Wei et al., 2024) further employs the paradigm of WGAN and
retains an optimizable discriminator to improve performance. Additionally, Swiftbrush (Nguyen
& Tran, 2024) leverages score distillation to distill a Stable Diffusion v2.1 into a one-step text-to-
image generation model and achieve competitive results. DMD (Yin et al., 2024b) suggests the
inclusion of a regression loss between noisy images and corresponding outputs to alleviate instabil-
ity in the distillation process in text-to-image generation tasks. DMD2 (Yin et al., 2024a) introduces
a two-time-scale update rule and an additional GAN loss to address the issue of generation quality
being limited by the teacher model in DMD, achieving superior performance. Recently, HyperSD
(Ren et al., 2024) integrates score distillation with trajectory segmented consistency distillation and
human feedback learning, which achieves SOTA performance from 1 to 8 inference steps.

3 PRELIMINARY

In this part, we briefly introduce the score distillation approach. Let qG0 and qGt be the distribution
of the student generator Gstu and its noisy distribution at timestep t. In addition, q0 and qt are the
training distribution and its noisy distribution at timestep t. By optimizing the KL divergence in
Eq. (1), we can train a student generator to enable one-step generation (Wang et al., 2023).

min
η

DKL

(
qG0 (x0) ∥q0 (x0)

)
(1)

Here x0 = Gstu(z; η) is the generated samples, and η is the trainable parameter of Gstu . How-
ever, due to the complexity of q0 and its sparsity in high-density regions, directly solving Eq.(1) is
challenging (Song & Ermon, 2019). Inspired by Variational Score Distillation (VSD) (Wang et al.,
2023), Eq.(1) can be extended to optimization problems at different timesteps t in Eq. (2). As t
increases, the diffusion distribution becomes closer to a Gaussian distribution.

min
η

Et∼U(0,1),ϵ∼N (0,I)DKL

(
qGt (xt) ∥qt (xt)

)
(2)

Here xt is the noisy data and p(xt | x0) ∼ N (x0, σ
2
t I). Theorem 1 proves that introducing the

additional KL-divergence for t > 0 does not affect the global optimum of the original optimization
problem in Eq.(1).

Theorem 1 (The global optimum of training (Wang et al., 2023)) Given t > 0, we have,

DKL

(
qGt (xt) ∥qt (xt)

)
= 0⇔ DKL

(
qG0 (x0) ∥q0 (x0)

)
= 0 (3)

Therefore, by minimizing the KL divergence in Eq. (2), the student generator can be optimized
through the following gradients:

∇ηDKL

(
qGt (xt) ∥qt (xt)

)
= Et,ϵ

[[
∇xt

log qGt (xt)−∇xt
log qt (xt)

] ∂xt

∂η

]
(4)

Here the score of perturbed training data ∇xt log qt (xt) can be approximated by a pre-trained dif-
fusion model sθ. The score of perturbed generated data ∇xt log q

G
t (xt) is estimated by another

diffusion model sϕ, which is optimized by score matching with generated data (Song et al., 2021b):

min
ϕ

Et,ϵ

∥∥∥∥sϕ (xt, t)−
x0 − xt

σ2
t

∥∥∥∥2
2

(5)

Thus, the gradient of student generator in Eq.(4) is estimated as

∇ηDKL

(
qGt (xt) ∥qt (xt)

)
≈ Et,ϵ

[
[sϕ (xt, t)− sθ (xt, t)]

∂xt

∂η

]
(6)
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Initial Generator

Degraded DMPre-trained DM Stage 1 Degradation Recording

Stage 2 Distribution Backtracking

Distilled

Optimal Generator

Fits

...

...

Distilled Distilled

Figure 3: The overall framework of DisBack. Stage 1: An auxiliary diffusion model is initialized
with the teacher model sθ and then fits the distribution of the initial student generator G0

stu . The in-
termediate checkpoints {s′θi | i = 0, . . . , N} are saved to form a degradation path. The degradation
path is then reversed and viewed as the convergence trajectory. Stage 2: The intermediate node sθi
along the convergence trajectory is distilled to the student generator sequentially until the generator
converges to the distribution of the teacher model.

The distribution of the student generator changes after its update. Therefore, sϕ also needs to be
optimized based on the newly generated images to ensure the timely approximation of the generated
distribution. Thus, the student generator and sϕ are optimized alternately.

In practice, sϕ has three initialization strategies: (1) sϕ is randomly initialized (Franceschi et al.,
2023). (2) sϕ is initialized as sθ or its LoRA (Hu et al., 2021; Wei et al., 2024). (3) sϕ is initialized
by fitting the generated samples of student generator (Luo et al., 2023c). Beyond unconditional
image generation (Ye & Liu, 2023), this method has also been applied to tasks such as text-to-image
and image-to-image generation across various structures (Yin et al., 2024b; Hertz et al., 2023).

4 METHOD

4.1 INSIGHT

In this section, we introduce the Distribution Backtracking Distillation (DisBack). The key insight
behind DisBack is the importance of the convergence trajectory. As mentioned in Sec.3, there are
two score functions in score distillation, one representing the pre-trained diffusion distribution and
the other representing the generated distribution. The student model is optimized using the gradi-
ent of the difference between these two score functions. Existing methods (Luo et al., 2023c; Yin
et al., 2024b;a) directly use the endpoint of the pre-trained diffusion model as the teacher model,
overlooking the intermediate convergence trajectory between the student generator and the teacher
model. The resulting score mismatch issue between the predicted scores of the generated sample
from the teacher model and the real scores causes the student model to receive inaccurate guidance.
It ultimately leads to a decline in final performance. Constraining the convergence trajectory be-
tween the student generator and the teacher model during the distillation process can mitigate the
mismatch issue and help the student generator approximate the convergence trajectory of teacher
models to achieve faster convergence. In practice, it is infeasible to obtain the convergence trajec-
tory of most teacher models, especially for large models such as Stable Diffusion (Rombach et al.,
2022). Reversely, it is possible to obtain the degradation path from the teacher model to the initial
student generator. The reverse of this degradation path can be viewed as the convergence trajectory
of the teacher model. Based on the above insights, we structure the proposed DisBack in two stages
including the degradation recording stage and the distribution backtracking stage (Fig. 3).
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4.2 DEGRADATION RECORDING

This stage aims to obtain the degradation path from the teacher model to the initial student generator.
The degradation path is then reversed and viewed as the convergence trajectory of the teacher model.
The teacher model here is the pre-trained diffusion model sθ and the student generator is represented
by G0

stu.

Let s′θ be a diffusion model initialized with the teacher model sθ, and it is trained on generated
samples to fit the initial student generator’s distribution qG0 with Eq. (7). By saving the multiple
intermediate checkpoints during the training, we can obtain a series of diffusion models {s′θi | i =
0, . . . , N}, where s′θ0 = sθ ≈ q0 and s′θN ≈ qG0 . These diffusion models describe the scores of
non-existent distributions on the path, recording how the training distribution q0 degrades to the
initial generated distribution qG0 . Algorithm 1 shows the process of obtaining the degradation path.
Since distribution degradation is easily achievable, the degradation recording stage only needs trivial
additional computational resources (200 iterations in most cases).

min
θ

Et,ϵ

∥∥∥∥s′θ (xt, t)−
x0 − xt

σ2
t

∥∥∥∥2
2

(7)

Algorithm 1 Degradation Recording.
Input: Initial student generator G0

stu and
pre-trained diffusion model sθ.

Output: Degradation path checkpoints
{s′θi | i = 0, . . . , N}
s′θ ← sθ

while not converge do
x0 = G0

stu(z; η)

Update θ with gradient
∂
∂θi

Et,ϵ

∥∥∥s′θ (xt, t)− x0−xt

σ2
t

∥∥∥2
2

Save intermediate checkpoints s′θi
end while

Algorithm 2 Distribution Backtracking.
Input: Initial student generator G0

stu and re-
verse path checkpoints {s′θi | i = N, . . . , 0}

Output: One-step generator G∗
stu

sϕ ← s′θN
for i← N − 1 to 0 do

while not converge do
x0 = G0

stu(z; η)

Update η with gradient
Et,ϵ

[
sϕ (xt, t)− s′θi (xt, t)

]
∂xt

∂η

Update ϕ with gradient
∂
∂ϕEt,ϵ

∥∥∥sϕ (xt, t)− x0−xt

σ2
t

∥∥∥2
2

end while
end for

4.3 DISTRIBUTION BACKTRACKING

Given the degradation path from the teacher model to the initial student generator, the reverse path
is viewed as a representation of the convergence trajectory between the initial student generator
G0

stu and the teacher model sθ. The key to the distribution backtracking is to sequentially distill
checkpoints in the convergence trajectory into the student generator. The last node s′θN in the path
is close to the initially generated distribution qG0 . Therefore, in the distribution backtracking stage,
we use s′θN−1

as the first target to distill the student generator. When near convergence, we switch
the target to s′θN−2

. The checkpoints s′θi is sequentially distilled to Gstu until the final target s′θ0 is
reached. During the distillation, the gradient of Gstu is:

Grad(η) = Et,ϵ

[[
sϕ (xt, t)− s′θi (xt, t)

] ∂xt

∂η

]
(8)

In this stage, Gstu and sϕ are also optimized alternately and the optimization of sϕ is the same as
in the original score distillation (Eq. 5). Compared to existing score distillation methods, the final
target of DisBack is the same while constraining the convergence trajectory to achieve more efficient
distillation of the student generator. Algorithm 2 summarizes the distribution backtracking stage.

6
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Table 1: The unconditional generation performance of DisBack. The FID (↓) scores are shown.
Model NFE (↓) FFHQ AFHQv2 LSUN-bedroom LSUN-cat

DDPM (Ho et al., 2020) 1000 3.52 - 4.89 17.10
ADM (Dhariwal & Nichol, 2021) 1000 - - 1.90 5.57
NSCN++ (Song et al., 2021b) 79 25.95 18.52 - -
DDPM++ (Song et al., 2021b) 79 3.39 2.58 - -
EDM (Karras et al., 2022) 79 2.39 1.96 3.57 6.69
EDM (Karras et al., 2022) 15 15.81 13.67 - -

Diff-Instruct (Luo et al., 2023c) 1 19.93 - - -
PD (Salimans & Ho, 2021) 1 - - 16.92 29.60
CT (Song et al., 2023) 1 - - 16.00 20.70
CD (Song et al., 2023) 1 12.58 10.75 7.80 11.00
DisBack 1 10.88 9.97 6.99 10.30

5 EXPERIMENT

Experiments are conducted on different models across various datasets. We first compare the per-
formance of DisBack with other multi-step diffusion models and distillation methods (Sec. 5.1).
Secondly, we compare the convergence speed of DisBack with its variants without the constraint
of the convergence trajectory (Sec. 5.2). Thirdly, further experiments are conducted to demonstrate
DisBack’s effectiveness in mitigating the score mismatch issues (Sec. 5.3). Then, we also conduct
the ablation study to show the effectiveness of introducing the convergence trajectory (Sec. 5.4).
Finally, we show the results of DisBack on text-to-image generation tasks (Sec. 5.5).

5.1 QUANTITATIVE EVALUATION

Table 2: The conditional generation performance of Dis-
Back on ImageNet 64x64 dataset.

Model NFE (↓) FID (↓)
DDPM (Ho et al., 2020) 1000 3.77
DDDM (Zhang et al., 2024) 1000 2.11
EDM (Karras et al., 2022) 79 1.36
EDM (Karras et al., 2022) 15 10.46
Moment Matching (Salimans et al., 2024) 8 3.3

SlimFlow (Zhu et al., 2024) 1 12.34
BOOT (Gu et al., 2024) 1 12.30
DDDM (Zhang et al., 2024) 1 3.47
CTM (Kim et al., 2024) 1 2.06
Sid (Zhou et al., 2024) 1 1.52
DMD2 (Yin et al., 2024a) 1 1.51
Diff-Instruct (Luo et al., 2023c) 1 5.57
PD (Salimans & Ho, 2021) 1 8.95
CT (Song et al., 2023) 1 13.00
CD (Song et al., 2023) 1 6.20
DisBack 1 1.38

DisBack can achieve performance
comparable to or even better than the
existing diffusion models or distilla-
tion methods. Experiments are con-
ducted on different datasets. (1) The
unconditional generation on FFHQ
64x64, AFHQv2 64x64, LSUN-
bedroom 256x256 and LSUN cat
256x256. (2) The conditional genera-
tion on ImageNet 64x64. The perfor-
mance of DisBack is shown in Tab. 1
and Tab. 2. All the DisBack mod-
els are distilled from the pre-trained
EDM model (Karras et al., 2022).

For unconditional generation, the
one-step generator distilled by the
DisBack achieves comparable perfor-
mance across different datasets com-
pared to multi-step generation dif-
fusion models. Specifically, it out-
performs the original EDM model
with 15 NFEs (10.88 of DisBack and
15.81 of EDM on FFHQ64). Compared to existing one-step generators and distillation methods,
DisBack achieves optimal performance. For conditional generation, the DisBack achieves the best
performance compared to the existing models. Moreover, DisBack requires no training data and
additional constraints during training. In conclusion, DisBack can achieve competitive distillation
performance compared to existing models.

7
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Table 3: Ablation study on constraining the convergence trajectory to the score distillation process.
The FID (↓) scores in each case are shown.

Model FFHQ AHFQv2 ImageNet LSUN-bedroom LSUN-cat

DisBack 10.88 9.97 1.38 6.99 10.30
w/o Convergence Trajectory 12.26 10.29 5.96 7.43 10.63

5.2 CONVERGENCE SPEED

We conducted a series of experiments to demonstrate the advantages of DisBack in accelerating
the convergence speed of the score distillation process on unconditional CIFAR10 (Krizhevsky,
2009), FFHQ 64x64 (Karras et al., 2019), and conditional ImageNet 64x64 (Deng et al., 2009)
datasets. Diff-Instruct (Luo et al., 2023c) is the existing SOTA score distillation method, which can
be regarded as a variation of DisBack not introducing the convergence trajectory. We compared the
FID trends of DisBack and Diff-Instruct during the distillation process in the same situation.

The results are shown in Fig. 1. As for unconditional generation, DisBack achieves a convergence
speed 2.46 times faster than the variant without the constraint of convergence trajectory on the
FFHQ 64x64 dataset and 13.09 times faster on the CIFAR10 dataset. For the conditional generation
on the ImageNet 64x64 dataset, DisBack is 2.19 times faster than the variant without the constraint
of convergence trajectory. The fast convergence speed is because constraining the convergence
trajectory of the generator provides a clear optimization direction, avoiding the generator falling
into suboptimal solutions and enabling faster convergence to the target distribution.

5.3 EXPERIMENTS ON SCORE MISMATCH ISSUE

In this part, experiments are conducted to validate the positive impact of constraining the conver-
gence trajectory on mitigating the mismatch issues. We propose a new metric called mismatch
degree to assess whether the predicted score of the teacher model matches the distribution’s real
score given a data distribution. This score is inspired by the score-matching loss.

dmis = Ext
∥sθ(xt, t)−∇xt

log pt(xt)∥2 (9)

0 10000 20000 30000 40000 50000
Epochs

0.05
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Figure 4: The mismatch degree during the distillation
process of Diff-Instruct and proposed DisBack. The
standard deviation is visualized. DisBack effectively
mitigates the mismatch degree during the entire distil-
lation process.

Here xt is the noisy data from the assessed
distribution. Besides, sθ(xt, t) represents
the predicted score and ∇xt log pt(xt)
represents the real score. Because the
real scores are not available in practice,
we use Stable Target Field (STF) (Xu
et al., 2022) to approximate the real score
∇xt

log pt(xt) on the assessed distribu-
tion. STF estimation leverages reference
batches to reduce the variance of train-
ing objectives, which has been proven to
yield accurate asymptotically unbiased es-
timates of the real score (Xu et al., 2022).

When the assessed distribution is close
to the distribution of the teacher model
sθ, the mismatch degree is small, and
vice versa. When calculated directly on
the training data, the resulting mismatch
degree represents the ideal lower bound.
Therefore, the mismatch degree can be
used to assess the convergence degree of
the generated distribution during the distillation process and visualize the convergence speed under
the constraint of the convergence trajectory.

We conduct experiments on the FFHQ 64x64 dataset with Diff-Instruct (Luo et al., 2023c) as a
baseline. We calculate the mismatch degree on the distribution of the student generator of both Diff-
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Wolf in space nebula. An ocean made of liquid gold, set in a
glass bottle, a pirate sailing on a leaf.

Donuts and assorted pastries fill this
white plate.

Phoenix emerging from fire with
galaxy. Magical world, valley. A quantic vintage Futurist, Space

rocket air hostess.

A floating island level suspended in
the clouds.

The joker walking through streets of
New York.

A dog laying on its stomach on a
skateboard.

A mesmerizing (Unicorn-Horse)
crafted from swirling fire and lava.

One cute little white puppy is sitting in
an apple orchard in autumn

A space flower, transparent, with a
Universe within.

Blonde headed cyberpunk girl holding
her golden baby dragon.

Portrait photo of a war man cyborg
robot in a chemical laboratory + face.

Black background with smoke in
spotlight.

A stylishly dressed elderly woman
face with big glass.

A bear playing in the water, next to the
shore.

A dog laying on its stomach on a
skateboard.

Figure 5: Generation samples by DisBack distilled from SDXL with 1024×1024 resolution.

Instruct and the proposed DisBack. The pre-trained EDM model is chosen as the teacher model.
In this scenario, the ideal lower bound of the mismatch degree is 0.037. We visualized the mis-
match degree in Fig. 4. With the constraining of the convergence trajectory, the mismatch degree of
the proposed DisBack is lower during the distillation process, meaning the student generator con-
verges faster and better. Thus, by constraining the convergence trajectory, the mismatch issue can
be mitigated and DisBack can achieve more efficient distillation.

5.4 ABLATION STUDY

Ablation studies are conducted to compare the performance of DisBack with its variant without
the constraint of the convergence trajectory. The results are shown in Tab. 3. Results show that
the variant without the constraint of convergence trajectory suffers from a performance decay in
different cases. This confirms the efficacy of constraining the convergence trajectory between the
student generator and the teacher model can improve the final performance of the generation.
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A clear vase that has
some flowers in it.

A modern minimalist
bedroom with a low

platform bed.

A grand castle on a
cliff overlooking a

vast kingdom.

A glass of red wine
on dinner table.

A serene winter
landscape with snow-

covered mountain.

DisBack

LCM
LoRA

Figure 6: One step generation samples by original LCM-LoRA and its variant distilled from SD
v1.5 with DisBack in 512×512. LCM-LoRA with DisBack can generate images with higher quality.

5.5 TEXT TO IMAGE GENERATION

Table 4: The results of text-to-image generation.
Model FID (↓) NFE (↓) User Preference
SDXL 19.36 100 38.7%
DisBack 18.96 1 61.3%

Further experiments are conducted on text-to-
image generation tasks. We use DisBack to dis-
till the SDXL model (Podell et al., 2024) and
evaluate the FID scores of the distilled SDXL
and the original SDXL on the COCO 2014
(Radford et al., 2021). The user studies are con-
ducted to verify the effectiveness of DisBack.
We randomly select 128 prompts from the LAION-Aesthetics (Schuhmann et al., 2022) to generate
images and ask volunteer participants to choose the images they think are better. Detailed informa-
tion about the user study is included in Sec. B.3. The results of the FID evaluation and user study are
presented in Tab. 4. DisBack achieved better results in single-step generation compared to the origi-
nal SDXL with the 100-step DDIM sampler (Song et al., 2021a). The preference scores of DisBack
over the original SDXL are 61.3%. Some generation samples are shown in Fig. 2 and Fig. 5.

We also conducted experiments on LCM-LoRA (Luo et al., 2023b). The LCM-LoRA distilled from
SDv1.5 using DisBack has an FID score of 36.37 on one-step generation, while the FID score of the
original LCM-LoRA is 78.26. Some generated samples of DisBack and original LCM-LoRA are
shown in Fig. 6. The details of experiments and results are provided in Sec. A.1.

6 CONCLUSION

Summary. This paper proposes Distribution Backtracking Distillation (DisBack) to introduce the
entire convergence trajectory of the teacher model in the score distillation. The DisBack can also
be used to distill large-scale text-to-image models. DisBack performs a faster and more efficient
distillation and achieves a comparable or better performance in one-step generation compared to
existing multi-step generation diffusion models and one-step diffusion distillation models.

Limitation. The performance of DisBack is inherently limited by the teacher model. The better
the original performance of the teacher model, the better the performance of DisBack will also be.
Additionally, to achieve optimal performances in both accelerated distillation and generation qual-
ity, DisBack requires careful design of the distribution degradation path and the setting of various
hyperparameters (such as how many epochs are used to fit each intermediate node in distribution
backtracking stage). While with no meticulous design, it can also achieve better performance, fur-
ther exploration is required to enable the model to reach optimal performance.
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A MORE EXPERIMENT RESULTS

A.1 EXPERIMENT RESULTS ON TEXT-TO-IMAGE GENERATION

Figure 7: The FID scores of LCM-
LoRA distilled from SD1.5 across train-
ing steps. DisBack achieves faster con-
vergence and better performance.

We conducted the experiment on LCM-LoRA (Luo et al.,
2023b). LCM-LoRA is a Low-Rank Adaptation (LoRA)
version of the Latent Consistency Model (LCM) Luo
et al. (2023a), applicable across fine-tuned Stable Diffu-
sion models for high-quality, single-step or few-step gen-
eration. In this experiment, we use LCM-LoRA as the
student generator and Stable Diffusion v1.5 as the teacher
model. We observed that the score distillation under-
performs when LCM-LoRA serves as the teacher model.
This issue likely stems from the infeasibility of directly
converting the outputs of LCM-LoRA into scores.

We distill the LCM-LoRA with the proposed DisBack
and evaluate the FID scores on the COCO 2014 dataset
(Radford et al., 2021) with the resolution of 512×512.
50,000 real images and 30,000 generated images were
used to calculate FID scores. The 30,000 generated im-
ages were obtained by generating one image for each of
the 30,000 distinct prompts. In the case of one-step gener-
ation, the original LCM-LoRA has an FID score of 78.26,
while the DisBack achieves an FID of 36.37. The change
in FID scores over training steps is illustrated in Fig. 7,
showing that DisBack achieves a 1.5 times acceleration
in convergence speed and yields superior generation performance within the same training period.
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Table 5: The performance of DisBack on the distillation from pre-trained EDM model to FastGAN
on FFHQ, AFHQv2, and CelebA in the resolution of 64× 64.

Model FFHQ AFHQv2 CelebA
NFE (↓) FID (↓) IS (↑) FID (↓) IS (↑) FID (↓) IS (↑)

FastGAN (Liu et al., 2020) 1 30.27 2.37 28.59 5.94 29.35 2.36
EDM (NFE 11) (Karras et al., 2022) 11 29.28 2.97 13.67 10.86 23.05 3.01
Score GAN (Franceschi et al., 2023) 1 43.89 2.13 53.86 2.13 50.41 2.12
DisBack 1 23.84 3.27 18.95 7.00 23.16 3.02

A.2 ADDITIONAL EXPERIMENT RESULTS

To explore the distillation performance of the proposed method when the architectures of the teacher
and student models differ, we opt for EDM Karras et al. (2022) as the pre-trained diffusion model,
and FastGAN Liu et al. (2020) architecture for the student model to conduct the experiment. Table 5
shows the performance of baselines and the proposed models on the distillation task from a diffusion
model to a generator. Compared to the original FastGAN, DisBack can effectively improve the
generation quality. The results also show that the one-step sampling performance of DisBack is
better than Score GAN and EDM with 11 NFEs.

A.3 VISUALIZATION OF INTERMEDIATE TEACHER TRAJECTORY

To further demonstrate the effectiveness of the degradation path, we visualized the images generated
by the initial generator, the intermediate checkpoints and the teacher model, along the degradation
path. As shown in Fig. 8 and 9, We can observe that the images generated by the first node in the
trajectory are similar to those of the initial generator, while the images generated by the last node in
the trajectory are close to those of the teacher model. This is consistent with our theoretical analysis.

B IMPLEMENTATION DETAILS

B.1 DATASET SETUP

We experiment on the following datasets:

The FFHQ (Flickr-Faces-HQ) dataset (Karras et al., 2019) is a high-resolution dataset of human
face images used for face generation tasks. It includes high-definition face images of various ages,
genders, skin tones, and expressions from the Flickr platform. This dataset is commonly employed
to train large-scale generative models. In this paper, we utilize a derivative dataset of the FFHQ
called FFHQ64, which involves downsampling the images from the original FFHQ dataset to a
resolution of 64×64.

The AFHQv2 (Animal Faces-HQ) dataset (Choi et al., 2020) comprises 15,000 high-definition ani-
mal face images with a resolution of 512×512, including 5,000 images each for cats, dogs, and wild
animals. AFHQv2 is commonly employed in tasks such as image-to-image translation and image
generation. Similar to the FFHQ dataset, we downscale the original AFHQv2 dataset to a resolution
of 64×64 for the experiment.

The ImageNet dataset (Deng et al., 2009) was established as a large-scale image dataset to facilitate
the development of computer vision technologies. This dataset comprises over 14,197,122 images
spanning more than 20,000 categories, indexed by 21,841 Synsets. In this paper, we use the Ima-
geNet64 dataset, a subsampled version of the ImageNet dataset. The Imagenet64 dataset consists
of a vast collection of images with a resolution of 64×64, containing 1,281,167 training samples,
50,000 testing samples, and 1,000 labels.

The LSUN (Large Scale Scene Understanding) dataset (Yu et al., 2015) is a large-scale dataset for
scene understanding in visual tasks within deep learning. Encompassing numerous indoor scene im-
ages, it spans various scenes and perspectives. The LSUN dataset comprises multiple sub-datasets,
in this study, we use the LSUN Cat and Bedroom sub-datasets with a resolution of 256×256.
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Figure 8: Samples from the initial generator, intermediate teacher trajectory nodes. Here s′θ0 is the
teacher model. The teacher model is the pre-trained EDM model on the FFHQ64 dataset, the student
generator is FastGAN.

Figure 9: Samples from the initial generator, intermediate teacher trajectory nodes. Here s′θ0 is the
teacher model. The teacher model and the student generator are both the pre-trained EDM model on
the ImageNet dataset.

B.2 EXPERIMENT SETUP

For experiments on FFHQ 64x64, AFHQv2 64x64, and ImageNet 64x64 datasets, the pre-trained
models are provided by the official release of EDM Karras et al. (2022). We use Adam optimizers to
train the student generator G and sϕ, with both learning rates set to 1e−5. The training consisted of
50,000 iterations on four NVIDIA 3090 GPUs, and the batch size per GPU is set to 8. The training
ratio between sϕ and G remains at 1 : 1. In the Degradation stage, we trained for 200 epochs
total, saving a checkpoint every 50 epochs, resulting in a total of 5 intermediate nodes along the
degradation path {s′θi |i = 0, 1, 2, 3, 4}. In the Distribution Backtracking stage, when i ≥ 3, each
checkpoint was trained for 1,000 steps. When i < 3, each checkpoint was trained for 10,000 steps.
The remaining steps were used to distill the original teacher model s′θ0 .

For experiments on LSUN bedroom and LSUN cat datasets, the pre-trained EDM models are pro-
vided by the official release of Consistency Model Song et al. (2023). During the training, we set
σmax to 80 and keep it constant during the single-step generation process. We use SGD and AdamW
optimizers during training to train the generator G and sϕ, with learning rates set to 1e−3 and 1e−4,
respectively. The training consisted of 10,000 iterations on one NVIDIA A100 GPU, and the batch
size per GPU is set to 2. The training ratio between sϕ and G remains at 4 : 1. In the Degradation
stage, we trained for 200 epochs total and saved the checkpoint every 50 epochs, resulting in a total
of 5 intermediate nodes along the degradation path {s′θi |i = 0, 1, 2, 3, 4}. In the Distribution Back-
tracking stage, when i ≥ 3, each checkpoint was trained for 500 steps. When i < 3, each checkpoint
was trained for 1000 steps. The remaining steps were used to distill the original teacher model s′θ0 .

When distilling the SDXL model, the teacher model and the student generator are both initialed
by the pre-trained SDXL model on the huggingface (model id is ‘stabilityai/stable-diffusion-xl-
base-1.0’). We use Adam optimizers to train G and sϕ, with learning rates set to 1e−3 and 1e−2,
respectively. The training consisted of 50,000 iterations on one NVIDIA A100 GPU, and the batch
size per GPU is set to 1. The training ratio between sϕ and G remains at 1 : 1. The training prompts
are obtained from LAION-Aesthetics. In the Degradation stage, we trained for 1,000 epochs total
and saved the checkpoint every 100 epochs, resulting in a total of 10 intermediate nodes along the
degradation path {s′θi |i = 0, 1, ..., 9}. In the Distribution Backtracking stage, each checkpoint was
trained for 1,000 steps. The remaining steps were used to distill the original teacher model s′θ0 .
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B.3 USER STUDY SETUP

Firstly, we randomly selected 128 prompts from the LAION-Aesthetics (Schuhmann et al., 2022).
Then we use the original SDXL model and the distilled SDXL model to generate 128 pairs of
images. Subsequently, we randomly recruit 10 volunteers, instructing each to individually evaluate
the fidelity, detail, and vividness of these pairwise images. 10 volunteers included 6 males and 4
females, aged between 24 and 29. 5 of them have artificial intelligence or related majors and the
other 5 of them have other majors. They were given unlimited time for the experiment, and all of
the volunteers completed the assessment with an average time of 30 minutes. Finally, we took the
average of the evaluation results of 10 volunteers as the final user study result.

C THEORETICAL DEMONSTRATION

C.1 KL DIVERGENCE OF DISBACK

As the KL divergence follows

DKL(q ∥ p) = Eq

[
log

q

p

]
(10)

The KL divergence of generated distribution and training distribution at timestep t can be written as

DKL

(
qGt (xt) ∥ qt (xt)

)
= Ext∼qGt (xt) log

qGt (xt)

qt (xt)

= Ex0∼G(z;η)

[
log qGt (xt)− log qt (xt)

]
= Ez

[
log qGt (xt)− log qt (xt)

]
(11)

Thus, the gradient of KL divergence can be estimated as

∇ηDKL

(
qGt (xt) ∥qt (xt)

)
= Et,ϵ [sϕ (xt, t)− sθ (xt, t)]

δxt

δη
(12)

C.2 STABLE TARGET FIELD

Given x0 ∼ q0 is the training data, xt ∼ p(xt | x0) is the disturbed data, Xu et al. (Xu et al., 2022)
presents an estimation of the score as:

∇xt
log pt(xt) =

∇xtpt(xt)

pt(xt)
=

Ex0
∇xt

p(xt | x0)

pt(xt)
(13)

The transition kernel p(xt | x0) follows the Gaussian distribution p(xt | x0) ∼ N (µt, σ
2
t I). Here

µt = x0 in Variance Exploding SDE (Song et al., 2021b) but is defined differently in other diffusion
models.

p(xt | x0) =
1√

(2πk)σt

exp(− (xt − µt)
T (xt − µt)

2σ2
t

) (14)

∇xt
p(xt | x0)

= ∇xt

[
1√

(2πk)σt

exp(− (xt − µt)
T (xt − µt))

2σ2
t

]

= p(xt | x0)∇xt(−
(xt − µt)

T (xt − µt)

2σ2
t

)

= p(xt | x0)
µt − xt

σ2
t

(15)

Combine Eq. (13) to Eq. (15), we have

∇xt log pt(xt) = Ex0

p(xt | x0)

pt(xt)

µt − xt

σ2
t

=
1

pt(xt)
Ex0p(xt | x0)

µt − xt

σ2
t

(16)
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Let B be a set of reference samples for Monte Carlo estimation, we have

pt(xt) = Ex0
p(xt | x0) ≈

1

|B|
∑

x
(i)
0 ∈B

p(xt | x(i)
0 ) (17)

Combine the Eq. (16) and Eq. (17), we can get

∇xt
log pt(xt) = Ex0

p(xt | x0)

pt(xt)

µt − xt

σ2
t

≈ 1

pt(xt)

1

|B|
∑

x
(i)
0 ∈B

p(xt | x(i)
0 )

µt − xt

σ2
t

(18)

Here the ”≈” represents the Monte Carlo estimate.

Depending on the network prediction, the diffusion model can be divided into different types, includ-
ing ϵ prediction (Karras et al., 2022) and x0 prediction (Song et al., 2021a; Ho et al., 2020; Nichol
& Dhariwal, 2021). When the score ∇xt log pt(xt) is estimated by Eq.(18), it can be converted to
ϵ, x0 and v by a series of transformations.

ϵ̂ ≈ −σt∇xt
log pt(xt) (19)

x̂0 ≈ ∇xt log pt(xt) ∗ σ2
t + xt (20)

D DISCUSSION

D.1 TRAINING EFFICIENCY OF DISBACK

While DisBack involves an iterative optimization process during training, the optimization objective
of sϕ (xt, t) aims to minimize the loss of the standard diffusion model based on Eq.(21), and the
objective of student generator aims to minimize the KL divergence in Eq.(22). These two optimiza-
tion processes do not entail adversarial training as in GANs. Consequently, the optimization process
tends to be more stable. A recent work Monoflow (Yi et al., 2023) also discusses in GANs training
a vector field is obtained to guide the optimization of the generator, but the vector field derives from
the discriminator and the instability is not mitigated.

min
ϕ

Et,ϵ

∥∥∥∥sϕ (xt, t)−
x0 − xt

σ2
t

∥∥∥∥2
2

(21)

min
η

Et,ϵDKL

(
qGt (xt) ∥qt (xt)

)
(22)

For the DisBack, training the student generator only requires two U-Nets to perform inference and
subtraction. Training sϕ only involves training a single U-Net, and gradients do not need to be back-
propagated to Gstu. Therefore, these models can be naturally deployed to different devices, making
computational resource requirements more distributed. This ease of distribution allows for joint
training on computational devices with limited capacity. In contrast, for GANs and VAEs, which
require gradient propagation between models (discriminator to generator, decoder to encoder), com-
putational requirements are more centralized, necessitating the use of a single device or tools like
DeepSpeed to manage the workload.

D.2 VECTOR FIELD

In our research, each of the estimated score functions s′θi , for i ranging from 0 to N , delineates a
vector field R3×W×H 7→ R3×W×H . We make a strong assumption behind our proposed method that
these score functions represent existing or non-existent distributions and that they altogether imply a
transformation path between sθ and the student generator G0

stu. Nevertheless, a score fundamentally
constitutes a gradient field, signifying the gradient of the inherent probability density. A vector field
is a gradient field when several conditions are satisfied, including path independence, continuous
partial derivatives, and zero curls (Matthews, 1998). The vector field, as characterized by the score
functions, may not meet these conditions, and thus there is not a potential function or a probability
density function. Such deficiencies could potentially hinder the successful training of the student
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Figure 10: The results of the pre-experiments on mismatch degree. (a) sθ and G are both initialized
by the pre-trained EDM (Karras et al., 2022) on FFHQ. (b) sθ and G are both initialized by the
pre-trained EDM on ImageNet. The mismatch degree on the generated data is greater than on the
training data, especially when the noise scale is low.

generator and introduce unforeseen difficulties in the distillation process. Specifically, in instances
where sθ does not precisely represent a gradient field, a highly probable scenario considering sθ
is a neural network, the samples generated from sθ could encompass failure cases. Although our
empirical studies exemplify the effectiveness of the proposed DisBack, the detrimental effects of the
discussed issue remain unclear. We will further explore this issue in our future work.

E ADDITIONAL DETAILS IN PRE-EXPERIMENTS

E.1 DISTRIBUTION MISMATCH ISSUES

Before conducting our research, we first carried out preliminary experiments to demonstrate that
the proposed mismatch issue does indeed exist when using the endpoints of pre-trained diffusion
models as teacher models. Using the method proposed in Eq. 9, we conducted experiments with the
pre-trained EDM model on the ImageNet and FFHQ datasets. We calculated the mismatch degree
separately on the student model’s initial generated data and the teacher model’s original training
data, and the results are shown in Fig. 10. We can see that, on both datasets, the mismatch degree on
the generated data of the pre-trained model is greater than that on the real training data, especially
when the noise scale is small. This aligns with our hypothesis stated in Sec. 1, demonstrating
that directly using the endpoint of a pre-trained model as the teacher model leads to a distribution
mismatch problem and causes the unreliable predictions of the teacher model.

E.2 A TOY EXPERIMENT ON GAUSSIAN MIXTURE DISTRIBUTION

To validate the feasibility of the proposed DisBack, we conduct experiments on two-dimensional
Gaussian mixture data. First, we randomly select 10 Gaussian distributions mixed as the training
distribution q0. Next, we construct a ResNet MLP as the two-dimensional diffusion model sθ and
train it using the created mixture Gaussian distribution. Similarly, we construct a simple MLP as the
student generator Gstu and train a model sϕ with the same architecture as sθ using generated data.
Therefore, we can use sθ and sϕ to train the student generator Gstu. During the training process,
we visualize the distribution of the student generator and training data to intuitively demonstrate the
changes in the student generator distribution under the proposed training framework. The distribu-
tion of Gstu during the training process is shown in Figure 11. As training progresses, the generated
distribution qG initially expands outward and then gradually convergents towards the training distri-
bution. The results show that the proposed method for training the student generator is effective.

E.3 GRADIENT ORIENTATION VERIFICATION OF DISBACK

As mentioned in Sec. 3, when updating Gstu using Eq.(6), sθ (xt, t) provides a gradient towards the
training distribution, while sϕ (xt, t) provides a gradient toward the generated distribution.
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(a) epoch=0 (b) epoch=20000

(c) epoch=30000 (d) epoch=40000

(e) epoch=50000 (f) epoch=60000

Figure 11: The distribution of student generator during the training process. Blue points visualize
the generated distribution qGt and the red points visualize the training distribution q0.
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(a) The gradient direction of sθ (xt, t) (b) The gradient direction of sϕ (xt, t)

Figure 12: The gradient direction of sθ (xt, t) and sϕ (xt, t) on xt. The points in (a) are sampled
from the training distribution and the points in (b) are sampled from the generated distribution.

To validate the correctness of these gradient directions, we experiment on two-dimensional data. We
evenly sample N data points within the range of (x, y) ∈ [−6, 6] as the noisy data xt. Subsequently,
we depict the gradient directions of xt based on sθ and sϕ respectively. As shown in Figure 12,
consistent with theoretical derivation, for any given xt, the gradient direction of sθ (xt, t) points
toward the training distribution, and the magnitude of the gradient decreases as the distance to the
training distribution decreases. Similarly, for any given xt, the gradient direction of sϕ (xt, t) points
toward the generated distribution.

F ADDITIONAL SAMPLES FROM DISBACK

We provide additional samples from DisBack on FFHQ 64 × 64 (Figure 14), AFHQv2 64 × 64
(Figure 15), ImageNet 64× 64 (Figure 16), LSUN Bedroom 256× 256 (Figure 17) and LSUN Cat
256× 256 (Figure 18).

G FAILURE EXAMPLES

Fig. 13 presents several failure cases of DisBack.

In terms of FFHQ, AFHQv2, and ImageNet, while these images already capture the features of the
corresponding datasets, the generated results lack accurate and clear backgrounds. The potential
reasons for this include the fact that these datasets primarily focus on learning foreground content,
with low requirements for image backgrounds, making the model difficult to clear backgrounds.

As for LSUN Cat and Bedroom, DisBack successfully generates details such as the cat’s fur and
the bed’s texture, but it does not generate the overall shape and the detailed structure. This may be
because the model does not capture the overall information of the data, only capturing local content.
This issue may stem from the inherent limitations of U-Net, resulting in poor generation of overall
structures in rare cases.

In the future, attempts will be made to use more advanced teacher models or improve the distillation
algorithm to overcome these limitations. Moreover, we will further explore more advanced generator
architectures such as StyleGAN Karras et al. (2020; 2021) to achieve higher-quality generation.
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AFHQv2 FFHQ ImageNet LSUN Cat LSUN Bedroom

Figure 13: Failure examples.

H ETHICAL STATEMENT

H.1 ETHICAL IMPACT

The potential ethical impact of our work is about fairness. As “human face” is included as a kind
of generated image, our method can be used in face generation tasks. Human-related datasets may
have data bias related to fairness issues, such as the bias to gender or skin color. Such bias can be
captured by the generative model in the training.

H.2 NOTIFICATION TO HUMAN SUBJECTS

In our user study, we present the notification to subjects to inform the collection and use of data
before the experiments.

Dear volunteers, we would like to thank you for supporting our study. We propose
the Distribution Backtracking Distillation, which introduces the convergence tra-
jectory into the score distillation process to achieve efficient and fast distillation
and high-quality single-step generation.
All information about your participation in the study will appear in the study
record. All information will be processed and stored according to the local law
and policy on privacy. Your name will not appear in the final report. Only an
individual number assigned to you is mentioned when referring to the data you
provided.
We respect your decision whether you want to be a volunteer for the study. If you
decide to participate in the study, you can sign this informed consent form.

The Institutional Review Board approved the use of users’ data of the main authors’ affiliation.
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Figure 14: Additional Samples form conditional FFHQ 64x64.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 15: Additional Samples form conditional AFHQv2 64x64.
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Figure 16: Additional Samples form conditional ImageNet 64x64.
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Figure 17: Additional Samples form conditional LSUN bedroom.
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Figure 18: Additional Samples form conditional LSUN cat.
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