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ABSTRACT

Test-time interventions for language models aim to enhance factual accuracy, re-
duce harmful outputs, and improve model efficiency while avoiding excessive
training costs. But existing interventions are developing independently. In prac-
tice, multiple interventions must be applied to the same model sequentially. We
introduce composable interventions, a framework for studying the impacts of re-
peatedly intervening on the same language model. To showcase our framework,
we compose interventions for two burgeoning interventions: knowledge editing
and model compression. We find that compression undoes knowledge edits faster
than it decays general model performance. We also find that compressing models
makes them harder to edit and show that composing interventions impacts pre-
dicted logits.

1 INTRODUCTION

Large language models (LLMs) exhibit striking capabilities on important tasks like medical
question–answering [35], finance [45], science [39], and entertainment [52]. But despite high per-
formance, LLMs can still misbehave unpredictably, requiring correction. For example, LLMs noto-
riously generate hallucinatory [18], harmful [27, 10], and factually incorrect content [4]. Beyond
unwanted behaviors, user requirements also changes over time. For example, regulations may arise
[40], computational resources constrict, and copyrighted materials may be identified in pre-training
data [8]. Without ways to quickly correct these issues, models can be left mis-calibrated, outdated,
and biased, limiting their widespread responsible use [19].

To efficiently update LLMs, recent works have begun investigating test-time interventions. Such
interventions aim to update pre-trained models to meet new requirements, while avoiding excessive
or expensive training. Some popular interventions include model compression [54], detoxification
[44, 51], and knowledge editing [26], However, interventions are largely advancing independently.
In reality, we have many simultaneous requirements for our models (e.g., factuality, harmlessness,
privacy, efficiency), and each can shift over time. With the uptick in general-purpose models, we
must treat each intervention as one of many options and develop methods that expect to be composed
with others on the same model. Some works have begun studying how different training objectives
interact, like privacy and fairness [25] or quantization and finetuning [48, 21]. However, to the best
of our knowledge, we are the first to consider interactions between test-time interventions.

A key challenge in composing interventions is ripple effects: some interventions may hinder others.
For example, quantization methods can alter activations [7], so knowledge editors trained on specific
activations may suffer from distribution shift [31]. A second challenge when composing isolated
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interventions is incompatible implementations alongside diverse evaluation settings. This challenge
results in important, unanswered questions like Will compression undo my knowledge edits? and
Which debiasing strategy is best if I might compress my model later? Answers require developing a
unified evaluation framework.

We address these challenges by proposing a conceptual framework for composable interventions.
Within this framework, we introduce two desirable features of successful composition: First, we
consider the change in intervention success before and after applying other interventions. Second,
we measure order invariance, considering interventions to be more composable if their success is
unaffected by their order of application. We then showcase our framework with the first study com-
posing knowledge editing and model compression interventions. We comprehensively compose a
recent, popular editor with four compression methods on three datasets using two LLM architec-
tures.

Our experiments elicit four findings. First, we compression consistently removes knowledge edits,
while editing is less successful for compressed models. Second, compression undoes knowledge
edits faster than it decays general model performance. Third, order invariance can depend heavily
on the choice of compression algorithm.

Our contributions are as follows:

• We introduce composable interventions, a novel evaluation framework for language models
that opens doors to studying important, practical questions.

• We showcase our framework with the first study of composability for knowledge editing
and model compression.

• We discover new interactions between editing and compression, pointing to clear directions
for future work in these areas.
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Figure 1: Composing editing with model pruning for Llama-2 on three editing datasets. E → C
denotes editing followed by compression and vice versa. We plot interventions composed in each
order and observe that pruning destroys edits and editing pruned models is less effective than pruning
edited models.

2 EXPERIMENTAL FINDINGS

In this section, we discuss our experiments that elucidate interactions between model compression
and model editing. We first provide a brief overview of our experimental setting. Details on the
framework itself are available in Appendix B.
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Figure 2: Composing editing with quantization for Llama-2 on three datasets. E → C indicates
Editing followed by Compression and vice versa. Editing the quantized model is less effective than
quantizing the edited model, though both struggle to make successful edits with fewer than 8-bit
weights.

Datasets, Models, Interventions. We experiment with three widely-recognized model editing
datasets, two public pre-trained LLMs, and five editing and compression interventions. The edit-
ing datasets include ZsRE[20], MQuAKE [53] and CounterFact [28]. Each is a question-answering
dataset and the objective is to edit a model to output updated answers. We use the popular
MEMIT [29] model editor, which applies batches of edits simultaneously. We use four state-of-
the-art compression methods including two pruning methods: SparseGPT [6] and Wanda [37], and
two quantization methods: GPTQ [7] and AWQ [23]. For pruning methods, we vary ratio of weights
that are set to zero in the model, or the sparsity ratio. For quantization, we vary the number of bits.
We intervene on the popular Llama-2-chat-7b [41] and the Pythia suite of models [1] to study the
impacts of model size on intervention composability. In all experiments, we apply 50 randomly-
selected edits, which we replicate 10 times to measure the variance in performance.

Intervention Evaluation Criteria. We evaluate the success of knowledge editing and model com-
pression using standard metrics. For knowledge editing, we use three popular metrics. First, edit
success measures whether the post-edit model successfully outputs the correct, edited response.
Second, edit generalization measures how well the edit generalizes to other semantically-equivalent
inputs. Following recent work, we compute generalization as the average edit success across a set
of 10 holdout edit rephrasings. Third, locality measures the impact of editing on unrelated inputs.
We compute locality as the average success on random, unedited samples. All editing metrics are
computed as the F1 score on the correct output logits.

For model compression, we report the chosen sparsity ratio and bits for pruning and quantization,
respectively. While compression styles are chosen based on practical requirements, we also facilitate
their direct comparison by computing the average bits. We compute average bits for pruning by
assuming weights that are zero are one bit, while unpruned weights are the original precision (16
in our experiments). We also report FLOPs and the compressed model’s perplexity on the wikitext
dataset [30].

2.1 INTERVENTION RETENTION

We first study the impact of new interventions on the success of prior interventions. By measuring
the edit metrics in both directions (editing followed by compression, and compression followed by
editing), we can quantify their relative impact. For each combination of editor and model compres-
sion method, we report our three editing metrics alongside perplexity (PPL) on wikitext to quantify
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general model degradation. For each experiment, the only change to the model comes from the new
intervention, so any changes in performance are directly due to intervention.

Our results on the CounterFact dataset are shown in Figure 1.

1 Compression decays previous edits. We observe that compression significantly degrades the
editing metrics significantly. For instance, in Figure 1 (E → C) we see that by the time model weights
are 50% sparse, roughly half of the edits are unsuccessful. This trend occurs in both edit success
and generalization, while perplexity remains relatively close to its original value. We also notice
that Wanda composes with MEMIT better than SparseGPT does, as edit success and generalization
achieve higher values across the range of sparsity ratios. This degradation is important because
practical knowledge editing is conducted when critical knowledge must be updated. Therefore,
compression in knowledge-intensive settings may pose risks when conducted on edited models.

2 Compression hinders editability. We observe the same trend in the reverse order (C → E)
as well: Editing compressed models is far less successful than editing non-compressed models,
and editing sparser models leads to worse edit success, lower generalization, and lower perplexity
upon heavy sparsification. Performance decays even more when composing in this order, which
we observe for both pruning and quantization. This may imply that editors benefit from more free
parameters.

CounterFact zsRE MQuAKE

Intervention
Edit Success Generalization Edit Success Generalization Edit Success Generalization
A P A P A P A P A P A P

SparseGPT 0.61 3.87 0.39 5.70 0.66 4.94 0.56 5.27 0.74 3.66 0.81 4.95
Wanda 0.69 3.58 0.52 5.49 0.88 4.37 0.81 4.72 0.68 3.51 0.79 4.80
GPTQ 0.34 0.41 0.10 1.91 0.25 1.18 0.19 1.42 0.38 0.51 0.15 1.62

Table 1: Quantifying composability for each intervention. A measures the change in intervention
success when applying interventions in each direction (edit → compress vs. compress → edit) as
the area between the curves when varying the level of compression (see Figure 1). P measures the
performance decay directly from composition using the area above the highest values in the curves
from pairwise intervention comparisons. Lower values are better for both A and P . GPTQ appears
most composable across the board. SparseGPT is slightly more order invariant (lower A) while
overall Wanda decays model performance slightly less (lower P), while outperforming SparseGPT
on MQuAKE.

2.2 EDITS DECAY FASTER THAN GENERAL LLM PERFORMANCE

Our results in Appendix Figure 5 show that the NLL for edits increases significantly faster than for
general NLL. This indicates that edits are indeed degraded faster than general model performance,
indicating a specific relationship between compression and editing performance. We find this rela-
tionship to be true for all three compression methods, though GPTQ decays NLL less than the other
methods. An ideal composition would instead decay edits and general text at the same rate, being
parallel to the gray identity line in the figure.

2.3 INTERPRETING INTERVENTION INTERACTIONS

We have now established that editing and compression interventions hinder one another. Towards
understanding why, we conduct a case study on how interventions alter Llama-2’s behavior. Specifi-
cally, we study predicted logits from Llama-2 before and after each intervention in isolation and after
their composition. We pick one real edit about the location of the next summer Olympic games. Be-
fore editing, Llama-2 consistently predicts “The next summer Olympics will be held in” → “Tokyo”.
But the correct answer is “Paris”. As shown in Figure 3, we then plot Llama-2’s top-30 predicted
logits and observe that “Tokyo” is indeed the largest, while the correct “Paris” (in red) is the third
largest. We then edit the model to confidently predict “Paris” and observe the “Paris” logit grows
while all others drop substantially. We then compress this model using Wanda with 55% sparsity
and observe that all logits shrink further, “Paris” included, which is surpassed by the special token
in the eighth position. While “Paris” remains likely with respect to the other tokens, the compres-
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sion has lowered its chance of generation. On the right side of Figure 3 we show the impacts of
compressing first. Upon compression, Llama-2 still consistently predicts “Tokyo,” though all logits
have shrunk. Still, “Tokyo” remains the most likely token. However efforts to edit this compressed
model prove futile, and while the logits change and “Paris” becomes relatively more likely, the edit
is unsuccessful. These observations hearken back to two of our main findings: 1) Knowledge edits
often decay after compression, and 2) Compressed models are hard to edit.
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Figure 3: Tokens for Llama-2 prompted with “The next summer Olympics will be held in”. We
edit and compress Llama-2 independently, then compose these interventions, and observe effects
on Llama-2’s predictions. Editing spikes the correct token, though compression shrinks it again.
Compression maintains similar tokens, though hinders editing success.

3 LIMITATIONS AND CONCLUSION

We introduce a framework for composing test-time interventions for language models. Such inter-
ventions are an important step towards keeping expensively-trained models up-to-date over longer
deployments with respect to factuality, efficiency, and social responsibility. Our framework lays the
foundation for a new range of intervention methods that are composable with one another, proposing
two metrics for measure composability of interventions.

However, there are inherent limitations due to the vast potential combinations of interventions, meth-
ods, and metrics unexplored within this study. We focus on a single model editor and a pair of
interventions, acknowledging the existence of other strategies and the need for further research on
their effectiveness across various settings. Additionally, our current research does not extend to the
dynamics of massive models, highlighting the importance of future studies to understand the scala-
bility and impact of interventions more comprehensively. We aim to inspire further exploration and
community engagement in this emerging field.

Our composability metrics also pave the way for formal investigations and practical principles. In
light of the rapid arrival of pre-compressed models, our findings also suggest tempering our expec-
tations for direct composition of editing and compression. Finally, our framework is general and
naturally extends to a broad range of test-time interventions. We hope to drive progress in ma-
chine learning by encouraging the study and development of test-time interventions that explicitly
compose with one another.
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A METHODS BACKGROUND

We specifically compose knowledge editing and model compression interventions and introduce
them each here.

Knowledge Editing. Knowledge editors aim to address factuality decay in LLMs: As the world
changes, some facts an LLM learned during training become inaccurate [26, 43]. For example, a
model trained before 2020 would still predict The latest pandemic in the US is →
“Swine Flu” until updated to predict “COVID”. There are four general approaches to model edit-
ing: 1) Memory-based methods that cache knowledge [32, 11], 2) Locate-then-Edit methods that
selectively finetune parameter subsets [28, 29], 3) Hypernetwork methods that predict new model
weights [36, 31, 38], and 4) Prompt editors that add facts to prompts [53, 3]. Most editors update
singular facts [31, 4, 36, 28], though recent works apply many simultaneously [29, 32, 38]. Others
works embrace the practical need for sequential edits [17, 11]. Recent works have also begun inves-
tigating unintended impacts of editing on pre-trained models [9, 14, 22, 13, 2, 12]. However, these
works study impacts on model performance, not interactions with other types of interventions.

We specifically focus on MEMIT [29]. This editor represents locate-then-edit editors, which are
popular because they are agnostic to LLM architecture and enable simple, in-place LLM updates by
leaving the model’s architecture unchanged.

Model Compression. Large Language Models (LLMs) have achieved remarkable performance
across various tasks, but their deployment is often hampered by substantial computational and mem-
ory demands. To mitigate these challenges, plenty of strategies have been proposed, as outlined in
recent work by Zhu et al. [54]. Notable among these are quantization [7, 23, 46], network prun-
ing [6, 37, 50, 24], knowledge distillation [42, 33, 15], and low-rank factorization [16, 47, 34]. This
study concentrates on network pruning and quantization, two prevalent post-training strategies that
effectively reduce memory overhead and accelerate model inference.

Quantization involves lowering the bit-precision of model parameters, effectively shrinking model
size and expediting inference. Various post-training quantization methods have been specifically
tailored for LLMs. Early works, such as ZeroQuant [49] and LLM.int8 [5], focused on fine-tuning
quantization granularity, showing promising results predominantly at higher bit-widths, like 8-bit.
However, more recent innovations like GPTQ [7] and AWQ [23] have successfully pushed the
boundaries by reducing bit-width to as low as 3 or 4 bits per weight, with negligible performance
degradation.

Concurrently, network pruning aims to eliminate redundant components, such as weights or chan-
nels, thereby reducing the model’s footprint. Several pruning techniques have been developed for
LLMs, shifting from traditional methods that typically required re-training—a significant chal-
lenge given the size of LLMs—to more recent approaches that drop this step. Techniques like
SparseGPT [6] and Wanda [37] have demonstrated that it is possible to maintain a significant pro-
portion of an LLM’s performance even when discarding approximately 50% of its weights. The
OWL technique [50] further advances these techniques, achieving higher levels of sparsity by real-
locating sparsities across layers based on the activation outlier ratio.
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We choose to employ cutting-edge quantization methods QPTQ [7] and AWQ [23] alongside prun-
ing methods SparseGPT [6] and Wanda [37].

B A FRAMEWORK FOR COMPOSABLE INTERVENTIONS

Let us assume we are interested in interventions on a class of functions F parameterized by neural
networks, i.e., F = {fθ : θ ∈ Θ} where Θ is the parameter space. An intervention Ω is an operator
Ω : Θ → Θ′ defined over the neural network parameter space and designed to instill desirable
properties into the resulting function, e.g., factuality, compactness, or privacy. An operator’s success
may be defined by measuring its effect according to some criterion ℓ : Θ×D → R computed over
data D (e.g., to test biasedness or check an intervention’s effect on the negative log-likelihood of
the model). For ease of notation, we drop this explicit dependence on the data. In designing new
interventions, researchers seek to find an Ω∗ (e.g., the best possible compressor) as measured on a
number of openly available models {fθi}Ni=1:

Ω∗ = argmin
Ω

1

N

N∑
i=1

ℓ(Ω(fθi)) (1)

In practice, an intervention Ω may be controlled by a parameter γΩ to vary its strength (e.g., a
sparsity level for network pruning), yielding Ω(·, γΩ), in which case Ω∗ achieves the best result for
each setting of γΩ. We can categorize the difference between the best possible intervention and
an actual obtainable intervention on a specific model fθ through a performance metric P(Ω, fθ).
Intuitively, a perfect intervention would achieve optimal performance for each setting of γΩ (e.g.,
we achieve 100% edit success for all compression levels). Assuming ℓ, γΩ ∈ [0, 1] (appropriately
normalized), the distance of an intervention Ω from the optimal intervention is the area between the
two curves (i.e., the shaded red area in Figure 4):

P(Ω, fθ) := 1−
∫

dγΩℓ(Ω(fθ), γΩ) (2)

where Ω∗ with achieve the optimal value P(Ω∗, fθ) and we can compare two interventions
P(Ω1, fθ),P(Ω2, fθ) over a range of settings.

Note that our discussion so far only considered a single intervention in isolation. In this paper, we
instead argue that there is a gap between theory and practice and hence propose the study of the case
of interacting interventions. Hence, we are interested in the behavior of two or more interventions
(Ω,Ψ). Apart from performing well according to their respective criteria P(Ω, fθ),P(Ψ, fθ), we
characterize the effect of these interventions on each other. An intuitive way of doing so would
be to compute the above performance metric for the composition of operators P(Ψ ◦ Ω, fθ) and
P(Ω ◦ Ψ, fθ), where P is defined either wrt. to the objective ℓΩ or ℓΨ. This gives us an intuitive
measure of how applying one operator after the other affects performance.

An especially desirable property for any two operators is composability (order-invariance), in which
case we apply two operators in either order and receive approximately the same result. We can
define composability as follows:

Definition 1. (ϵΩ-composable interventions): Let Ω,Ψ be interventions on a function class F .
Ω,Ψ are set to be ϵΩ-composable for a specific function fθ ∈ F wrt. to the error tolerance ϵΩ
associated with the success of Ω as evaluated by ℓΩ:

|ℓΩ(Ψ(Ω(fθ)))− ℓΩ(Ω(Ψ(fθ)))| ≤ ϵΩ (3)

In other words, we consider the operators composable if the difference of performance in ℓΩ is
below a threshold. This definition allows for a trivial case when either operator is the identity, i.e.,
Ψ : θ 7→ θ, in which the interventions are clearly composable. Another degenerate case would be an
ϵ-order invariant intervention, which weakens Ψ’s effectiveness wrt. to ℓΨ to an extent which makes
it near meaningless (e.g., compression reducing memory cost only marginally). To avoid such cases,
we may thus define a constrained version:
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Trivial case 
(  is identity) (e.g. Sparsity level)
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: edit → sparsify 
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<  ?

Figure 4: Composable intervention criteria on a hypothetical example measuring the composabil-
ity of model editing and compression wrt. edit success. Ω : Model editing, Ψ : Network prun-
ing/quantization.

Definition 2. (Constrained ϵΩ-composable interventions): Let ϵΩ be our error threshold threshold
wrt. ℓΩ and let ϵΨ be a second error threshold wrt. to ℓΨ. A contained composable intervention
satisfies:

|ℓΩ(Ψ(Ω(fθ)))− ℓΩ(Ω(Ψ(fθ)))| ≤ ϵΩ (4)
subject to ℓΨ(Ω(Ψ(fθ))) ≤ ϵΨ.

Two measures passing this test are set to be ϵΩ-composable interventions at ϵΨ. Note that we can
generalize this definition straightforwardly for more than two interventions by introducing additional
constraints.

As before, Ψ may be controlled by a parameter γΨ to vary its strength. Thus, if we vary γΨ, we get a
range of outcomes, some of which may be composable (i.e., pass the test when measured against ϵΩ)
while others may fail. In order to provide a holistic characterization of the interventions behavior,
we can define a measurement between the two curves obtained by varying γΨ over N settings, i.e.
[γ

(i)
Ψ , ℓΩ(Ω(Ψ(fθ, γΨ)))

(i)]Ni=1 and [γ
(i)
Ψ , ℓΩ(Ψ(Ω(fθ), γΨ))

(i)]Ni=1. Analogous to our definition of
P , a natural choice would be the area A(Ω,Ψ, fθ) between the two curves (i.e. the shaded blue area
in Figure 4):

A(Ω,Ψ, fθ) :=∫
dγΨ|ℓΩ(Ψ(Ω(fθ), γΨ))− ℓΩ(Ω(Ψ(fθ, γΨ)))|

(5)

where A(Ω,Ψ, fθ) = 0 indicates perfect and larger values indicate worse composability. This
allows the easy comparison of alternative interventions Ψ1,Ψ2 (e.g., two compressors) wrt. to Ω
(model editing) by comparing their A scores, provided both methods have been evaluated across the
same settings for γΨ. In the case of more than two interventions, the respective lines (one for each
unique permutation) form a hypercube, the volume of which characterizes their composability.

There is one remaining subtlety in the extension of our previous definition of P to the case of mul-
tiple interventions: In practice, for a specific γΨ, a user will choose whatever order of intervention
achieves better results, i.e., either ℓΩ(Ψ(Ω(fθ), γΨ)) or ℓΩ(Ω(Ψ(fθ, γΨ))). For P(Ω,Ψ, fθ) to take
this into account, we can simply compute the area between the optimal intervention and the element-
wise max (at each γΨ):

P(Ω,Ψ, fθ) :=

1−
∫

dγΨ max(ℓΩ(Ψ(Ω(fθ), γΨ)), ℓΩ(Ω(Ψ(fθ, γΨ))))
(6)
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In summary, the two metrics A & P give us a holistic view of both composability and absolute
performance of two interventions, allowing for a principled and fair comparison. Figure 4 illustrates
the various defined criteria on a hypothetical example.

C EXTENDED RESULTS

2 4 6 8 10
General NLL

2

4
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SparseGPT
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Edit = Gen

Figure 5: Comparing length-normalized Negative Log-Likelihood (NLL) decay in edits to NLL
on general text at various levels of compression (editing → compression). The gray dashed line
represents hypothetical equal decay in edit and general NLL. The sharp rise in edit NLL for each
compression method indicates edits are forgotten first.
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