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Figure 1: Left: We introduce VAP (visual adversarial perturbation), a training-free approach that
strategically injects beneficial visual noise to mitigate object hallucination in LVMs without altering
the complex base model. Right: Our method consistently improves performance across 8 state-of-
the-art LVMs under the POPE hallucination evaluation setting [22].

Abstract

Large vision-language models (LVMs) extend large language models (LLMs) with
visual perception capabilities, enabling them to process and interpret visual infor-
mation. A major challenge compromising their reliability is object hallucination
that LVMs may generate plausible but factually inaccurate information. We propose
a novel visual adversarial perturbation (VAP) method to mitigate this hallucination
issue. VAP alleviates LVM hallucination by applying strategically optimized visual
noise without altering the base model. Our approach formulates hallucination sup-
pression as an optimization problem, leveraging adversarial strategies to generate
beneficial visual perturbations that enhance the model’s factual grounding and
reduce parametric knowledge bias. Extensive experimental results demonstrate
that our method consistently reduces object hallucinations across 8 state-of-the-art
LVMs, validating its efficacy across diverse evaluations.

1 Introduction

Large vision-language models (LVMs) integrate visual and textual information, providing transforma-
tive capabilities for addressing complex cross-modal understanding challenges [36, 4, 18]. Despite
their remarkable advancements, LVMs often generate plausible yet factually inaccurate outputs,
eliciting harmful content such as misinformation or biased representations [22, 29]. Addressing these
limitations is critical to enhancing the reliability and applicability of LVMs in real-world scenarios.
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Prior research indicates that hallucinations in LVMs arise from the interaction between biased
parametric knowledge and real-world data distributions [1, 13, 10]. This phenomenon is driven
by two primary mechanisms. First, the long-tail distribution of training data induces systematic
biases in parametric knowledge, resulting in spurious correlations and factual inconsistencies [22, 23].
Second, the extensive parameter spaces of large language models (LLMs) within LVMs amplify these
biases, particularly given the LLMs’ predominant role in the inference pipeline [19, 26]. This LLM
dominance potentially suppresses critical visual signals, increasing hallucination frequency [32, 20].
Consequently, the embedded biased parametric knowledge substantially compromises LVMs’ capacity
to accurately process real-world data.

Existing solutions mitigate this challenge via two strategies: fine-tuning [23, 46, 3] and decoder
optimization [15, 26, 7]. These model-centric interventions adjust LVMSs’ internal mechanisms
through parametric updates or algorithmic refinements [25]. They have achieved substantial success
in reducing hallucinations, laying crucial groundwork for improving LVM reliability.

Unlike prior model-centric approaches, we introduce a paradigm shift in hallucination mitigation that
leverages the intrinsic mechanisms of hallucinations. This perspective stems from a crucial obser-
vation that while hallucinations arise from biased parametric knowledge, they manifest specifically
during the processing of real-world visual inputs [14, 1]. This understanding reveals an elegant solu-
tion: strategically crafted perturbations to visual inputs can redirect LVMs’ decision-making processes
away from parametric biases without altering the original model’s architecture or mechanisms.

This insight motivates our visual adversarial perturbation strategy, where adversarial optimization
through zero-gradient techniques introduces beneficial visual noise to the original image. This
noise guides the model to ground its responses in actual visual content rather than relying on
parametric knowledge biases. The power of this approach lies in its exploitation of visual inputs as
concrete factual anchors, fundamentally different from language prompts that often reinforce existing
parametric biases [35, 42]. Notably, our method functions in a fully black-box manner requiring no
access or modification to the LVM, making it a practical and efficient solution.

Building on this foundation, we propose visual adversarial perturbation (VAP), a novel technique de-
signed to mitigates hallucinations by applying beneficial adversarial perturbations to visual inputs (as
shown in Figure | (left)). Adversarial perturbations, traditionally considered as “poison” due to their
initial disruption of model decisions, are reformulated to specifically align model responses with
visual content and mitigate parametric knowledge bias. By adversarially optimizing visual noise,
VAP refines LVM decision-making in a data-centric manner, transforming perturbations from a factor
of degradation into a corrective “cure” that effectively mitigates object hallucinations.

We evaluate the effectiveness of VAP using complementary hallucination assessment frameworks:
POPE [22] and BEAF [45] for closed VQA evaluation, and CHAIR [32] for open-ended generation
tasks. Our extensive experiments across 8 state-of-the-art (SOTA) LVMs demonstrate that VAP
consistently mitigates hallucinations across diverse evaluation settings.

Opverall, our contributions are structured as follows:
» We propose visual adversarial perturbation, which mitigates object hallucinations in LVMs
by injecting beneficial adversarial noise into visual inputs without modifying the model.

* We formulate object hallucination mitigation as an adversarial visual noise optimization.
By refining adversarial strategies, beneficial visual noise is generated through zero-gradient
optimization to influence model decision-making and alleviate hallucinations.

» Extensive experiments across evaluation settings—including text-axis, text- and vision-axes,
and open-ended captioning—validate the efficacy of our method in reducing hallucinations.

2 Related Work

2.1 Large-Vision Language Models

In recent years, the field has witnessed advancements in large vision-language models (LVMs). LVMs
have been developed to tackle real-world multimodal challenges such as image captioning and visual
question answering [44, 39, 34]. They typically operate through a pipeline comprising a visual
encoder, a cross-modal connector, and a large language model (LLM), enabling seamless interaction



between visual and linguistic features. State-of-the-art systems leverage extensive datasets and adopt
a two-stage training paradigm: pretraining on diverse multimodal corpora [31, 33], followed by
fine-tuning with task-specific instructions [24, 28]. This methodology allows LVMs to interpret and
respond to complex multimodal inputs with remarkable efficacy [21, 9].

2.2 Hallucination in LVMs

Hallucination refers to the generation of textual responses that deviate from or contradict the actual
visual content, leading to factual inaccuracies or biased information in LVMs [22, 2, 1]. These hallu-
cinations primarily arise from intrinsic limitations of LVMs, specifically: (1) the long-tail distribution
of training data, which introduces systematic biases into the model’s parametric knowledge [48, 46];
and (2) the vast parameter space of LLMs, which dominate the inference process and exacerbate
these biases [25, 26]. Due to the fundamental role of objects in computer vision and multimodal
research, current evaluation frameworks primarily concentrate on object hallucination [32, 48].

Prior work has explored two model-centric strategies to mitigate object hallucinations in LVMs:
fine-tuning and decoding strategies. These interventions target the underlying parametric knowledge
bias that leads to hallucinations. Fine-tuning approaches like REVERIE [17] and HalluciDoctor [46]
update the parametric knowledge through comprehensive instruction data to suppress hallucinations.
Meanwhile, decoding-based methods such as PDM [11] and OPERA [15] mitigate hallucinations by
intervening in the model’s decoding process. In contrast to these model-centric strategies, we approach
the challenge from a data-centric perspective, proposing a novel adversarial visual perturbation
technique that directly mitigates object hallucinations through visual perturbations.

3 Methodology

We propose visual adversarial perturbation (VAP) to mitigate object hallucination in LVMs. VAP
formulates an adversarial strategy to align the LVM responses with visual content while reducing the
impact of parametric knowledge bias (Section 3.2). These objectives guide the adversarial optimiza-
tion process, which generates beneficial visual noise to improve model performance (Section 3.3).
An overview of our framework is shown in Figure 2.

3.1 Preliminaries

Notations Let fy denote LVM, where x represents the input image, c is the query prompt, and w
is the model’s generated response, such that w = fy(z, c). We define g,, as the CLIP text encoder
converting textual data into semantically meaningful embeddings. For adversarial perturbation, we
denote ¢ as the perturbation vector and Lg as the surrogate adversarial loss guided by strategy set
S =[s1, -+, Sn)- The perturbed image is defined as & = x + 4, € is the magnitude of perturbation,
and (2 represents the adversarial knowledge utilized during the adversarial optimization process.

Adversarial Perturbation Adversarial perturbation against LVMs typically involves adding imper-
ceptible visual noise to influence model decisions [47, 8], which can significantly alter the model’s
output. The optimization of such perturbations can be formulated as:

§ = argmax Lg)(z + 0,), 1

6~Be(z)

where 0 represents the adversarial perturbation to be optimized, L) represents the adversarial
objective function under strategy S, and () indicates the available adversarial knowledge. The
perturbation is bounded within an e-ball B. Specifically, the adversarial perturbation is optimized by
computing the gradient as follows:

T =.%‘+O¢V${£(S)($+5, Q)}, 2)

where « is the step size, and the gradient V, is computed with respect to the vision input z.

3.2 Adversarial Strategies

Our adversarial goal is formulated as two principal objectives: (1) optimizing the semantic alignment
between the response and the corresponding visual content of LVMs, and (2) mitigating the negative
influence of parametric knowledge bias.
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Figure 2: Overview of our proposed method. VAP generates visual noise by optimizing three
strategies based on adversarial knowledge: (1) aligning responses under prompted and unprompted
settings to preserve image-consistent semantics, (2) introducing uncertainty via distorted inputs
to expose hallucination bias, and (3) minimizing representational similarity between original and
distorted views to suppress parametric priors. Adversarial knowledge refers to structured conditions
used to drive the optimization. The resulting perturbation mitigates object hallucinations.

Alignment LVM Response with Grounding Visual Content Hallucinations in LVMs manifest
as the generation of semantically plausible responses but diverge from the actual visual content.
To mitigate this, our proposed methodology promotes enhanced alignment between the model’s
responses and the actual visual content:

£31 :5m%aé){5(f9($+670),f9($+(5,@))}, (3)

where S(-, -) signifies the calculation of semantic correlation between the two generated responses,
fo(x + 0, ¢) represents the model’s output given the perturbed vision input 2 4 ¢ with the conditional
query prompt ¢, and fp(z + 6, () signifies the visual semantic description when the prompt is replaced
with an empty token ). This loss term L, quantifies the semantic alignment between conditionally
guided responses and the model’s autonomous interpretation of visual content, thereby enhancing
response consistency with the underlying visual semantics.

Despite the improvements, the alignment between responses and visual content may still be influenced
by parametric knowledge bias, particularly an over-reliance on linguistic priors [3]. Such bias
can distort the model’s interpretation of visual information, leading to hallucinatory patterns. As
discussed in Section |, LVMs often prioritize linguistically anchored priors over visual signals,
thereby exacerbating existing biases. Our alignment strategy addresses this by mitigating both
misalignment and bias.

Mitigating Parametric Knowledge Bias Visual uncertainty [13, 20, 43] serves as a critical metric
for quantifying parametric knowledge bias. It is quantified by generating a contrastive negative image
Z through the introduction of noise to the original image:

p(zlz) = N'(z; /pre, (1 — pr)T), )
where pp represents the noise scheduling coefficient at timestep 7', controlling the magnitude of
perturbation applied to the original image z.

To further mitigate parametric knowledge bias, we introduce a dual-setting approach that reduces
the semantic similarity between LVM responses to original and distorted visual inputs under both
conditional ¢ (with query prompt) and unconditional () (without query prompt) configurations.

In the conditional c setting, our approach minimizes the semantic similarity between the perturbed
input x + § and the contrastive negative image Z:

Lo, = min {S(fo(e+0,c), fo(,0))}, ©)

where fy(Z, () denotes the LVM’s output given the visually uncertain input. £, promotes more
discriminative and context-sensitive responses between prompted and unprompted conditions, thereby
effectively reducing the model’s dependency on linguistic priors.



In the unconditional () setting, our methodology minimizes the semantic similarity between responses
to the perturbed image = + § and its contrastive negative counterpart Z:

Low = min {S(fo(x+8,0), fo(.0))}, ©)

where L, alleviates the propensity to hallucinate, further mitigating the dominant influence of
linguistic priors.

The loss terms L, , L,,, and L, collectively regulate LVM responses to ensure consistency with
visual content while mitigating parametric knowledge bias in LVMs. We formulate our complete
optimization objective as a weighted combination of these loss terms:
L:Sl £82 ,CSg
’CS(xacvg)ziz—’_iQ—’—iga (7)
o1 93 93
where 0? (i € {1,2,3}) are balancing coefficients that modulate the contribution of each loss
component. This formulation achieves a dual objective: L,, ensures strong semantic alignment
between model responses and visual content, while £,, and L, collectively mitigate parametric
knowledge bias through consistent interpretation across visual perturbations.

3.3 Visual Adversarial Optimization

To optimize our adversarial objectives Lg, we leverage the CLIP text encoder gy () as a surrogate
model, capitalizing on its superior discriminative capabilities for textual representation [40]. This
approach contrasts with the limited semantic separability in LLM representations:

S(’) :gw(')—rgw<'>7 3
where S(-, -) measures the similarity of the LVM’s response under different conditions. Then, we

compute the numerical loss Lg(x, ¢, ), which enables the optimization of the perturbation §. ¢
represents a carefully crafted visual perturbation designed to optimize the strategic objective:

6:vz{£5(x707971/))}' (9)

The final adversarial perturbation is generated by adding noise to the input image z, yielding the
visual adversarial perturbed image &:

T=z+a-d=x+aV. {Ls(z,c,b,9)}, (10)
where a denotes the learning rate of adversarial strategies. The generated perturbed image  exhibits

superior optimization characteristics with respect to the objective Lg, outperforming the original
images x while meticulously preserving the semantic integrity of vision input.

Due to the autoregressive nature of LVMs, direct gradient computation is challenging. To address this,
we optimize the similarity-based loss using a gradient-free method [47, 30], termed zero-gradient
optimization. Specifically, we apply a zero-order optimization technique [5], which approximates the
gradient by evaluating the loss at perturbed inputs and estimating the optimal perturbation direction:

N
Vm{['s(l'yQ 9)} %%ﬂ Z{[ﬁs(l‘ + 6 : 7n7ca97w)
n=1

- £5($7 c,9, w)] ’ '771}7
where ~,, is sampled from distribution P(vy), 8 controls the sampling variance, and N denotes
the number of queries. The term +,, ~ P() ensures perturbation diversity through the property
E[y" - 7] = I. A detailed step-by-step algorithm of VAP is provided in Appendix I.

(11)

4 Experiments

To thoroughly assess VAP, we conduct experiments from five perspectives:

» Consistency: Evaluating VAP’s effectiveness in mitigating hallucinations across eight LVMs.

* Fidelity: Ensuring that visual understanding and reasoning capabilities are preserved.

* Compatibility: Demonstrating VAP’s orthogonality to other methods and complementary benefits.
* Efficiency: Reducing computational cost via a lightweight solution achieving 1/8x overhead.

» Component Analysis: Assessing the contribution of each module through ablation.



4.1 Experiment Setup

Implementation Details We evaluated our method on 8 SOTA LVMs: LLaVA [24], LLaVA-
Onevision (OV) [21], Instruct-BLIP [9], Intern-VL2 [6], Intern-VL2-MPO [6], Qwen-VL2 [38],
DeepSeek-VL2 [41], and Ovisl.6-Gemma2 [27]. In our experiments, we set the parameters as
a = 1/255, = 8/255, N = 10, and € = 2. Due to the differences across LVMs, we assigned
model-specific balancing coefficients o; (where ¢ € 1,2, 3) and 7.

Detailed model descriptions, configurations are provided in Appendix A. Additionally, an in-depth
analysis of the ablation study and individual components can be found in Appendix C.

Evaluation Benchmark Our evaluation is divided into two main categories: (1) Closed VQA for
object hallucination evaluation: Text-axis evaluation POPE [22] and vision-/text-axis evaluation
BEAF [45] settings. (2) Open-ended evaluation: Image caption generation CHAIR [32] setting. (3)
Non-hallucination evaluation: Factual object recognition and open-ended factual understanding
tasks using MME [12] and AMBER [37] (See in Appendix J.1). Further details are provided in
Appendix B, and comprehensive examples are presented in Appendix E.

1) POPE: POPE evaluates hallucinations along the text axis by generating VQA pairs through
question manipulation. We randomly selected 500 samples from the MS-COCO dataset and generated
9,000 evaluation triplets using POPE’s three sampling strategies.

2) BEAF: BEAF evaluates hallucinations along vision/text axes by manipulating scene information
and questions for fine-grained analysis. BEAF incorporates change-aware metrics such as TU, IG,
SB,,, SB,,, ID, and Fltyip for comprehensive evaluation. BEAF includes 26,064 evaluation triplets.

3) CHAIR: CHAIR evaluates hallucination by generating captions and measuring the proportion
of objects mentioned in captions but not present in images. Specifically, we randomly select 1,000
samples from the MS-COCO dataset for evaluation. The assessment uses two metrics:

|hallucinated objects|
|captioned objects| ’

|hallucinated captions|

CHAIR; =
! |all captions|

CHAIRg =

(12)

where CHAIR; is calculated at the object level, and CHAIR g is calculated at the sentence level.

4) AMBER/MME: AMBER and MME serve as comprehensive evaluation benchmarks for multi-
modal large language models. They assess various attributes of multimodal capabilities, focusing on
both perception and cognition in discriminative and generative tasks.

4.2 Experimental Results

Results on text-axis hallucination evaluation Table | presents comparative results under the POPE
(Polling-based Object Probing Evaluation) setting”. Our experimental methodology includes three
sampling strategies: Random, Popular, and Adversarial Sampling for negative object selection,
each generating 3,000 evaluation triplets. Across all settings, integrating VAP through visual noise
injection consistently improved the performance of eight state-of-the-art LVMs, with the largest gains
observed in Intern-VL2: +2.81% in accuracy and +2.09% in F1 score. Notably, the most significant
improvements appear under adversarial sampling (Figure 1-right), indicating that VAP effectively
mitigates parametric knowledge bias in LVMs. This is particularly relevant as adversarial sampling
tends to trigger high-frequency hallucinated objects, highlighting the data distribution bias in LVM
training and the dominant role of LLMs.

Results on Vision-/Text-Axis Hallucination Evaluation Table 2 presents comparative results under
the BEAF (BEfore-AFter) framework, which enables fine-grained analysis through vision-axis
manipulation and change-aware metrics, offering deeper insight than standard accuracy. Applying
VAP led to consistent improvements across most metrics for all LVMs.

Notably, TU improved by 2.31%, SB,, by 1.76%, SB,, by 1.04%, and Fltyip by 1.74%. Gains across
TU, IG, SB,, SB,,, ID, and Flqyp indicate that VAP mitigates hallucinations under varied scene
conditions by promoting genuine object understanding over spurious correlations. The marked TU
gains further suggest that VAP’s visual perturbations guide models toward more grounded predictions,
validating its role in suppressing parametric bias and enhancing visual reasoning [45].

Due to space limitations, complete precision and recall results are provided in Appendix C.1.



Table 1: Text-axis evaluation comparison under three evaluation settings of POPE on the validation
set of MSCOCO: Random Sampling (selecting absent objects), Popular Sampling (choosing the
most frequent missing objects based on dataset-wide occurrence), and Adversarial Sampling (ranking
objects by co-occurrence with ground-truth and selecting the most frequent ones). The values in
green indicate the percentage improvements achieved by our proposed method.

LVM Vision Input Popular Random Adversarial
Ace.? F17 Acc.? F11 Ace.? F11
LLaVA-v1.5 Original 85.57 86.19 88.97 89.09 . 79.80 81.79 )
' +VAP 8667110 87181099 90007103 90.07°09% 8097117  §2.82+1.05
Instruct-BLIP Original 83.30 82.85 88.13 87.18 81.33 81.21
+VAP 84.06+0-76 83.67 +0-82 89.00 +0-87 88.12 10-99 82,03 +0-70 §1.99 +0.78
Intern-VL2 Original 84.11 81.64 85.14 82.60 82.00 80.70
+VAP 8687207 84197200 86307110 840874 8481125 §279 120
Original 87.51 86.53 88.68 87.58 86.28 85.55
InemVL2ZMPO  TIULT gghg it ggazeitt 09207l 8930707 SEA3CLY  g7ss i
Original 86.80 85.86 88.70 87.64 86.47 85.55
DeepSeek-VL2 +\§AP 87.60 +0-80 86.70 +0-84 89.3() +0-60 88.31 1067 87.13 +0-66 86.28 1073
Original 88.13 87.68 90.60 89.99 86.27 86.02
Qwen-VL2 +VAP 89.10+0-97 88.65 +0-97 91.16 +0-56 9(0.54 +0-5 87.30+1.03 87.02 +1.00
Original 88.30 87.33 89.53 88.51 87.17 86.27
LLaVA-OV +5AP 88.93 +0.63 87.93 +0.60 89.87 +0.34 88.83 +0.32 87.76 +0.59 86.69 +0.42
is1.6 Original 87.96 86.88 88.96 87.87 86.22 85.32
OvislG-Gemma2 " yup' g844+045 87407077 89594005 §8.54°06T  g685 06T 86,0307

Table 2: Vision-/text-Axis evaluation comparison under the BEAF Benchmark. Compared to the
text-axis hallucination evaluation, BEAF includes the change-aware hallucination metrics: TU, IG,
SB,, SB,,, ID, and Fltymp. Although some metrics show slight degradation, the overall performance
demonstrates consistent improvement. The values in green indicate the percentage improvements
achieved by our proposed method, while the values in red reflect the performance degradation.

LVM Vision Input BEAF Benchmark
Ace.? F11 TUT 1G| SB,| SB,l D Flrup T
LLaVA-vl.5 Original 79.99 74.06 34.25 0.33 60.74 4.66 542 50.31
. +VAP 80.36 1037 74351029 34834058 (27006 072002 418046  505-037 50.97+0.66
Instruct-BLIP Original 81.91 73.55 33.35 0.78 50.73 15.12 5.45 4930
+VAP 82.07 1016 73961041 33.83+04% 048030 5059 014 1510 002 530015 49.85+0-5°
Intern-VL2 Original 88.38 79.10 64.12 1.33 12.63 21.89 6.20 76.17
+VAP 88.69 1031  7972+0.62 g6 15+203 (97036 1158105 2128061 05015 7763146
Original 89.21 82.56 63.24 0.76 23.67 12.31 5.23 75.86
fniem-VEZMPO™ 7 yap 8963102 82721005 65.06°17 045 091 2191 170 12551021 449 071 774010
Original 89.39 82.51 67.04 0.50 17.88 14.56 3.02 79.27
DeepSeek-VL2 +VAP 89721033 83.12+061 6811107 (044006 17.37-051 14.06-0-50 2.98 004 (.03 +0-76
Original 87.96 81.13 54.78 0.28 33.68 11.24 4.89 69.78
Qwen-VL2 +VAP 88.39 t0-13 81,57 +011 56,1810 027 001 3249119 11037021 438051 7079 1.0
LLaVA-OV Original 90.76 84.53 65.80 0.12 21.32 12.77 2.55 78.56
+VAP 91.07 t033 85011018 67.16 7136 030701%  20.81 071 1173101 2.46 007  79.54 1098
Ovisl.6-Gemma2 Original 90.12 83.04 66.25 0.28 19.94 . 13.52 2.76 - 78.80 -
o +VAP 90.91 070 84,53 +119  68.567%3 02509  19.69 " 1148291 24102 80.54 17

Results on Open-Ended Caption Generation Hallucination Evaluation Table 3 reports our model’s
performance under the CHAIR (Caption Hallucination Assessment with Image Relevance) setting.’
Applying optimized VAP to original images yields consistent reductions in object hallucination across
diverse query prompts. For example, under the prompt “Generate a short caption of the image,”
Intern-VL2 achieves CHAIR; and CHAIR g reductions of 0.68 and 0.90, respectively, with VAP.

These results highlight VAP’s effectiveness in open-ended vision-language tasks beyond binary VQA.
By mitigating hallucination, VAP improves the semantic alignment between captions and visual
content, reduces parametric bias, and enhances the factuality and relevance of generated descriptions.

3CHAIR is limited to 80 segmentation categories, which may induce classification bias [22]. We restrict
responses to 30 characters to focus on prominent objects.



Table 3: Comparison of object hallucination evaluation under the CHAIR setting. I; denotes
“Generate a short caption of the image”, and Iy denotes “Provide a brief description of the given
image”. The values in green indicate the percentage improvements achieved by our proposed method.

LVM Vision Input L I
CHAIR; | CHAIRs| CHAIR;| CHAIRg |
Original 3.97 6.60 4.01 6.90
LLaVA-vL.5 +VAP 3.82 015 6.50 010 3.86 015 6.50 010
Original 1.83 2.90 2.14 3.40
Instruct-BLIP FVAP L7102 2707020 196701 31000
Original 4.90 7.50 5.14 9.50
Intern-VL2 +l§\P 4.2 —0.68 6.60 —0-90 4.65 —0-49 8.9( —0-60
Original 5.53 8.90 6.35 13.40
fntem-VL2-MPO " y4p 539014 860 00 617 015 1260 0%
Original 2.00 2.60 1.84 4.50
DeepSeek-VL2 :l‘é/;lﬁf 1.94 —0-06 2.20 040 1.66 —0-18 430020
Original 3.27 5.20 3.45 6.20
Qwen-VL2 +VAP 2987020 480040 323-022 570050
Original 1.96 3.30 2.71 4.50
LLaVA-OV +5AP 1.85 —0.11 3.10 —0.20 2.41 —0.30 4.20 —0.30
Original 4.07 6.30 5.80 14.50

Ovis1.6-Gemma2 +VAP 390017 620010 556024 1430 02
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Figure 3: Comparison of original images with our VAP and Gaussian noise of equal strength (¢ = 2).
‘We highlight the performance drop caused by Gaussian noise compared to VAP. Experiments were
conducted under the POPE adversarial setting, evaluated by Accuracy and F1 Score.

4.3 Analysis and Discussion

Effectiveness of VAP and Gaussian noise on hallucinations Figure 3 compares the impact of
VAP and Gaussian noise applied to original images under equal-strength perturbations. Gaussian
noise consistently degrades performance across eight models, while VAP preserves or improves it.
This highlights VAP’s effectiveness in three aspects: Firstly, VAP introduces beneficial semantic
noise, whereas Gaussian noise increases uncertainty and disrupts visual features. Secondly, VAP
enhances alignment between model outputs and visual content via its adversarial strategy, reducing
hallucinations. Thirdly, unlike Gaussian noise, which merely blurs input, VAP semantically challenges
the model to mitigate parametric knowledge bias.

Ilustration of the effectiveness on closed VQA and open-ended tasks Figure 4 presents results
from examples in closed vision-question-answer (VQA) and open-ended image captioning tasks.
Panels (a) and (b) demonstrate that the visual noise introduced by our method suppresses object
hallucinations in LVMs under scene-change situations without disrupting their normal perceptual
capabilities (i.e., the noise does not lead to incorrect decisions). Additionally, Panels (c) and (d) show
that our method mitigates object hallucinations in open-ended tasks without reducing the amount
of information in the LVMSs’ responses. These consistent findings highlight the effectiveness of the
VAP method. More comprehensive examples can be found in Appendix E. In-depth analyses of
generalization are provided in Appendix D.



(a) vision-/text-axis evaluation under original image (b) vision-/text-axis evaluation under noise image (+VAP)
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Is there an airplane in the image? X Istherean dirplane in the image? Is there an airplane in the image? L Istherean airplane in the image?
Yes, there is an airplane in the image, €% Yes, there is a large airplane in the Yes, there is an airplane in the image, No, there is no airplane present based
parked on the runway at the airport. image, which parked at the airport. parked on the runway at the airport. on the visible details in the image.

(c) open-ended evaluation under original image (d) open-ended evaluation under noise image (+VAP)

Provide a brief description of the given image? | 2 Provide a brief description of the given image?
The image shows a small child sitting on a swing set
near the ocean. The swing set is located on a sandy :
bench. The child appears to be enjoying the ride on

the swing, while a kit floats gently above the sand,

and a large sandcastle stands nearby.

The image shows a small white dog sitting on a swing
set near the ocean. The swing set is located on @

sandy bench, and the ocean waves can be seen in the
background. The dog appears to be enjoying the ride

on the swing.

Figure 4: Examples of the vision-question-answer (VQA) tasks before and after applying our
proposed method to the original images. (a) and (b) demonstrates the suppression of hallucinations in
vision-/text-axis evaluations. (c) and (d) shows the reduction of hallucinations in open-ended tasks.
Specifically, we use the LLaVA-v1.5 [24] as an example.

Table 4: Computational cost and efficiency analysis of proxy-based VAP generation. The table
presents the performance and runtime evaluation of Intern-VL2-8B [6] and Qwen-VL2-7B [38] under
different vision input strategies. The proxy-based approach substantially reduces computational
overhead while preserving strong hallucination suppression performance.

LVM Vision Input ~ Proxy Model  Accuracy(%) 1 Runtime (A100 per time) | Computational Cost |,
Original - 82.00 160ms -
Intern-VL2-8B +VAP Intern-VL2-8B  84.81(+2.81) +298ms 1x
+VAP-Proxy Intern-VL2-1B  84.07 (+2.07) +39ms 1/8x%
Original - 86.27 133ms -
Qwen-VL2-7B +VAP Qwen-VL2-7B  87.30 (+1.03) +245ms 1x
+VAP-Proxy Qwen-VL2-2B  86.87 (+0.60) +48ms 1/5x%

Computational cost analysis and efficient proxy-based solution We report on the computational
cost of VAP optimization and present a more efficient approach. Our innovative proxy-based strategy
leverages smaller-scale models to generate adversarial perturbations, which are then effectively
transferred to larger models. As illustrated in Table 4, our approach reduces generation time by up
to eightfold while maintaining comparable accuracy. Notably, VAP generated by the Intern-VL2-
1B model and applied to the Intern-VL2-8B model achieves an accuracy of 84.07%, compared to
84.81% with self-generated VAP, with only a minor increase in runtime (+41ms vs. +298ms). This
demonstrates that our proxy solution efficiently introduces beneficial noise that is generalizable across
models, sustaining inference latency and enabling scalable deployment across large vision-language
models, thus enhancing overall system efficiency.

5 Conclusion

This paper presents visual adversarial perturbation (VAP), an innovative data-centric, training-free
method to reduce object hallucinations in large vision-language models (LVMs) by introducing
imperceptible noise to visual inputs. Unlike model-centric approaches requiring complex modi-
fications, VAP strategically applies beneficial noise to visual data, grounding model responses in
actual content and reducing reliance on biased parametric knowledge. Extensive evaluations on the
POPE, BEAF, CHAIR, AMBER, and MMH benchmarks show that VAP significantly decreases
object hallucinations across various settings, enhancing LVM reliability.

Our findings highlight the effectiveness of visual adversarial perturbations as a novel "poison as
cure" strategy, uniquely demonstrated here. A key contribution is the consistent mitigation of
model hallucinations in a black-box setting through noise addition, without compromising image
understanding. Although VAP introduces computational overhead, we propose a proxy-based
approach for efficient noise generation, maintaining performance while reducing costs to one-eighth.
This work underscores VAP’s potential as a transformative approach in enhancing LVM accuracy and
reliability, paving the way for future research in data-centric model improvement.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes],

Justification: The abstract and introduction clearly state the motivation, method, and contri-
butions, which are consistently supported by the rest of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations of the proposed approach are discussed in the supplementary
material, along with preliminary directions for addressing them.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include formal theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed descriptions of the datasets, evaluation metrics, model
configurations, and training procedures necessary to reproduce the main experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: An anonymous code link is provided in the abstract with sufficient details for
reproduction.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section 4.1 for detailed experiment settings.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: While the paper includes comprehensive evaluation across multiple bench-
marks, error bars are not reported due to the high computational cost of repeated runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper reports the hardware specifications used for training, and additional
details on computational cost are provided in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research complies with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the broader impacts in Section 5.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any new high-risk models or datasets that would
require special safeguards.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets, models, and code used in the paper are properly cited, and their
licenses and terms of use are respected as per their original sources.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper introduces no new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve human subjects or crowdsourcing experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The study does not involve human participants and therefore does not require
IRB approval.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

18


paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The paper does not use LLMs as part of the core methodology.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A More Details of Experiment Setup

A.1 More Details about Baseline LVMs

In this study, we comprehensively selecte eight state-of-the-art large vision-language models (LVMs)
carefully selected to validate the effectiveness of our proposed method. As illustrated in Table 5, our
chosen models span critical developments from September 2023 to December 2024, encompassing
parameter ranges from 7.1B to 16.1B and integrating advanced language models like Vicuna, Qwen2,
and Gemma2 with sophisticated vision encoders such as CLIP, SigLIP, and custom vision transformers.
Our model selection strategy focuses on capturing the latest architectural innovations in addressing
hallucination challenges in vision-language understanding. By examining models from leading
research initiatives including LLaVA, Instruct-BLIP, Intern-VL, DeepSeek, Ovis, LLaVA-OV and
Qwen, we aim to provide a comprehensive hallucination evaluations of current multimodal Al

Table 5: Detailed information of large vision-language models used in this paper.

LVM # Parameters Language Model Vision Model ~ Released Date
LLaVA-v1.5 [24] 7.1B Vicuna-7B CLIP ViT-L/14 2023-09
Instruct-BLIP [9] 7.9B Vicuna-7B VIiT-G 2023-09
Intern-VL2 [6] 8.1B InternLM2.5-7B InternViT-300M 2024-07
Intern-VL2-MPO [6] 8.1B InternL.M2.5-7B InternViT-300M 2024-11
DeepSeek-VL2 [41] 16.1B DeepSeekMoE-16B  SigLIP-400M 2024-12
Qwen-VL2 [38] 8.3B Qwen2-7B ViT-Qwen 2024-08
LLaVA-OV [21] 8.0B Qwen2-7B SigLIP-400M 2024-08
Ovisl.6-Gemma2 [27] 9.4B Gemma2-9B SigLIP-400M 2024-11

A.2 More Details about Implementation Details

We conducted our experiments across eight state-of-the-art vision-language models: LLaVA-v1.5,
Instruct-BLIP, Intern-VL2, Intern-VL2-MPO, DeepSeek-VL2, Qwen-VL2, LLaVA-OV, and Ovisl.6-
Gemma?2. The experiments were performed using NVIDIA RTX 4090 (24GB), A6000 (48GB), and
A100 (80GB) GPUs. For the adversarial parameters, we set « = 1/255, 8 = 8/255, N = 10, and
€ = 2 unless otherwise noted. Model-specific balance parameters are detailed in Table 6. We employ
ViT-L/14 as our default CLIP text encoder (g, ) unless otherwise specified.

Table 6: Detailed specifications of large vision-language models used in this paper.

LVM V1jo12  \J/1)os2 \/1]o32 T

LLaVA-v1.5[24] 1.0 1.0 1.0 500
Instruct-BLIP [9] 1.0 1.0 1.0 500
Intern-VL2 [6] 1.0 0.5 0.5 200
Intern-VL2-MPO [6] 1.0 0.5 0.5 800
DeepSeek-VL2 [41] 1.0 1.0 1.0 100
Qwen-VL2 [38] 1.0 0.5 0.5 500
LLaVA-OV [21] 0.1 1.0 0.1 200
Ovisl.6-Gemma?2 [27] 1.0 1.0 1.0 500

B More Details of Evaluation Benchmark

B.1 POPE Evaluation

POPE (Polling-based Object Probing Evaluation) [22] is a simple yet effective framework for
assessing object hallucinations in LVMs. POPE formulates the evaluation of object hallucinations as
a series of binary (yes/no) classification tasks. By sampling hallucinated objects, POPE constructs
triplets of the form:

<xac7w(gt)>7 (13)
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where x represents the queried image, c is the query prompt template, and wyg;) is the ground-truth
answer to the query. The triplets generated by POPE include those with a “yes” response based on
ground-truth objects and “no” responses obtained by sampling from negative objects. There are three
strategies for negative sampling:

* Random Sampling: Randomly samples objects that do not exist in the image.

* Popular Sampling: Selects the top-k most frequent objects in the image dataset that are
absent from the current image.

* Adversarial Sampling: Ranks all objects based on their co-occurrence frequencies with the
ground-truth objects and selects the top-k frequent ones that do not exist in the image.

POPE employs the following evaluation metrics to measure performance:

TP + TN

Accuracy = ) (14)

TP + TN + FP + FN

TP
Precision = —, (15)
TP 4 FP
TP

Recall = ———— 16
T TP RN (16)

Precisi Recall
F1 Score — 2 x recision X Reca (17

Precision + Recall’
In the above equations:

* TP (True Positives): The number of correctly identified objects that are present in the
image.

* TN (True Negatives): The number of correctly identified objects that are absent from the
image.

» FP (False Positives): The number of objects incorrectly identified as present in the image.

* FN (False Negatives): The number of objects that are present in the image but were not
identified by the model.

These metrics provide a comprehensive evaluation of the model’s ability to accurately identify the
presence or absence of objects, thereby quantifying the extent of hallucinations in LVMs.

B.2 BEAF Evaluation

BEAF (BEfore and AFter) [45] extends the evaluation framework beyond the text-axis hallucination
assessment of POPE by simultaneously considering both text- and vision-axes. Additionally, BEAF
introduces change-aware metrics, enabling a more granular evaluation of object hallucinations.
Similar to POPE, BEAF employs binary classification tasks using triplets; however, it accounts for
more complex perceptual changes within the dataset.

Dataset Definition BEAF utilizes a dataset G composed of tuples:

G = {(Xo Xons C, W, Wi, N}, (18)

where X, denotes the original image. X, represents the change-aware manipulate image. C' is
the question. W, and W, are the corresponding answers for the original and manipulated images,
respectively. E € {True, False} indicates whether the question pertains to an object that has been
removed in the manipulated image.

Filter Function To facilitate the extraction of specific subsets from G based on input conditions,
BEATF defines a filter function:

Filter(bo, by, by) = {h | IsCorrect(W,) = bo, IsCorrect(W,,) = by, E =b,, h € G}, (19)

where h = (X,, X, C, Wy, Wy, E). Here, b,, by, and b,. are boolean values {True, False} that
specify the desired correctness and relation flags for filtering.
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Evaluation Metrics Based on the Filter function, BEAF defines the following fine-grained percep-
tual change metrics:

|Filter(True, True, True)|

= 100 20

|Filter(True V False, True V False, True)| x ’ 0)

_ |Filter(False, False, True)| % 100, 21
|Filter(True V False, True V False, True)|

SB, = — |Filter(True, False, True)| % 100, 22)
|Filter(True V False, True V False, True)|

SB., |Filter(False, True, True)| % 100, 23)

- |Filter(True V False, True V False, True)|
|Filter(True, False, False)| + |Filter(False, True, False)|

ID = x 100, 24
|Filter(True V False, True V False, False)| 24
2xTU
F1 = — 25
D = 000 — DY’ (25)

where TU represents True Understanding, IG denotes Ignorance, SB refers to Stubbornness, and ID
signifies Indecision. These metrics provide a more nuanced evaluation of the model’s capacity to
recognize and adapt to perceptual changes across textual and visual contexts, offering a comprehensive
assessment of hallucinations in LVMs.

C More Details of Experiment Results

C.1 Evaluation of Text-Axis and Vision-/Text-Axis Hallucinations

Table 7 presents the performance evaluation of Precision (Prec.) and Recall under the POPE and BEAF
experimental settings. The results demonstrate that our method achieves effective improvements
in both text-axis and vision-/text-axis hallucination evaluations. While a slight decrease in Recall
is observed in some cases, the overall performance exhibits significant enhancement. Notably, the
decline in Recall is minimal, whereas the improvement in Precision is more pronounced, further
validating the effectiveness of our approach.

Table 7: Comparison of text-axis evaluation across three POPE evaluation settings: Random Sampling,
Popular Sampling, and Adversarial Sampling on the MSCOCO validation set. Additionally, vision-
and text-axis evaluations are conducted under the BEAF benchmark. The values highlighted in green
represent the percentage improvements achieved by our proposed method, whereas the values in red
indicate performance degradation.

- POPE-Popular POPE-Random POPE-Adversarial BEAF
LVM Vision Input
Prec. Recallt Prec.t Recallt Prec.t Recallt Prec.t Recallt
LLaVA-v1.5 Original 82.87 90.09  88.13 90.07 74.45 90.73 61.77 o 9243
i +VAP 83.95+1.08 90,67 1058 8947131 90,67 1000 75271052 92,04 +131 62321055 92,1370:30
Instruct-BLIP Original 85.15 80.67 94.83 80.67 82.21 81.33 67.00 81.52
+VAP 85.78 10-63  81.67 7100 9570087  81.67 1100 8250102 82427109 67471047  81.83 103!
Intern-VL2 Original 95.62 71.90 97.40 71.71 92.50 71.64 87.40 72.24
+VAP 97.41 7159 74137223 98,07 T0-67 7358157 94,5020 73,66 7202 8876130 7235+0-09
Original 93.70 80.39 95.39 80.95 90.55 81.08 82.46 82.67
Inem-VLEMPO " vap 94117011 83127270 96481100 83121717 91627107 3831270 §3.52°1100 82731006
D Original 92.46 80.13 96.70 80.13 91.06 80.67 84.11 80.90
eepSeck-VL2 +VAP 93.52 71:06  0.80 *0-67 97341064 80,81 1068 9239 +1.33 8093026 g512+1.01 g1.27 +0:31
Qwen-VL2 Original 91.15 84.47 96.28 84.47 87.21 84.87 78.62 8381
+VAP 92,34 +1:19 85261070 9739 +111 84,60 +0-13 8887100 8525+038 80,03+ 83147007
LLaVA-OV Original 9520  80.67 98.06 80.67 92.72 80.67 87.58 81.69 B
+VAP 96.97 1177 80.81 1014 99,00 *0-9*  80.560-'! 93,54 1052 81,13+0-46 88171059 82,06 107
Ovis].6-Gemma2 Original 95.45 79.72 97.87 79.65 9119 80.16 86.17 ~ 80.95
: +VAP 96.74 1029 79.70-0-02 98441057 80451050 91,69 1050 81,03 10-57 86921070 8227132
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C.2 Parameter Sensitive Analysis

Table 8 presents the parameter sensitivity analysis of the adversarial strategies loss function, as the
parameters used in our approach vary across different models due to their distinct characteristics. The
results indicate that parameter choices significantly impact performance metrics, including Accuracy

(Acc.), Precision (Prec.), Recall (Rec.), and F1-score (F1). Notably, the selection of 1/1/01, \/1/02,

and 1/1/03 involves a trade-off process, where optimizing one metric may lead to compromises
in others. Interestingly, certain parameters yield competitive performance even when set to zero,
suggesting potential redundancy in specific configurations. This trade-off underscores the necessity
of carefully balancing parameter choices to achieve optimal overall performance.

Table 8: Parameter analysis of the Intern-VL2 [6] under varying settings of o1, o2, and o3. The

model parameters were fixed as \/1/01 = 1.0, \/1/02 = 0.5, and 1/1/03 = 0.5 without changing
the values of 01, 02, and 3. Performance comparison under the POPE Random evaluation setting,
which involves randomly sampling objects that do not exist in the image. We randomly selected 1000
images from the MS-COCO dataset for this evaluation.

Value | Vi/o1 V1/o2 V1/os
\ Acc.T Prec.t Rec.t F11 Acc.?T Prec.t Rec.t F11T Ace.T Prec.T Rec.T F17

0.0 8720 95.72 7724 8549 86.82  95.65 76.38 8494 87.54  94.95 78.47 8593
0.1 86.77  95.61 7622  84.82 8775 96.52 77.62 86.04 86.82 95.65 76.38  84.94
025 | 86.73 94.78 76.76  84.82 87.83  95.76 7847 86.25 8745 94.87 78.16  85.71
0.5 87.45  95.68 77.62 8571 88.09  96.55 7832  86.48 87.79 9572 78.32  86.15
0.75 | 87.24 9495 7793  85.60 87.83  94.95 79.02  86.25 87.58 95.79 78.08  86.03
1.0 87.92  95.80 78.62 86.36 87.50 95.72 7177  85.82 87.58  95.79 78.08  86.03

C.3 Impact of visual adversarial perturbation and uncertainty

Figure 5 show how model performance varies with different perturbation strengths (¢) and distortion
levels (T'). We observe that performance initially improves with moderate perturbations, peaking
before declining as perturbations grow stronger. When € > 16 or when 7 leads to full Gaussian noise,
performance drops below the no-VAP baseline. This indicates that (1) VAP effectively mitigates
hallucinations by reducing semantic similarity between responses to original and distorted views
under both conditional (¢) and unconditional () settings, and (2) excessive perturbation harms
visual feature extraction, undermining the model’s ability to quantify parametric knowledge bias and
ultimately degrading performance.
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Figure 5: Performance of Intern-VL2 [6] under varying perturbation and distortion levels under POPE
setting. The model is tested with varying perturbations applied to the original and distorted images.

C.4 Ablation Study

Table 9 explore the effects of various combinations of loss functions (Ls,, Ls,, Ls,) on the per-
formance of the Intern-VL2 model under the POPE evaluation setting. The results, as presented
in Table 9, indicate that the simultaneous application of all three loss functions yields the highest
accuracy and F1 score, achieving 84.81% and 82.79%, respectively. This suggests a synergistic effect
when combining these losses, enhancing the model’s ability to generalize effectively. Notably, the
combination of £, and L, also shows a significant improvement over using any single loss function,
highlighting the importance of multi-faceted optimization strategies.
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Table 9: Impact of Different Loss Combinations on Model Performance: Ablation Study of Intern-
VL2 Using the POPE Evaluation Setting.

Ls, L, Ly | Acct  FIP

82.00 80.70

v 83.07 81.55
v 8241 81.10

v | 8236 81.04

v v 84.12  82.19
v v | 84.05 82.08
v v | 8266 81.23

v v v | 84.81 82.79

D Generalization of VAP

The high computational cost of optimizing adversarial strategies poses a significant challenge. A
practical approach to mitigate this challenge is to leverage smaller-scale models as proxies to generate
visual perturbations. Table 10 demonstrates the strong generalization capability of VAP, where
perturbations generated by smaller models effectively enhance the performance of larger counterparts.
Specifically, applying perturbations from the Intern-VL2-1B model to Intern-VL2-8B results in a
1.78% improvement in F1 score, while substantially reducing inference costs—requiring only é of the
A100 computation time per sample compared to Intern-VL2-8B. A similar pattern is observed in the
Qwen-VL2 series, where proxy-generated noise also leads to consistent performance improvements
in larger-scale models. Although the performance gains from proxy-based perturbations are slightly
lower than those from target model-generated noise, they provide an effective balance between
computational efficiency and performance enhancement. These findings underscore the potential of
VAP in scaling hallucination suppression across models of different sizes, offering a scalable and
resource-efficient solution for real-world applications.

Table 10: Generalization performance of VAP across different models. The table compares the
results obtained from the original images (left value) and the perturbed images generated using
source models under the VAP setting (right value). Experiments are conducted on Intern-VL2 and
Qwen-VL2 models, with the best results highlighted in bold. The inference cost reduction, shown in
the last row, is measured relative to using the original target models.

Metric Source: Intern-VL2-1B Source: Qwen-VL2-2B

= Intern-VL2-1B = Intern-VL2-4B = Intern-VL2-8B = Qwen-VL2-2B = Qwen-VL2-7B
Accuracy 81.69/83.28 81.55/82.56 82.00/84.07 84.47/85.42 86.27/86.87
Precision 89.72/92.13 85.65/87.21 87.40/90.97 83.98/84.85 87.21/88.03
Recall 70.94/72.34 75.05/75.90 72.24/75.50 84.04/85.26 84.87/85.33
F1 Score 79.23/81.04 80.00/81.16 80.70/82.52 84.01/85.05 86.02/86.66
Inference Cost Reduction Ix 1/3x 1/8x Ix 1/5%
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E Additional Illustration of Hallucination Evaluation

Figure 6 presents comprehensive hallucination evaluation examples from eight state-of-the-art LVMs,
demonstrating the effectiveness of our proposed method across diverse model types. While different
models exhibit varying response behaviors, our approach consistently mitigates hallucinations across
all cases. Notably, in models such as Intern-VL2-MPO and Ovis1.6-Gemma2, our method not only
corrects erroneous responses but also facilitates the generation of more factually accurate reasoning.
Moreover, our observations reveal that certain models exhibit fixed template-like responses to queries,
such as LLaVA-OV, which provides binary responses devoid of visual context. This characteristic
underscores the challenges in improving performance for such models, as their outputs of this nature
pose difficulties in adversarial optimization scenarios. These results substantiate the effectiveness of
the introduced visual noise VAP in alleviating hallucinations during the inference process, helping
LVMs to achieve more reliable and content-aware predictions by reducing their reliance on spurious
correlations and enhancing their focus on visually grounded evidence.
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Figure 6: Illustrative examples from the POPE hallucination evaluation across eight large vision-
language models: (a) Instruct-BLIP, (b) LLaVA-OV, (c) LLaVA-v1.5, (d) Qwen-VL2, (e) Intern-
VL2, (f) DeepSeek-VL2, (g) Intern-VL2-MPO, and (h) Ovis1.6-Gemma2. The figure presents
representative comparisons between original images and perturbed images enhanced with VAP,
highlighting the differences in model responses.
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F Orthogonality and Complementarity with Existing Methods

Unlike conventional model-centric approaches, our proposed method introduces a novel paradigm for
hallucination mitigation by exploiting the very mechanisms responsible for hallucinations to suppress
them. This strategy offers a fresh perspective on aligning parametric knowledge with visual evidence
in large vision-language models (LVMs).

To verify the orthogonality and compatibility of VAP with existing methods, we integrate it with both
OPERA [16], a recent state-of-the-art suppression approach, and VCD, another competitive baseline.
As shown in Table 11, across four strong LVMs and three evaluation settings (POPE, BEAF, CHAIR),
VAP consistently provides complementary gains. For example, on LLaVA-v1.5, VAP + OPERA
reduces CHAIR g from 6.90 (Regular) to 6.10, while VAP + VCD achieves an even lower 5.80 with
improved Flryp. Similar compounded benefits are observed on Intern-VL2, where TU rises from
64.12 (Regular) to 66.78 (VAP + VCD). Although margins vary across models (e.g., smaller gains on
DeepSeek-VL2), the consistent trend demonstrates that VAP operates along an orthogonal axis and
integrates effectively with both prior works.

In summary, VAP is methodologically orthogonal to existing strategies, intervening at the visual
input level rather than architectural or loss modifications, and delivers non-redundant improvements
when combined with strong baselines such as OPERA and VCD. This establishes a practical path for
compounded effectiveness in future hallucination suppression systems.

Table 11: Comparison of hallucination suppression performance across four LVMs (LLaVA-v1.5,
Qwen-VL2, Intern-VL2, DeepSeek-VL2) under three evaluation settings: POPE, BEAF, and CHAIR.

LVM Method POPE BEAF CHAIR
Ace.t F11 TUT Flypp T CHAIR; | CHAIRg |
Regular 79.80 81.79 34.25 50.31 4.01 6.90
VCD 81.26 83.12 34.62 50.85 3.91 6.20
LLaVA-v1.5 OPERA 80.32 81.92 34.51 50.48 3.95 6.70
VAP 80.97 82.82 34.83 50.97 3.86 6.10
VAP + VCD 82.35 83.54 3521 51.40 3.62 5.80
VAP + OPERA 8145 8340 3522 51.43 3.72 6.10
Regular 86.27 86.02 54.78 69.78 3.45 6.20
VCD 87.60 87.25 56.12 71.05 3.18 6.00
Qwen-VL2 OPERA 86.68 86.42 55.34 70.18 3.36 6.00
VAP 87.30 87.02 56.18 70.79 3.23 5.70
VAP + VCD 87.55 87.18 56.40 70.91 3.11 5.50
VAP + OPERA 8740 87.12 56.32 70.89 3.21 5.60
Regular 82.00 80.70 64.12 76.17 5.14 9.50
VCD 84.32 8230 65.88 77.43 472 9.00
Intern-VI.2 OPERA 83.12 81.54 64.93 76.75 4.94 9.20
VAP 84.81 8279 66.15 77.63 4.65 8.90
VAP + VCD 85.60 8341 66.78 78.34 4.41 8.50
VAP + OPERA 85.09 83.00 66.35 77.78 4.60 8.80
Regular 86.47 85.55 67.04 79.27 1.84 4.50
VCD 86.65 8572 67.25 79.43 1.80 4.40
DeepSeek-VL2 OPERA 86.73 85.84 67.47 79.57 1.77 4.40
VAP 87.13 86.28 68.11 80.03 1.66 4.30
VAP + VCD 87.18 86.32 68.18 80.08 1.65 4.20
VAP + OPERA 87.20 86.35 68.22 80.11 1.64 4.20

G Dynamics under Visual Uncertainty

To further understand how hallucinations evolve under degraded vision, we progressively injected
Gaussian noise (7') into the inputs of Intern-VL2 and tracked two key indicators: S2 (prompt-driven
hallucination) and S3 (prior-driven hallucination).

As shown in Table 12, without VAP the S2/S3 values remain relatively static, confirming that baseline
models lack an uncertainty-aware mechanism to self-correct hallucinations. By contrast, with VAP
the largest gains appear at moderate noise levels (7" =~ 200), where input degradation is sufficient to
trigger hallucinations but still informative for grounding.
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At low noise levels (I" < 100), the model is already well grounded and improvements are minor,
while at high noise levels (1" > 500) the input becomes too corrupted, leading to diminishing returns.
These results demonstrate that VAP leverages uncertainty to suppress prompt- and prior-driven
hallucinations, and is effective in realistic scenarios where vision is degraded but not lost.

Table 12: Dynamics of hallucination suppression under varying levels of visual uncertainty (Intern-
VL2). VAP achieves maximal suppression at moderate noise (1" ~ 200), confirming its ability to
exploit uncertainty for robust grounding.

Noise T’ ‘ S2 ‘ 83
| wol w/|l AS21 |who] w/] AS3%

0 0.75 N/A N/A 0.79 N/A N/A
100 0.73 0.64 0.09 0.76  0.69  0.07
200 0.70 0.60 0.10 0.74 0.66 0.08
300 0.68 059 0.09 0.72  0.65 0.07
500 0.65 0.57 0.08 0.70 0.64 0.06
700 0.61 0.53 0.08 0.65 0.60 0.05
999 045 040 0.05 0.50 047 0.03

H Experimental Evaluation of Perturbation Perceptibility

To confirm that VAP introduces minimal visual distortion, we evaluate the perceptual similarity
between original and perturbed images on 500 BEAF image—instruction pairs. Specifically, we
measure LPIPS and SSIM, two widely used perceptual similarity metrics.

We consider four representative LVMs (LLaVA-v1.5, Qwen-VL2, Intern-VL2, and DeepSeek-VL2).
For each image, we compute perceptual distances between the original image and: (a) its VAP-
perturbed version, and (b) a Gaussian-noised version of the same magnitude.

The results reveal three key observations. First, VAP perturbations are visually negligible: all models
achieve LPIPS < 0.05 and SSIM > 0.95, which aligns with standard perceptual quality thresholds.
Second, VAP consistently yields lower LPIPS and higher SSIM than Gaussian noise, demonstrating
superior perceptual fidelity. Finally, this confirms that VAP introduces only minimal distortion,
thereby preserving visual utility and maintaining trust for real-world deployment.

Table 13: Perceptual similarity between original and perturbed images, measured by LPIPS ({) and
SSIM (7). VAP perturbations remain visually negligible and consistently outperform Gaussian noise.

Model VAP Perturbation Gaussian Noise
LPIPS| SSIMT LPIPS] SSIM ¢
LLaVA-v1.5 0.037 0.965 0.081 0.902
Qwen-VL2 0.041 0.962 0.086 0.897
Intern-VL2 0.039 0.967 0.079 0.906
DeepSeek-VL2 0.035 0.969 0.077 0.911

I Algorithm Details of VAP

Algorithm 1 outlines the procedure of our visual adversarial perturbation (VAP) method. VAP
mitigates object hallucinations in LVMs by optimizing input perturbations that align model predictions
more closely with visual evidence while reducing parametric bias. To handle the autoregressive
nature of LVMs, we adopt a zeroth-order optimization strategy: sampling N perturbations and
approximating the gradient of the adversarial loss without accessing internal model parameters. The
final perturbation is projected onto a bounded constraint B(¢) before being applied, yielding perturbed
inputs that effectively suppress hallucinations while preserving model usability.
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Algorithm 1 Visual Adversarial Perturbation (VAP)

Adversarial Knowledge: Image x, Query ¢, LVM fy, Null text (), CLIP Text encoder g,.

Adversarial Setting: Noise magnitude ¢, Distorted timestep 7', Noise scheduling p, step size .

Zero-Gradient Setting: Number of queries [V, Sampling variance 3, Sampling noise ~.

1

A W

10:
11:

12:
13:

: Generate a distorted image:
T~ N(Vpra, (1= pr)I).

: Compute initial responses:
i = o), ) = fo(w0), ra= fo(z0).
. Compute initial adversarial loss:
£ = max gy (r{™) gy (r}”),
£ = mingy (r;”) T gy (ra).
. 0
£ = min g, (i) gy (7).
: Compute overall initial loss:
o  £9 9 0
Lg'=—5+ 5 +—5
g1 03 93
: for each zero-gradient optimization step n € {1,..., N} do
Sample perturbation:
T~ P(y), st.Ey '] = .
Compute perturbed responses:
T%”) = fQ(x + 5 ) ’Ymc)a
Tgn) = fo(z + B - ¥, 0).
Compute adversarial losses:
£ = maxgy(r}") g, (r3"),
£ = mingy (") gy (rs),
£ = mingy (") g4 (7).
Compute overall adversarial loss:
RO = A
end for

Estimate perturbation direction via zeroth-order optimization:
I (n) (0)

6= > {Ls” -5

N -3 n:1{ s s}

Project perturbation onto § «— Projg_,,)(d).
Return response under VAP:

wap) = fo(Z,¢) = fo(z +a-dc).

(26)

27)

(28)
(29)
(30)

€1y

(32)

(33)
(34)

(35)
(36)
(37)

(3%)

(39)

(40)
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J Discussion

J.1 Validation of Factual Comprehension

Our primary goal is to demonstrate that VAP does not impair the ability of models to comprehend
factual content in images. Below, we present quantitative evaluations to substantiate this claim.

In Table 14, we provide evidence that VAP sustains and enhances model performance in factual
object recognition and open-ended factual understanding tasks:

(1) Non-Hallucination Task Evaluation (MME [12]):

We evaluated four LVMs using the MME benchmark, which includes tasks such as existence
detection, code reasoning, numerical calculations, and scene understanding. The results show that
VAP maintains, and sometimes improves, accuracy in these factual and reasoning tasks. This confirms
that VAP does not degrade performance on genuine questions.

(2) Multi-Dimensional Hallucination Grounding (AMBER [37]):

To assess generalization, we used the AMBER benchmark, which covers hallucinations in existence,
attributes, and generative tasks. Our findings indicate that VAP enhances multi-dimensional visual
grounding, further supporting its effectiveness without compromising factual understanding.

These evaluations collectively demonstrate that VAP enhances robustness while preserving the
model’s core perceptual and reasoning capabilities.

Table 14: Evaluation of VAP on MME and AMBER Benchmarks: Results show that VAP significantly
enhances the models’ abilities to accurately perceive, reason accurately, and ground visual content,
confirming its effectiveness in reducing hallucinations while maintaining factual accuracy.

MME (Perception and Reasoning) MME Totalf AMBER (Hallucination Analysis)

LVM Vision Input

Exist.t Codef Calt  Scenef Score? Covert Hal-Rate| Cogl
waas  OVET e & 8 st s ms a6
eeviz OUED o w0 s s e ms sa ap
memviz OURT 0 @ w2 es 7
btz OVET 0 W M e 1 a0 o3

J.2  Understanding the Effectiveness of VAP

The consistent performance improvements across different LVMs and evaluation frameworks raise
an important question: why does VAP effectively mitigate hallucinations? Our analysis reveals key
mechanisms underlying VAP’s effectiveness:

Balancing Visual and Language Signals The success of VAP can be primarily attributed to its abil-
ity to rebalance the interaction between visual and language processing in LVMs. This is evidenced by
both the significant reduction in affirmative responses and performance improvements in vision-/text-
axis hallucination assessments (Table 2). The BEAF evaluation framework particularly demonstrates
how VAP effectively interrupts the model’s default reliance on parametric knowledge. The carefully
calibrated perturbations strengthen visual signals during the inference process, compelling the model
to ground its responses more firmly in visual evidence rather than language priors.

Adaptive Adversarial Noise Generation The effectiveness of VAP is further enhanced by its
adaptive noise generation mechanism. Unlike traditional adversarial perturbations that aim to maxi-
mally disrupt model predictions, VAP generates “beneficial noise” through zero-gradient optimization
that aligns response with grounding vision input and mitigates parametric knowledge bias. This
selective enhancement is validated across multiple evaluation dimensions: (1) Closed VQA format
evaluations through both text-axis (POPE) and vision-/text-axis (BEAF) settings, and (2) Open-ended
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task evaluation through image caption generation (CHAIR). The consistent improvements across
these diverse evaluation settings demonstrate VAP’s ability to enhance visual understanding while
maintaining task performance.

Architecture-Agnostic Enhancement Our experiments across different model architectures reveal
that VAP’s effectiveness is not tied to specific architectural choices. This architecture-agnostic nature
can be explained by VAP’s operation at the input level: it modifies the visual input distribution to
better align with the model’s learned visual-semantic mappings, regardless of the specific implemen-
tation details. This explanation is supported by the consistent performance improvements observed
across models with varying architectures, ranging from pure transformer-based models to hybrid
architectures across all three evaluation frameworks (POPE, BEAF, and CHAIR).

The combination of these mechanisms creates a powerful technique for hallucination mitigation:
* The rebalancing of visual-language interaction enhances visual perception while reducing
spurious correlations stemming from biased language priors.

* The adaptive adversarial visual noise generation employs strategic optimization to influence
LVM decision processes, ensuring that perturbations enhance rather than compromise visual
understanding.

* VAP operates in a completely black-box manner requiring no access or modification to the
LVM, establishing it as a broadly applicable solution across different model architectures.
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