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Abstract

Reinforcement learning (RL) algorithms are effective in solving problems that can be modeled
as Markov decision processes (MDPs). They primarily target forward MDPs whose dynamics
evolve over time from an initial state. However, several important problems in stochastic
control and network systems, among others, exhibit both a forward and a backward dynamics.
As a consequence, they cannot be expressed as a standard MDP, thereby calling for a novel
theory for RL in this context. Accordingly, this work introduces the concept of Forward-
Backward Markov Decision Processes (FB-MDPs) for multi-objective problems and develops
a novel theoretical framework to characterize their optimal solutions. Moreover, it introduces
the FB-MOAC algorithm that employs a step-wise forward-backward mechanism to obtain
optimal policies with guaranteed convergence and a competitive rate with respect to standard
approaches in RL. FB-MOAC is finally evaluated on three use cases in the context of
mathematical finance, mobile resource management, and edge computing. The obtained
results show that FB-MOAC outperforms the state of the art across different metrics,
highlighting its ability to learn and maximize rewards.

1 Introduction

Reinforcement Learning (RL) is a very important field of artificial intelligence, as it enables agents to learn
from experience and adapt to complex, dynamic environments (Mnih et al., 2013; Lillicrap et al., 2016;
Schulman et al., 2017b). Moreover, recent breakthroughs in deep learning have led to solutions that surpass
human performance in a wide variety of challenges. As a result, deep reinforcement learning has lately
emerged as a combination of these two fields, with successful applications in different use cases (Mnih et al.,
2015; Jaderberg et al., 2018; Rigoli et al., 2021).

Existing RL algorithms mainly address sequential decision-making problems modeled as a forward Markov
decision process (MDP) or controlled forward dynamics (Zare et al., 2023). However, there are several
sequential tasks whose environment cannot be exclusively captured by this type of dynamics, as they also
encompass states evolving backwards in time (Lai et al., 2020; Wang et al., 2021). Such backward dynamics
describe a trajectory in a reverse chronological order, wherein the future affects the past. Even further, there
are environments exhibiting both controlled forward and backward dynamics at the same time (Ji et al.,
2022a; Zhang, 2022), namely, as a forward-backward MDP (FB-MDP) illustrated in Figure 1a.

FB-MDPs have wide applications (Section 2.1), including modeling delay / latency in the context of network
communications and analyzing computation time of offloading tasks in cloud/edge computing systems (Liu
et al., 2019; Wei et al., 2019; Chen et al., 2019b). Moreover, FB-MDPs can be employed to discretize forward-
backward stochastic differential equations (SDEs) (see Section E.1 for a detailed account), thereby allowing to
solve stochastic optimal control problems (Zhang, 2017; Ji et al., 2020). However, forward-backward dynamics
have been marginally addressed in the context of RL and MDPs (Section 2.2). In fact, existing research
only formulated a deep learning problem in terms of forward-backward SDEs (Ji et al., 2020) or considered
artificial backward trajectories in forward MDPs to increase sample efficiency of RL algorithms (Goyal et al.,
2019; Wang et al., 2021). To fill this gap, we introduce the concept of FB-MDPs for multi-objective problems
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Figure 1: Overview of our approach. (a) A forward-backward MDP in which forward states {st}t∈{1,T } and backward
states {yt}t∈{1,T } apply the same actions {at}t∈{1,T }, but with a different ordering in time. (b) The FB-MOAC
algorithm comprises three steps: forward evaluation, backward evaluation and bidirectional learning. During the first
two steps, the forward and backward dynamics are evaluated and the resulting experiences are buffered. The policy
distribution is optimized in the bidirectional learning step based on the experiences of both forward and backward
dynamics. For this purpose, it employs a forward-backward multi-objective optimization by following an appropriate
chronological order. The episodic MCS-average add-on boosts the convergence to Pareto-optimal solutions. (c) The
multi-objective optimization module of the FB-MOAC algorithm computes: the vector-valued gradients of forward
and backward objectives; the descent direction q(·) to ensure that all rewards increase simultaneously; and finally the
parameters of the actor network based on q(·). (d) Cumulative reward of our approach (FB-MOAC) compared to
the widely-used PPO and to MOAC (our multi-objective extension of A2C) in the edge caching use case for different
metrics (see Section 5.2 for a detailed account). FB-MOAC performs better than the other algorithms in terms of the
overall reward.

entailing both forward and backward rewards, and develop an RL algorithm specifically suited to them. In
detail, this work establishes the following contributions.

• We introduce the class of multi-objective FB-MDPs to express sequential multi-task problems with both
forward and backward dynamics, whose rewards are coupled within the action space. We show that
these MDPs cannot be expressed as a standard MDP, and we consequently develop a novel theoretical
framework to characterize their optimal solutions (Section 3).
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• We devise a multi-objective RL algorithm, called Forward-Backward Multi-Objective Actor-Critic (FB-
MOAC), the first of its kind, which employs a step-wise forward-backward mechanism to obtain Pareto-
optimal solutions in a preference-insensitive manner. We further provide a rigorous analysis of FB-MOAC,
showing that it reaches convergence with a rate of O(1/

√
K), where K is the number of policy updates

(Section 4).

• We conduct a comprehensive evaluation by considering diverse use cases expressed as FB-MDPs in the
context of mathematical finance, mobile resource management, and edge computing. The results show
that FB-MOAC is effective, whereas standard RL algorithms fail to effectively address these problems
(Section 5).

Notation: we use lower-case a for scalars, bold-face lower-case a for vectors, and bold-face uppercase A
for matrices. Moreover, A⊤ is the transpose of A, ∥A∥ is the induced matrix norm of A, I is the identity
matrix, 1 a vector with all elements equal to one, 0 a vector with all elements equal to zero, and em a vector
with all elements equal to zero except the m-th element which is equal to one. Finally, a = [a1, . . . , an]⊤ are
the components of a n-dimensional column vector a, |S| is the cardinality of the set S, and [ · ] indicates the
components of row vectors.

2 Background

This section first introduces a few motivating examples of FB-MDPs and then reviews the most relevant
works in the existing literature.

2.1 Motivating Examples

Network Content Delivery

Let us consider a scenario in which a content provider (e.g., in a video streaming service) serves users by
transmitting N content items with different popularity {pn}N

n=1 over a lossy network. Transmissions take
place in time slots indexed by t, and the delivery of content n fails with the error probability en(t). Upon
failure, user requests are re-transmitted until successful delivery. The request probability of content n clearly
depends on the success rate of previous requests and the error probability en(t). Therefore, it establishes a
controlled forward dynamics as the content provider affects en(t). Now, the average latency ln(t) experienced
by a typical user to successfully receive file n is obtained by: ln(t) = d(t) (1− en(t)) + (τ(t) + ln(t + 1)) en(t),
where: d(t) is the transmission delay between the content provider and he user; and τ(t) is the duration of
time slot t. This equation is obtained by the law of total expectation and exhibits a controlled backward
dynamics with ln(t) as a backward state. As a consequence, minimizing the overall latency

∑N
n=1 pn(t)ln(t)

in this context makes the problem an FB-MDP. Now, since a backward MDP cannot be converted to a
standard forward MDP (see Theorem 3.6), existing RL algorithms cannot be applied. This is only one
instance of network problems that can be modeled as a FB-MDP: Section 5 presents two use cases, one on
edge caching in wireless networks and another on computation offloading.

Problems Described by Stochastic Differential Equations

SDEs exhibiting anti-causal dynamics have several applications in the context of differential games (Hamadene
& Lepeltier, 1995), diffusion models (Yang et al., 2023), and mathematical finance (Ji et al., 2022a). In
particular, problems involving FB-SDEs represent a significant portion of the ongoing research in the field of
stochastic control theory (Yong, 2023). Among them, one example is given by an investment-consumption
scenario in mathematical finance. Consider a financial market with a single risky asset whose price follows a
stochastic process. A trader can invest in this risky asset or engage in risk-free borrowing / lending. The
trader’s total wealth, Y (t), evolves based on their investment in the asset and the risk-free rate. Now, consider
a payoff at a future time T , which depends on the asset’s price. The goal is to determine the minimal initial
Y0, required to replicate this payoff. The investment strategy guaranteeing that the final wealth matches the
option’s payoff is characterized by a backward dynamics (Ji et al., 2022a). In such a context, Section 5.1
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presents a use case related to mathematical finance, based on a general method to transform an FB-SDE into
a FB-MDP (see Section E.1 for more details).

2.2 Related Work

Forward-Backward MDPs. Our work has some similarity with prior research on RL algorithms (Edwards
et al., 2018; Goyal et al., 2019; Wang et al., 2021; Archibald et al., 2023). These studies hypothesize that
creating a virtual backward trajectory in relation to a forward MDP enhances the sample-efficiency of RL
algorithms. Specifically, they employ the generated backward trajectories to augment the training dataset for
learning forward MDP problems. Edwards et al. (2018) train a backwards dynamics to explore in a reverse
direction from known goal states. The derived backward paths are then used to augment the replay buffer
and contribute to the learning procedure of considered RL algorithm. Similarly, Goyal et al. (2019) learn an
artificial backward model – called backtracking model – from the experiences of an agent interacting with
the original forward dynamics. The backtracking model then enriches the training dataset by alternative
trajectories leading a high value state. Lai et al. (2020); Wang et al. (2021) introduce learnable backward
dynamics together with a novel reverse policy to generate paths towards the target states. In particular, they
provide informed data augmentation for the training dataset by backpropagating through reverse paths. Our
reference model is characterized based on both backward and forward rewards, in contrast with the works
described above, wherein backward dynamics are artificially constructed based on a forward MDP. These
rewards correspond to actual controlled backward and forward dynamics jointly competing within the action
space in both directions of time. Consequently, our investigation is centered around a class of FB-MDPs of
multi-task problems with conflicting forward and backward rewards.

Multi-objective RL Algorithms. The majority of Multi-Objective Reinforcement Learning (MO-RL)
algorithms has primarily been designed for discrete environments. Mossalam et al. (2016) introduce a MO-RL
algorithm that combines deep Q-learning and optimistic linear support learning. Their approach take into
account a scalarized vector and potential optima to formulate a convex combination of all objectives. However,
they require searching over all potential scalarizing vectors as an a priori knowledge on the importance
of distinct objectives is not available. Yang et al. (2019) utilize a multi-objective Q-learning together
with a single-agent framework to acquire a preference-related adjustment that can be generalized across
different preferences. Such an approach is computationally efficient, however, it often suffers from sample
inefficiency and results in a sub-optimal policy. MO-RL algorithms have been specifically developed for
continuous environments as well. Zhan & Cao (2019) establish reward-specific state-value functions based on
a correlation matrix to obtain the relative importance of objectives with respect to each other. However,
their approach requires to adjust the weight of such a matrix to determine an appropriate inter-objective
relationship. Abdolmaleki et al. (2020) devise a MO-RL approach according to the maximum a posteriori
policy optimization algorithm. They learn objective-specific policy distributions to identify Pareto-optimal
solutions in a scale-independent manner. However, objective-specific coefficients must be adjusted to control
the impact on the policy update. In contrast, we propose a MO-RL algorithm for the continuous-valued
FB-MDPs, termed as FB-MOAC, without considering any initial preferences for the different objectives.
Different from previous works (Abdolmaleki et al., 2020; Zhan & Cao, 2019; Chen et al., 2019a), we devise a
single-policy approach to simplify the algorithm and avoids the need for an initial assumption on the reward
preference. Moreover, a comprehensive analysis has been conducted to ensure the convergence of FB-MOAC
to Pareto-front solutions at a certain rate. A remarkable result of this convergence analysis is the ability of
FB-MOAC to monotonically increase all expected objectives for any reward preference, thereby making the
algorithm scale-insensitive.

Convergence Analysis of RL algorithms. A few recent works (Qiu et al., 2021; Xu et al., 2020; Fu
et al., 2021; Yang et al., 2018; Khodadadian et al., 2022) have explored the characterization of stochastic
policy RL algorithms, such as Actor-Critic (AC) and Policy Gradient (Sutton & Barto, 2018). Qiu et al.
(2021) conduct a rigorous convergence analysis on the AC algorithm. Notably, their analysis is limited to a
linear representation of the state-value function. Xu et al. (2020) provide a comprehensive characterization of
the convergence rate and sample complexity of the Natural Actor-Critic (NAC) algorithm (Peters & Schaal,
2008). Their analysis requires that the considered MDP is ergodic. Fu et al. (2021) analyze the convergence
of the AC algorithm under the assumption that the considered family of Neural Networks (NNs) are closed
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under the Bellman operator. Lastly, Khodadadian et al. (2022) perform a meticulous convergence analysis
of the Natural Policy Gradient algorithm (Kakade, 2002). However, their investigation assumes that the
initialization value of the state-value function is sufficiently close to the optimal value function. All the
aforementioned works address the convergence of stochastic policies of single-objective RL algorithms for
forward MDP problems. In contrast, this work targets multi-task problems involving a FB-MDP. We carry
out a rigorous convergence analysis as a solid foundation to characterize multi-objective and forward-backward
RL algorithms in such a context.

Applications of RL to Network Systems. RL algorithms have also been applied to network systems,
particularly, to design dynamic caching and offloading policies (Zhang et al., 2021; Chen et al., 2021;
Amidzadeh et al., 2021; Jiang et al., 2022; Chen et al., 2022; Zhou et al., 2023). Chen et al. (2021) devise a
multi-agent reinforcement learning for ultra-dense networks, whereas Zhang et al. (2021) employ a deep RL
algorithm to jointly optimize resource allocation and caching for Internet-of-Things scenarios. Amidzadeh
et al. (2021) leverage a deep RL-based approach to develop an optimal cache policy for multicast-enabled
cellular networks. Moreover, Jiang et al. (2022) develop an actor-critic RL algorithm for proactive caching in
mobile edge networks. Finally, Chen et al. (2022) and Zhou et al. (2023) employ deep RL for joint caching
and offloading problems in edge computing networks. All the works mentioned above only consider forward
dynamics, whereas this work entails a more complex characterization that allows to obtain an optimal solution
(see Section 5 for a detailed account).

3 Multi-Objective FB-MDPs

This section briefly describes multi-objective optimization and its associated Pareto-optimality as a basis to
formally define FB-MDPs. The section concludes by characterizing the optimal solution of a multi-objective
FB-MDP problem.

3.1 Pareto Optimality

Consider the following multi-objective optimization problem:

Q1 : min
x∈X

[
f1(x), . . . , fr(x)

]
,

where fj : RN → R, X is the feasible set and r the number of objectives.
Definition 3.1. We say that y ∈ X Pareto-dominates x ∈ X , if fi(y) ≤ fi(x) for all i ∈ {1, . . . , r} and there
exists j ∈ {1, . . . , r} such that fj(y) < fj(x).
Definition 3.2. x∗ ∈ X is called a Pareto-optimal solution of Q1, if there is no other solution y ∈ X that dom-
inates x∗. Accordingly,

[
f1(x∗), . . . , fr(x∗)

]
is called a Pareto-optimal vector, and minx∈X

[
f1(x), . . . , fr(x)

]
indicates to the set of Pareto-optimal solutions.

The following lemma (Schäffler et al., 2002; Ma et al., 2020) is instrumental to jointly minimize all objectives
of Q1.
Lemma 3.3. Consider a vector-valued multivariate function f = [f1, . . . , fr], fj : Rn → R for j ∈ {1, . . . , r}.
Let q(·) =

∑r
j=1 α∗

j∇fj(·), then −q(·) is a descent direction for all functions {fj(·)}r
1, where {α∗

j}r
1 are the

solutions of the following optimization problem:

Q2 : min
{αj}r

j=1

∥∥∥∥ r∑
j=1

αj∇fj(·)
∥∥∥∥2

, s.t.
r∑

j=1
αj = 1, αj ≥ 0, j ∈ {1, . . . , r}.

Remark 3.4. The lemma above can be leveraged to develop a multi-objective gradient descent algorithm.
To jointly decrease different objectives, it suffices to optimize α = [{αj}r

j=1] by using the quadratic program
Q2 and obtain q(·), which is nonlinear as α itself depends on {∇fj(·)}j .

Accordingly, the optimal solution of problem Q2 can be obtained as follows.

5



Under review as submission to TMLR

Corollary 3.5. If ∇f(·)⊤∇f(·) is invertible and all αj ≥ 0, the solution of Q2 is given by:

α∗ =
(

1⊤
r

(
∇f(·)⊤∇f(·)

)−1 1r

)−1 (
∇f(·)⊤∇f(·)

)−1 1r, (1)

where ∇f(·) is an n× r matrix with ∇f(·) =
[
∇f1, . . . ,∇fr

]
(·). For the case αj < 0 for j ∈ S0 ⊂ {1, . . . , r},

we set ∇f(·) = [∇fk(·)]k ∈{1,...,r}\S0 .

3.2 Forward-Backward Markov Decision Processes

We introduce a class of multi-objective FB-MDPs, expressed by a tuple
(
S,Y,A, Pf (·), Pb(·), rf (·), rb(·)

)
, where: S

and Y are the forward and backward state-spaces, respectively; A is the action space; Pf : S ×A×S → [0, 1]
is the forward transition probability, which describes the forward dynamics; Pb : Y ×A× Y → [0, 1] is the
backward transition probability, which expresses the backward dynamics; and rf : S × A → R|Sf | finally,
rb : Y ×A → R|Sb| are the forward and backward reward functions, respectively, where Sf and Sb are the
sets of indices of the forward and backward rewards. The forward transition probability determines the
next forward state of the system st+1 ∼ Pf (·|st, at) starting from st ∈ S and performing the action at ∈ A.
Moreover, in an anti-causal way, the previous backward state of the system follows yt−1 ∼ Pb(·|yt, at) from
yt ∈ Y and performing the action at ∈ A. The initial forward state s1 and final backward state yT are
assumed to be known. Figure 1a on page 2 illustrates a FB-MDP.

Assumption. This work constrains the definition of FB-MDPs to the case where the forward (backward)
dynamics does not depend on the backward (forward) state.
Remark 3.6 (FB-MDPs cannot be expressed as standard MDPs). The backward dynamics cannot
be represented based on a standard forward system in presence of a forward dynamics. We can consider
the transformations zT −t := yt and t′ := T − t to convert the backward MDP with transition probability
yt−1 ∼ Pb(·|yt, at) into a forward one. Consequently, we get a forward MDP over zt′ with transition
probability zt′+1 ∼ Pb(·|zt′ , aT −t′). However, this is a non-standard MDP as state zt becomes a function of
actions that are scheduled for future time steps aT −t. Specifically, the state relies on future actions that are
not available when progressing forward in time. This violation of the conventional causal structure prevents
the use of standard RL algorithms.

The aim of a FB-MDP problem is thus to optimize the following discounted multi-objective cumulative
reward from the Pareto-optimality perspective:

max
{at∈A}t∈{1,T }

E

{
T∑

t=1
γt−1

[
rf (st, at), rb(yT −t+1, aT −t+1)

]}
, (2)

In Equation (2), T ∈ N is the finite horizon of the optimization, γ ∈ [0, 1] the discount factor, and the
expectation refers to the different realizations of the forward-backward trajectory.

Remark 3.6 highlights that solving a FB-MDP problem of the type in Equation (2) requires developing novel
theoretical foundations. To do so, we build on the following observation and the resulting optimal solutions.
Remark 3.7. Both the forward and backward dynamics of a FB-MDP problem can be accurately learned
through a θ-parametric stochastic policy at ∼ πθ(·|st), whereas employing the policy at ∼ πθ(·|st, yt) is
unfeasible due to the anti-causal nature of the backward dynamics. Therefore, we need to optimize the policy
πθ(·|st) based on the trajectories of both forward and backward dynamics.

The following section delves into this process.

3.3 Characterizing an Optimal Solution

We now analyze Remark 3.7 and provide a theoretical framework to characterize the optimal solution of
a multi-objective FB-MDP problem. Accordingly, the probability of a forward-backward trajectory τ is
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determined by:

Pθ(τ ) : = P(s1, a1, . . . , sT , aT , yT , . . . , y1)

= P(s1)
T −1∏
t=1

Pf (st+1|st, at)
T −1∏
t=1

πθ(at|st)
T −1∏
t=1

Pb(yT −t|yT −t+1, aT −t+1)P(yT ). (3)

The problem in Equation (2) is then reformulated as the following policy distribution optimization:

O2 : max
θ

Eτ∼Pθ(τ )

{
T∑

t=1
γt−1

[
rf (st, at), rb(yT −t+1, aT −t+1)

] ∣∣∣ θ}
s.t.

{
st+1 ∼ Pf (·|st, at), yt−1 ∼ Pb(·|yt, at), at ∼ πθ(·|st)

}
. (4)

The multivariate objective of O2 can thus be expressed as:

J(θ) :=
[
Eτ∼Pθ(τ )

T∑
k=1

γk−1rf (sk, ak)︸ ︷︷ ︸
Jf (θ)

, Eτ∼Pθ(τ )

T∑
k=1

γk−1rb(yT −k+1, aT −k+1)︸ ︷︷ ︸
Jb(θ)

]
.

To Pareto optimize J(θ), we need to first compute its component-wise gradient with respect to θ, i.e.,
∇θJ(θ) = ∂J(θ)

∂Pθ(τ )
∂Pθ(τ )

∂θ . For the forward cumulative rewards Jf (θ), we have (Grondman et al., 2012):

∇θJf (θ) = E

{
T∑

k=1
∇θ log πθ(ak|sk)Af (sk, ak)

∣∣∣ θ}, (5)

where: Af : S × A → R|Sf |, Af (sk, ak) := rf (sk, ak) + γV f (sk+1) − V f (sk) is the forward advantage
multivariate function; and V f : S → R|Sf |, V f (sk) := E

{∑T
k′=k γk′−krf (sk′ , ak′)

∣∣sk

}
is the forward state-

value multivariate function. We finally obtain the following lemma to characterize the optimal backward
trajectories and the Pareto-optimal solutions of FB-MDP problem O2.
Lemma 3.8. For the backward cumulative reward Jb(θ), it is:

∇θJb(θ) = EPθ(τ )

{
T −1∑
k=0
∇θ log πθ(aT −k|sT −k)Ab(yT −k, sT −k, aT −k)

∣∣∣ θ}, (6)

where Ab : Y × S ×A → R|Sb| is the bidirectional advantage multivariate function:

Ab(yT −k, sT −k, aT −k) := rb(yT −k, aT −k) + γV b(yT −k−1, sT −k−1)− V b(yT −k, sT −k),

and V b : Y × S → R|Sb| is the bidirectional state-value multivariate function:

V b(yT −k, sT −k) := E
{ 1∑

k′=T −k

γT −k′−1rb(yk′ , ak′ )
∣∣yT −k, sT −k

}
= E

{ T −1∑
k′=k

γk′−krb(yT −k′ , aT −k′ )
∣∣yT −k, sT −k

}
,

which adheres to the backward Bellman’s equation:

V b(yT −k, sT −k) = E
aT −k ∼ πθ (·|sT −k)

yT −k−1 ∼ Pb(·|yT −k, aT −k)
sT −k−1 ∼ P (·|sT −k)

{
rb(yT −k, aT −k) + γV b(yT −k−1, sT −k−1)

∣∣θ}. (7)

For the stationary forward and backward transition probabilities, a Bellman Pareto-optimality equation is
given by:[

V f∗
(s), V b∗

(y, s)
]
∈ max

a

[
E

s+ ∼ Pf (·|s, a)

{
rf (s, a) + γV f∗ (

s+)} , E
y− ∼ Pb(·|y, a)

s− ∼ P (·|s)

{
rb(y, a) + γV b∗ (

y−, s−)}], (8)

for (s, y, a) ∈ S × Y ×A, where
[
V f∗(s), V b∗(y, s)

]
is a Pareto-optimal vector, s+ ∈ S is the forward state

following s, and y− ∈ Y is the backward state preceding y.
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Proof. Please refer to Appendix A.

Remark 3.9. The formulation of this lemma differs from its counterpart for forward MDPs. Specifically,
the bidirectional state-value V b(yT −k, sT −k) is defined in Equation (7) so as to have a backward Bellman’s
equation. Note that Equation (7) exhibits a forward dynamics with a dependency on the policy distribution
that itself relies on the forward state rather than the backward state. Moreover, the Bellman’s Pareto-
optimality equation [i.e., Equation (8)] characterizes an optimal solution for FB-MDPs, which notably exhibits
a bidirectional optimality dynamics, due to presence of s− and s+ on RHS. This requires that both dynamics
should be jointly and simultaneously considered to obtain an optimal policy. We leverage these findings in
devising our algorithm next.

4 Forward-Backward Multi-Objective RL

We now build on the results in the previous section to develop an RL algorithm for multi-objective FB-
MDP problems. Specifically, we devise a Forward-Backward Step-Wise (FB-SW) mechanism according to
Theorem 3.7 and Theorem 3.8. The mechanism comprises of three steps: forward evaluation, in which the
forward dynamics is evaluated by generating actions using the policy at ∼ πθ(·|st); backward evaluation, in
which the backward dynamics is evaluated in a time-reversed way by leveraging the actions generated in the
previous step; and bidirectional learning, leveraging a multi-objective optimization mechanism with a suitable
chronological order to optimize the policy πθ(·|st) based on the experiences obtained from both the forward
and backward dynamics. Figures 1b and 1c on page 2 outline the resulting algorithm.

4.1 The Forward-Backward Algorithm

According to Equations (5) and (6), the gradient of J(θ) depends on the policy distribution πθ(·|·) in addition
to the state-value functions V f (·) and V b(·, ·). For the policy distribution πθ(·|·), we consider an actor
agent represented by a θ-parametric neural network (NN). For the forward state-value function V f (·), we
set a forward-critic network represented by a ϕ-parametric NN, denoted by V f

ϕ (·). Moreover, we use a
backward-critic network with a ψ-parametric NN for the bidirectional state-value function, indicated by
V b
ψ(·, ·). We must now align the evaluation and update procedures for the actor and critic networks with the

FB-SW mechanism. In this regard, πθ(·|·) and V f
ϕ (·) are evaluated during the forward-evaluation step of the

FB-SW mechanism, V b
ψ(·, ·) is evaluated during the backward-evaluation step, then their values are employed

to compute ∇θJ(θ) and update πθ(·|·) during the forward-backward optimization step.

The update mechanism of actor policy πθ(·|·) depends on the forward and bidirectional state-value functions,
i.e., V f

ϕ (·) and V b
ψ(·, ·). As a consequence, we need to set some losses to also update these state-value functions.

In line with Bellman’s equation V f (sk) = Esk+1,ak|sk
{rf (sk, ak) + γV f (sk+1)} and Temporal Difference

(TD)-learning (Grondman et al., 2012), the following forward-critic losses are considered to update ϕ:

T∑
k=1

Af
ϕ,i(sk, ak)2, for i ∈ Sf , (9)

where Af
ϕ,i(sk, ak) = V f

ϕ,i(sk) − rf
i (sk, ak) − γV f

ϕ,i(sk+1) are parametric representations for the so-called
forward advantage functions. Conversely, we set the following backward-critic losses to update the parameter
ψ based on the derived backward Bellman’s equation [i.e., Equation (7)]:

T −1∑
k=0

Ab
ψ,i(yT −k, sT −k, aT −k)2, for i ∈ Sb, (10)

where Ab
ψ,i(yT −k, sT −k, aT −k) = V b

ψ,i(yT −k, sT −k)− rb
i (yT −k, aT −k)− γV b

ψ,i(yT −k−1, sT −k−1) are the para-
metric bidirectional advantage functions.

Equations (5) and (6) indicate multiple losses for optimizing the actor and Equations (9) and (10) show
multiple losses for optimizing the forward / bidirectional critic networks. A straightforward approach to

8
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carry out multi-objective optimization involves using the scalarization technique, namely, obtaining a single-
objective loss through a preference function (or scales) for different losses. However, Pareto solutions cannot
be necessarily obtained via this method (Kirlik & Sayın, 2014). As a consequence, tuning the scalarization
settings might require a trial-and-error approach, which is sensitive to the selected setup. Instead, we use a
scale-insensitive multi-objective optimization method (Schäffler et al., 2002) to devise a forward-backward
RL algorithm. Accordingly, we employ Lemma 3.3 to formulate forward / bidirectional critic networks and a
multi-objective actor agent shared between the forward and bidirectional critics.

4.1.1 Forward / Bidirectional Critic Networks

Equation (9) [Equation (10)] provides multiple losses for the forward (backward) critic network. By recalling
Lemma 3.3, we formulate the multi-objective loss Kf (ϕ) [Kb(ψ)] by using the coefficients βf (βb), so that a
common descent direction is formulated for all forward (backward) losses. Accordingly, we have:

Kf (ϕ) =
∑

j∈Sf

β∗
f,j

T∑
k=1

Af
ϕ,j(sk, ak)2, Kb(ψ) =

∑
j∈Sb

β∗
b,j

T −1∑
k=0

Ab
ψ,j(yT −k, sT −k, aT −k)2, (11)

where β∗
f and β∗

b are tuned by the following problems (see Q2 of Lemma 3.3):

β∗
f = argmin

βj ≥ 0∑
j∈Sf

βj = 1

∥∥∥∥∑
j∈Sf

βj∇ϕ
T∑

k=1
Af
ϕ,j(sk, ak)2

∥∥∥∥2
, β∗

b = argmin
βj ≥ 0∑

j∈Sb
βj = 1

∥∥∥∥∑
j∈Sb

βj∇ψ
T −1∑
k=0

Ab
ψ,j(yT −k, sT −k, aT −k)2

∥∥∥∥2
.

(12)

These critic networks are then updated via TD-learning with the following Stochastic Gradient Descent
(SGD) rules (Grondman et al., 2012):

ϕ← ϕ− µf∇ϕKf (ϕ), ψ ← ψ − µb∇ψKb(ψ), (13)

where µf and µb are the learning rates of the forward and bidirectional critic networks, respectively.

4.1.2 Actor Agent

We follow the same strategy as in the previous section to devise a single-policy multi-objective actor agent
shared between the forward and backward processes. The following forward and backward gradients follow
from Equations (5) and (6) and are given by:

∇θĴf
i (θ,ϕ)=−

T∑
k=1
∇θlogπθ(ak|sk)Af

ϕ,i(sk, ak),

∇θĴb
j (θ,ψ)=−

T −1∑
k=0
∇θlogπθ(aT −k|sT −k)Ab

ψ,j(yT −k, sT −k, aT −k) (14)

for i ∈ Sf and j ∈ Sb. We then employ Lemma 3.3 to provide a simultaneous descent direction for all
forward / backward rewards. Hence, the multi-objective actor agent is updated by the following multi-objective
SGD:

θ ← θ − µ
( ∑

j∈Sf

βact,j∇θĴf
j (θ,ϕ) +

∑
j∈Sb

βact,j∇θĴb
j (θ,ψ)

)
, (15)

where µ is the learning rate of actor agent, and

βact = argmin
{βj}j

∥∥∥∥ ∑
j∈Sf

βj∇θJ̄f
j (θ) +

∑
j∈Sb

βj∇θJ̄b
j (θ)

∥∥∥∥2
, (16)

s.t. βj ≥ 0,
∑

j∈Sf ∪Sb

βj = 1, (17)

9
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with

∇θJ̄b
i (θ) := −EψE

{
T −1∑
k=0
∇θ log πθ(aT −k|sT −k)Ab

ψ,i(yT −k, sT −k, aT −k)
∣∣∣ θ,ψ

}
,

∇θJ̄f
j (θ) := −EϕE

{
T∑

k=1
∇θ log πθ(ak|sk)Af

ϕ,j(sk, ak)
∣∣∣ θ,ϕ

}
, (18)

for j ∈ Sf and i ∈ Sb. Note that, as opposed to the critic losses, we theoretically leverage the expected
gradient ∇θJ̄f

j (θ) and ∇θJ̄b
j (θ) to optimize βact in Equation (16) [compare with Equation (12)]. This

approach interestingly guarantees that all forward and backward cumulative losses – namely, {Jf
j (θ)}j∈|S|f

and {Jb
i (θ)}i∈|S|b

– monotonically decrease with each iteration. Please refer to Theorem B.1 in the appendix
for more details.

To estimate the expected gradients ∇θJ̄f
j (θ) and ∇θJ̄b

j (θ), we employ Monte Carlo Sampling (MCS) together
with an exponential moving average, applied to ∇θĴf

j (θ,ϕ) and ∇θĴb
j (θ,ψ). Specifically, we first implement

Nmcs distinct backward and forward critic networks with learnable parameters {ψl}Nmcs
l=1 and {ϕl}Nmcs

l=1 ,
respectively, and use the approximations

∇θJ̄f
j (θ) ≈ 1

NMCS

NMCS∑
l=1

E
{
∇θĴf

j (θ,ϕl)|θ
}

, ∇θJ̄b
i (θ) ≈ 1

NMCS

NMCS∑
l=1

E
{
∇θĴb

i (θ,ψl)|θ
}

.

In addition, we consider different episodes to take an exponential average with a smoothing factor γmov to
estimate E

{
∇θĴf

j (θ,ϕl)|θ
}

and E
{
∇θĴb

i (θ,ψl)|θ
}

. We name this approach episodic MCS-average.

Figure 1b overviews the proposed Forward-Backward Multi-Objective Actor-Critic (FB-MOAC) algorithm,
whereas Algorithm 1 provides its pseudo-code.

4.2 Optimality and Convergence

The episodic MCS-average approach enables us to prove the convergence of FB-MOAC to a Pareto-optimal
solution.
Theorem 4.1. For Lipschitz-smooth losses, FB-MOAC reaches convergence to a locally Pareto-optimal
solution with a rate of O(1/

√
K), where K is the number of policy updates.

Proof (sketch). It can be shown that the episodic MCS-average approach ensures the forward and backward
expected losses {Jf

j (θ)}j∈|Sf | and {Jb
i (θ)}i∈|Sb| constantly decrease at each iteration based on Corollary 3.5.

This fact and the characteristic features of Lipschitz-smooth losses guarantee convergence to a locally
non-dominated Pareto-optimal solution with a rate of O(1/

√
K). Appendix B.2 provides a complete proof.

Remark 4.2. The convergence results of Theorem 4.1 are aligned with those of single-optimization algorithms
for forward-MDPs (Fu et al., 2021).
Remark 4.3. The computational complexity of FB-MOAC is primarily described by its convergence rate,
which is competitive to standard algorithms. However, the episodic MCS-average add-on makes FB-MOAC
computationally different from standard algorithms. The convergence of the add-on depends on the number
of the critic agents; however, three agents are already enough to reach convergence in practice (see Section 5
for more details). Consequently, the overall complexity of FB-MOAC remains competitive with respect to
forward-only RL algorithms.
Remark 4.4. Appendix B.1 proves that FB-MOAC has a faster convergence, with a rate of O(1/K), when
the losses are both strongly convex and Lipschitz-smooth.

10
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Algorithm 1 Pseudo-code of the Forward-Backward Multi-Objective Actor-Critic (FB-MOAC) algorithm.
1: for episode = 1 to Emax do
2: Input: Initial forward-backward state (s1, yT ).
3: Actor, forward-critic and backward-critic parameters: θ, ϕ and ψ.
4: Forward Evaluation:
5: for t = 1 to T do
6: Select at ∼ πθ(·|st), interact with environment.
7: Observe forward state st+1 and forward rewards {rf

j (st, at)}j∈Sf .
8: Compute {Af

ϕ,j(st, at)}j∈Sf by forward state-value {V f
ϕ,j(st)}j∈Sf , Equation (9).

9: Compute log
(
πθ(at|st)

)
.

10: end for
11: Backward Evaluation:
12: for t = 1 to T do
13: Observe backward state yT −t and backward rewards {rb

j(yT −t, aT −t)}j∈Sb depending on the drawn action
of step Forward-Evaluation.

14: Compute {Ab
ψ,j(yT −t, sT −t, aT −t)}j∈Sb by bidirectional state-value {V b

ψ,j(yT −t, sT −t)}j∈Sb , Equation (10).
15: end for

16: Forward-Backward Optimization:
17: Forward / bidirectional critic Update:
18: Obtain β∗

f and β∗
b by Equation (12).

19: Compute multi-objective forward-critic loss Kf (ϕ) and backward-critic loss Kb(ψ).
20: Apply the rules:

ϕ← ϕ− µf∇ϕKf (ϕ), ψ ← ψ − µb∇ψKb(ψ).

21: Forward-Backward Optimization:
22: Obtain β∗ using Equation (16) and the outcomes of episodic MCS-average.
23: Compute stochastic forward and backward gradients ∇θĴf

j (θ,ϕ) and ∇θĴb
j (θ,ψ) using Equation (14).

24: Apply the SGD rule:

θ ← θ − µ
( ∑

j∈Sf

βact,j∇θĴf
j (θ,ϕ) +

∑
j∈Sb

βact,j∇θĴb
j (θ,ψ)

)
,

25: end for

4.3 Deriving the Pareto-Front

Our FB-MOAC algorithm is designed as a multi-objective framework where a single-policy agent interacts
with multiple reward-specific critic networks. Crucially, these critics are updated through a non-linear
mechanism with respect to the reward functions, as described by Remark 3.4 in addition to Equations (11)
and (13). Hence, we consider the critics for developing a preference policy with respect to different rewards.
To systematically explore the Pareto front, we introduce forward and backward preference parameters,
ϵf ∈ (0, 1]|Sf |, ϵb ∈ (0, 1]|Sb|, which are used to re-scale the corresponding advantage functions:

Af
i (sk, ak) = ϵf

i rf
i (sk, ak) + γV f

i (sk+1)− V f
i (sk), for i ∈ Sf

Ab
j(yT −k, sT −k, aT −k) = ϵb

j rb
j(yT −k, aT −k) + γV b

j (yT −k−1, sT −k−1)− V b
j (yT −k, sT −k), for j ∈ Sb. (19)

We then apply the FB-MOAC algorithm with the updated advantage functions. Note that this re-scaling
does not lead to a linear preference due to Remark 3.4. We thus use different preference parameters to
steer the learning process toward different regions of the Pareto front. It is also important to highlight that
the scalarization technique cannot be applied on the forward and backward rewards to formulate a single
reward, since the resulting reward would depend on both the forward and backward states. As a result, a
state-coupled FB-MDP would occur and Lemma 3.8 would no longer hold. This further motivates using
multi-objective optimization to find the Pareto-optimal solutions.

The non-linear re-scaling mechanism described above allows to characterize the Pareto-front of a problem. Note
that theorems 4.1 and B.4 guarantee convergence to (locally) Pareto-optimal solutions. On the other hand,
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theorem B.1 ensures that the expected losses monotonically decrease for any preference policy. Consequently,
the convergence to a (locally) Pareto-optimal solution is preserved regardless of the different preferences.
These considerations explain that the mechanism in Equation (19) allows to derive locally Pareto-optimal
solutions for the case of Lipschitz-smooth losses; under the additional assumption of strong convexity of
the losses, the mechanism even obtains the actual Pareto-optimal solutions. An evaluation of the proposed
mechanism is provided in Section E.

5 Evaluation

FB-MDPs find application in stochastic optimal control problems driven by forward-backward stochastic
differential equations (FB-SDEs) and networked systems (Zabihi et al., 2023). Accordingly, we evaluate FB-
MOAC against the state of the art through diverse representative problems in these domains: mathematical
finance, as an example of how a FB-SDE-driven stochastic control problem can be solved by FB-MOAC;
and cache-assisted content delivery in wireless networks. Section D provides an additional use case in the
context of computation offloading through an edge (cloud) server. The code of FB-MOAC is available at:
https://anonymous.4open.science/r/FBMOAC-2025.

5.1 Use Case: Mathematical Finance

We consider an investment-consumption problem (Ma & Yong, 1999; El Karoui, 1997) In particular, we
consider a stochastic optimal control problem driven by a forward-backward stochastic differential equation
(FB-SDE), which is then discretized according to the method in Section E.1 to find an optimal solution with
the FB-MOAC algorithm.

5.1.1 System Model

A financial market consists of n risky assets whose prices follow the following F-SDEs:

dpn(t) = pn(t)
(
rapp

n (t)dt + ⟨σvol
n (t), dβ(t)⟩

)
, pn(0) > 0,

for n ∈ {1, . . . , N}, where β(t) ∈ RN is the Wiener process with identity diffusion matrix, rapp
n (t) is the

instantaneous appreciation rate, and σvol
n (t) ∈ RN is the asset volatility. A trader invests in risky assets by

fractional investments {0 ≤ ϕn(t) ≤ 1}N
n=1 or borrow / lend money with an interest rate rint(t). Hence, the

wealth w(t) of the trader with consumption plan c(t) can be obtained by a F-SDE:

dw(t) =
(

rint(t)w(t) +
N∑

n=1
w(t)ϕn(t)

(
rapp

n (t)− rint
n (t)− c(t)

))
dt +

N∑
n=1

w(t)ϕn(t)⟨σvol
n (t), dβ(t)⟩, (20)

with w(0) = w0 where w0 is the initial wealth. Note that {ϕn(t)}N
n=1 is called the investment portfolio, with∑N

n=0 ϕn(t) = 1.

Then, an utility process u(t) of the investor is taken into account. This process at time t depends on the
consumption plan c(t) and the future utility, and is described by the following B-SDE:

du(t) =−fgen(c(t), u(t), z(t))dt + ⟨z(t), dβ(t)⟩, u(T )=ffin(w(T )), (21)

where fgen(·) is the generator function, z ∈ RN is the control process of the backward dynamics, T is the
finite horizon, and ffin(·) is the final utility function. The objective of this problem is to optimize the initial
backward state u(0) by designing an optimal portfolio and consumption plan. This is formulated based on
the following stochastic optimal control problem:

max
{ϕn(t)}N

n=0, c(t)
E
{

ffin(w(T )) +
∫ T

0
fgen(c(t), u(t), z(t))dt

}
,

s.t. FB-SDE (20) and (21). (22)

12

https://anonymous.4open.science/r/FBMOAC-2025


Under review as submission to TMLR

0 2000 4000 6000 8000 10000 12000 14000
Time Steps

0.00

0.05

0.10

0.15

0.20

0.25

O
pt

im
um

 V
al

ue
 o

f u
(0

)

T=1.0
T=0.75
T=0.5
T=0.25

(a)

Risky
assets N

FB-MOAC Approach in Ji et al. (2022b; 2020)
T =0.50 T =0.75 T =1.00 T =0.50 T =0.75 T =1.00

10 0.121 0.182 0.241 0.122 0.182 0.242
20 0.122 0.181 0.240 0.122 0.178 0.242
50 0.120 0.180 0.235 0.121 0.181 0.237

(b)

Figure 2: Evaluation in a stochastic optimal control problem: (a) performance of FB-MOAC for N = 50 and for
different horizons and (b) comparison of the optimal investor utility u(0) against the state of the art.

So as to apply FB-MOAC, we discretize this stochastic optimal control problem with the Euler-Maruyama
scheme (Kloeden & Platen, 1992) with a step-size ∆t = T/Ndis. Therefore, the forward and back-
ward states are the wealth w(t) and utility process u(t), respectively, and the backward reward is
E
{

ffin(w(T ))+
∑Ndis

i=0 fgen(c(i∆t), u(i∆t), z(i∆t)
)
∆t
}
.

5.1.2 Experiment Setup and Hyper-parameters

We use the same settings as those in (Ji et al., 2022a). The number of assets is N ∈ {10, 20, 50}, the generator
function fgen(c(t), u(t), z(t)) = −0.05u(t) + c(t) − c(t)2, the final utility function ffin(x) = exp(−x), the
interest rate rint(t) = 0.03, the appreciation rate rapp(t) = 0.05, the volatility σvol

n = 0.1In for n ∈ {1, . . . , N},
the finite horizon T ∈ {0.5, 0.75, 1.0}, and the initial wealth x0 = 100.

As this problem only entails a backward reward, we only establish the backward-critic network; moreover,
we set NMCS = 1, the number of neurons in the hidden layer for the actor and critics to 8, the actor
and bidirectional critic learning rates 2 × 10−2, and the smoothing factor γmov = 1. We use the Dirichlet
distribution for {ϕn(t)}N

n=0 to jointly motivate the exploration and satisfy
∑N

n=0 ϕn(t) = 1. Finally, the
rectified linear unit (ReLU) activation function is used for the neurons connection, the number of neurons in
the hidden layer for the actor and critics is 100, the actor and forward / bidirectional critic learning rates are
3× 10−4, and the smoothing factor is γmov = 0.95.

5.1.3 Performance Evaluation

Figure 2a shows the performance of FB-MOAC as a function of time steps for different values of finite horizon
T ∈ {0.5, 0.75, 1.0}. For comparison purposes, we consider the approaches in (Ji et al., 2022b; 2020), which
develop deep learning methods by focusing on stochastic control theory and incorporate the system dynamics
a priori for the optimization purposes. In contrast, FB-MOAC learns multivariate rewards for FB-MDPs
without knowing the transition probability of the underlying dynamics. Table 2b compares FB-MOAC against
state of the art in terms of the optimal initial investor utility u(0). The FB-MOAC solution is close to the
values obtained by (Ji et al., 2022b; 2020) for different values of T despite treating the system dynamics as a
black-box during the learning process. This demonstrates the ability of the proposed algorithm to find an
optimal solution for environments characterized as FB-MDPs, thereby broadening its application to a variety
of stochastic optimal control problems described by FB-SDEs.
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5.2 Case Study: Edge Caching

We now consider a real-world forward-backward multi-task problem in the context of edge caching (Nomikos
et al., 2022). For conciseness, the rest of the section omits details that can be found in Section C.

5.2.1 System Model

The environment is a wireless network with cache-equipped serving-nodes (SNs) and fixed users requesting N
contents items from them. The network operates over time slots indexed by t ∈ {1, . . . , T}, where T is the
total time duration. A given user makes a single content request at every time slot, but its content preference
changes in the subsequent time slot. Each SN multicasts popular contents to users at the start of each time
slot, aiming to satisfy the requests of as many users as possible. The transmission at time-slot t is completed
within a duration of d(t) seconds. A transmission outage may occur with probability {On(a(t), t)}N

n=1, where
a(t) denotes the action parameters of the network based on which it can control the outage. These include the
radio resource allocation and the availability of cached content at SNs. Note that {On(a(t), t)}N

n=1 indicates
the probability that the users cannot receive content n. As a result, some users fail to receive the requested
content in the current time slot and their requests are deferred to the subsequent one. Hence, each time
slot sees a distribution of users accounting for the repeated requests and a distribution describing the new
preferences on contents. This leads to a time-varying model for the request probability of content n, preq

n (t).
Requests for content can span multiple time-slots until successfully fulfilled, thereby affecting the expected
latency to receive them. Such an expected latency Ln(t) for the successful delivery of content n follows these
dynamics (please refer to Section C for more details):

Ln(a(t), t) =
(

d(t) + Ln(a(t + 1), t + 1)
)

On(a(t), t) + d(t)
2
(
1−On(a(t), t)

)
, Ln(a(T ), T ) = 0, (23)

where d(t) is the duration of time-slot t in seconds, and we have Ln(a(T ), T ) = 0 since system operations finish
at t = T and the users do not need to wait any longer. Equation (23) represents a backward dynamics,
with the backward state vector y(t) = L(a(t), t) and the action vector a(t). Note that this model fully
captures the trade-offs involved in the delay dynamics and differs from the conventional formalism that does
not provide a continuum model when accounting for successive slots; for the delivery without outage, the
expected latency simply becomes Ln(t) = d(t)

2 , as its realizations follow a uniform distribution with values
between 0 and d(t).

Equation (23) may suggest that it is possible to convert it to a standard forward dynamics. For this purpose,
we can consider a variable transformation Kn(T − t) := Ln(a(t), t) as well as a time transformation t′ := T − t.
We can then obtain the following forward dynamics on Kn(t′):

Kn(t′) =
(
d(T − t′) + Kn(t′ − 1)

)
On(a(T − t′), T − t′) + d(T − t′)

2
(
1−On(a(T − t′), T − t′)

)
, for t′ ≥ 1,

with K ′
n(0) = 0. However, this shows a non-standard MDP, as the state Kn(t′) depends on the far future of

action an(T − t′) that cannot be revealed by moving forward in time. This argument aligns with Theorem 3.6.

Equation (23) also shows that for a full-error transmission scheme (i.e., with the outage equal to one)
Ln(t) = d(t) + Ln(t + 1) holds, which means that the expected latency maximally accumulates as one goes
backwards in time. This is expected, as no successful receptions take place. Moreover, it is worth stressing
that minimizing the expected latency (23) enables to optimally keep track of the precise time slot at which
requests are finally fulfilled. Alternatively, one could track the service time of requests to prioritize those that
have waited longer. However, this oversimplifies the problem and fails to account for the complex interactions
within the system, leading to a sub-optimal solution. Additional explanation is provided in Section 5.2.3.

The problem is therefore modeled as a FB-MDP, coupling forward and backward dynamics through system
actions, where the action space is [0, 1]n×[0,∞]n with n the number of contents.

Three widely-used network performance metrics (Li et al., 2018b) are considered as reward functions to
design an optimal policy: the quality of service rQoS(·); the total bandwidth consumption rBW(·); and
the overall expected latency rLat(·). The QoS determines the overall probability of unsatisfied UEs and is
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Figure 3: Pareto-optimal solutions in the edge caching use case for different settings of the preference parameters
ϵ = [ϵf , ϵb]: (a) [0.3, 1.0, 1.0], (b) [0.3, 0.3, 1.0] , (c) [0.3, 1.0, 0.3] , and (d) [1.0, 1.0, 0.3] . Note that these solutions are
Pareto-optimal as none of them dominates the others.

given by rQoS(t) = −
∑N

n=1 preq
n (t)On

(
a(t), t

)
, 0 ≤ −rQoS(t) ≤ 1, namely, the likelihood of a UE request

remaining unfulfilled during the multicast transmission at time-slot t. The total bandwidth consumption
is rBW(t) = −W

(
a(t), t

)
= −

∑N
n=1 wn(t), where W

(
·) represents the total bandwidth consumption for the

network. Finally, the overall expected latency is rLat(t) = −
∑N

n=1 preq
n (t)Ln(a(t), t), with Ln(t) obtained

from Equation (23). Note that these rewards compete with each other. For instance, reducing rBW requires
increasing wn which, in turn, decreases the outage On. Furthermore, a decrease in On makes rQoS grow but
reduces the latency Ln which, in turn, increases rlat.

Clearly, rQoS(t) and rBW(t) relate to the forward state, and constitute the forward bivariate reward function
rf (t) = [rQoS(t), rBW(t)]. Instead, rLat(t) relates to the backward state, and constitutes a backward univariate
reward function rb(t) = rLat(t).

5.2.2 Experiment Setup and Hyper-parameters

We select the following parameters for the considered environment. The number of content items is set to
N = 200, the spatial intensity of the SNs to λsn = 100 points/km2, and the transmission rate to 1 Mbps. The
total number of time slots is T = 256. For the content popularity, we use time-varying Zipf distributions (Li
et al., 2018a).

As for FB-MOAC, three separate sets of NNs representing the multi-objective actor in addition to the
forward-critic and the backward-critic networks. We use NMCS = 4 many NNs for the forward critic as well
as for the backward critic. The forward critic outputs two values representing the reward-specific state-value
functions V f

ϕ,j(·), related to rQoS(·) and rBW(·). On the other hand, the backward critic outputs one value
representing the state-value functions V b

ψ(·), related to rLat(·). We set the actor and critic learning rates to
4× 10−4 and the discount factor to γ = 0.92.
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Figure 4: Performance of FB-MOAC for the edge caching use case: (a) performance comparison against forward
learning with F-PPO, F-MOAC, and LFU; (b) comparison between the test solution of FB-MOAC with those of
F-PPO, F-MOAC, and LFU; (c) learning in absence of backward optimization.

5.2.3 Performance Evaluation

Figure 3 illustrates the learning results of FB-MOAC in deriving most of the Pareto-optimal solutions, i.e., the
resulting solution of each figure does not dominate the others. Recall that Section 4.3 describes a mechanism
for obtaining a Pareto-front; Section E further characterizes such a front for the use case considered here.
For clarity, the performance metrics are normalized based on the value of rQoS, so that they can be clearly
shown in a single plot and more importantly the value of rQoS shows the average percentage of failed requests.
As the results of forward and backward rewards eventually evolve into a stable solution, the actor and the
forward / bidirectional critics are effectively learned.

We consider three baselines for comparison: a widely-used rule-based approach for caching, the Least
Frequently Used (LFU) strategy (Ahmed et al., 2013); and two learning-based algorithms by replacing
the backward reward with a related one (for fairness) so that the backward MDP can be safely removed.
Specifically, we manage the time slot during which requests are served by optimizing d(t). We further
leverage the fact that maximizing rQoS reduces rLat based on Equation (23). Hence, we consider rQoS and
rBW as forward rewards, replace the backward reward with optimizing d(t), then use the baseline algorithm
PPO (Schulman et al., 2017a) as well as F-MOAC, derived from FB-MOAC by excluding the backward
learning mechanism. Notably, F-MOAC is considered a multi-objective extension of the baseline algorithm
A2C (Grondman et al., 2012). We term the resulting solutions of these strategies as F-PPO and F-MOAC,
since they are developed for forward MDPs. Figure 4a compares the training performance of FB-MOAC
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Figure 5: Train performance when single-objective optimization is used with different values of the scalarization
settings s = [sf , sb]: (a) [0.3, 0.3, 1.0], (b) [1.0, 1.0, 0.3], (c) [0.3, 1.0, 0.3] and (d) [0.3, 1.0, 1.0].

against baselines F-PPO and F-MOAC, in terms of normalized rewards, while Figure 4b shows the solutions
of these algorithms during test. We select a solution for FB-MOAC among different ones by prioritizing rQoS.
Instead, we learn forward rewards and additionally optimize d(t) for the two baselines (F-PPO and F-MOAC)
to achieve a rLat comparable (or slightly worse) to that of FB-MOAC. The results show that FB-MOAC
remarkably outperforms both F-MOAC and F-PPO in terms of all rewards. This means that FB-MOAC
strategy can fulfill the content requests considerably better than forward-only strategies. Specifically, more
than 15% of the content items are lost due to the values of quality of service in both F-PPO and F-MOAC,
whereas the failure rate of FB-MOAC is only 2%. Moreover, FB-MOAC gives a comparable or better policy
than those obtained by F-PPO and F-MOAC. Furthermore, the solution of FB-MOAC Pareto-dominates
those of F-PPO and F-MOAC. The LFU policy does not benefit from any preference settings with respect to
rewards. Although, it is better than FB-MOAC from the bandwidth-consumption rBW perspective; it is very
unreliable because 45% of the requests fail. These findings show the importance of explicitly incorporating
the backward MDP instead of trying to remove it through adjustments to the backward rewards. They
also demonstrate the effectiveness of the proposed FB-MOAC algorithm in solving the respective FB-MDP
problem.

5.2.4 Ablation Study

We now conduct an ablation study to assess the benefit of the backward evaluation / optimization in FB-
MOAC. For this purpose, we first disable the backward evaluation of the algorithm and only consider the
forward actor and critic losses. Figure 4c shows the resulting rewards as a function of time steps, highlighting
that rlat does not improve over time. As a consequence, the results establish the necessity of the backward
evaluation / optimization in FB-MOAC.

We further carry out another ablation study to evaluate the impact of the multi-objective procedure in
Equations (15), (16) and (18) on the performance. For this purpose, we replace the proposed multi-objective
optimization with a single-objective one accompanied with a linear scalarization technique. Specifically, we
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update the actor parameter θ using the following rule:

θ ← θ − µ
( ∑

j∈Sf

sf
j∇θĴf

j (θ,ϕ) +
∑
j∈Sb

sb
j∇θĴb

j (θ,ψ)
)
,

where sf = [{sf
j }j∈Sf

] ∈ [0.1, 1]|Sf | and sf = [{sb
j}j∈Sb

] ∈ [0.1, 1]|Sb| are the scalarization settings. Accordingly,
Figure 5 shows the train performance of this approach for different scalarization settings [sf , sb]: [0.3, 0.3, 1.0],
[1.0, 1.0, 0.3] and [0.3, 1.0, 0.3]. Clearly, the single-objective mechanism fails to provide stable solutions, in
contrast with the proposed multi-objective approach (see also Figure 3).

6 Conclusion and Limitations

We introduced the notion of forward-backward Markov decision processes (FB-MDPs), a class of MDPs
that cannot be expressed as standard MDPs. We then obtained an optimality condition for the solution of
FB-MDPs based on which we devised a multi-objective RL algorithm called FB-MOAC. We analytically
characterized the optimality and convergence of FB-MOAC, then conducted an extensive evaluation in two
diverse use cases to demonstrate its effectiveness.

As a limitation, our mechanism targeted FB-MDP problems wherein forward and backward dynamics are
purely coupled within the action space. Addressing fully-coupled FB-MDPs is an interesting direction for
future work.
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SUPPLEMENTARY MATERIAL

A Proof of Lemma 3.8

Proof. We simply denote the conditional expectation E{·|θ} by E{·} for convenience. Accordingly, we have:

∇θJb(θ) = ∇θ EPθ(τ )

{
T −1∑
k=0

γkrb(yT −k, aT −k)
}

(24)

a= EPθ(τ )

{
T −1∑
k=0

γkrb(yT −k, aT −k)
T −1∑
k=0
∇θ log πθ(aT −k|sT −k)

}
b= EPθ(τ )

{
T −1∑
k=0
∇θ log πθ(aT −k|sT −k)

T −1∑
k′=k

γk′−krb(yT −k′ , aT −k′)
}

c=
T −1∑
k=0

E
yT −k
aT −k
sT −k

{
∇θ log πθ(aT −k|sT −k)E

{T −1∑
k′=k

γk′−krb(yT −k′ , aT −k′)
∣∣yT −k, sT −k, aT −k

}
︸ ︷︷ ︸

Qb(yT −k,sT −k,aT −k)

}

d=
T −1∑
k=0

E
yT −k
aT −k
sT −k

{
∇θ log πθ(aT −k|sT −k)

(
Qb(yT −k, sT −k, aT −k)− V b(yT −k, sT −k)

)}

e=
T −1∑
k=0

E
yT −k
aT −k
sT −k

{
∇θ log πθ(aT −k|sT −k)

(
E

yT −k−1 ∼ Pb(·|yT −k, aT −k)
sT −k−1 ∼ P (·|sT −k)

{rb(yT −k, aT −k) + γV b(yT −k−1, sT −k−1)} − V b(yT −k, sT −k)
)}

=
T −1∑
k=0

E

{
∇θ log πθ(aT −k|sT −k)

(
rb(yT −k, aT −k) + γV b(yT −k−1, sT −k−1)− V b(yT −k, sT −k)

)}

= EPθ(τ )

{
T −1∑
k=0
∇θ log πθ(aT −k|sT −k)Ab(yT −k, sT −k, aT −k)

}
, (25)

where V b(·, ·) : Y × S → R|Sb|, Qb(·, ·, ·) : Y × S × A → R|Sb| and Ab(·, ·, ·) : Y × S × A → R|Sb| are
the bidirectional state-value, backward action-value, and bidirectional advantage multivariate functions,
respectively. We also have:

V b(yT −k, sT −k) := E

{
T −1∑
k′=k

γk′−krb(yT −k′ , aT −k′ )
∣∣yT −k, sT −k

}
. (26)

For (a), we used ∇θPθ(τ ) = Pθ(τ ) ∇θ log Pθ(τ ), and ∇θ log Pθ(τ ) =
∑T −1

k=0 ∇θ log πθ(aT −k|sT −k) based
on Equation (3). For (b), we considered the anti-causality; the current action does not affect the future of
backward rewards, for (c), the definition of backward action-value functions is applied, for (d), including a bias
term, here V b(yT −k, sT −k), does not change the result due to EaT −k∼πθ(·|sT −k) {∇θ log πθ(aT −k|sT −k)} = 0
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and for (e) we derive the Bellman’s equation for the backward action-value function as follows:

Qb(yT −k, sT −k, aT −k)

=
∫
E

{
T −1∑
k′=k

γk′−krb(yT −k′ , aT −k′ )
∣∣∣yT −k, aT −k, yT −k−1, sT −k, sT −k−1

}
Pb(yT −k−1|yT −k, aT −k)×

P (sT −k−1|sT −k)dyT −k−1dsT −k−1

α=
∫ (
rb(yT −k, aT −k) + γE

{ T −1∑
k′=k+1

γk′−krb(yT −k′ , aT −k′ )
∣∣∣yT −k−1, sT −k−1

})
Pb(yT −k−1|yT −k, aT −k)×

P (sT −k−1|sT −k)dyT −k−1dsT −k−1

= E
yT −k−1 ∼ Pb(·|yT −k, aT −k)

sT −k−1 ∼ P (·|sT −k)

{
rb(yT −k, aT −k) + γV b(yT −k−1)

}
, (27)

where for (α) we considered that (yT −k−1, sT −k−1) is the only relevant information to compute the expectation
E
{∑T −1

k′=k+1 γk′−krb(yT −k′ , aT −k′)
}

. The same strategy can be applied to obtain the Bellman’s equation for
the bidirectional state-value function as follows:

V b(yT −k, sT −k) = E
aT −k ∼ πθ (·|sT −k)

yT −k−1 ∼ Pb(·|yT −k, aT −k)
sT −k−1 ∼ P (·|sT −k)

{
rb(yT −k, aT −k) + γV b(yT −k−1, sT −k−1)

∣∣ θ}.

Note that no distinct forward and backward Bellman optimality equations do exist for the FB-MDPs. However,
a Bellman Pareto-optimality equation can be instead found. For this, we consider this fact that the forward
and backward value functions become stationary when forward and backward transition probabilities are
stationary. By recalling the notion of Pareto-optimality and Pareto front, we then define the Pareto-optimal
forward and backward value functions as follows:[

Qf∗
(s, a), Qb∗

(y, s, a)
]
∈ max

π(·|·)

[
Qf (s, a), Qb(y, s, a)

]
,

[
V f∗

(s), V b∗
(y)
]
∈ max

π(·|·)

[
V f (s), V b(y, s)

]
,

for all (s, y, a) ∈ S × Y × A, where
[
Qf∗(s, a), Qb∗(y, s, a)

]
and

[
V f∗(s), V b∗(y, s)

]
are the Pareto-optimal

vector for the above multi-objective optimization. Now, we consider the following policy:

π∗(a|s) =
{

1, a ∈ argmaxa
[
Qf∗(s, a), Qb∗(y, s, a)

]
0, otherwise

.

Note that here argmaxa
[
Qf∗(s, a), Qb∗(y, s, a)

]
returns a set of vectors. We then have:[

V f∗
(s), V b∗

(y, s)
]
∈ max

a

[
Qf∗

(s, a), Qb∗
(y, s, a)

]
.

On the other hand, based on Equation (27) and the Bellman’s equation for the forward action-value function,
we can get:

Qf∗
(s, a) = E

s+∼Pf (·|s,a)

{
rf (s, a) + γV f∗ (

s+)}
Qb∗

(y, s, a) = E
y− ∼ Pb(·|y, a)

s− ∼ P (·|s)

{
rb(y, a) + γV b∗ (

y−, s−)} ,

where y− is the backward state preceding y and s+ is the forward state following s. We therefore obtain the
following Bellman Pareto-optimality equation:[

V f∗
(s), V b∗

(y, s)
]
∈ max

a

[
E

s+ ∼ Pf (·|s, a)

{
rf (s, a) + γV f∗ (

s+)} , E
y− ∼ Pb(·|y, a)

s− ∼ P (·|s)

{
rb(y, a) + γV b∗ (

y−, s−)}],

This equation, termed as Bellman Pareto-optimality equation, provides a base to formulate dynamic program-
ming algorithms for multi-objective FB-MOAC problems as well as motivates the usage of a multi-objective
optimization framework.
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B Convergence of the FB-MOAC Algorithm

In this section, we perform a comprehensive study of the convergence properties of the FB-MOAC algorithm.
Our investigation starts by establishing of some foundational assumptions and the introduction of preliminary
theorems and corollaries. Subsequently, we study the convergence analysis for two distinct scenarios,
specifically pertaining to the backward and forward expected losses: (1) Strong Convexity and Lipschitz
Smoothness Case. We explore the convergence behavior when the losses exhibit both strong convexity and
Lipschitz smoothness properties. (2) Lipschitz Smoothness Case. We investigate convergence when the
losses are solely Lipschitz-smooth. Through a rigorous examination of these cases, we thus intend to provide
a comprehensive understanding of the convergence characteristics of FB-MOAC algorithm.

We also need to emphasize that stochastic nature of FB-MDP affects the values of ϕ, ψ and θ, based on the
SGD rules (Equations (13) and (15)), so they are treated as random variables.

We now make the following assumptions.

Assumption 1: The forward and bidirectional state-value functions are unbiased:

Eϕ{V f
ϕ,j(s)} = V f

j (s), j ∈ Sf , s ∈ S

Eψ{V b
ψ,j(y, s)} = V b

j (y, s), j ∈ Sb, (y, s) ∈ Y × S,

According to this assumption and Equations (14) and (18) we can get:

∇θJ̄f
j (θ) = Eϕ E

{
∇θĴf

j (θ,ϕ)
∣∣ θ,ϕ

}
= −

T∑
k=1

Eϕ E
{
∇θ log πθ(ak|sk)Af

ϕ,j(sk, ak)
∣∣ θ}

= −E
{

T∑
k=1
∇θ log πθ(ak|sk)Af

j (sk, ak)
∣∣∣ θ} = ∇θJf

j (θ)

Likewise, it can be shown that:

∇θJ̄b
j (θ) = −E

{
T∑

k=1
∇θ log πθ(ak|sk)Ab

j(yk, sk, ak)
∣∣∣ θ} = ∇θJb

j (θ)

Assumption 2.1: The forward and backward multi-objective expected losses are differentiable and strongly
convex with parameters γf and γb, respectively, w.r.t θ:

∇2
θJf

j (θ)− γfI ⪰ 0, j ∈ Sf

∇2
θJb

j (θ)− γbI ⪰ 0, j ∈ Sb.

Assumption 2.2: The forward and backward multi-objective expected losses are differentiable and Lipschitz
smooth functions with constants Lf and Lb, respectively, w.r.t θ:∥∥∥∇θJf

j (θ′)−∇θJf
j (θ)

∥∥∥ ≤ Lf∥θ′ − θ∥, j ∈ Sf .∥∥∥∇θJb
j (θ′)−∇θJb

j (θ)
∥∥∥ ≤ Lb∥θ′ − θ∥, j ∈ Sb.

Notice that the assumptions above are made for the expected losses (Jf
j (θ), Jb

j (θ)) and not for the stochastic
losses (Ĵf

j (θ,ϕ), Ĵb
j (θ,ψ)).

Assumption 3: Consider the following stochastic forward / backward gradient:

∇Ĵ fb(θ,ϕ,ψ) =
[[
∇θĴf

j (θ,ϕ)
]

j∈Sf
,
[
∇θĴb

j (θ,ψ)
]

j∈Sb

]
,
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then, its conditional covariance is bounded by a positive semi-definite matrix B:

E
{
∇Ĵ fb(θ,ϕ,ψ)⊤∇Ĵ fb(θ,ϕ,ψ)

∣∣ θ}−∇J fb(θ)⊤∇J fb(θ) ⪯ B,

where

∇J fb(θ)(θ,ϕ,ψ) =
[[
∇θjf (θ)

]
j∈Sf

,
[
∇θJb

j (θ)
]

j∈Sb

]
,

Note that the assumptions outlined in this context align with the conventions found in the literature related
to convergence analysis (Qiu et al., 2021; Zhou et al., 2022).

Now, we have the following theorem.
Theorem B.1. Consider forward / backward expected losses, i.e., {Jf

j (·)}j∈Sf
and {Jb

j (·)}j∈Sb
, and for-

ward / backward stochastic losses, i.e., {Ĵf
j (·, ·)}j∈Sf

and {Ĵb
j (·, ·)}j∈Sb

, complying with Assumptions 2.1, 2.2
and 3, and βact being the solution of Equation (16). Moreover, consider SGDes in Equations (12) and (15)
characterized by iteration number i and actor learning rate {µi}i∈I with

µi ≤ min
{

1
max{Lf , Lb}

,
1

max{Lf , Lb}∥B∥
E
{ 1

1⊤ (∇J fb(θi)⊤∇J fb(θi))−1 1

}}
,

which generate sequences {ϕi}i∈I , {ψi}i∈I and {θi}i∈I , we then get:

E Jf
j (θi+1) ≤ E Jf

j (θi), j ∈ Sf

and

E Jb
j (θi+1) ≤ E Jb

j (θi), j ∈ Sb.

Proof. According to the update rule Equation (15), we have:

θi+1 = θi − µi

[
∇Ĵ f(θi,ϕi),∇Ĵb(θi,ψi)

]
βi

act = θi − µi∇Ĵ fb(θi,ϕi,ψi)βi
act.

Based on Assumption 2.2, we then obtain:

Jf
j (θi+1)− Jf

j (θi) ≤ −µi∇Jf
j (θi)⊤∇Ĵ fb(θi,ϕi,ψi)βi

act + µ2
i Lf

2 βi
act

⊤∇Ĵ fb(θi,ϕi,ψi)⊤∇Ĵ fb(θi,ϕi,ψi)βi
act.

By taking the expectation on both sides of the recent equation, it then reads:

E
{

Jf
j (θi+1)− Jf

j (θi)
}
≤ −µiE

{(
ej −

µiLf

2 βi
act

)⊤
∇J fb(θi)⊤∇J fb(θi)βi

act

}
+ µ2

i Lf

2 ∥B∥, (28)

where was obtained based on

Eϕi,ψi E
{
βi

act
⊤∇Jf (θi)⊤∇Ĵ fb(θi,ϕi,ψi)βi

act
∣∣ θi,ϕi,ψi

}
= βi

act
⊤∇Jf (θi)⊤∇J fb(θi)βi

act

according to Assumption 1, as well as based on Assumption 3 and βi
act

⊤
Bβi

act ≤ ∥B∥ ∥βi
act∥2 ≤ ∥B∥. On

the other hand, from Equation (16), for all βi
act,j ≥ 0, it reads:

βi
act =

(
1⊤
(
∇J fb(θi)⊤∇J fb(θi)

)−1
1
)−1(

∇J fb(θi)⊤∇J fb(θi)
)−1

1.

By substituting this into Equation (28), we get:

E
{

Jf
j (θi+1)− Jf

j (θi)
}

a
≤− µi

2 E

{
1

1⊤
(
∇J fb(θi)⊤∇J fb(θi)

)−1
1

}
+ µ2

i Lf

2 ∥B∥ ≤ 0,
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where we used µi max{Lf , Lb} ≤ 1 for (a). Considering that the denominator of RHS of the recent equation is
positive due to the positive-definiteness of

(
∇J fb(θi)⊤∇J fb(θi)

)−1, the statement follows. The same analysis

can be applied to infer E
{

Jb
j (θi+1)− Jb

j (θi)
}
≤ 0

Remark B.2. Theorem B.1 guarantees all the forward and backward expected losses
{
E Jf

j (θ)
}

j∈Sf
and{

E Jb
j (θ)

}
j∈Sb

continually reduce as the algorithm iteration increases. It thus enables us to jointly improve
all of the cumulative rewards, either forward or backward, with each iteration, on average.
Corollary B.3. Consider the framework of Lemma B.1, we then get:

E
{
βi

act
⊤∇J fb(θi)⊤∇J fb(θi)βi

act

}
≤ 2

µi
E

 ∑
j∈Sf ∪Sb

βi
act,j

(
J fb

j (θi)− J fb
j (θi+1)

)+ µi max{Lf , Lb}∥B∥.

Proof. Based on Equation (28) and µi max{Lf , Lb} ≤ 1, the statement follows.

B.1 Analysis for Strongly-convex and Lipschitz-smooth Losses

Theorem B.4. Consider the framework of Theorem B.1, and assume forward-backward multi-objective
optimization O2 with a θ-parametric policy distribution πθ(·|·) being optimized by the SGDs in Equations (13)
and (15) with generated sequences {θi}i∈I , {ϕi}i∈I and {ψi}i∈I , and actor learning rate {µi}i∈I complying
with assumptions of Theorem B.1. Furthermore, assume there exists a Pareto-optimal solution θ∗ of O2
dominating θi for the objectives {J fb

j (·)}j∈Sf ∪Sb
with i ∈ I. Then, we have:

E∥θi+1 − θ∗∥ ≤
(
1−max{γf , γb}µi

)
E∥θi − θ∗∥+

(
1 + max{Lf , Lb}

)
µ2

i ∥B∥. (29)

Proof. Based on the SGD update in Equation (15), we obtain:

E∥θi+1 − θ∗∥2 = E∥θi − θ∗ − µi∇Ĵ fb(θi,ϕi,ψi)βi
act∥2 ≤ E∥θi − θ∗∥2

− 2µiE
{
E
{ ∑

j∈Sf ∪Sb

βi
act,j∇Ĵ fb

j (θi,ϕi,ψi)⊤(θi − θ∗) ∣∣ θi,ϕi,ψi
}}

+ E
{

µ2
iβ

i
act

⊤∇Ĵ fb(θi,ϕi,ψi)
⊤
∇Ĵ fb(θi,ϕi,ψi)βi

act

}
a
≤ E∥θi − θ∗∥2 − 2µiE

{ ∑
j∈Sf ∪Sb

βi
act,j∇J fb

j (θi)⊤(θi − θ∗)}
+ E

{
µ2

iβ
i
act

⊤∇Ĵ fb(θi,ϕi,ψi)
⊤
∇Ĵ fb(θi,ϕi,ψi)βi

act

}
b
≤
(
1−max{γf , γb}µi

)
E∥θi − θ∗∥2 + 2µiE

{ ∑
j∈Sf ∪Sb

βi
act,j

(
J fb

j (θ∗)− J fb
j (θi)

)}
+ µ2

iE
{
E
{
βi

act
⊤∇Ĵ fb(θi,ϕi,ψi)

⊤
∇Ĵ fb(θi,ϕi,ψi)βi

act
∣∣ θi,ϕi,ψi

}}
c
≤
(
1−max{γf , γb}µi

)
E∥θi − θ∗∥2 + µ2

i ∥B∥+ 2µiE
{ ∑

j∈Sf ∪Sb

βi
act,j

(
J fb

j (θ∗)− J fb
j (θi+1)

)}
d
≤
(
1−max{γf , γb}µi

)
E∥θi − θ∗∥2 +

(
1 + max{Lf , Lb}

)
µ2

i ∥B∥,

where (a) was achieved considering Eϕ,ψE{∇Ĵ fb(θ,ϕ,ψ)|θ,ϕ,ψ} = ∇J fb(θ) based on Assumption 1, (b)
was obtained based on Assumption 2.1, (c) according to Assumption 3 and Corollary B.3, and for (d) we
exploited θ∗ being a dominating Pareto optimum.

Accordingly, we can obtain the following corollary.
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Corollary B.5. Consider the SGD approach in Equation (15) with generated sequence {θn}n∈I and actor
learning rate {µn}n∈I complying with assumptions of Theorem B.1. Set µn so that limn→∞ µn = 0, then
limn→∞ E∥θn − θ∗∥2 = 0, where θ∗ is a Pareto-optimal solution of O2.

Proof. We use the result provided in Turinici (2021). As such, based on Theorem B.4 we have:

∆n+1 − ϵ ≤
(
1−max{γf , γb}µn

)
(∆n − ϵ)− µn

(
max{γf , γb}ϵ− (1 + max{Lf , Lb})µn∥B∥

)
a
≤
(
1−max{γf , γb}µn

)
(∆n − ϵ).

where ∆n = E∥θn − θ∗∥2 and ϵ > 0. For (a), we considered max{γf , γb}ϵ−
(
1 + max{Lf , Lb}

)
µn∥B∥ ≥ 0

for a large n. Hence, for max{γf , γb}µn ≤ 1 it reads:

[∆n+1 − ϵ]+ ≤
(
1−max{γf , γb}µn

)
[∆n − ϵ]+,

where [x]+ = x + |x|. By iterating, we get:

[∆n+k − ϵ]+ ≤
k−1∏
i=0

(
1−max{γf , γb}µn+i

)
[∆n − ϵ]+.

Considering that limk→∞
∏k−1

i=0
(
1 − max{γf , γb}µn+i

)
= 0, we have: limm→∞[∆m − ϵ]+. The statement

follows as the previous expression holds for any value ϵ > 0.

Remark B.6. The results of Theorem B.4 and Corollary B.5 guarantees that a convergence-in-mean towards
a Pareto-optimal solution can be achieved by choosing a suitable actor learning rate. More specifically, a
convergence-in-mean with the rate of O(1/|I|) can be achieved for the learning rate being set to µi = O(1/i).
Remark B.7. The result of Corollary B.5 can be verified in a distinct quantitative way. More specifically,
for the learning rate µi being sufficiently small, the evolution of the SGD Equation (15) can be regarded in
a continuous time flow with parameter t. As such, based on 29, the dynamics of ∆i = E∥θi − θ∗∥ can be
expressed by the following inequality:

∆τ ≤ ∆0 exp
(
−max{γf , γb}

∫ τ

0
µsds

)
+
(
1 + max{Lf , Lb}

)
∥B∥

∫ τ

0
µ2

t exp
(
−max{γf , γb}

∫ τ

t

µsds
)

dt.

Thus, the selection µt = c0
t allows to get limτ→∞ ∆τ → 0 by yielding:

lim
i→∞

E∥θi − θ∗∥ → 0.

B.2 Analysis for Lipschitz-smooth Losses

Assuming strong-convexity for the expected losses may not be a reasonable assumption, particularly when the
NN architecture of the actor agent exhibits non-linearity. Motivated by this fact, we perform a convergence
analysis without imposing the strong-convexity assumption, focusing solely on the smoothness condition as
defined in Assumption 2.2. In light of this approach, we thus have the following theorem.
Theorem B.8. Consider forward / backward expected losses, i.e., {Jf

j (·)}j∈Sf
and {Jb

j (·)}j∈Sb
, and for-

ward / backward stochastic losses, i.e., {Ĵf
j (·, ·)}j∈Sf

and {Ĵb
j (·, ·)}j∈Sb

, complying with Assumptions 2.2
and 4, and βact being the solution of Equation (16). Moreover, consider SGDs in Equations (12) and (15)
characterized by iteration number i and actor learning rate {µi}i∈I with

µi ≤ min
{

1
max{Lf , Lb}

,
1

max{Lf , Lb}∥B∥

(
1⊤ (∇J fb(θi)⊤∇J fb(θi)

)−1 1
)−1

}
,

and 0 < µ|I| ≤ . . . ≤ µi ≤ . . . ≤ µ1, which generate sequences {ϕi}i∈I , {ψi}i∈I and {θi}i∈I . Then, we get:

min
i∈I

E
{
∥∇J fb(θi)βi

act∥2
}
≤ max{Lf , Lb} ∥B∥

|I|
∑
i∈I

µi

2− µi max{Lf , Lb}

+ 2
|I| µ|I|

∑
j∈Sf ∪Sb

E
{

J fb
j (θ1)− J fb

j (θ|I|)
}

. (30)
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where J fb(θ) =
[[

Jf
j (θ)

]
j∈Sf

,
[
Jb

j (θ)
]

j∈Sb

]
.

Proof. Based on Equation (28), we can get:∑
j∈Sf ∪Sb

βi
ac,j
(
J fb

j (θi+1)− J fb
j (θi)

)
≤ µi

(µi

2 max{Lf , Lb} − 1
)
βi

act
⊤∇J fb(θi)⊤∇J fb(θi)βi

act

+ µ2
i

2 max{Lf , Lb}∥B∥.

Therefore, we have:

E
{
∥∇J fb(θi)βi

ac∥2
}
≤ 1

µi(1− µi

2 max{Lf , Lb})
E
{ ∑

j∈Sf ∪Sb

βi
act,j

(
J fb

j (θi)− J fb
j (θi+1)

)}

+ µi max{Lf , Lb}
2− µi max{Lf , Lb}

∥B∥.

the statement follows by using the result of Theorem B.1, βact,j ≤ 1 for j ∈ Sf ∪ Sb and applying telescopic
cancellation.

Remark B.9. Note that the result of Theorem B.8 implies the convergence to a locally Pareto-optimal
solution (Zhou et al., 2022) provided that a suitable dynamics for the learning rate is chosen. Specifically, it
shows a convergence rate of O(1/

√
|I|) when the learning rate is set to µi = O(1/

√
i).

Remark B.10. Notice that the selection µi = O(1/i) cannot lead to a convergence due to the second term
in the RHS of Equation (30). This is contrast to the findings in Section B.1, where a convergence rate of
O(1/|I|) can be achieved for the strongly-convex and Lipschitz smooth case.

C Additional Details on the Edge Caching Use Case

The environment of this experiment is a cellular network with cache-equipped Base-Stations (BSs) similar
to that in (Amidzadeh et al., 2023). The BSs are spatially distributed across the network with intensities
λbs. The environment also includes a library containing N different contents as well as fixed mobile users
requesting them from the cellular network. The network operates over time slots with index t ∈ {1, . . . , T},
where T is the total duration of the operation. The network thus addresses that user requests in the beginning
of each time slot. Contents have different popularity {ppop

n (t)}N
n=1, where ppop

n (t) is the probability that
content n is requested by a randomly selected user at time t. The goal is to satisfy as many users as possible
during the network operation. At the beginning of each time-slot, the BSs cache the most popular contents
with probability {pcach

n (t)}N
n=1 and simultaneously multicast them toward users by consuming content-specific

radio resources {wn(t)}N
n=1. We denote the system action parameters by the vector a(t), which depends on

the content-specific bandwidth allocation and cache placement of BSs, i.e., a(t) = [{pcach
n (t)}N

n=1, {wn(t)}N
n=1].

A multicast outage may occur with probability {On(a(t), t)}N
n=1:

On(a(t), t) = erfc
(

π2λbspcach
n (t)

4
√

ηn(t)

)
, ηn(t) = 21/wn(t) − 1, (31)

where obtained by averaging over users. As a result, certain users fail to receive the requested content
in the current timeslot and their request is deferred to the subsequent one. Hence, each time-slot sees a
distribution of users accounting for the repeated requests and a distribution describing the new preferences
toward contents. This leads to a time-varying model for the request probability of content n, preq

n (t):

preq
n (t) = preq

n (t− 1)On

(
a(t− 1), t− 1

)︸ ︷︷ ︸
repeated request

+ ppop
n (t)

N∑
m=1

(
1−Om

(
a(t− 1), t− 1

))
preq

m (t− 1)︸ ︷︷ ︸
new request based on the popularity

. (32)
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Note that preq
n (t) indicates the request probability of content n averaged over all users. Then, it can be simply

verified that
∑N

n=1 preq
n (t) = 1, considering

∑N
n=1 ppop

n (t) = 1. Equation (32) therefore represents a forward
dynamics, with the forward state vector s(t) = preq(t) and the action vector a(t).

A request for a content is repeated across several time-slots until successfully fulfilled, resulting in an expected
latency Ln(t) for successful delivery of content n. For this quantity, a time-varying dynamics can be derived
by the law of total expectation as follows:

Ln(a(t), t) = E{latency | outage}P{outage}+ E{latency| no outage}P{no outage}

=
(

d(t) + Ln(t + 1)
)

On(a(t), t) + d(t)
2
(
1−On(a(t), t)

)
, (33)

where d(t) is the duration of time-slot t in seconds, and Ln(a(T ), T ) = 0 since system operations finish
and the users do not need to wait any longer. Equation (33) represents a backward dynamics, with
the backward state vector y(t) = L(t) and the action vector a(t). Note that this model fully captures the
trade-offs involved in the delay dynamics and differs from the conventional formalism that does not provide a
continuum model when accounting for successive slots; for the delivery without outage, the expected latency
simply becomes Ln(t) = d(t)

2 , as its realizations follow a uniform distribution with values between 0 and d(t).
Notice that the backward dynamics (33) based on Theorem 3.6 cannot be expressed as a standard MDP.
Thus, Equations (32) and (33) together model a FB-MDP and are coupled through the action a(t). Hence,
they should be jointly considered to obtain an optimal cache policy.

D Case Study: Computation Offloading

We now present an additional use case in the domain of computation offloading (Zabihi et al., 2023).

D.1 System Model

There are Ndev mobile devices and N computational intensive tasks with diverse sizes {sn}N
n=1. A typical

mobile device prefers task n with probability pprf
n (t), and it offloads the preferred tasks with probability

p
off|prf
n (t) to an edge server. The server operates in time slots with duration τ indexed by t and leverages

a task-specific parallelism mechanism to process the offloaded tasks. Specifically, it employs N buffers
and N computational resources with Bedg

n (t) denoting the buffer capacity and Cedg
n (t) ≥ Cedg

min denoting
the computational resource allocated to file n. Cedg

min is the minimum extent of allocated resource, while∑N
n=1 Bedg

n (t) = Bedg and
∑N

n=1 Cedg
n (t) = Cedg represent the total buffer limit Bedg and computational

capacity Cedg, respectively. The control parameters for this problem are thus {(poff|prf
n (·), Bedg

n (·), Cedg
n (·))}N

n=1.
A typical device offloading task n encounters with a failure if the corresponding buffer overflows, and as
such it needs to re-offload the task. The queue length for n-th buffer Sn thus complies with the following
expression:

Ln(t + 1) = max
{

Ln(t) + Snpoff
n (t + 1)αn(t + 1)︸ ︷︷ ︸
new data buffered

− Cedg
n (t + 1)︸ ︷︷ ︸

computed data de-buffered

, 0
}

, (34)

for n ∈ {1, . . . , N}, where Sn = sn Ndev, poff
n (t) is the offloading probability for file n, Snpoff

n (t) shows the
total amount of data offloaded for the n-th buffer, and

αn(t + 1) = min
{Bedg

n (t + 1)− Ln(t)
Snpoff

n (t + 1) , 1
}

,

denotes the fraction of data that can be buffered due to the buffer capacity Bedg
n . Therefore, it can be

simply verified that Ln(t + 1) ≤ Bedg
n (t + 1). The overflow probability On for n-th buffer is thus obtained by

On(t) = 1− αn(t). This equation exhibits a controlled forward dynamics, based on which we constitute the
forward state [pprf(t), L(t)] for this dynamics.

We now compute the average computation time needed for a typical device preferring task n, i.e., tprf
n (t). If

the task is preferred and locally computed, tprf
n (t) depends on the computation capacity of the device itself,
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whereas if it is offloaded, tprf
n (t) depends on the computation offloading time toff

n (t), i.e., average computation
time needed for a device to offload task n. By the law of total expectation we thus get:

tprf
n (t) =E{computation time

∣∣ task preferred} = poff|prf
n (t) toff

n (t) + (1− poff|prf
n (t)) sn

Cdev . (35)

We thus need to compute toff
n (t). If the task being offloaded faces with an overflow, it will be re-offloaded in

the next time-slot. However, if no overflow happens the computation time depends on the queue length and
the computation resource allocated to the task. Therefore, toff

n (t) is found by the total expectation law as
follows:

toff
n (t) =E{computation time

∣∣ task offloaded } = On(t + 1)(τ + tprf
n (t + 1)) + (1−On(t + 1)) tn, (36)

for n ∈ {1, . . . , N}, where tn stands for the needed time to compute task n with size sn if it is successfully
buffered. We thus have:

tn =
Ln(t) + 1

2 αn(t + 1)poff
n (t + 1)Sn + sn

Cedg
n (t + 1)

τ,

where obtained considering that n-th buffer has already a queue with length Ln(t) and additionally buffer
Sn with probability 1

2 αn(t + 1)poff
n (t + 1). Equations (35) and (36) together provide a continuum model for

the average time required to successfully compute task n within different slots. Additionally, they represent
a controlled backward dynamics with the backward state tprf(t) = [tprf

1 , . . . , tprf
n ](t). We now consider two

action-coupled conflicting rewards. The forward reward is related to the overall overflow probability as:

rOP(t) = −
N∑

n=1
pprf

n (t)On(t),

and the backward reward is related to the expected computation time:

rCT(t) = −
N∑

n=1
pprf

n (t)tprf
n (t),

This problem thus represents a FB-MDP environment with action
[
{Cedg

n }n, {Bedg
n }n, {poff|prf

n }n

]
, and action

space [0, 1]N × [0, 1]N × [0, 1]N .

D.2 Experiment Setup and Hyper-parameters

We set the number of devices to Ndev = 100, number of tasks N = 20, file size sn = 10 + n Kbits, devices
computational capacity Cdev = 10 Kbits/slot, minimum extent of allocated resource Cedg

min = 10−5, edge
computational capacity Cedg = 100 Kbits/slot edge buffer capacity B = 100 Kbits and slot duration τ = 60
seconds. The hyper-parameters of FB-MOAC are the same as the previous experiment excluding the learning
rates of actors and critics, which are set to 3× 10−3.

D.3 Performance Evaluation

We consider a learning-based strategy to evaluate FB-MOAC on this experiment. For this strategy, we utilize
this fact that optimizing the overflow probability decreases the expected latency according to Equation (36).
Consequently, we apply the baseline RL algorithms PPO (Schulman et al., 2017a) and A2C (Grondman et al.,
2012) to obtain an offloading policy. We call the resulting policies of these approaches F-PPO and F-A2C, as
these algorithms manage the backward reward using a forward mechanism.

Figure 6 reports the histograms (i.e., the empirical probability density function) for the performance of
FB-MOAC, F-PPO and F-A2C algorithms (respectively) in terms of rCT and rOP . Clearly, both the forward
and backward rewards of FB-MOAC are higher than those of F-PPO and F-A2C approaches. Consequently,
FB-MOAC outperforms F-PPO and F-A2C from the perspectives of both expected computation time rCT
and overflow probability rOP. In other words, the resulting policy of FB-MOAC Pareto-dominates the
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Figure 6: Histograms depicting the empirical distribution function of the computation time rCT and the overflow
probability rOP for: (a) FB-MOAC, (b) F-PPO, and (c) F-2AC.

strategies of F-A2C and F-PPO on average. As expected, FB-MOAC shows a more significant improvement
in the computation time compared to the other two algorithms. Nonetheless, FB-MOAC even gives a better
overflow probability performance than that of F-A2C and F-PPO due to developing a more favorable learning
mechanism even for the forward dynamics. These results indicate the importance of explicitly incorporating
the backward MDP rather than eliminating it through adjustments to the backward rewards. They also
demonstrate the effectiveness of the proposed FB-MOAC algorithm in addressing the corresponding FB-MDP
problem.

E Deriving Pareto-optimal Solutions

Here, we employ the mechanism explained in Section 4.3 to obtain the Pareto-optimal solutions of the use
case considered in Section 5.2, namely, edge caching in wireless networks. Figure 7 illustrates the collection of
Pareto-optimal solutions with diverse preference parameters ϵf

i ∈ [0.1, 1] and ϵb
i ∈ [0.1, 1]. Note that most of

the solutions cannot be dominated by others, therefore, FB-MOAC can provide most of the Pareto-optimal
solutions with the proposed preference policy.

E.1 Transforming a FB-SDE into a FB-MDP

This section shows the wider applicability of FB-MDPs and FB-MOAC to problems described by FB-SDEs.
Specifically, it explains a general method to transform a FB-SDE into a FB-MDP, which can then be solved
with FB-MOAC (as described in Section 5.1). In particular, the Euler-Maruyama method (Kloeden & Platen,
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Figure 7: The collection of Pareto-optimal solutions for the use case of edge caching, obtained by applying a discrete
policy over different preference settings ϵf

i ∈ [0.1, 1] and ϵb
i ∈ [0.1, 1]. The radius of the points denotes the probability

of occurrence. Given that many of these solutions cannot be dominated by others, the FB-MOAC algorithm can
efficiently provide the Pareto-front solutions.

1992) can be used to discretize the space of control problems. More specifically, the forward and backward
SDEs can be transformed to forward and backward MDPs, respectively.

Consider the following controlled FB-SDE:
dx(t) = f(x(t), u(t), t) dt +

∑l
i=1 σ

i(x(t), u(t), t) dwi(t),
dy(t) = g(y(t), u(t), {zi(t)}i, t) dt +

∑l
i=1 zi(t) dwi(t),

x(0) = x0, y(T ) = yT ,

(37)

where w(t) = {wi(t)}l
i=1 is an l-dimensional Wiener process, x(t) ∈ Rn is the forward process, f(·, ·, ·) :

Rn × U × [0, T ]→ Rn is the drift function which describes the dynamics of the forward SDE and is governed
by an optimization control process u(t) ∈ U ⊂ Rk, and σi(·, ·, ·) : Rn × U × [0, T ] → Rn is the diffusion
coefficient determining the extent of noise added to the forward dynamics. Conversely, y(t) ∈ Rm is the
backward process, g(·, ·, ·, ·) : Rm × U × Rm×n × [0, T ]→ Rm is the generator function and zi(t) ∈ Rm is the
dynamics control process.
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Note that the solution of the backward SDE is determined by the pair (y(·), {zi(·)}i) where {zi(·)}i should
be found to guarantee that the backward process y(t) is properly adapted. The solution of FB-SDE (37) is
thus denoted by the tuple (x(·), y(·), {zi(·)}i).

In this section, we resort to Euler-type numerical approaches, which discretizes the evolution of dynamics,
to numerically solve the considered FB-SDE. In this regard, we partition the time interval [0, T ] into N
sub-intervals [tk−1, tk) for k ∈ {1, . . . , N}, each sub-interval with length ∆t = T

N , where t0 = 0 and tN = T .
By applying the Euler–Maruyama method (Kloeden & Platen, 1992), we then obtain:

x(tk + ∆t) ≈ x(tk) + f(x(tk), u(tk), tk)∆t +
l∑

i=1
σi(x(tk), u(tk), tk)∆wi(tk), for k ∈ {0, . . . , N − 1} (38)

where ∆wi(tk) = wi(tk +∆t)−wi(tk) is a Gaussian random variable with variance ∆t. (38) can be interpreted
as a forward MDP with action u(·) and forward state x(·).

For the backward SDE, we exploit a semi-stochastic approach (Archibald & Yong, 2020). Although, this
might lead to more iterations for the algorithm to converge to an accurate solution, it is considerably more
efficient from the complexity perspective. This can be compared with the stochastic gradient descent that
alleviates the extreme complexity of gradient descent by estimating the expectation with a single sample.
Accordingly, we can get:

y(tk) ≈ y(tk + ∆t− g(y(tk + ∆t), u(tk + ∆t), Z(tk + ∆t), tk + ∆t) ∆t. (39)

where Z(·) = {zi(·)}l
i=1, and zi(t) is obtained by

zi(tk) ≈ 1
∆t

y(tk + ∆t) ∆wi(t), for i ∈ {1, . . . , l}. (40)

Equation (39), accompanied with Equation (40), represents a backward MDP with action (u(·), Z(·)) and
backward state y(·).
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