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Abstract

Text-based autoregressive models (ARMs) are
popular for SMILES (Simplified Molecular In-
put Line Entry System) string generation due to
their simplicity and state-of-the-art performance,
but typically use a fixed left-to-right order. Since
optimal SMILES ordering is less obvious than for
natural text, we developed LO-ARM (Learning-
Order ARM) to learn a data-dependent generation
order. Evaluated on ChEMBL, LO-ARM learns
consistent and meaningful orderings that reveal
molecular substructures, and matches or surpasses
state-of-the-art models, offering a well-balanced
yet competitive model option for practical uses.

1. Introduction

Molecular generation in large chemical spaces has impor-
tant real-world applications such as in drug discovery and
material design. While deep generative models for molecu-
lar graphs based on diffusion models (Vignac et al., 2023;
Eijkelboom et al., 2024; Jo et al., 2024; Wang et al., 2025)
are emerging as a promising solution, SMILES string-based
methods (Brown et al., 2019; Irwin et al., 2022; Ross et al.,
2022; Schwaller et al., 2019) remain popular in practice.
This is because SMILES strings provide an human inter-
pretable representation, lead to algorithms that are com-
putationally efficient (less intensive than handling graph
structures) and give state-of-the-art generation performance.
Technically, SMILES-based models adopt text-based au-
toregressive architectures (e.g., Recurrent Neural Networks)
and inherit their left-to-right generation ordering. How-
ever, unlike text data, for which left-to-right appears to be
a natural ordering, SMILES data actually encodes tree-like
structures and its natural “canonical” ordering between data
dimensions is less obvious. Therefore, it is desirable to
consider a variant of autoregressive models (ARMs) that do
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not treat the ordering as fixed, but rather as a latent random
variable that follows a probability distribution that adapts to
the evolving state of the generation process.

To address this issue, we apply Learning-Order Autore-
gressive Models (LO-ARM) (Wang et al., 2025) to model
SMILES strings. In short, LO-ARM can flexibly learn prob-
abilistic orderings for generating the data dimensions. Our
main contributions and findings include:

* We develop a variant of Learning-Order Autoregressive
Models (LO-ARMs) to model molecular sequences
(i.e., SMILES strings). In addition, we introduce
a novel tokenization algorithm that losslessly com-
presses parentheses in raw SMILES strings with a
prefix notation. We show that such tokenization signif-
icantly boosts LO-ARM’s performance.

* We evaluate the LO-ARM variant against the Gua-
caMol benchmark (Brown et al., 2019), and our results
match or exceed the performance of the state-of-the-art
left-to-right ARM on most of the metrics.

* We find that LO-ARM can learn consistent and human
interpretable orderings to generate new molecules with
high validity and uniqueness. Moreover, we show that
such orderings can reflect meaningful substructures
and provide an example to showcase how the the rich
signals outputted by LO-ARM, including the learned
ordering, can allow for finetuning generated molecules.

2. Background and Related Work
2.1. Modeling SMILES data with ARMs

An autoregressive model (ARM) defines a joint prob-
ability distribution over x that factorizes as pg(x) =
Hle po(x;|x;), where x; denotes the i-th dimension of x,
T<; = (x1,...,x;—1) denotes the first i — 1 elements of the
vector « and py(x;|T ;) is the conditional distribution with
the convention py(z1|x<1) = ps(x1). They are a promi-
nent approach for modeling SMILES (Simplified Molecular
Input Line Entry System) strings, which are linear textual
representations of non-linear molecular structures. Through
directly adopting the well-developed deep learning archi-
tectures (e.g, Recurrent Neural Network and Transformer),
these models (Brown et al., 2019; Irwin et al., 2022; Ross
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Figure 1. An example of generating SMILES sample with our best LO-ARM model trained on the GuacaMol dataset. Our model
generates SMILES strings step-by-step, commencing with all dimensions masked (in the figures masked dimensions are colored in grey)
and adding token at a time. First, an order-policy selects which dimension to fill, and then a classifier determines its value. Each step
is illustrated in the provided figures: Column (a) illustrate the (partially) generated SMILES string and the corresponding unmasked
substructures in the final molecule (highlighted in colors). Columns (b) and (c) provide detailed insights: (b) the order-policy’s probability
distribution over dimensions, and (c) the classifier’s prediction at the selected dimension. Note that, we only display the tokens of top 5
probabilities, and the order-policy is zeroed for unmasked dimensions. To facilitate visualization, we group the dimensions of the generated
sample with respect to their dimension/token types: 1) digits (e.g., 1, 2), 2) non-aromatic tokens, (e.g., uppercase letters) 3) aromatic
tokens (i.e., lowercase letters) and 4) parenthesis pairs. Notably, @N represents a pair of parentheses spanning /N dimensions between
them. The generation proceeds through three phases: 1) Planning (Step 1 to 10): LO-ARM first generates pairs of digits (highlighted in
green), which represents ring closures. This step determines the number of rings and estimates their potential connections in the molecule.
The digits together with their associated ring-cut atoms in the final sample are highlighted in the first molecule. 2) Execution (Step
13 to 48): The model then infills the molecular structure, characteristically generating non-aromatic tokens (red) before aromatic ones
(yellow). 3) Completion (Step 49 to 51): Finally, it generates @N parenthesis tokens (blue) to enclose and finalize substructures. A key
learned behavior is the consistent preference for enclosing child substructures (smaller parentheses) before their parent structures (larger
parentheses). This learned, interpretable ordering is highly consistent: for valid generations containing rings, 93.4% adhere to this overall
generation pattern. Furthermore, among valid molecules with multiple pairs of parentheses (whether in flat chains or ring structures),
96.6% generate these parentheses in ascending order of size, from children to parents.
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et al., 2022; Schwaller et al., 2019) treat SMILES strings as
sequences, akin to sentences in natural language and predict
the next character (or token) in the SMILES string with a
fixed left-to-right order.

2.2. Learning-Order ARMs

The Learning-Order ARMs (LO-ARM) (Wang et al., 2025)
address a fundamental limitation in (ARMs) — the assump-
tion of a fixed generation order, which may not be optimal
for complex data types like graphs and images. To do this,
through introducing a latent variable z; to represent the
order of token x;, LO-ARM incorporates a trainable prob-
ability distribution that dynamically decides the sampling
order of the data dimensions. The log-likelihood of one data
point & can be written as logps(x) = log )", pe(2,x),
where py(z,@) = TIiZypo(zilzci. @z )po(es |2=.).
Specifically, pg(zi|z<;, @~_,) is called order-policy and
po(x2,|x=_,) is called classifier, and both factors depend
on parameters ¢ that we want to learn. Since the exact
likelihood is intractable, LO-ARM maximizes an evidence
lower bound (ELBO) on the log-likelihood through in-
troducing a variational order-policy over z that condi-
tions on the full data vector x, and has the general form

L
qo(2|x) = Hizl qo(zi|z<i, ).

Moreover, LO-ARM models the generation process with
ARMs as an unmasking process. Specifically, starting with
a fully masked state, at each sampling/unmasking step, LO-
ARM firstly samples a dimension z; from the order-policy ,
and then samples a categorical value x; from the classifier
to fill in 2z;. Then, LO-ARM repeats the process until all
dimensions are unmasked, which yields a final generated
data point . Under this representation LO-ARM also con-
nects with recent masked discrete diffusion models (see,
e.g., Shi et al., 2024). However, note that unlike discrete
diffusion models we do not specify a forward process in our
framework, but only the unmasking or backward process.

In this research, we employ LO-ARM’s mathematical frame-
work and adapt it to model SMILES data. We provide more
detail of the adaptation in Section 3.

3. Methods

3.1. Data Preprocessing

We preprocess SMILES strings in two main steps. First, we
apply standard tokenization using a widely adopted regu-
lar expression (Irwin et al., 2022; Schwaller et al., 2019).
Second, to address the strict paired-parenthesis constraint
in SMILES grammar— a challenge for models without
fixed left-to-right ordering (like LO-ARM or diffusion-
based methods) which contrasts with simpler handling in
autoregressive generation—we represent parenthesis pairs

as individual tokens. Specifically, these pairs are formatted
as @N, where N is the size of the parentheses (the number of
tokens between the brackets, including the right parenthesis).
Using these new tokens, we then transform the raw SMILES
strings into a prefix notation, where each @N parenthesis
token precedes the substructure or branch it encloses. An
example of this transformation is provided below. It’s impor-
tant to note that this prefix transformation for parentheses
is bijective and lossless. We provide an ablation analysis
on different tokenization algorithms in Appendix C. Follow-
ing this transformation, we filter out low-frequency tokens
(fewer than 100 occurrences) and the corresponding samples
containing them. The preprocessed dataset is summarized
in Appendix A.

Raw SMILES: CCOclccc (S (=0) (=0)Nc2ccecee2Cl) ccl
Converted: CCOclccc@20S@3=0Q@3=0Nc2ccccc2Clccl

3.2. Model Parameterization

‘We formulate the model and variational distributions in the
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For modeling with SMILES sequences, we parameterize gy,
fo, and hy with Transformers. Specifically, we collocate the
classifier fy and order-policy hg through sharing a torso and
parametrize them with two output heads, and parameterize
gp with a separate Transformer.

4. Evaluation and Analysis

Table 1. Molecule generation on GuacaMol SMILES dataset. We
directly cite the results of other methods on the following metrics:
Validity, Uniqueness, Novelty, and FCD. The metrics are calcu-
lated with the generated samples with the corresponding methods.
In particular, the random sampler uniformly samples the test set.

Method V.%t U%T N.%%t

100.0  99.7 0.0

FCD,
0.368

Random sampler

AAE 82.2 100.0 99.8 3.18
VAE 87.0 99.9 97.4 0.737
LSTM 95.9 100.0 91.2 0.455
Our Results

AO-ARM 63.3 99.8 994 1.63
FO-ARM 91.8 100.0 88.3 0.384
LO-ARM 92.6 100.0 95.3 1.15

As SMILES data does not exhibit a canonical ordering, we
are interested in the following questions: 1) whether LO-
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ARM can learn a different ordering from the prescribed left-
to-right ordering, which is fully data-dependent and human-
interpretable, 2) whether the learned ordering can yield
better generation performance. To answer these, we evalu-
ate LO-ARM on the GuacaMol/ChEMBL dataset (Brown
et al., 2019). For each model variant, we generate 16384
samples and evaluate the generated molecules based on two
key aspects: 1) Validity and Uniqueness: Assessing individ-
ual molecules for chemical correctness and whether they are
distinct. 2) Novelty and Fréchet ChemNet Distance (FCD):
Novelty is the proportion of generated molecules not found
in the training set. Lower novelty suggests the model might
be overfitting. FCD measures the similarity between the
distributions of generated and real molecules using Chem-
Net activations. It’s important to note that novelty and FCD
can be negatively correlated. For instance, if generated
molecules are very similar to the training data (resulting in
a lower FCD), they are also less likely to be novel. Further-
more, these two categories of metrics—individual molecule
properties (validity, uniqueness) versus distributional prop-
erties (novelty, FCD)—are not directly linked. For example,
an invalid molecule could still produce latent activations
close to those of valid molecules, impacting FCD. There-
fore, a generative model of a balanced performance across
all these evaluation metrics would still be useful in practice.

To evaluate the order policy, we introduce two baselines,
i.e., 1) AO-ARM (Any-Order) in which both the variational
(g9) and model (pg) order policies are set to uniform, in
which the order policies always uniformly select among the
masked dimensions. 2) FO-ARM (Fixed-Order), which is
a standard ARM with fixed left-to-right generation order-
ing. We implement FO-ARM with Transformer (Vaswani
et al., 2017) to reproduce the results from the prior LSTM
model (Brown et al., 2019) and to provide a fair baseline for
LO-ARM, which is also Transformer-based.

First, data in Table 1 reveals that both FO-ARM and LO-
ARM outperform AO-ARM on FCD, emphasizing that an or-
dering strategy (prescribed or data-dependent) is crucial for
generating SMILES sequences. FO-ARM, similar to LSTM,
achieves the best FCD but shows low novelty (88.3%), sug-
gesting a tendency to overfit, a pattern also seen in LSTM.
Moreover, no single model excels across all metrics. For
instance, VAEs offer decent novelty and FCD but struggle
with validity, potentially requiring more computational ef-
fort to sample valid molecules. Conversely, LSTMs generate
more valid molecules but tend to repeat training data, which
can hinder new drug discovery. Amidst these trade-offs,
LO-ARM stands out as a well-balanced option for practical
applications.

Next, LO-ARM learns a consistent and human-interpretable
generation order without needing specific inductive biases,
as illustrated in Figure 1. The typical learned process is:

1) Estimate molecular structure (rings and their connec-
tions) by first generating digit tokens which indicate ring
enclosures and cuts. 2) Infill this structure, prioritizing
non-aromatic tokens before aromatic ones. 3) Complete the
molecule by generating parentheses to finalize substructures,
ordered from child structures (smaller parentheses) to parent
structures (larger parentheses). This interpretable ordering
shows high consistency. For valid generations containing
rings, 93.4% follow this overall generation pattern. Further-
more, for valid SMILES strings with multiple parenthesis
pairs, including side chains (e.g., (=0)), 96.6% generate
these parentheses in ascending order of size (from children
to parents).

Thirdly, we demonstrate that the learned ordering is largely
driven by certainty at masked dimensions. To do this, for
each sample’s generation trajectory, we calculated per-step
correlation coefficients between the order policy probabili-
ties and the classifier entropy (our certainty measure) over
all masked dimensions. We then performed one-sample
t-tests on each sequence to obtain a mean and a significance
level. We found that 85.4% of samples exhibited a negative
mean correlation, and of these, 85.6% were statistically sig-
nificant (p < 0.05). Furthermore, 88.9% of all samples had
p < 0.10. This confirms a significant negative correlation,
meaning the order policy prioritizes dimensions with higher
certainty (i.e., lower entropy).

Finally, LO-ARM’s rich signals and human-interpretable or-
dering directly enable the fine-tuning of generated molecular
structures by allowing researchers to act on its detailed feed-
back. As shown in Figure 1, at Step 49, the model started
to generate large paretheses to finalize the substructures. It
sampled one option (i.e.., parenthesis pair @13) in reality
while also indicating high confidence in an alternative (i.e.,
@27) that could also form a valid molecule. If the model
had pursued this alternative, following the learned ordering
principles (i.e., generating parentheses from small to large),
it would likely produce a different yet valid molecule, as
illustrated in our counterfactual example Figure 2. Such
counterfactual investigation is impractical with fixed-order
autoregressive models, which would require extensive roll-
outs of all subsequent tokens and would change the gener-
ated atoms completely.

5. Conclusion

We have developed a LO-ARM variant for modeling
SMILES data, incorporating a novel tokenization algorithm.
Evaluated on the ChEMBL dataset, LO-ARM achieves com-
petitive results across most metrics. Notably, it learns a
consistent and human-interpretable ordering for generat-
ing new molecules without requiring inductive bias, which
in turn can facilitate the fine-tuning of generated samples.
However, a gap in FCD persists when compared to state-
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of-the-art fixed-order ARMs, an area we’ve identified for
future improvement.
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A. Dataset Summary

We tokenized the ChEMBL dataset with the tokenization algorithm described in Section 3. Specifically, we augment the
vocabulary with parenthesis tokens. Moreover, we filtered out the low-frequency tokens (fewer than 100 occurrences)
together with the samples containing them. The preprocessed dataset is summarized in Table 2. After filtering, the vocabulary
size is almost halved while the dataset remains the same scale, only fewer than 1000 samples were filtered out.

Table 2. Dataset statistics before and after filtering. Both cases use the augmented vocabulary and transform SMILES strsings with prefix
notation described in Section 3.

#training samples  #validation samples #test samples Vocabulary size

Raw dataset 1273114 79568 238706 203
Preprocessed 1272277 79506 238538 129

B. A case study of counterfactual finetuning

(@) Actual sample generated by LO-ARM (b) Counterfactual sample
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Figure 2. An example of counterfactual finetuning for generated samples through leveraging the learned ordering.

As we can see in Figure 1, at Step 49, the model started to complete the molecule by finalizing its substructures. Although it
sampled pair of parentheses @13 to produce molecule (a), the model also assigned high probability to an alternative pair
of parentheses, @27, suggesting its potential to form another valid molecule. Indeed, had @27 been selected, following
the established generation ordering (i.e., forming smaller parentheses before larger ones), a structurally different yet valid
molecule (b) would likely have emerged. As illustrated, molecules (a) and (b) are largely identical in their SMILES
strings, differing primarily in the size of their final large parentheses (highlighted). This ability to identify high-probability
alternatives during substructure completion enables a “counterfactual fine-tuning.” Researchers can intervene at this stage,
investigating feasible high-probability options provided by the classifier to explore slight structural variations. Such targeted
exploration is impractical with standard left-to-right ARMs, where altering one token typically requires re-generating all
subsequent tokens, often completely changing the molecule’s core atomic structure.

C. Ablation Analysis
We conducted an ablation study to compare two tokenization algorithms:
 Standard Tokenization: Parentheses are treated as individual tokens. This results in a vocabulary size of 109 after
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filtering.

» Augmented Tokenization: Pairs of parentheses are represented as single tokens. This leads to a vocabulary size of 129
after filtering.

As shown in Table 3, the FCD results indicate that while FO-ARM demonstrates robustness across both tokenization
methods, augmented tokenization substantially improves LO-ARM’s performance. Conversely, standard tokenization
achieves higher validity scores compared to augmented tokenization. This suggests that a simpler vocabulary may facilitate
the generation of valid molecules. The augmented tokenization in FO-ARM also improves its performance in FCD. This
is likely because standard tokenization forces the model to track open parentheses, which complicates the prediction task.
Generating parentheses as matched pairs, however, allows the model to avoid this issue entirely.

Table 3. Ablation study on the standard and augmented tokenization algorithms

Method Tokenization Validity%1 Uniqueness%1 Novelty%{ FCDJ]

FO-ARM  Standard 98.3 100.0 81.5 0.430
Augmented 91.8 100.0 88.3 0.384

LO-ARM  Standard 94.2 99.7 96.0 5.03
Augmented 92.6 100.0 95.3 1.15

D. Experiment Setup

The Transformer architecture is adopted from the 11ama2 . c project'. Both the FO-ARM model and the classifier in
LO-ARM consist of 9 attention layers. The variational order-policy used in LO-ARM only has 1 attention layer. Moreover,
We report the hyperparameters in Table 4. All experiments were run until convergence.

Table 4. Hyperparameter setup.

Hyperparameter =~ ChEMBL/GuacaMol

Optimizer AdamW
Scheduler Cosine Annealing
Learning Rate 5-107°

Weight Decay 1-10712

EMA 0.9999

E. Sample Gallery

"https://github.com/karpathy/llama2.c
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Figure 3. Samples generated by our best LO-ARM.



