
How does fine-tuning affect your model? Mechanistic
analysis on procedural tasks

Samyak Jain1,∗ , Robert Kirk2,∗, Ekdeep Singh Lubana3,4,∗, Robert P. Dick3,
Hidenori Tanaka4,5, Edward Grefenstette2, Tim Rocktäschel2, David Krueger1

1University of Cambridge, UK
2University College London, UK

3EECS Department, University of Michigan, Ann Arbor, MI, USA
4Center for Brain Science, Harvard University, Cambridge, MA, USA

5Physics & Informatics Laboratories, NTT Research, Inc., Sunnyvale, CA, USA

Abstract

Fine-tuning large pre-trained models has become the de facto strategy for develop-
ing both task-specific and general-purpose machine learning systems, including
developing models that are safe to deploy. Despite its clear importance, there
has been minimal work that explains how fine-tuning alters the underlying ca-
pabilities learned by a model during pretraining: does fine-tuning yield entirely
novel capabilities or does it just modulate existing ones? We address this ques-
tion empirically in synthetic, controlled settings where we can use mechanistic
interpretability tools (e.g., network pruning and probing) to understand how the
model’s underlying capabilities are changing. We perform an extensive analysis
of the effects of fine-tuning in these settings, and show that: (i) fine-tuning rarely
alters the underlying model capabilities; (ii) a minimal transformation, which we
call a ‘wrapper’, is typically learned on top of the underlying model capabilities,
creating the illusion that they have been modified; and (iii) further fine-tuning on
a task where such “wrapped capabilities” are relevant leads to sample-efficient
revival of the capability, i.e., the model begins reusing these capabilities after only
a few gradient steps. This indicates that practitioners can unintentionally remove a
model’s safety wrapper merely by fine-tuning it on a, e.g., superficially unrelated,
downstream task. We additionally perform analysis on language models trained on
the TinyStories dataset to support our claims in a more realistic setup.

1 Introduction

Large language models (LLMs) pretrained on huge, web-crawled text datasets demonstrate extremely
general capabilities (Radford et al., 2018, 2019; Brown et al., 2020; Bubeck et al., 2023). This has
led to the current paradigm of machine learning, where practitioners often use model adaptation
protocols such as fine-tuning to achieve unprecedented performance on a broad range of downstream
tasks (Raffel et al., 2020; Sanh et al., 2022; Reid et al., 2022; Driess et al., 2023; Ahn et al., 2022).
Relatedly, the generality of an LLM’s capabilities implies the model also learns to exhibit several
undesirable behaviors, e.g., producing sensitive, biased, or toxic outputs in the pursuit of completing a
task (Weidinger et al., 2021; Lin et al., 2021; Jiang et al., 2021; Parrish et al., 2021; Zhou et al., 2021;
Xu et al., 2021; Welbl et al., 2021). Fine-tuning with different training objectives has again seen
immense usage in mitigating such “unsafe” capabilities, serving as an integral component of current

∗Co-first authors. samyakjain.cse18@itbhu.ac.in, robert.kirk.3.14@gmail.com,
eslubana@umich.edu.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Figure 1: How does fine-tuning alter a model’s capabilities? (a) Pretraining on huge, web-crawled
datasets leads to LLMs learning several capabilities that can justifiably process an input. The figure
shows this using an illustrative query, “write a story a 5-year old would understand.” Via careful
prompting, the desired answer can be retrieved, indicating both desired and undesired capabilities
exist in an LLM. (b) Upon fine-tuning, e.g., to avoid use of undesirable capabilities, we hypothesize
that three explanations are possible: (i) a minimal transformation of the original capability is learned,
e.g., a negation of the original capability; (ii) the undesirable capability is deleted altogether; or (iii)
the use of another relevant capability is amplified.

state-of-the-art alignment approaches like RLHF (Ouyang et al., 2022; Go et al., 2023; Stiennon
et al., 2020; Bai et al., 2022; Glaese et al., 2022).

Given its ubiquity in the design of both performant and safely deployable models, a natural question
emerges: precisely how does fine-tuning influence a pretrained model’s capabilities to adapt to a
downstream dataset (see Fig. 1)? The generality of an LLM’s capabilities opens the possibility
that fine-tuning protocols merely identify the most relevant capabilities and amplify their use for a
given set of inputs, while inhibiting the use of other capabilities. Arguably, results on jailbreaking
alignment-finetuned LLMs via adversarially generated prompts to elicit undesirable behavior support
this hypothesis (Wei et al., 2023; Zou et al., 2023; Shen et al., 2023; Deng et al., 2023; Liu et al.,
2023b); however, a precise study to establish the phenomenology of fine-tuning remains absent from
the literature. It therefore remains unclear how pernicious this problem is.

Motivated by the above problem, we perform an extensive analysis of the effects of fine-tuning on a
pretrained model’s capabilities in controlled settings where we can use mechanistic interpretability
tools to understand precisely what is happening to the model’s underlying capabilities. Specifi-
cally, we focus on the following two setups: (i) compiled transformer models based on the Tracr
library (Lindner et al., 2023; Weiss et al., 2021), which allows encoding specific computational pro-
grams into a transformer, and (ii) procedurally generated setups involving probabilistic context-free
grammars (PCFGs) (Sipser, 1996; Chomsky, 1956), a formal model designed to capture syntactic
properties of natural and programmatic languages that has recently served as a testbed for mecha-
nistically understanding language models (Allen-Zhu & Li, 2023c; Delétang et al., 2022; Shi et al.,
2022). While Tracr allows us to analyze models with perfectly encoded capabilities, models trained
on PCFGs allow evaluation of the effects of design choices involved in the pretraining pipeline.
Fine-tuning these models via the often-used protocol of further training a pretrained model on a
downstream dataset with a sufficiently small learning rate, we make the following findings.

• Fine-tuning alters pretraining capabilities by minimally transforming them. We find that when
a relevant pretraining capability is present, the fine-tuned model learns a minimally transformed
version of it. We call the transformed portion a wrapper.

• Wrappers are generally very localized. We show that the wrappers transforming a model’s
pretraining capabilities are often extremely localized: e.g., via mere pruning of a few weights or
neurons, we show the model can start to reuse its pretraining capability and unlearn how to perform
the downstream task. Relatedly, we find that via a simple linear probe, we are still able to retrieve
outputs expected from the pretrained model.

• Reverse fine-tuning to “revive” a capability. In scenarios where upon fine-tuning a model
behaviorally seems to not possesses a capability, we find that further fine-tuning the model on a
subset of pretraining data leads to a sample-efficient “revival” of the capability. We corroborate
these results in a realistic setup using the TinyStories dataset (Eldan & Li, 2023).

2 Defining our notion of capabilities

For precision and to motivate our experimental setup, we first discuss the notion of capabilities that we
aim to capture for analyzing how fine-tuning alters a model (see Tab. 1 for a summary of notations).

2

We use an idealized definition to communicate our primary intuition and emphasize that we do
not expect all capabilities in a pretrained model will act as perfectly as the definition necessitates.
However, for the procedural tasks used in this work, our idealized notion is fairly representative.

Let DPT denote a dataset sampled from a distribution PX over the domain X. We will assume the
domain X can itself be factorized into two domains XI and XD. Correspondingly, a sample x ∈ X
can be divided into a tuple of variables (xi ∈ XI , xd ∈ XD), where xi identifies which capability a
model should use to process the information encoded by the variable xd. This decomposition captures
the idea that different prompts can force a pretrained LLM to elicit different capabilities, as shown
in Fig. 1. The identifier of capability c is denoted ic. Pretraining on DPT yields us an L-layer model
M(.) : X → Y, where often Y = X for language models. Let Readl(M(.)) denote the action where a
linear layer is trained on intermediate outputs at layer l of model M(.) using DPT . Under this setup,
we define a capability as follows.

Definition 1. (Capability.) Define a surjective map fC : XD → YC , where YC ⊂ Y. Let XC ⊂ X be
a sub-domain s.t. ∀x ∈ XC , the capability identifier variable is the same, i.e., xi = iC . Then, we say
the model M(.) “possesses a capability C” if for all x ∈ XC , ∃ l ≤ L s.t. Readl(M(x)) = fC(xd).

A linear readout at an intermediate layer is used in the definition above to emphasize that the notion of
a capability need not correspond to only input–output behavior. Further, the definition is restricted to
a sub-domain of the overall input space, which we argue is important to define a system’s capabilities.
For example, one can claim an 8-bit adder circuit possesses the capability to perform addition, but,
technically, this is true only over the domain of 8-bit numbers; for inputs with more than 8-bit
precision, the circuit will see an overflow error, generating an incorrect but syntactically valid output.
Similarly, an LLM may possesses the capability to identify the sentiment of a passage of text in a
specific language, but possibly fail when inputs in a different language are shown. Such structured
failures imply claiming the existence of a capability should account for the input domain.

We next consider how the fine-tuning distribution PFT
X over the domain X can interact with capabilities

exhibited in the pretrained model. Our goal here is to capture the fact that a large-scale pretraining
corpora is likely to have non-zero probability under the fine-tuning distribution, i.e., it is unlikely
that a pretrained model will lack any capability relevant to the downstream task. This motivates a
notion of “relevance of a capability”. Specifically, let DFT ∼ PFT,E

X denote the downstream dataset
used for fine-tuning, where PFT,E

X is the empirical distribution that captures a subset of the support
with non-zero probability in the distribution PFT

X .

Definition 2. (Relevance of a Capability.) Assume the capability C in a pretrained model can be
transformed to a map g◦fC via fine-tuning on DFT, where |DFT| ≪ |DPT|, such that for all x ∼ PFT,E

X ,
the correct output is produced. Then, if for all x ∼ PFT

X , g ◦ fC yields the correct output, we claim
capability C is strongly relevant to the fine-tuning task; else, we call it weakly relevant.

Figure 2: Capability Relevance. Consider the
task of completing a passage while maintaining
its narrative. Herein, the ability to recognize the
sentiment of a text will be deemed strongly rele-
vant and the ability to recognize negative words
weakly relevant. Such words are often spuriously
correlated with a negative sentiment.

For example, a weakly relevant capability can
involve the ability to recognize a spurious at-
tribute that the model can learn to exploit to
perform well on the fine-tuning dataset, with-
out enabling generalization to the overall dis-
tribution that the fine-tuning dataset is sampled
from. Meanwhile, a strongly relevant capability
is one that extracts a causally relevant feature
for that task (see Fig. 2 for an example). When
a weakly relevant pretraining capability is avail-
able, we empirically observe that we can often
identify specific components in the latter half of
the model (e.g., neurons or layers) that seem to
implement the transform g in Def. 2. In such
cases, we call g a “wrapper” and g ◦ C a “wrapped capability”. If we intervene on the model by either
removing the wrapper or training it to forget the wrapper, we find the model starts to perform well on
the pretraining task again. In such cases, we say the pretraining capability has been “revived”.

3

3 Building Capable Models: Tracr and PCFGs

We next describe the setup used in this work for analyzing how fine-tuning alters a model’s capabilities
(see Fig. 3 and App. D). Due to lack of clarity on what capabilities a language model possesses or
what training data it has seen, we primarily focus on procedurally defined setups that enable clear
interpretability. To understand how the relevance of a capability affects fine-tuning, we randomly
embed a predefined spurious attribute into the fine-tuning dataset. Specifically, the attribute correlates
with the features extracted by the pretraining capability—if the attribute is “simple” enough, the
model preferentially exploits it to reduce the downstream loss (Shah et al., 2020; Trivedi et al., 2023).

Compiled capabilities with Tracr. For a fully controllable system, we use the recently proposed
Tracr library (Lindner et al., 2023). Tracr enables “compiling” a transformer model with a set of pre-
defined computational primitives over a string of characters from the English alphabet. Accordingly,
we define a set of capabilities as a Tracr program and compile it into a Transformer via Tracr (see
App. D.1 for a detailed pipeline). The model is then fine-tuned on a downstream task to which the
compiled capability may either be weakly or strongly relevant. While we analyze two tasks in this
setup, for the main body of the paper, we focus on only the following one.

• Counter: Compile the capability to count the number of occurrences of a token OPT in a string
into the model; fine-tune to count occurrences of another token OFT . If r(x, O) denotes the number
of occurrences of a token O in a string x, the spurious correlation is defined by enforcing a constant
difference in token occurrences, i.e., r(x, OFT)− r(x, OPT) = q. See also Alg. 1 and Fig. 12.

As an example, note that in the Counter setup, the model can exploit its pretraining capability and
get the correct output on the fine-tuning dataset by merely adding q to the count of OPT tokens. This
wrapped capability will however perform poorly on samples without the correlation.
Learned capabilities with PCFGs. In this setup, capabilities are “learned”, akin to practical
situations. This allows us to probe the effects of different pretraining design choices, e.g., the
distribution of the pretraining data. Specifically, we follow recent work by Allen-Zhu & Li (2023c)
and train a minGPT model (Karpathy, 2020) via autoregressive training on probabilisitc context-free
grammars (PCFGs), a formal model of language that captures syntactic properties. Broadly, the
data-generating process involves a tree traversal (see Fig. 3), starting from an initial root node and
randomly choosing and navigating a set of production rules of the grammar from start/intermediate
nodes to intermediate/terminal nodes, stopping only when a terminal node is reached. The terminal
nodes reached by all paths starting at the root node will be concatenated to define a string x from the
grammar (see Appendix for more details). We prepend special tokens T and O, called “task family”
and “operand” tokens, that specify a certain task must be performed on the string x; e.g., count the
occurrences (a task family) of a certain token (operand) in a string. Overall, a specific pair of the task
family and operand tokens instantiates a task in our setup. The ground truth output of this task and a
special token indicating that the output should be produced at the next position are appended at the
end of the string in the training data (see App. D.2 for further details and Fig. 15 for an example).
Our experiments thus involve the following steps. (i) Pretrain a model on a set of task families.
Every sample begins with the task family and operand tokens to specify the task. This ensures
different tasks do not “conflict” (assign different labels to the same input), since, by construction, they

Figure 3: Experimental setup. We primarily analyze two setups: (i) Tracr “compiled” models
with predefined capabilities and (ii) models trained to learn capabilities defined via a PCFG, follow-
ing Allen-Zhu & Li (2023c). During fine-tuning, we train the model on a dataset DFT that promotes
learning of a capability C′. We randomly embed spurious attributes in the fine-tuning dataset that
correlate with features extracted by a pretraining capability C to operationalize capability relevance.

4

have non-overlapping support. (ii) Fine-tune the model on a task which may or may not have been
included during pretraining. (iii) Evaluate how this fine-tuning affects the model. The data-generating
process involves a uniform prior over task family tokens; meanwhile, the set of operand tokens seen
during pretraining, denoted {OPT}, have a multinomial sampling prior. Specifically, the probability of
sampling a specific token OPT ∈ {OPT} under task T is denoted PT(OPT). If this probability is low, the
model may not learn the relevant capability to perform the task specified by the special tokens. While
we analyze the effect of fine-tuning in two broad setups, using a model pretrained on five distinct task
families relating to counting and indexing elements of a string, we focus on only the following one in
the main body of the paper.
• Counter: We intentionally reuse this task to demonstrate the effects of compilation of a capability

via Tracr versus learning the capability via PCFGs. Specifically, the model is pretrained to learn to
count the occurrences of tokens from a set of operand tokens {OPT} and is fine-tuned to exclusively
count occurrences of a token OFT ∈ {OPT}. By making the sampling probability of OFT tokens high
during pretraining, we can make the model preemptively performant on the downstream task; this
allows us to model the notion of capability relevance.

3.1 Evaluation setup details

Figure 4: Analysis protocols. We analyze
how fine-tuning affects a pretrained model’s
capabilities by (i) Reverse Fine-tuning, (ii)
network pruning, (iii) attention visualization,
and (iv) probing classifiers. We use (ii)—(iv)
to show fine-tuning often yields wrapped ca-
pabilities. For further evidence, we use (i)
and (ii) and find we can “revive” the original
capabilities, i.e., the model starts perform-
ing well on the pretraining task again. See
App. F for precise details.

In the next section, we provide several results indicat-
ing that fine-tuning rarely elicits meaningful changes
to pretraining capabilities. To this end, we borrow sev-
eral protocols commonly used in the field of mechanis-
tic interpretability for our analysis (see Fig. 4), specif-
ically network pruning (Voita et al., 2019; Tanaka
et al., 2019), attention map visualizations (Serrano
& Smith, 2019; Wiegreffe & Pinter, 2019; Lai & Tan,
2019), and probing classifiers (Tenney et al., 2019;
Voita & Titov, 2020; Geva et al., 2023, 2022). We
use multiple tools for all experiments since each tool,
individually, is known to suffer from pitfalls (Meister
et al., 2021; Bai et al., 2021; Jain & Wallace, 2019;
Belinkov, 2022; Bolukbasi et al., 2021). Demonstrat-
ing our claims consistently hold true across a diverse
set of tools improves our conclusions’ robustness to
pitfalls of a specific tool. Additionally, we propose
a methodology called reverse fine-tuning (reFT),
wherein one takes a pretrained model, fine-tunes it
on a downstream dataset, and then fine-tunes it again
in the “reverse” direction, i.e., on a dataset sampled
from the original pretraining distribution. We argue if
the behavior corresponding to a pretraining capability
is retrieved in a few steps of reFT , fine-tuning did
not meaningfully alter said capability (this claim can
be formalized using results by Bengio et al. (2019);
Le Priol et al. (2021)).
We primarily focus on the learned capabilities setup of PCFG counter in the main paper, relegating
most results on compiled capabilities with Tracr to App. I and other results with PCFGs to App. J—
findings remain consistent across all settings. In the PCFG counter setup, the model is pretrained,
amongst other tasks, to count occurrences of tokens from the set {OPT} = {a, b, c} in a given
string; during fine-tuning, the model is trained to count occurrences of OFT = b. Here, the spurious
correlation is defined by enforcing count of b to be 1 more than that of a. The probability a datapoint
sampled from the train or test fine-tuning dataset contains a spurious correlation is denoted CTr

and CTe, respectively. Here, CTr ∈ {0.0, 0.5, 0.8, 1.0} and CTe ∈ {0.0, 1.0}. We use three sets of
sampling probabilities of the task operands in the pretraining data: PL

T = (0.999, 0.001, 0.000),
PM
T = (0.9, 0.1, 0.0), or PH

T = (0.5, 0.3, 0.2). These priors indicate a low/medium/high probability
of sampling OFT . We use the following learning rates (LR) for fine-tuning: ηM = ηPT/101 and
ηS = ηPT/102, where ηPT is the average pretraining learning rate.

5

4 Results and Discussion

Behavioral assessment of fine-tuning. We first evaluate the model’s learning dynamics during
fine-tuning (see Fig. 5 and Tab. 5). When the pretraining prior has low probability of sampling
the token OFT , we see the fine-tuned model performs well only when the spurious correlation is
present, i.e., CTe = 1. As the sampling probability is increased, however, we observe this behavior
significantly changes. In particular, even if the model is fine-tuned for a high value of CTr, albeit less
than 1, it starts to perform well on the test data regardless of the presence of the spurious attribute.
Note that the performance is not high to begin with, indicating the ability to count OFT was learned
during fine-tuning; however, having a sufficiently large sampling probability for the token during
pretraining leads the model to avoid the spurious correlation. This indicates a pretraining ability to
extract information relevant for the downstream task is likely to be exploited during fine-tuning. This
is further corroborated by the results in Fig. 6, where we observe that when the spurious correlation
is present in the fine-tuning data, accuracy on the pretraining task is affected the most if sampling
prior of the target token was low during pretraining. We next analyze these results mechanistically.

Pruning / Probing fine-tuned models indicates learning of wrapped capabilities. Our results
above indicate the model exploits its weakly relevant capabilities, i.e., the capability that helps exploit
any spurious correlation, to solve the downstream task. We hypothesize that, at a mechanistic level,
the model exploits the weakly relevant capability by learning a wrapper over it. To evaluate this, we
analyze the models fine-tuned with a low sampling prior via network pruning and linear probing (see
App. F for setup details). Specifically, we prune the fine-tuned models to find the most salient weights
for reducing loss on the pretraining task of counting OPT . If the model learns a wrapper on this
capability, the neurons we find should correspond to this wrapper, such that deleting them recovers
the capability to count that token. As shown in Fig. 7, we find this is indeed the case—in a setup with
weak relevance of capabilities, pruning a very small number of neurons is sufficient to revive the
ability to perform well on the original task of counting OPT . To assess this further, we train a linear
probe on the residual output of every block of the transformer model and determine whether the count
of OPT can be accurately computed via the fine-tuned model. As shown in Fig. 10, in the presence of
spurious correlations, a linear probe can retrieve the count of the token OPT , indicating intermediate
outputs relevant to the pretraining capability are still being produced by the fine-tuned model. This
observation is particularly evident when a smaller learning rate is used, which is common in practice.
Overall, these results show that when a weakly relevant capability is present in the pretrained model,
a wrapper, i.e., a localized transformation of the pretraining capability, is learned during fine-tuning.

reFT enables “revival” of pretraining capabilities. To further corroborate our claims above, we
use a model fine-tuned to count OFT and reverse fine-tune it to re-learn the ability to count OPT . As a
baseline, we also report a protocol called Scr.+ FT, wherein the model is initialized with parameters
pre-trained to count OFT and then fine-tuned to count OPT . Note that this baseline and the reFT
protocol differ in their initialization state: former is initialized with parameters pretrained to count

30
65

100
CTe = 0 CTe = 1 CTe = 0 CTe = 1 CTe = 0 CTe = 1

0 2.5K 5K 7.5K 10K

30
65

100

0 2.5K 5K 7.5K 10K 0 2.5K 5K 7.5K 10K 0 2.5K 5K 7.5K 10K 0 2.5K 5K 7.5K 10K 0 2.5K 5K 7.5K 10K
(a) H

T (c) L
T

Ac
c.

 O
FT

(b) M
T

CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1.0 ηM ηS

Figure 5: Fine-tuning accuracy w.r.t. number of training iterations. We vary the probability of
sampling the token OFT in the pretraining data and the spurious correlation in the fine-tuning datasets.
When the prior is sufficiently high (a, b), we find the model learns to perform well on the downstream
task. Meanwhile, if the prior is low (c), the model learns the downstream task only if a high enough
learning rate is used and the spurious correlation is imperfect. This indicates the ability to extract
information relevant for the downstream task is likely to be exploited during fine-tuning.

6

0 2.5K 5K 7.5K 10K
(a) CTr = 0, ηM

30
65

100

Ac
c.

 O
PT

0 2.5K 5K 7.5K 10K
(b) CTr = 1, ηM

0 2.5K 5K 7.5K 10K
(c) CTr = 0, ηS

0 2.5K 5K 7.5K 10K
(d) CTr = 1, ηS

H
T M

T L
T

Figure 6: Impact of sampling prior on the pretraining task’s accuracy as fine-tuning is per-
formed. We plot accuracy on the pretraining task w.r.t. fine-tuning iterations. When the sampling
prior of the OFT is low during pre-training, the pretraining task accuracy quickly plummets, especially
if the spurious correlation is high; having a high sampling prior mitigates this behavior. This indicates
pretraining capabilities are affected the most when they are weakly relevant.

30
65

100

Ac
c.

 O
PT

CTe = 0 CTe = 1 CTe = 0 CTe = 1

0 5 10 15

30
65

100

Ac
c.

 O
FT

0 5 10 15 0 5 10 15 0 5 10 15
(a) ηM (b) ηS

CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1.0

Figure 7: Pruning a few neurons is sufficient to retrieve pretraining task accuracy. We plot
accuracy w.r.t. number of neurons pruned to improve performance on the pretraining task. We see
when a small learning rate is used for fine-tuning, the pretraining task’s performance improves after
just 5–15 neurons are pruned (top), while the fine-tuning task’s performance reduces correspondingly
(bottom). We argue these neurons serve as a wrapper to minimally alter the weakly relevant pretraining
capability and exploit the spurious correlation present in the fine-tuning data.

OFT , while latter is initialized with parameters pretrained to count OPT and fine-tuned to count OFT .
Results are shown in Fig. 8.

30
65

100

102 103 104

30
65

100

102 103 104 102 103 104

(a) H
T (b) M

T (c) L
T

Ac
c.

 O
PT

Iters (Log Scale)

CTr = 0 CTr = 1 Scr. + FT ηM ηS

Figure 8: Reverse Fine-Tuning: We set CTe to
be 0 to test if the model performs well regardless
of a spurious correlation. Models are fine-tuned
for 10K iterations. We observe that when a
strongly relevant capability is present (a, b), the
model very quickly (0.1–1K iterations) starts to
perform well on the task via reFT , even if be-
havior relevant to the capability ceased during
pretraining (e.g., when CTr is 1). Meanwhile,
when the model possesses a weakly relevant ca-
pability (c), this “revival” is slightly slower (3K
iterations). In contrast, the Scr.+ FT baseline
only reaches perfect accuracy at 4.5K iterations
and when using a larger learning rate, i.e., ηM .

We see the model starts to perform well on the pre-
training task even if a small learning rate is used
for reFT , i.e., even minimally changing the fine-
tuned model’s parameters is sufficient to regain the
pretraining capability! Further, increasing the sam-
pling prior of OFT accelerates this behavior. This
indicates that when a strongly relevant capability
is present, the model essentially amplifies its use,
but does not catastrophically affect the pretraining
capability itself; meanwhile, with a weakly rele-
vant capability (low sampling prior during pretrain-
ing), even though the performance is initially poor
on the pretraining task, in relatively few iterations
(compared to baseline), the accuracy becomes per-
fect. We present results on Tracr and Tiny-stories in
Sec-I.3 in appendix. We observe that these results
support our PCFG analysis.

5 Conclusion

In this work, we show that fine-tuning generally al-
ters pre-trained model via small, localized changes
that only minimally transform their capabilities.
We perform our analysis both with existing mecha-
nistic interpretability tools as well as our proposed
reFT method. Our results pave the way for future work both understanding how fine-tuning works in
more realistic settings with larger models, as well as developing methods beyond fine-tuning that
alter pre-trained model capabilities more substantially, particularly deleting unsafe capabilities.

7

Acknowledgements

ESL thanks Eric Bigelow, Nikhil Vyas, and Usman Anwar for relevant discussions early in the
project. SJ was partially supported by BERI; ESL was partially supported via NSF under award
CNS-2008151. RK was supported by the Foundation AI CDT at UCL.

Authors’ Contributions

ESL conceived the project direction and developed a set of hypotheses on the limitations of fine-
tuning, with inputs from RK. SJ and ESL co-designed a draft of the PCFG and Tracr setups, and
came up with pruning and reverse fine-tuning analysis which led to validation and further refining of
the hypotheses. SJ led the experimental execution and made the tasks considered in the paper precise
in collaboration with ESL. RK proposed and ran the TinyStories experiments with inputs from ESL,
SJ, EG and TR. Literature review and writing of the main paper was led by ESL. SJ led writing of the
appendix. ESL, SJ, RK, and HT collaborated on design of all figures and plots. DSK acted as the
primary senior advisor on the paper, with inputs from RPD, HT, EG, and TR as well.

References
Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the

effectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage and
extraction. arXiv preprint arXiv:2309.14316, 2023a.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.2, knowledge manipulation.
arXiv preprint arXiv:2309.14402, 2023b.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, context-free grammar. arXiv
preprint arXiv:2305.13673, 2023c.

Anonymous. Dissecting learning and forgetting in language model finetuning. In Submitted to
The Twelfth International Conference on Learning Representations, 2023a. URL https://
openreview.net/forum?id=tmsqb6WpLz. under review.

Anonymous. Learning and forgetting unsafe examples in large language models. In Submitted
to The Twelfth International Conference on Learning Representations, 2023b. URL https:
//openreview.net/forum?id=hkQOYyUChL. under review.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
Nicholas Joseph, Ben Mann, Nova DasSarma, et al. A general language assistant as a laboratory
for alignment. arXiv preprint arXiv:2112.00861, 2021.

Bing Bai, Jian Liang, Guanhua Zhang, Hao Li, Kun Bai, and Fei Wang. Why attentions may not be
interpretable? In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, pp. 25–34, 2021.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. Computational
Linguistics, 48(1):207–219, 2022.

Yoshua Bengio, Tristan Deleu, Nasim Rahaman, Rosemary Ke, Sébastien Lachapelle, Olexa Bilaniuk,
Anirudh Goyal, and Christopher Pal. A meta-transfer objective for learning to disentangle causal
mechanisms. arXiv preprint arXiv:1901.10912, 2019.

8

https://openreview.net/forum?id=tmsqb6WpLz
https://openreview.net/forum?id=tmsqb6WpLz
https://openreview.net/forum?id=hkQOYyUChL
https://openreview.net/forum?id=hkQOYyUChL

Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Coenen, Emily Reif, Fernanda Viégas, and Martin
Wattenberg. An interpretability illusion for bert. arXiv preprint arXiv:2104.07143, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learning
in transformers. Advances in Neural Information Processing Systems, 35:18878–18891, 2022.

Noam Chomsky. Three models for the description of language. IRE Transactions on information
theory, 2(3):113–124, 1956.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, et al. Neural networks and the chomsky
hierarchy. arXiv preprint arXiv:2207.02098, 2022.

Gelei Deng, Yi Liu, Yuekang Li, Kailong Wang, Ying Zhang, Zefeng Li, Haoyu Wang, Tianwei
Zhang, and Yang Liu. Jailbreaker: Automated jailbreak across multiple large language model
chatbots. arXiv preprint arXiv:2307.08715, 2023.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multimodal
language model. arXiv preprint arXiv:2303.03378, 2023.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak coherent
english? arXiv preprint arXiv:2305.07759, 2023.

Federica Gerace, Luca Saglietti, Stefano Sarao Mannelli, Andrew Saxe, and Lenka Zdeborová.
Probing transfer learning with a model of synthetic correlated datasets. Machine Learning: Science
and Technology, 3(1):015030, 2022.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav Goldberg. Transformer feed-forward layers
build predictions by promoting concepts in the vocabulary space. arXiv preprint arXiv:2203.14680,
2022.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual
associations in auto-regressive language models. arXiv preprint arXiv:2304.14767, 2023.

Amelia Glaese, Nat McAleese, Maja Trębacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth
Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, et al. Improving alignment of dialogue
agents via targeted human judgements. arXiv preprint arXiv:2209.14375, 2022.

Dongyoung Go, Tomasz Korbak, Germán Kruszewski, Jos Rozen, Nahyeon Ryu, and Marc Dymet-
man. Aligning language models with preferences through f-divergence minimization. arXiv
preprint arXiv:2302.08215, 2023.

Almog Gueta, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, and Leshem Choshen. Knowl-
edge is a region in weight space for fine-tuned language models. arXiv preprint arXiv:2302.04863,
2023.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

9

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Sarthak Jain and Byron C Wallace. Attention is not explanation. arXiv preprint arXiv:1902.10186,
2019.

Liwei Jiang, Jena D Hwang, Chandra Bhagavatula, Ronan Le Bras, Jenny Liang, Jesse Dodge,
Keisuke Sakaguchi, Maxwell Forbes, Jon Borchardt, Saadia Gabriel, et al. Can machines learn
morality? the delphi experiment. arXiv e-prints, pp. arXiv–2110, 2021.

Jeevesh Juneja, Rachit Bansal, Kyunghyun Cho, João Sedoc, and Naomi Saphra. Linear connectivity
reveals generalization strategies. arXiv preprint. arXiv:2205.12411, 2022.

Andrej Karpathy. MinGPT, 2020. Github link. https://github.com/karpathy/minGPT/tree/
master.

Suhas Kotha, Jacob Mitchell Springer, and Aditi Raghunathan. Understanding catastrophic forgetting
in language models via implicit inference. arXiv preprint arXiv:2309.10105, 2023.

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can
distort pretrained features and underperform out-of-distribution. arXiv preprint. arXiv:2202.10054,
2022.

Vivian Lai and Chenhao Tan. On human predictions with explanations and predictions of machine
learning models: A case study on deception detection. In Proceedings of the conference on fairness,
accountability, and transparency, pp. 29–38, 2019.

Andrew K Lampinen and Surya Ganguli. An analytic theory of generalization dynamics and transfer
learning in deep linear networks. arXiv preprint arXiv:1809.10374, 2018.

Rémi Le Priol, Reza Babanezhad, Yoshua Bengio, and Simon Lacoste-Julien. An analysis of the
adaptation speed of causal models. In International Conference on Artificial Intelligence and
Statistics, pp. 775–783. PMLR, 2021.

Kenneth Li, Aspen K. Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfis-
ter, and Martin Wattenberg. Emergent World Representations: Exploring a Se-
quence Model Trained on a Synthetic Task, 2023. Comment: ICLR 2023
oral (notable-top-5%): https://openreview.net/forum?id=DeG07_TcZvT ; code:
https://github.com/likenneth/othello_world.

Vladislav Lialin, Vijeta Deshpande, and Anna Rumshisky. Scaling down to scale up: A guide to
parameter-efficient fine-tuning. arXiv preprint arXiv:2303.15647, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

David Lindner, János Kramár, Matthew Rahtz, Thomas McGrath, and Vladimir Mikulik. Tracr:
Compiled transformers as a laboratory for interpretability. arXiv preprint arXiv:2301.05062, 2023.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022a.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Exposing attention
glitches with flip-flop language modeling. arXiv preprint arXiv:2306.00946, 2023a.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022b.

Yi Liu, Gelei Deng, Zhengzi Xu, Yuekang Li, Yaowen Zheng, Ying Zhang, Lida Zhao, Tianwei
Zhang, and Yang Liu. Jailbreaking chatgpt via prompt engineering: An empirical study. arXiv
preprint arXiv:2305.13860, 2023b.

10

https://github.com/karpathy/minGPT/tree/master
https://github.com/karpathy/minGPT/tree/master

Charles Lovering, Rohan Jha, Tal Linzen, and Ellie Pavlick. Predicting inductive biases of pre-
trained models. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=mNtmhaDkAr.

Ekdeep Singh Lubana and Robert P. Dick. A gradient flow framework for analyzing network pruning.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=rumv7QmLUue.

Ekdeep Singh Lubana, Eric J. Bigelow, Robert P. Dick, David Krueger, and Hidenori Tanaka.
Mechanistic Mode Connectivity, 2022. Comment: 39 pages.

Wesley Maddox, Shuai Tang, Pablo Moreno, Andrew Gordon Wilson, and Andreas Damianou. Fast
adaptation with linearized neural networks. In International Conference on Artificial Intelligence
and Statistics, pp. 2737–2745. PMLR, 2021.

Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen, and Sanjeev Arora. A kernel-based
view of language model fine-tuning. In International Conference on Machine Learning, pp.
23610–23641. PMLR, 2023.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances in
Neural Information Processing Systems, 35:17703–17716, 2022.

Clara Meister, Stefan Lazov, Isabelle Augenstein, and Ryan Cotterell. Is sparse attention more
interpretable? arXiv preprint arXiv:2106.01087, 2021.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

Michael C Mozer and Paul Smolensky. Skeletonization: A technique for trimming the fat from a
network via relevance assessment. Advances in neural information processing systems, 1, 1988.

Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models
of self-supervised sequence models. arXiv preprint arXiv:2309.00941, 2023.

Maya Okawa, Ekdeep Singh Lubana, Robert P Dick, and Hidenori Tanaka. Composi-
tional abilities emerge multiplicatively: Exploring diffusion models on a synthetic task.
https://openreview.net/forum?id=ZXH8KUgFx3, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Thompson,
Phu Mon Htut, and Samuel R Bowman. Bbq: A hand-built bias benchmark for question answering.
arXiv preprint arXiv:2110.08193, 2021.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić, Sebastian Ruder,
Kyunghyun Cho, and Iryna Gurevych. Adapterhub: A framework for adapting transformers.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics,
2020.

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, and Peter Henderson.
Fine-tuning aligned language models compromises safety, even when users do not intend to! arXiv
preprint arXiv:2310.03693, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

11

https://openreview.net/forum?id=mNtmhaDkAr
https://openreview.net/forum?id=mNtmhaDkAr
https://openreview.net/forum?id=rumv7QmLUue
https://openreview.net/forum?id=rumv7QmLUue

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Machel Reid, Yutaro Yamada, and Shixiang Shane Gu. Can wikipedia help offline reinforcement
learning? arXiv preprint arXiv:2201.12122, 2022.

Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, De-
bajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen,
Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen,
Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, Teven Le Scao,
Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M Rush. Multitask prompted training
enables zero-shot task generalization. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=9Vrb9D0WI4.

Sofia Serrano and Noah A Smith. Is attention interpretable? arXiv preprint arXiv:1906.03731, 2019.

Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli. The
pitfalls of simplicity bias in neural networks. Advances in Neural Information Processing Systems,
33:9573–9585, 2020.

Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. "do anything now":
Characterizing and evaluating in-the-wild jailbreak prompts on large language models. arXiv
preprint arXiv:2308.03825, 2023.

Hui Shi, Sicun Gao, Yuandong Tian, Xinyun Chen, and Jishen Zhao. Learning bounded context-free-
grammar via lstm and the transformer: Difference and the explanations. In Proceedings of the
AAAI Conference on Artificial Intelligence, pp. 8267–8276, 2022.

Michael Sipser. Introduction to the theory of computation. ACM Sigact News, 27(1):27–29, 1996.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
Neural Information Processing Systems, 33:3008–3021, 2020.

Hidenori Tanaka, Aran Nayebi, Niru Maheswaranathan, Lane McIntosh, Stephen Baccus, and Surya
Ganguli. From deep learning to mechanistic understanding in neuroscience: the structure of retinal
prediction. Adv. in Neural Information Processing Systems (NeurIPS), 2019.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. arXiv
preprint arXiv:1905.05950, 2019.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Nilesh Tripuraneni, Michael Jordan, and Chi Jin. On the theory of transfer learning: The importance
of task diversity. Advances in neural information processing systems, 33:7852–7862, 2020.

Puja Trivedi, Danai Koutra, and Jayaraman J Thiagarajan. A closer look at model adaptation using
feature distortion and simplicity bias. arXiv preprint arXiv:2303.13500, 2023.

Josef Valvoda, Naomi Saphra, Jonathan Rawski, Adina Williams, and Ryan Cotterell. Benchmarking
compositionality with formal languages. In Proceedings of the 29th International Conference on
Computational Linguistics, pp. 6007–6018, 2022.

12

https://openreview.net/forum?id=9Vrb9D0WI4

Elena Voita and Ivan Titov. Information-theoretic probing with minimum description length. arXiv
preprint arXiv:2003.12298, 2020.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Yihan Wang, Si Si, Daliang Li, Michal Lukasik, Felix Yu, Cho-Jui Hsieh, Inderjit S Dhillon, and
Sanjiv Kumar. Two-stage llm fine-tuning with less specialization and more generalization. arXiv
preprint arXiv:2211.00635, 2022.

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm safety training fail?
arXiv preprint arXiv:2307.02483, 2023.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang, Myra
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, et al. Ethical and social risks of harm from
language models. arXiv preprint arXiv:2112.04359, 2021.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In International Conference
on Machine Learning, pp. 11080–11090. PMLR, 2021.

Johannes Welbl, Amelia Glaese, Jonathan Uesato, Sumanth Dathathri, John Mellor, Lisa Anne
Hendricks, Kirsty Anderson, Pushmeet Kohli, Ben Coppin, and Po-Sen Huang. Challenges in
detoxifying language models. arXiv preprint arXiv:2109.07445, 2021.

Sarah Wiegreffe and Yuval Pinter. Attention is not not explanation. arXiv preprint arXiv:1908.04626,
2019.

Albert Xu, Eshaan Pathak, Eric Wallace, Suchin Gururangan, Maarten Sap, and Dan Klein. Detox-
ifying language models risks marginalizing minority voices. arXiv preprint arXiv:2104.06390,
2021.

Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020.

Xianjun Yang, Xiao Wang, Qi Zhang, Linda Petzold, William Yang Wang, Xun Zhao, and Dahua
Lin. Shadow alignment: The ease of subverting safely-aligned language models. arXiv preprint
arXiv:2310.02949, 2023.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse while
predicting the masked word? arXiv preprint arXiv:2303.08117, 2023.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization.
arXiv preprint arXiv:2310.16028, 2023.

Xuhui Zhou, Maarten Sap, Swabha Swayamdipta, Noah A Smith, and Yejin Choi. Challenges in
automated debiasing for toxic language detection. arXiv preprint arXiv:2102.00086, 2021.

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial
attacks on aligned language models. arXiv preprint arXiv:2307.15043, 2023.

13

A Organization of Appendix

In the appendix we present a comprehensive analysis of our claims on Tracr, PCFG and TinyStories-
Instruct using different mechanistic interpretability tools discussed in Section-F of the main paper.
We also present a summary of the notations used in this work in Tab. 1. Overall, the appendix is
organized as follows:

• Sec. B presents related works.

• Sec. C presents main results on Tracr and Tiny-stories to support our hypothesis. We also
present probing results for PCFG in this section.

• Sec. D presents details of the Tracr, PCFG and Tiny Stories datasets utilized in this work.

• Sec. E presents the training and model details for each of the datasets considered.

• Sec. F lists the protocols used for different mechanistic interpretability tools like attention
maps, probing, pruning and reverse fine-tuning.

• Sec. G provides a few more results in practically relevant contexts, such as in a synthetic
jailbreaking setup.

– Sec. G.1 studies the effect of using different fractions of pre-training and fine-tuning
data points for fine-tuning.

– Sec. G.2 presents the jailbreaking analysis using the PCFG setup.
– Sec. G.3 shows reverse fine-tuning a fine-tuned model is sample efficient compared to

baselines for both PCFG and Tracr models.
– Sec. G.4 presents reverse fine-tuning analysis of a fine-tuning protocol that actively

tries to remove a capability from PCFG / Tracr models.

• Sec. H presents detailed discussion of setup details and results on TinyStories.

• Sec. I presents additional results on Tracr for counter and max element tasks.

• Sec. J presents additional results on PCFG for the counting and index of occurrence tasks.

B Related Work

Fine-tuning in the “foundation model” era. Fine-tuning large-scale foundation models pretrained on
huge datasets, such as LLMs (Radford et al., 2019; Brown et al., 2020) or large vision models (Radford
et al., 2021; Caron et al., 2021), has become the norm in most domains of machine learning.
Accordingly, several fine-tuning methods have been proposed in recent years, e.g., instruction fine-
tuning (Wei et al., 2021; Liu et al., 2022b; Askell et al., 2021), parameter-efficient fine-tuning (Houlsby
et al., 2019; Zaken et al., 2021; Wang et al., 2022), low-rank adaptation (Hu et al., 2021; Pfeiffer
et al., 2020; Lialin et al., 2023), and weight averaging (Gueta et al., 2023; Matena & Raffel, 2022).
The diversity of these protocols makes fine-tuning a general, umbrella term for related methods used
to adapt a pretrained model to elicit its most relevant capabilities. For precision, we restrict this paper
to fine-tuning protocols that continue training of a pretrained model on a smaller downstream dataset
at a learning rate that is often one to three orders of magnitude lower than the average pretraining
one. Such protocols are widely used in practice, e.g., in instruction fine-tuning (Wei et al., 2021).

Understanding fine-tuning. A few papers theoretically analyze fine-tuning (Lampinen & Ganguli,
2018; Tripuraneni et al., 2020; Gerace et al., 2022; Maddox et al., 2021; Kumar et al., 2022) under
strong assumptions such as relatively simple model classes (e.g., linear functions) or a kernel view of
deep learning, which, as shown by Yang & Hu (2020), trivializes the notion of feature transfer in
fine-tuning / transfer learning (though see Malladi et al. (2023) for a notable exception). Prior works
have also evaluated the effects of fine-tuning via the lens of mode connectivity (Juneja et al., 2022;
Lubana et al., 2022), behavioral evaluations (Lovering et al., 2021), and intrinsic dimensionality of
the loss landscape (Aghajanyan et al., 2020). In contrast, we aim to provide a mechanistic analysis of
how fine-tuning changes model capabilities. A relevant recent work by Kotha et al. (2023) claims that
fine-tuning is unlikely to alter a model’s capabilities and supports this claim by providing a behavioral
analysis of linear regression tasks and realistic models via a novel prompting strategy.

14

Table 1: Notations used in this work.

Notation Meaning

X Input domain
XD Factor of the input domain that captures values of the inputs
XI Factor of the input domain that captures task identifiers
PX Probability distribution over the input domain
PFT

X The overall distribution defining the downstream fine-tuning task
DFT Dataset used for fine-tuning
PFT,E

X Empirical distribution from which the fine-tuning dataset is sampled
T Denotes a task to be performed by the model (e.g., count)
O Denotes an operand that will be processed by to perform the task T

{OPT} Set of operand tokens seen during pretraining
OPT A specific token used as an operand during pretraining
OFT A specific token used as an operand during fine-tuning

r(x, O) Denotes the result of executing a task from Sec. 3 on a string x for some operand O
CTr Probability that a randomly sampled string in the training data used for fine-tuning has a

spurious correlation between the pretraining capability and the downstream task
CTe Probability that a randomly sampled string in the test data used for evaluating fine-tuned models

has a spurious correlation between the pretraining capability and the downstream task
PT(O) Sampling prior. Denotes the probability that when a string with task token T is sampled during

pretraining, the operand to perform the task on is O
PH

C , PM
C , PS

C Sampling priors such that the probability of sampling the target token for fine-tuning (OFT) is
high (PH

C), medium (PM
C), or small (PS

C)
ηM , ηS , ηV S Medium / Small / Very-small learning rates used for fine-tuning. ηV S is only used for a specific

reverse fine-tuning experiment with Tracr compiled models.
reFT Denotes reverse fine-tuning
niters Number of iterations used during pre-training

LR Learning rate

Model interpretability via synthetic tasks. Several recent works have focused on mechanistically
understanding how Transformers learn synthetic language generation tasks, such as learning formal
grammars and board games (Allen-Zhu & Li, 2023c; Zhao et al., 2023; Li et al., 2023; Nanda et al.,
2023; Liu et al., 2022a; Valvoda et al., 2022; Liu et al., 2023a; Zhou et al., 2023; Chan et al., 2022).
The goal of such papers, including ours, is not necessarily to provide accurate explanations for
the success of LLMs, but to develop concrete hypotheses that can be used to develop grounded
experiments or tools for understanding their behavior. For example, in a recent work, Allen-Zhu &
Li (2023a,b) use a synthetically designed setup to develop hypotheses for how “knowledge” about
an entity is stored in a pretrained model, showing such knowledge can often be manipulated via
relatively simple linear transformations. Similarly, Okawa et al. (2023) use a procedurally defined
multimodal dataset to demonstrate that emergent capabilities seen in neural networks are partially
driven by the compositional nature of real world data. In another work, Zhou et al. (2023) utilize
Tracr compiled Transformers to hypothesize and demonstrate that if primitive operations involved in
a formal algorithm can be implemented by a model, length generalization if practically feasible.

C Additional results

C.1 Validating our Hypotheses on Tracr

Attention map visualizations further corroborate the wrappers hypothesis. As we noted before,
the results discussed above remain consistent across other experimental setups for both Tracr and
PCFG models. However, by construction, Tracr yields particularly interpretable attention maps,
allowing us to directly visualize the effects of fine-tuning. We thus analyze the attention maps of
a Tracr model on the Counter task described in Sec. 3. Results are shown in Fig. 9. The original
Tracr compiled model serves as a baseline and clearly demonstrates that all tokens only attend the
pretraining target token, OPT= a. Upon fine-tuning to count OFT= b, we find the model clearly
continues to pay attention to OPT if a small learning rate is used. A larger learning rate is, however,
able to alter the model computation, but only if the pretraining capability is not weakly relevant to the

15

t t t t b t a t bb t

ttttbtatbbtAt
te

nd
in

g
To

ke
n Tracr Program

t t t t b t a t bb t

CTr = 0

t t t t b t a t bb t

CTr = 1

t t t t b t a t bb t

CTr = 0

t t t t b t a t bb t

CTr = 1

0.0

0.1

0.2

0.3

0.4

0.5

(a) ηS (b) ηM
Token Attended

Figure 9: Visualizing attention maps of fine-tuned Tracr models. Leftmost panel shows the Tracr
compiled model’s attention map on the counter task. Upon fine-tuning under different spurious
correlations, we see the model continues to pay attention to the pretraining target OPT= a. Only when
a large enough learning rate and zero spurious correlation is used, is there a change in the attention
pattern.

30
65

100

Ac
c.

 O
PT

CTr = 0 CTr = 1 CTr = 0 CTr = 1

B0 B1 B2 B3 B4 B5 B6

30
65

100

Ac
c.

 O
FT

B0 B1 B2 B3 B4 B5 B6 B0 B1 B2 B3 B4 B5 B6 B0 B1 B2 B3 B4 B5 B6 B0 B1 B2 B3 B4 B5 B6

(a) Pre-trained Model (b) ηM (c) ηS

H
T M

T L
T

Figure 10: Probing the presence of pre-training (top) and fine-tuning (bottom) capabilities. We
plot probe accuracy versus the index of the block in the Transformer model. CTe is set to 0. The
pretrained model (left) acts as a baseline for the trend of performance through the model’s blocks. In
most scenarios, we find we can infer the count of OPT with a similar trend as the pretrained model
(left). A drop in performance is observed only when learning rate ηM is used with a weakly relevant
capability (low sampling prior). This indicates pretraining capabilities continues to persist upon
fine-tuning.

fine-tuning task, i.e., when CTr = 0; otherwise, we again find the model continues to pay attention to
the pretraining target.

C.2 Validating our Hypotheses on PCFG using Probing

On probing, we observe that it is indeed possible to unwrap the wrapper learned by the models
during fine-tuning. The results are shown in Fig-10. These observations therefore indicate that during
fine-tuning the model can learn a minimal transform on its pre-training capabilities.

C.3 Validating our Hypotheses on TinyStories

To give additional strength to our results, we perform an analysis using more realistic language
models trained on the TinyStories-Instruct dataset (Eldan & Li, 2023) (see App. D.3 for an example).
These models are able to follow specific instructions to write coherent English stories over multiple
paragraphs. We perform experiments analogous to the reFT and probing experiments in the previous
sections, but now explicitly focus on whether fine-tuning can delete capabilities present in pre-trained
models. Models are pre-trained to generate stories with specific story features (such as containing
a twist, foreshadowing, or bad ending) and fine-tuned to not generate stories with a specific
feature (twist) (see App. H for details on the protocols). We probe these models to detect the
deleted feature from the intermediate model outputs in Fig. 11, where the dynamics of loss during
reFT on learning to generate stories with the deleted feature are also shown. We also report the
percentage of stories with the deleted feature generated by models during reFT in Table 2, where
the generated stories are processed by a fine-tuned GPT-3.5 classifier to predict if the story contains
the deleted feature (see App. H for details). Overall, we find that “deleted” capabilities can be easily
and sample-efficiently recovered (compared to the baseline), i.e., stories with that feature can be
generated again, regardless of the fine-tuning protocol used. These results support our hypotheses that
fine-tuning only minimally alters pre-trained model capabilities. We also highlight a few recent papers

16

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

0.85

0.90

0.95

Pr
ob

e
Ac

cu
ra

cy LR: M

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

LR: S

Probe Layer Index

(a) Probing Analysis

100 101 102 103

0.8

0.9

Lo
ss

LR: S

100 101 102 103

LR: M

Training Iteration

(b) ReFT Dynamics

Figure 11: Validation on TinyStories. Models are trained to produce stories with several features
(e.g., foreshadowing) and fine-tuned via different protocols to not produce stories with a “forbidden”
feature (specifically, twists) (see App. H for details). Left: We probe the existence of this feature at
intermediate Transformer blocks. Probe accuracy on models pre-trained with or without twist data
(Present/Not in Pretraining, respectively) act as upper and lower bounds on the expected accuracy,
and are plotted for ease of comparison. Regardless of the fine-tuning protocol (Filtering, Filtering
+ Randomisation, Filtering + Mix & Match), for the lower LR, no protocol removes a meaningful
amount of information and a similar but less strong trend holds for the higher LR. Right: We plot the
loss during reverse fine-tuning (reFT) to again produce stories with the forbidden feature. Fine-tuned
models’ loss goes down very quickly (30–300 iterations) compared to baselines (which never reach
the same loss; also see Tab. 2). Both these results indicate the capability of identifying the forbidden
feature, a necessary capability for story modelling, continues to persist after fine-tuning.

Deletion Type Twist Proportion at Iteration

0 30 300 3000

F (ηM) 44% 81% 81% 82%
F+ R (ηM) 12% 56% 69% 75%
F+ MM (ηM) 31% 88% 50% 75%

F (ηS) 69% 88% 75% 94%
F+ R (ηS) 12% 44% 81% 81%
F+ MM (ηS) 50% 81% 62% 81%

Not in PT 12% 31% 44% 81%

Table 2: TinyStories reFT Analysis. We report the percent of generations with a twist during
reverse fine-tuning for the twist capability. F, R, and MM stand for our three fine-tuning protocols:
Filtering, Randomisation and Mix & Match (see App. H for details). Regardless of learning rate
and protocol, models relearn to generate stories with twist more sample-efficiently than the control
model pre-trained on data w/o twists and fine-tuned to generate them (Not in PT).

that propose similar protocols as reFT and experiments as ours with further realistic settings (Qi
et al., 2023; Yang et al., 2023; Anonymous, 2023a,b).

D Additional details on Datasets

We consider three experimental setups: Compiled programs with Tracr (Lindner et al., 2023),
learning models on Probabilistic Context Free Grammars (PCFG) (Allen-Zhu & Li, 2023c), and the
TinyStories Instruct dataset.

D.1 Tracr Details

Tracr (Lindner et al., 2023) generates a transformer model using the RASP library by Weiss et al.
(2021). The specific code snippet used to generate the Tracr models for the counting and the max
element tasks are shown in Fig. 1 and Fig. 2 respectively. The models corresponding to these tasks is
implemented with three standard transformer blocks, where each block consists of a self-attention
layer followed by two MLP layers.

We analyze the following two tasks to understand the effects of fine-tuning on a pretrained model’s
capabilities.

• Counter: Compile the capability to count the number of occurrences of a token OPT in a string
into the model; fine-tune to count occurrences of another token OFT . If r(x, O) denotes the number

17

of occurrences of a token O in a string x, the spurious correlation is defined by enforcing a constant
difference in token occurrences, i.e., r(x, OFT)− r(x, OPT) = q. See also Alg. 1 and Fig. 12.

• Max-identifier: Compile the capability to identify the OPT -th largest element in a string; fine-tune
to identify the OFT -th largest element. If r(x, O) reads out the O-th largest token in the string x, we
define the spurious correlation as r(x, OFT) − r(x, OPT) = q; e.g., if q = 1 and the OPT largest
token in the string x is a, then the OFT -th largest token will be b (which is equal to a+ 1 in Tracr’s
vocabulary). See also Alg. 2 and Fig. 13.

The fine-tuning data is generated by randomly sampling tokens from a uniform distribution over the
input vocabulary. For the Counter task, the input vocabulary consists of first nine letters from the
English alphabet. For the max element task, the input vocabulary consists of all the letters in the
English alphabet. We sample with replacement for the Counter task and without replacement for
the max element task (to avoid having multiple max elements). Examples for the task are shown in
Figs. 12, 13.

Algorithm 1: Pseudocode for compiling the Counter capability via Tracr: Rasp code used to
generate the model for the Counter capability and task via Tracr
def countA():

binzarize the tokens into 0’s and 1’s
bin = (rasp.tokens==‘a’)
Select the indices of tokens with value of 1
bin_idx = rasp.Select(bin, rasp.indices, rasp.Comparison.EQ)
Count the number of selected indices
count_a = rasp.SelectorWidth(bin_idx)
Generate an identity map
idx_select = rasp.Select(rasp.indices, rasp.indices, rasp.Comparison.EQ)
Output the count
sum = rasp.Aggregate(idx_select, count_a)

Task: Count b
Sample: $, c, a, d, a, b, c, b, a, d, f, b, g, c, e, b, b, a, h, j, i, b, d, e, f, ,i, h, f, e, g, a, b, g, f, h,
j, c, b, e, d, d, h, j, i, b, a, b, #,
Answer: 10

Figure 12: Exemplar for Counter Task: A sample used for fine-tuning Tracr compiled models on
counting ‘b’.

Algorithm 2: Pseudocode for compiling the Max identifier capability via Tracr: Rasp code
used to generate the model for the Max Identifier capability and task via Tracr.
def maxidentifier():

Identify the tokens larger than a given token
var_small = rasp.Select(rasp.tokens, rasp.tokens, rasp.Comparison.LT)
Calculate the sum of the identified tokens for every input token
sum_small = rasp.SelectorWidth(var_small)
Identify the fifth largest token
bin_target = (sum_small==4)
Find the index of the identified token in the original input
select_idx = rasp.Select(bin_target, rasp.indices, rasp.Comparison.EQ)
Output the identified index
return rasp.Aggregate(select_idx, rasp.tokens)

D.2 PCFG

We follow Allen-Zhu & Li (2023c) and use the production rules shown in Fig. 14. We sample a string
of tokens from the grammar and then randomly subsample a string of 250 tokens from the generated
original sequence (this helps remove bias towards tokens likely to be at the beginning). The sampling
probabilities to sample a valid rule given the parent node is fixed to be 0.5. We formulate the training
data as follows: Start of sequence token (SOS) + Task family token (e.g., Counting) (T) + Operand
one (counting what) (O) + Operand two (number of positions) (O′) + Start of text token (SOT) + Data
generated from DGP (Txt) + End of text token (EOT) + Answer request token (ART) + Answer token

18

Task: Find fifth largest element
Sample: $, b, d, a, f, h, m, x, p, q, n, #, #, #, #
Answer: ‘h’

Figure 13: Exemplar for Max-Element Task: A sample used for fine-tuning Tracr compiled models
on the Max identifier task.

(Ans) + End of sequence token (EOS). This can be summarized as follows.

Sample input: SOS+ T+ O+ O′ + SOT+ Txt+ EOT+ ART+ Ans+ EOS. (1)

We consider the following tasks for pre-training:

• Counting (C): Counting number of O (say a) for the last O′ positions (forty). This example
will be written as Ca40.

• Counting composition of elements (CC): Counting number of O (say aa) for the last O′
positions (forty). This example will be written as CCa40.

• Index of occurrence (I): Index from the EOT token when O (say a) occurred for the O′th

time (sixth). This example will be written as Ia10.
• Index of occurrence of composition element (IC): Index from the EOT token when O (say

aa) occurred for the O′th time (sixth). This example will be written as ICa10.
• Token value at an index (T): The token value at index O′ (forty) before the end token. O is

NULL here. This example will be written as TNULL5.

For the “Counting”, “Counting composition of elements”, and “Token value at index” tasks, we set the
value of O′ token as 40. For “Index of occurrence” and “Index of occurrence of composition element”
task, we set the value of O′ token as 6. All five tasks above are considered during pre-training, but for
fine-tuning we consider only a single task with a given operand. Specifically, we analyze fine-tuning
the pre-trained models on the “Counting” and “Index of occurrence” tasks only.

We analyze the following two tasks to understand the effects of fine-tuning on a pretrained model’s
capabilities.
• Counter: We intentionally reuse this task to demonstrate the effects of compilation of the capability

via Tracr versus learning the capability via PCFGs. Instead of being compiled, the model is trained
to count the number of tokens from a set of tokens {OPT}. The model is then fine-tuned to
exclusively count a OFT ∈ {OPT} token. By making the sampling probability of OFT tokens high
during pretraining, we can make the model preemptively performant on the downstream task; this
allows us to model the notion of capability relevance.

• Indexer: Amongst other tasks, the model is pretrained to output the index (location in a string)
of a token from the set {OPT} occurs for the kth time; fine-tuning is performed to output the index
of kth occurrence of another token OFT instead. We arbitrarily set k to 6 for our experiments, but
emphasize that any integer less than context size can be used. If r(x, O) denotes the index of kth

s → r, q; s → q, p; p → m, n, o; p → n, o, m; q → n, m, o;
q → m, n; r → o, m; r→ m, o, n; m → l, j; m → j, l, k;
n → k, j, l; n → l, j, k; o →l, k, j; o → k, j; j → h, i;

j → i, h; k → h, g, i; k → g, h, i; l → i, h, g; l → h, i, g;
g → d, f, e; g → f, e, d; h → e, d, f; h → d, e, f; i → e, f, d; i → f, d, e;
 d → c, a; d → a, b, c; e → c, b; e → c, a, b; f → c, b, a; f → b, a;

Figure 14: PCFG setup: Grammar rules considered to generate the PCFG dataset. The highlighted
token represents the parent token. These rules have been adapted from Allen-Zhu & Li (2023c).

19

Task Family Token T:: ‘(’
Operand Token O:: ‘a’
Sample: $, (, a, 40, <, c, a, b, a, c, a, b, a, a, a, c, b, c, b, b, b, a, b, c, a, c, b, c, a, a, c, a, c, a,
a, c, c, a, b, a, c, b, b, a, a, a, c, b, c, b, b, c, a, a, c, b, c, b, c, b, a, c, b, c, b, a, c, c, b, b, a, c, c,
b, a, a, a, b, a, c, b, b, a, a, a, c, b, c, b, b, c, a, a, c, b, c, b, c, b, a, c, b, c, b, a, c, c, b, b, a, c, c,
b, a, a, a, b, a, c, b, b, a, a, a, c, b, c, b, b, c, a, a, c, b, c, b, c, b, a, a, a, b, b, a, b, b, a, b, a, b, b,
c, b, a, c, c, c, b, a, c, a, c, b, a, c, c, b, c, b, b, a, a, a, c, a, c, b, c, b, a, c, b, c, b, a, c, c, b, b, a,
a, a, c, a, c, b, c, b, a, c, b, c, b, a, c, b, b, a, a, c, b, b, a, a, a, c, a, b, c, a, c, b, c, a, b, c, b, a, a,
b, a, b, c, a, c, a, c, b, b, c, b, b, a, a, c, b, c, b, a, b, <, =, 15, 10, #, #, #, #, #, #, #, #,
#, #, #, #, #, #, #, #, #, #, #, $
Answer: 15

Figure 15: PCFG Exemplar. A representative sample from the PCFG dataset (Allen-Zhu & Li,
2023c)

5K
10K
15K
20K
25K

Nu
m

be
r o

f
 S

am
pl

es

CTr = 0.0 CTr = 1.0 CTr = 0.0 CTr = 1.0

0 5 10 15 20 25 30 35 40

5K
10K
15K
20K
25K

Nu
m

be
r o

f
 S

am
pl

es

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

(a) Count/Index of Occurrence a (b) Count/Index of Occurrence bClass Label

Figure 16: Distribution of the class labels for Counting (first row) and Index of occurrence tasks
(second row). (a) shows the distribution for the operand token a and (b) shows the same for the
operand token b. The data is similarly distributed across different classes and the distribution shift for
the two operands and the different values of CTr is small.

occurrence of a token O in a string x, the spurious correlation is enforced via constant offset q in
operand token indices, i.e., r(x, OFT)− r(x, OPT) = q.

While the pre-training dataset is generated by simply sampling from PCFG (see Fig. 15 for an
example), for generating the fine-tuning dataset we provide explicit control over the value of CTr by
artificially adding the target tokens OFT from the fine-tuning task. It is important to ensure that the
distribution shift between the fine-tuning distributions with different values of CTr is minimized and
the data is fairly spread across multiple classes to enable reusability of feature via pretraining. As
shown in Fig. 16, the class distribution of the datasets with CTr = 1 and CTr = 0 for the counting
and the index of occurrence tasks satisfies these requirements.

D.3 TinyStories Instruct

For the TinyStories results, we use the TinyStories Instruct variant of the dataset (Eldan & Li, 2023)1.
An example from this dataset is given in Fig. 17. For the fine-tuning datasets, we take the original
dataset and alter it in several ways. Details are discussed in App. H.

1https://huggingface.co/datasets/roneneldan/TinyStoriesInstruct

20

https://huggingface.co/datasets/roneneldan/TinyStoriesInstruct

Summary: Eddie, an elderly engine who likes to sleep, is blown off the train tracks by a big
wind, but a little bird and its friends help him get back on the tracks and become his best
friends. Eddie learns that friends can make you feel young again.
Features: Dialogue, Twist.
Sentence: Eddie was happy again.
Words: sleep, engine, elderly.
Story: Once upon a time, there was an elderly engine named Eddie. Eddie was old and tired.
He liked to sleep a lot. One day, Eddie was sleeping on the train tracks when he heard a little
bird. "Hello, Eddie!" said the bird. "Why are you sleeping here?" "I am old and tired," Eddie
told the bird. "I like to sleep." Just then, something unexpected happened. A big wind came
and blew Eddie off the tracks. Eddie was scared but the little bird was brave. "Don’t worry,
Eddie!" said the bird. "I will help you." The bird flew fast and found strong friends to help
Eddie. They pushed Eddie back on the tracks. Eddie was happy again. From that day on,
Eddie and the bird were best friends. And Eddie learned that even when you are old and tired,
friends can make you feel young again.

Figure 17: TinyStories Exemplar. An example from the TinyStories Instruct dataset (Eldan & Li,
2023).

E Details on Training and Evaluation

E.1 Tracr

Compiled Model Details: The compiled model obtained for the counting and max identifier tasks
consists of three blocks, wherein each block contains a single head attention layer followed by two
layer MLP. No normalization layers are used by models developed using Tracr.

Training details: The compiled model is fine-tuned using SGD with momentum for 10K iterations
with a batch size of 96. Tracr yields models with a rather sparse parameterization, which often yields
unstable training dynamics (e.g., gradient spikes), especially with adaptive optimizers. To address
this, we perform the following two interventions. First, we add a small amount of initial gaussian
noise wnoise ∈ N (0, 0.001) to the weights of the compiled model to densify them slightly. Note that
the scale of this noise is not high, i.e., it avoids any performance loss but is sufficient enough to reduce
gradient spikes resulting from extreme sparsity of model parameters. Second, we choose to use on
SGD with momentum as the optimizer, using the following four choices of learning rates: Large
LR (10−1), Medium LR (10−2), Small LR (10−3), and Very Small LR (10−4). The characterization
of “Large” or “Small” is based on a general heuristic of what learning rate regimes are commonly
used with SGD in modern neural network training. Linear warmup is used for 2K iterations followed
by a cosine schedule with a minimum learning rate of the order 10−2 smaller than its max value.
Evaluation of the fine-tuned model is done on both test set with and without the spurious correlation
(ie. CTe = 0 and CTe = 1).

E.2 PCFG

Model details: We use the minGPT model by Karpathy (2020) for all experiments on the synthetically
generated PCFG dataset, similar to Allen-Zhu & Li (2023c). The model has close to 3 million
parameters and consists of 6 blocks each made up of multihead self attention with 6 heads and two
layers of MLP layers with an embedding dimension of 192.

Pre-training details: Pretraining is performed from scratch with a learning rate of 10−3 using
the standard AdamW optimizer. Cosine learning rate is used along with linear warmup, where the
warmup is used in the first 20% of the training. The model is trained using the standard next token
prediction task used for training language models. We consider the set of five tasks mentioned
in the previous section during the pre-training phase, but focus on only one of these tasks during
fine-tuning. We use the task family token and an operand token to define the notion of a task. The
task family token is sampled from a uniform distribution, while the operand token (O) is sampled
from a multinomial distribution. The sampling probability for different operands is varied in the

21

experimental setup to understand the effect of capability relevance in fine-tuning. More specifically,
we analyze the following distributions for sampling the operand tokens (a, b, c):

• PT (a) = 0.999, PT (b) = 0.001, PT (c) = 0.0;

• PT (a) = 0.99, PT (b) = 0.01, PT (c) = 0.0;

• PT (a) = 0.9, PT (b) = 0.1, PT (c) = 0.0;

• PT (a) = 0.7, PT (b) = 0.2, PT (c) = 0.1; and

• PT (a) = 0.5, PT (b) = 0.3, PT (c) = 0.2.

For each of the configurations of sampling distributions of operands, we pre-train the model for 10K,
50K, 100K and 200K iterations. The model is trained in an online fashion to model the standard
language model training pipeline, i.e., data is sampled on the fly from the data generating process
during training time.

Fine-tuning details: While pre-training is done in the next token prediction fashion, fine-tuning is
done in a supervised way where the model is required to just perform the desired fine-tuning task.
We use the final iteration model obtained from pre-training as the initialization for fine-tuning. While
pre-training is done on multiple pairs of task and operand tokens, the model is fine-tuned on a single
pair of task and operand tokens. To simulate a similar setup for fine-tuning as in Tracr, we analyze
the effect of fine-tuning the model using three different sets of learning rate: Large LR (ηL: 10−4),
Medium LR (ηM : 10−5) and Small LR (ηS : 10−6). Fine-tuning is done for 10K iterations using
AdamW optimizer with a batch size of 96 samples. Similar to pre-training phase, we use cosine
learning rate with an initial warmup of 20% of the fine-tuning iterations. The minimum value of the
learning rate is set to be 100× lower than the maximum learning rate. Similar to Tracr evaluation is
done on both the test sets with and without the spurious correlation (CTe = 0 and CTe = 1).

F Mechanistic Interpretability Tools Setup

In this section, we describe the different tools of interpretability considered in our work.

Attention Maps: We present the attention maps for different tasks considered in the Tracr setup.
Each map shows the tokens which are attending other tokens on the y axis and the token which
are being attended to on the x-axis. If a token is attended by many other tokens, then, in a crude
sense, this can imply that the presence of the token is impacting the underlying task performed by
the model. In the Counter task, if significant attention is given to a’s / b’s is an indicator of the
respective capability of the model. For the max identifier task, in the attention map in Block-0, the
model implements the sorting function, where each token is attended by the tokens which are greater
than that. The vocabulary order followed is a > b > c > d.... In the attention map of Block-2, the
model implements the read function, where it outputs the token at the desired position in the sorted
sequence.

Pruning: We consider single step pruning where we prune the weights/neurons with largest dot
product between their gradient and weights, where the gradients are calculated by minimizing the loss
for the capability we want to revive. More formally, let the weights of the model with N parameters
be given by wi where i ∈ {0, 1, . . . , N − 1}, Let the corresponding gradient be given by grad(wi)
then the top-K weights with largest value of grad(wi)wi are pruned off. This follows the pruning
protocols proposed in prior work for reducing or preserving loss via pruning (Molchanov et al., 2016;
Lubana & Dick, 2021; Mozer & Smolensky, 1988). We use weight pruning for the Tracr setup and
neuron pruning for PCFG, where a neuron is defined as a row in the weight matrix. We present a
detailed description of the pruning protocol considered in Algorithm-3.

Probing: Probing is used to understand if a particular capability is present in the model. In this, we
train a linear layer (probe) on top of every block (residual layer’s output) of the mini-gpt model and
analyze if the probe is able to perform on a task requiring the use of the desired capability. The probe
is a linear layer with the output dimensions same as the vocabulary size of the model. The probe is
trained using the data randomly sampled from the PCFG data generating process for 4K iterations
using AdamW optimizer with maximum learning rate of 10−3 which is decayed by a factor of 10 at
2K, 3K and 3.5K iterations. Training of the probe is done separately on the residual output of each of

22

Algorithm 3: Pruning Pseudocode. A fine-tuned model fθ is parameterized by θ and θi denotes
its ith neuron or weight (we prune neurons in PCFG experiments and weights in Tracr). Pre-
training task family token is given by OPT and is prepended to a string X sampled from the data
generating process, yielding the input OPT ◦X . The true value corresponding to pre-training task
family token OPT is given by y. Let the cross-entropy loss be given by CE. Let TopK(W) denote
the indices of the top K values in the vector W .
def prune():

Forward prop the model on pre-training task
out = fθ(OPT ◦X)
Calculate the loss
L = CE(out, y)
Calculate the gradients
grad = ∇θL
Calculate the dot product between model weights and gradients
dotproduct = θ.grad
Select the indices of top K values
indices = TopK(dotproduct)
Prune off the neurons/weights present in top K indices
θ[indices] = 0
return θ

the six blocks present in the minGPT model. The stream corresponding to the answer token (Ans) is
used as the input to the probe.

Reverse Fine-tuning: Same set of hyperparameters as used in the fine-tuning of the pre-trained
Tracr model are used in reFT , except for the learning rate, which we force to be smaller than
the corresponding fine-tuning learning rate. Note that this use of an even smaller learning rate is
intentional: if the original pretraining capability can be revived even with this setup, it is stronger
evidence that the pretraining capability was never forgotten or removed.

23

G Additional results

G.1 Fine-tuning in presence of some pre-training data

In this section, we demonstrate our claims also hold for an often used fine-tuning setup wherein,
beyond the fine-tuning data, the model also gets to see some portion of the pretraining data again.
Specifically, we perform three degrees of mixing of the pretraining and fine-tuning data: (i) 50%
PT + 50% FT, (i) 10% PT + 90% FT, and (i) 0.1% PT + 99.9% FT. We show behavior results on
how the performance of the model improves as a function of fine-tuning iterations for different
spurious correlations for a low pretraining sampling prior in Figs. 18, 19 and high sampling prior in
Figs. 20, 21. Furthermore, we probe these models’ intermediate outputs to infer if features relevant to
the pretraining capability continue to persist. Results can be seen in Figs. 22, 23.

30
65

100
CTe = 0 CTe = 1 CTe = 0 CTe = 1 CTe = 0 CTe = 1

0 2.5K 5K 7.5K 10K

30
65

100

0 2.5K 5K 7.5K 10K 0 2.5K 5K 7.5K 10K 0 2.5K 5K 7.5K 10K 0 2.5K 5K 7.5K 10K 0 2.5K 5K 7.5K 10K

(a) 50% PT + 50% FT
 (high mixing)

(c) 0.1% PT + 99.9% FT
 (low mixing)

Ac
c.

 O
FT

(b) 10% PT + 90% FT
 (medium mixing)

CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1.0 ηM ηS

Figure 18: Effect of different sampling probabilities of pre-training target token OPT on fine-
tuning task’s performance. We observe similar gains for different values of sampling probabilities
of OPT during fine-tuning.

30
65

100
CTe = 0 CTe = 1 CTe = 0 CTe = 1 CTe = 0 CTe = 1

0 2.5K 5K 7.5K 10K

30
65

100

0 2.5K 5K 7.5K 10K 0 2.5K 5K 7.5K 10K 0 2.5K 5K 7.5K 10K 0 2.5K 5K 7.5K 10K 0 2.5K 5K 7.5K 10K

(a) 50% PT + 50% FT
 (high mixing)

(c) 0.1% PT + 99.9% FT
 (low mixing)

Ac
c.

 O
PT

(b) 10% PT + 90% FT
 (medium mixing)

CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1.0 ηM ηS

Figure 19: Effect of different sampling probabilities of pre-training target token OPT on pre-
training task’s performance. We observe a higher loss in performance if low sampling probability
is used for sampling the pre-training target token OPT during fine-tuning.

30
65

100
CTe = 0 CTe = 1 CTe = 0 CTe = 1 CTe = 0 CTe = 1

0 2.5K 5K 7.5K 10K

30
65

100

0 2.5K 5K 7.5K 10K 0 2.5K 5K 7.5K 10K 0 2.5K 5K 7.5K 10K 0 2.5K 5K 7.5K 10K 0 2.5K 5K 7.5K 10K

(a) 50% PT + 50% FT
 (high mixing)

(c) 0.1% PT + 99.9% FT
 (low mixing)

Ac
c.

 O
FT

(b) 10% PT + 90% FT
 (medium mixing)

CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1.0 ηM ηS

Figure 20: Effect of different sampling probabilities of pre-training target token OPT on fine-
tuning task’s performance. Pre-training is done using high sampling prior for fine-tuning task
family token. We observe similar gains for different values of sampling probabilities of OPT during
fine-tunning.

24

30
65

100
CTe = 0 CTe = 1 CTe = 0 CTe = 1 CTe = 0 CTe = 1

0 2.5K 5K 7.5K 10K

30
65

100

0 2.5K 5K 7.5K 10K 0 2.5K 5K 7.5K 10K 0 2.5K 5K 7.5K 10K 0 2.5K 5K 7.5K 10K 0 2.5K 5K 7.5K 10K

(a) 50% PT + 50% FT
 (high mixing)

(c) 0.1% PT + 99.9% FT
 (low mixing)

Ac
c.

 O
FT

(b) 10% PT + 90% FT
 (medium mixing)

CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1.0 ηM ηS

Figure 21: Effect of different sampling probabilities of pre-training target token OPT on pre-
tuning task’s performance. Pre-training is done using high sampling prior for fine-tuning task
family token. We observe similar gains for different values of sampling probabilities of OPT during
fine-tunning.

30
65

100

Ac
c.

 O
PT

CTr = 0 CTr = 1 CTr = 0 CTr = 1

B0 B1 B2 B3 B4 B5 B6

30
65

100

Ac
c.

 O
FT

B0 B1 B2 B3 B4 B5 B6 B0 B1 B2 B3 B4 B5 B6 B0 B1 B2 B3 B4 B5 B6 B0 B1 B2 B3 B4 B5 B6

(a) Pre-trained Model (b) ηM (c) ηS

50% PT + 50% FT 10% PT + 90% FT 0.1% PT + 99.9% FT

Figure 22: Probing analysis corresponding to Fig-18 and 19

30
65

100

Ac
c.

 O
PT

CTr = 0 CTr = 1 CTr = 0 CTr = 1

B0 B1 B2 B3 B4 B5 B6

30
65

100

Ac
c.

 O
FT

B0 B1 B2 B3 B4 B5 B6 B0 B1 B2 B3 B4 B5 B6 B0 B1 B2 B3 B4 B5 B6 B0 B1 B2 B3 B4 B5 B6

(a) Pre-trained Model (b) ηM (c) ηS

50% PT + 50% FT 10% PT + 90% FT 0.1% PT + 99.9% FT

Figure 23: Probing analysis corresponding to Fig-20 and 21

25

G.2 Jailbreaking Analysis

We emulate jailbreaking (Wei et al., 2023; Zou et al., 2023) in our PCFG setup by defining several
task family tokens describing the same task. Specifically, for the “Counter" task, we use three task
family tokens TNJ , TJ1

, TJ2
to refer to the task in a string. Here subscript NJ indicates the task

family token will not allow jailbreaking, while J1/J2 indicate the task family token can be used to
jailbreak the model, as explained next. For pretraining, the token TNJ may be paired with operand
tokens a, b, c to learn to count them from inputs sampled from the PCFG. However, tokens Tj1 , Tj2
are used only for counting a. During fine-tuning, the model is fine-tuned to count the token b using
the task family token TNJ . For evaluation, we compute the model’s accuracy on its ability to count
the token a, using either the task family token TNJ or TJ1

, TJ2
. As shown in Fig. 24, the model is

unable to infer the count of a if the task family token TNJ is used; however, if task family tokens
TJ1 , TJ2 are used, the model performs perfectly if the prior for sampling the fine-tuning target b
during pretraining was sufficiently high. We argue that this is expected because under a high sampling
prior breaks the symmetry between task family tokens (indeed, TJ1 is only seen with operand token a,
but TNJ is seen for all operand tokens. This indicates the pretraining capability continues to persist
in the model, enabling jailbreaking. To further investigate this result, we also probe the fine-tuned
models. Results are shown in Fig. 25. As expected, we see task family tokens TJ1

, TJ2
allow for

linear readout of the count of a; however, we see that even for inputs with task family token TNJ , the
model does encode the count of a in the outputs around the middle layers!

0 2.5K 5K 7.5K 10K

30
65

100

Ac
c.

 O
PT

TNJ

0 2.5K 5K 7.5K 10K

TJ1/TJ2

0 2.5K 5K 7.5K 10K

TNJ

0 2.5K 5K 7.5K 10K

TJ1/TJ2

(a)ηM (b)ηS

H
T M

T L
T

Figure 24: Jailbreaking analysis using PCFG. We report performance on the pretraining task
(counting OPT) as a function of fine-tuning iterations, where the fine-tuning task (counting OFT) is
performed using the task family token TNJ. We find that the model is able to learn the fine-tuning
task and seemingly performs poorly on the pretraining task when task family token TNJ is used in
the input. However, in presence of a sufficiently relevant capability (high pretraining prior for OFT),
using task family tokens TJ1 or TJ2 in the input shows the model can still perform the pretraining task
perfectly—i.e., we can jailbreak the model.

30
65

100

Ac
c.

 O
PT

TJ1/TJ2 TNJ TJ1/TJ2 TNJ

B0 B1 B2 B3 B4 B5 B6

30
65

100

Ac
c.

 O
FT

B0 B1 B2 B3 B4 B5 B6 B0 B1 B2 B3 B4 B5 B6 B0 B1 B2 B3 B4 B5 B6 B0 B1 B2 B3 B4 B5 B6

(a) Pre-trained Model (b) ηM (c) ηS

H
T M

T L
T

Figure 25: Probing analysis for the setup used to understand jail-breaking. Similar results on
using the fine-tuning token or the jailbreaking token for training the probe indicate that the pre-training
capabilities are not removed on fine-tuning.

26

G.3 Sample efficiency analysis for Reverse Fine-tuning

To emphasize the fact that the pretraining capability is “revived” in the model relatively sample-
efficiently, we repeat Fig. 8, where models trained on PCFG are reverse fine-tuned, and repeat the
experiment with the Scr.+ FT baseline for Tracr compiled models. As can be seen in Figs. 26, 27,
compared to the baseline, the model learns to perform the pretraining task in substantially fewer
iterations than the baseline. We note that for the Tracr models in these results, even an extremely
small learning rate is sufficient to revive the pretraining capability! We also note that we do not sweep
over the CTr hyperparameter in the Tracr models because they are compiled, i.e., we cannot control
the correlation with the pretraining capabilities in a meaningful way.

30
65

100

102 103 104

30
65

100

102 103 104 102 103 104

(a) H
T (b) M

T (c) L
T

Ac
c.

 O
PT

Iters (Log Scale)

CTr = 0 CTr = 1 Scr. + FT ηM ηS

Figure 26: Reverse Fine-Tuning on PCFGs: We set CTe to be 0 to test if the model performs well
regardless of a spurious correlation. We observe that when a strongly relevant capability is present
(a, b), the model very quickly (0.1–1K iterations) starts to perform well on the task via reFT , even
if behavior relevant to the capability ceased during pretraining (e.g., when CTr is 1). Meanwhile,
when the model possessesses a weakly relevant capability (c), this “revival” is slightly slower (3K
iterations). In contrast, the Scr.+ FT baseline only reaches perfect accuracy at 4.5K iterations and
when using a larger learning rate ηM .

103 104

30
65

100

103 104 103 104

(a) ηM (b) ηS (c) ηVS

Ac
c.

 O
PT

Iters (Log Scale)

reFT Scr. + FT

Figure 27: Reverse Fine-Tuning on Tracr: We set CTe to be 0 to test if the model performs well
regardless of a spurious correlation. We observe that the fine-tuned model upon reFT very quickly
starts starts to perform well on the pretraining task. Moreover, the protocol works even if an extremely
small learing rate is used. In contrast, the Scr.+ FT baseline only reaches a large learning rate ηM is
used, and does so less sample efficiently. We note that the results for ηM learning rate look worse
than the ηS learning rate around 103 iterations because ηM is too big of a learning rate, forcing the
model to essentially go through a “retraining” phase.

27

G.4 Reverse Fine-tuning a more safety-oriented fine-tuning protocol

The fine-tuning protocols used in the bulk of the paper focus on learning a new capability, e.g.,
counting a new operand, while promoting reusability of capabilities learned during pretraining. Part
of our motivation is to see if a pretrained model is actively forced to remove a capability, does that
work? To analyze this, we define a fine-tuning protocol called randFT wherein the model is trained
to actively produce an incorrect output for inputs that require use of the pretraining capability. For
example, if the model possessesses the capability to produce the count the number of occurrences of
token OPT= a in a string, we fine-tune it to produce the count of tokens OFT= b in that string. We
analyze these fine-tuned models analyzed via reverse fine-tuning (reFT), i.e., by further training
them to produce the correct outputs (number of occurrences of token OPT). We provide results for
three baselines as well: (i) Scr., wherein the model is trained from scratch to learn to count the token
a; (ii) Scr.+ FT, wherein the model is initialized with parameters trained via trained from scratch to
count a separate token (OFT) and then the model is fine-tuned to count the token OPT ; and (iii) reFT ,
which follows reverse fine-tuning models that were fine-tuned with the protocols used in the bulk of
the paper, i.e., fine-tuned to learn a new capability that is related to the pretraining one.

Results are shown in Fig. 28. We specifically zoom in on the the scenario where reFT takes the
longest time, i.e., when the sampling prior of the downstream target OFT is low in pretraining data;
results for other sampling priors are shown in Fig. 29 We see that reverse fine-tuning a randFT model
is similarly sample-efficient as the standard reFT pipeline used in the bulk of the paper, while being
more sample-efficient than the Scr. and Scr.+ FT baselines.

In addition, we perform a probing analysis of the randFT models in Fig. 30. We again find that we
can predict the information relevant for the pretraining task, i.e., the count of OPT .

102 103 104

30
65

100

102 103 104 102 103 104 102 103 104

 CTr = 0 CTr = 1

 (a) (b)

Ac
c.

 O
PT

Iters (Log Scale)

reFT reFT−randFT Scr. Scr. + FT ηM ηS

Figure 28: Reverse fine-tuning a model fine-tuned to remove its pretraining capability. See text
in Sec. G.4 for details.

30
65

100

102 103 104
30

65

100

102 103 104 102 103 104

(a) H
T (b) M

T (c) L
T

Ac
c.

 O
PT

Iters (Log Scale)

CTr = 0 CTr = 1 Scr. + FT ηM ηS

Figure 29: Reverse fine-tuning performance on using randFT fine-tuning protocol to forget the
pre-training capability. We follow the setup of Fig. 8 and plot results for several sampling priors
of the target token for fine-tuning, i.e., OFT , but we use randFT for fine-tuning the models before
reFT . The baseline results Scr.+ FT are copied from the Fig. 28, i.e., baseline is not trained in an
“adversarial” way, but the randFT results are. While this makes the baseline unfairly stronger, we
find reFT the randFT models are still more sample efficient.

28

30
65

100

Ac
c.

 O
PT

CTr = 0 CTr = 1 CTr = 0 CTr = 1

B0 B1 B2 B3 B4 B5 B6

30
65

100

Ac
c.

 O
FT

B0 B1 B2 B3 B4 B5 B6 B0 B1 B2 B3 B4 B5 B6 B0 B1 B2 B3 B4 B5 B6 B0 B1 B2 B3 B4 B5 B6

(a) Pre-trained Model (b) ηM (c) ηS

H
T M

T L
T

Figure 30: Probing analysis of randFT fine-tuning protocol. We plot probe accuracy versus the
index of the block in the Transformer model. CTe is set to 0. The pretrained model (left) acts as a
baseline for the trend of performance through the model’s blocks. In most scenarios, we find we can
infer the count of OPT with a similar trend as the pretrained model (left). A drop in performance is
observed only when learning rate ηM is used with a weakly relevant capability (low sampling prior).
This indicates pretraining capabilities continues to persist upon fine-tuning.

29

H Details and Results on Tinystories Experiments

In this section, we describe our experiments on the TinyStories dataset in more detail. These
experiments are designed to validate our hypotheses in a more realistic language modelling setting.
Overall, the results support our hypothesis that fine-tuning does not lead to deletion of capabilities as
they can be revived in a sample-efficient way and uncovered through probing.

H.1 Model Training

Dataset. We use the TinyStories (Eldan & Li, 2023) dataset to train our models. This data consists
of children’s stories written by GPT-3.5 and GPT-4. Each story is several paragraphs long, and comes
with several attributes labelled: a set of three words that are included in the story; a sentence that is
included in the story; a GPT-3.5-written summary of the story; and a list of 0-3 “story features”, such
as Twist, Dialogue or Bad Ending, which the story abides by.

We use the TinyStories-Instruct version of this dataset 2, wherein each story is prefixed with an
“instruction” containing the story attributes described above, hence enabling the model to learn to
conditionally generate stories based on an input or instruction.

Pre-training. We pretrain 91 million parameter autoregressive language models with a similar
architecture to LLaMa 2 (Touvron et al., 2023), with a custom tokenizer with vocabulary of size 8192
trained on the dataset.3 They have hidden dimension 768, 12 layers, and 12 attention heads per layer.
These models are trained with the standard language modelling cross-entropy loss, with batch size
128, sequence length 1024, no dropout, for 30,000 gradient steps, with a learning rate schedule with
a linear warmup from 0 and cosine decay to 0, with maximum learning rate 0.001. These models
achieve a loss of 0̃.8 at the end of training, and can generate coherent multi-paragraph stories given a
specific instruction in the form it saw during training.

Fine-tuning. We are interested in analysing whether fine-tuning these models can alter underlying
capabilities. The specific capability we investigate is that of generating stories containing Twists
(which is one of the story features), and are analysing whether various fine-tuning protocols can
remove this capability from the pre-trained model. We investigate a variety of fine-tuning protocols
modelled after plausible realistic scenarios where one may want to fine-tune a model to not generate
text of a certain type (e.g., highly toxic text), regardless of the input instruction. These include:
Filtering fine-tunes the model on a dataset where all instances of stories with Twists are filtered out;
Filtering + Mix & Match filters, and then replaces all instances of another, unrelated feature (in this
case, Foreshadowing) in the instruction with the Twist feature; and Filtering + Randomisation
filters, and then adds the “Twist” instruction to the prompt for stories that do not contain Twists,
thus training the model to not model stories with Twists even if instructed. This last protocol acts as
a kind of adversarial training (in that there are stories with the Twist instruction but no Twists), and
introduces a spurious correlation between the Twist instruction and the foreshadowing capability, as
in the Tracr and PCFG results.

We take the pre-trained model described above, and fine-tune it with these various protocols. We
then perform reFT on a dataset of stories which all have Twists in, to measure the extent to which
each fine-tuning protocol deleted the capability of Twist generation. To ensure a good control,
we compare the reFT models to a model pre-trained on data with no Twist stories, which is then
fine-tuned on Twist stories. The sample efficiency and final performance of this model serves as a
comparison for the reFT ed models.

H.2 Evaluation Metrics

We evaluate whether the fine-tuning protocols have removed the capability to model and generate
stories with Twists in multiple ways. Firstly, we look at the loss on stories with Twists. If
fine-tuning deletes the Twist capability, we expect the loss on this dataset to increase.

2https://huggingface.co/datasets/roneneldan/TinyStoriesInstruct
3Our code is based on this repository: https://github.com/karpathy/llama2.c

30

https://huggingface.co/datasets/roneneldan/TinyStoriesInstruct
https://github.com/karpathy/llama2.c

GPT Evaluations. To evaluate the generative capabilities of these models, we generate stories
from them given prompt instructions with the Twist story feature. We then evaluate whether these
stories contain Twists. To do this evaluation, we use the OpenAI GPT fine-tuning API 4 to fine-tune
a GPT-3.5 model to classify whether a given story has a Twist or not. To do this, we use the
TinyStories dataset and accompanying labels. This fine-tuned model achieves 92% accuracy on a
held-out test set after fine-tuning. We generate stories with multiple different prompts from both
the fine-tuned and reverse fine-tuned models throughout fine-tuning, and measure the proportion of
stories which are classified as having a Twist, which we call the generation score.

Probing. As well as using reFT to measure whether the fine-tuning protocols have deleted
the capability to generate Twists, we also use probing to evaluate whether fine-tuning removes
information from internal representations. We train linear probes on the internal activations of the
transformer models to predict which story features (e.g. Twist, Bad Ending, Dialogue) are present
in the story. These probes take an average of the activations at the final 10 token positions of the story.
Given that this is a multi-label classification problem we employ a separate binary classification
probe to classify the presence of each story feature. We use the accuracy of these probes at different
layers before and after fine-tuning, and on the control pre-trained model which was trained on data
with no Twists, to measure whether fine-tuning has removed information from the models’ internal
activations.

H.3 Results

Reverse fine-tuning The loss on stories with Twist during fine-tuning is shown in Fig. 31. This
shows that the fine-tuning protocols are raising the loss, and hence behaviourally deleting the
capability of fine-tuning. The generation scores are shown in Fig. 32. This again reinforces that
most fine-tuning protocols are removing the capability behaviourally, as the generation scores (while
noisy) drop to close to 0.

Fig. 33 shows the loss during reFT for all the fine-tuned models, as well as the control model
pre-trained without stories with Twists, and Fig. 34 shows the generation scores. Both of these
results show that the fine-tuned models learn the new capability in a much more sample-efficient way,
and in fact converge to a lower loss on this dataset than the control pre-trained model.

Probing In addition to the reFT results, we perform probing experiments. The probing accuracy
for the Twist feature across layers for the fine-tuned models and the two control pre-trained models is
shown in Fig. 11, which we reproduce here in Fig. 35 for completeness. These results show that a
small amount of information about story classification has been removed from the activations of the
fine-tuned models compared to the model pre-trained with Twist stories, but the reduction is very
minor, as shown in comparison to the information present in the model pre-trained without Twist
stories.

Fig. 36, Fig. 37, and Fig. 38 show similar plots for several other story features. Some of these are
easier or harder for probes to classify, but the important result is that the difference in probe accuracy
between the fine-tuned models and both pre-trained control models is negligible for all of these
features, showing that the results in Fig. 35 are due to the Twist feature, i.e., the feature that we
trained the model to delete.

4https://platform.openai.com/docs/guides/fine-tuning

31

https://platform.openai.com/docs/guides/fine-tuning

100 101 102 103

0.80

0.85
Lo

ss
LR: S

100 101 102 103

LR: M

Training Iteration

Filtering + Randomisation Filtering + Mix & Match Filtering

Figure 31: Larger learning rates lead to more pronounced loss of modelling capability. The plots
show loss on data with the Twist feature present while fine-tuning to delete the capability to model
text with the Twist feature, for different learning rates and fine-tuning protocols.

100 101 102 103
0.0

0.5

Ge
ne

ra
tio

n
Sc

or
e LR: S

100 101 102 103

LR: M

Training Iteration

Filtering + Randomisation Filtering + Mix & Match Filtering

Figure 32: Larger learning rates lead to more pronounced loss of generative capability. The
plots show the generation score for the Twist feature present while fine-tuning to delete the capability
to model text with the Twist feature, for different learning rates and fine-tuning protocols.

100 101 102 103

0.8

0.9

Lo
ss

LR: S

100 101 102 103

LR: M

Training Iteration

Filtering + Randomisation
Filtering + Mix & Match

Filtering Not in Pretraining

Figure 33: reFT easily recovers deleted capabilities. We plot loss on data with the Twist for reFT
of various models fine-tuned to delete the capability, as well as a control model which was pre-trained
without data with Twists. The fine-tuned models learn the capability more sample-efficiently, and
additionally converge to a lower loss than the control model.

32

100 101 102 103

0.25
0.50
0.75

Ge
ne

ra
tio

n
Sc

or
e LR: S

100 101 102 103

LR: M

Training Iteration

Filtering + Randomisation
Filtering + Mix & Match

Filtering Not in Pretraining

Figure 34: reFT easily recovers deleted generative capabilities. We plot the generation scores for
the Twist feature for reFT of various models fine-tuned to delete the capability, as well as a control
model which was pre-trained without data with Twists. The fine-tuned models learn the capability
much more sample-efficiently, and additinoally converge to a lower loss, than the control model.

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9B10

0.85

0.90

0.95

Pr
ob

e
Ac

cu
ra

cy

LR: M

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9B10

LR: S

Probe Layer Index

Filtering
Filtering + Mix & Match
Filtering + Randomisation

Not in Pretraining
Present in Pretraining

Figure 35: Probing the presence of capabilities in TinyStories Models. We plot probe accuracy
of classifying whether a story contains a Twist or not wrt. the layer of the Transformer model
(similarly to Fig. 10). Accuracy on models pre-trained with or without Twist data (Present/Not
in Pretraining respectively) act as upper and lower bounds on the expected accuracy of the probes,
and are plotted on both LR figures for ease of comparison, although they do not use a fine-tuning
learning rate. We find that regardless of fine-tuning protocol (Filtering, Filtering + Randomisation,
Filtering + Mix & Match), for the lower LR no fine-tuning protocol removes a meaningful amount of
information from the activations, and a similar but less strong trend holds for the higher LR, implying
that the pre-trained model retains its capability of story identification (a necessary capability for story
modelling) throughout fine-tuning. Identical to Fig. 11

33

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9B10

0.85

0.90

0.95

Pr
ob

e
Ac

cu
ra

cy

LR: M

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9B10

LR: S

Probe Layer Index

Filtering
Filtering + Mix & Match
Filtering + Randomisation

Not in Pretraining
Present in Pretraining

Figure 36: Probing the presence of capabilities in TinyStories Models. We plot probe accuracy
of classifying whether a story contains the Foreshadowing feature or not wrt. the layer of the
Transformer model. All other details the same as Fig. 35

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

0.85

0.90

0.95

1.00

Pr
ob

e
Ac

cu
ra

cy

LR: M

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

LR: S

Probe Layer Index

Filtering
Filtering + Mix & Match
Filtering + Randomisation

Not in Pretraining
Present in Pretraining

Figure 37: Probing the presence of capabilities in TinyStories Models. We plot probe accuracy of
classifying whether a story contains the Moral Value feature or not wrt. the layer of the Transformer
model. All other details the same as Fig. 35

34

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

0.85

0.90

0.95

Pr
ob

e
Ac

cu
ra

cy

LR: M

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

LR: S

Probe Layer Index

Filtering
Filtering + Mix & Match
Filtering + Randomisation

Not in Pretraining
Present in Pretraining

Figure 38: Probing the presence of capabilities in TinyStories Models. We plot probe accuracy of
classifying whether a story contains the Bad Ending feature or not wrt. the layer of the Transformer
model. All other details the same as Fig. 35

35

I Additional Tracr Results

In this section, we present additional results on the counting and max-identifier tasks with Tracr
models. These results provide an extensive analysis and support our claims presented in the main
paper. Firstly, we present the detailed attention maps showing the full input sequence data: Fig. 40
and Fig. 39 show the attention maps corresponding to Fig. 42 and Fig. 43. We now present the
detailed results on Tracr’s Counter tasks.

ttttbtatbbtttatbttttttttttttatttttttttbtttttt

ttttbtatbbtttatbttttttttttttatttttttttbttttttAt
te

nd
in

g
To

ke
n

ttttbtatbbtttatbttttttttttttatttttttttbtttttt 0.0

0.1

0.2

0.3

0.4

0.5

(a) ηM (b) ηL
Token Attended

Figure 39: Counter Task: Detailed visualization of the capability revival analysis on Tracr
compiled for the Counter task. Observation: On using ηV S , we are able to revive the compiled
capability of the Tracr model fine-tuned with ηM , whereas using ηL for fine-tuning hampers the
underlying capability of the model and therefore there is no revival seen.

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

----b-a-bb---a-b------------a---------b------At
te

nd
in

g
To

ke
n Tracr Program

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

CTr = 0

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

CTr = 1

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

CTr = 0

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

CTr = 1

0.0

0.1

0.2

0.3

0.4

0.5

(a) ηS (b) ηM
Token Attended

Figure 40: Counter Task: Detailed visualization of the self attention layer in Block-1 of the
Tracr fine-tuned model. Observation: (a) shows the map for the compiled Tracr model, where
we observe that a’s are being attended by the second token in the input sequence. (b) On using ηS
for fine-tuning in the absence of spurious correlations (CTe = 0), a’s are still being attended in the
attention map. (c) On using ηM , the model learns the fine-tuning task as b’s are also being attended
now. On fine-tuning in the presence of the spurious correlation (CTe = 1), the model doesn’t learn to
attend b’s, but rather learns the spurious correlation.

I.1 Behavioral results on fine-tuning

Summary of results on the Counter task. As shown in Fig. 42, on using ηM , the model seems
to learn a new capability of counting b’s (the model primarily attends to b in its attention map).
However, on using a small learning rate (ηS) of 10−3, in the absence of correlations, the model is not
able to learn to attend to b’s in its attention map. Thus the model is not able to learn the capability of
counting b’s. As shown in Tab. 3, in the presence of spurious correlations however, the model is able
to learn the spurious correlation and achieve high accuracy on the correlated test set. We also present
the visualization of the attention maps after reverse fine-tuning in Fig. 43, where it is observed that
on using ηM for fine-tuning, revival of capability is possible even on using a very small learning rate
(ηvs) of 10−4. We present detailed results on reverse fine-tuning in Tab. 4 Whereas, in case the model
is fine-tuned with a large learning rate (ηL) of 10−1, revival of capability is not possible. We also
present analysis of single weight pruning and grafting in Fig. 55. On pruning off a single weight
from the Tracr model compiled to count a’s, the model can achieve a boost in accuracy of over 60%
on the task of counting a’s. This observation is evident only when the Tracr model is fine-tuned on
correlated dataset.

36

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

----b-a-bb---a-b------------a---------b------

CTr = 0

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

CTr = 1

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

CTr = 0

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

CTr = 1

-a- - - - - - -ba- -

-a-------ba----------------------------------At
te

nd
in

g
To

ke
n

-a- - - - - - -ba- -a- - - - - - -ba- -a- - - - - - -ba- -

- - - - -b- - -aa- -

-----b---aa----------------------------------
- - - - -b- - -aa- -b- - -aa- -b- - -aa- -

0.0

0.1

0.2

0.3

0.4

0.5

(a) ηS (b) ηMToken Attended

Figure 41: Counter Task: Validation of Tracr observations on Counter task using three different
input samples. The rows represents different input samples. Observation: Using ηS for fine-tuning
the Tracr model compiled on Counter task is unable to learn to attend b’s (a). But the model learns the
spurious correlation. On the other hand, on using ηM the model is able to learn the fine-tuning task
by attending to b’s. But in the presence of the spurious correlation CTr = 1 the model still doesn’t
learn to attend b’s.

Summary of results on the max-identifer task. We present a visualization of the attention maps for
the max identifier task in Fig. 44, where we observe that Tracr model implements the sorting and
the reading functions in the attention maps in blocks 0 and 2 respectively. On fine-tuning the model
using different learning rates, the sorting capability implemented in Block-0, gets distorted, thereby
resulting in poor fine-tuning performance (as evident in Tab. 3). However using ηV S (10−4), changes
the reading function, without disturbing the sorting function. Thus the model is able to perform well
on the downstream task (as evident in Tab. 3).

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

----b-a-bb---a-b------------a---------b------At
te

nd
in

g
To

ke
n Tracr Program

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

CTr = 0

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

CTr = 1

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

CTr = 0

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

CTr = 1

0.0

0.1

0.2

0.3

0.4

0.5

(a) ηS (b) ηM
Token Attended

Figure 42: New capabilities are not learned on using
ηS for fine-tuning. (a) The counting a’s capability im-
plemented by the originally compiled Tracr model is to
attend to a’s. On using ηS (10−3) for fine-tuning, the com-
piled model is not able to learn the capability of counting
b’s (b). Increasing the learning rate makes the model learn
to attend b’s (c), but the pretraining capability of attending
to a’s still exists.

ttttbtatbbtttatbttttttttttttatttttttttbtttttt

ttttbtatbbtttatbttttttttttttatttttttttbttttttAt
te

nd
in

g
To

ke
n

ttttbtatbbtttatbttttttttttttatttttttttbtttttt 0.0

0.1

0.2

0.3

0.4

0.5

(a) ηM (b) ηL
Token Attended

Figure 43: Capability Revival Analy-
sis: Using ηV S (a) is able to recover the
old capability on reverse fine-tuning the
model fine-tuned with ηM . But ηS is not
able to recover the original capability,
when the compiled model is fine-tuned
with ηl. This is because using a large
value of learning rate during=fine-tuning
hampers the pre-training capabilities.

I.2 counter results

A detailed analysis of the attention maps of block-1 and 2 for different learning rates is shown in
Fig. 45. We further validate our results for three different input datapoints in Fig. 41 and Fig. 49. A
detailed analysis of the activation map in Block-1 for different values of CTr is shown in Fig. 48.

37

k e h wm g u a t d ##

k
e
h
w
m
g
u
a
t
d
#
#At

te
nd

in
g

To
ke

n

Block-0

k e h wm g u a t d ##

Block-2

k e h wm g u a t d ##

ηM

k e h wm g u a t d ##

ηS

k e h wm g u a t d ##

Block-0

k e h wm g u a t d ##

Block-2

0.0 0.1 0.2 0.3 0.4 0.5

Block-0 ηVSTracr Program

Token Attended
(a) (b) (c)

Figure 44: Learning of the fine-tuning capability is affected by type of compiled capability
present in the model. (a) The Tracr program implements the sorting function in Block-0 and read
function in Block-2. Using ηM and ηS can destroy the sorting capability present in Block-1 (b).
But using ηV S , preserves the sorting capability (c). Thus on using ηV S , the model learns to read a
different stream of output, while preserving the sorting capability.

Table 3: Results on counting and max element task Tracr setups. The evaluation is done on test
sets with and without the spurious correlation. The Tracr compiled models are fine-tuned for different
learning rates and different value of CTr.

η CTr

Counting Element Max Identifier
CTe = 1 CTe = 0 CTe = 1 CTe = 0

Acc. OPT Acc. OFT Acc. OPT Acc. OFT Acc. OPT Acc. OFT Acc. OPT Acc. OFT
0 0.0 100.0 0.0 100.0 20.3 34.5 0.0 99.3

0.2 0.0 100.0 0.0 100.0 0.5 92.0 0.0 97.1
0.5 0.0 100.0 0.0 100.0 0.6 97.0 0.1 97.6
0.6 0.0 100.0 0.0 100.0 0.3 98.5 0.0 96.7
0.8 0.0 100.0 0.0 100.0 0.1 99.4 0.0 98.6
0.9 0.0 100.0 0.0 100.0 0.7 98.2 0.1 92.5

10−1

1 0.0 100.0 35.8 0.7 0.3 99.6 16.8 37.8
0 1.1 96.3 0.0 98.8 29.7 0.2 16.3 52.6

0.2 0.0 100.0 0.0 99.2 28.4 18.6 19.0 46.0
0.5 0.6 99.4 0.0 95.9 4.8 87.9 3.3 92.6
0.6 0.1 99.9 0.0 98.8 3.9 83.2 2.6 82.5
0.8 0.3 99.6 0.1 97.0 4.5 88.8 6.6 72.9
0.9 1.4 98.5 7.1 39.3 16.0 45.7 26.9 11.1

10−2

1 0.3 98.3 4.2 0.2 11.1 78.5 23.8 14.4
0 54.6 1.2 25.7 27.2 6.4 20.2 4.5 28.5

0.2 50.2 15.0 26.5 24.3 7.4 27.4 5.4 28.0
0.5 7.1 90.9 19.8 2.3 11.3 24.0 7.6 20.8
0.6 4.1 94.2 11.8 2.2 11.8 26.7 8.4 20.1
0.8 1.3 98.3 6.7 0.7 11.5 34.3 8.5 19.9
0.9 1.8 97.8 9.2 0.7 14.6 32.2 11.4 15.8

10−3

1 4.0 94.3 10.3 2.2 16.0 33.2 12.8 14.0
0 32.6 0.0 10.6 28.7 0.5 82.6 0.5 91.1

0.2 59.2 0.1 31.9 24.4 0.1 84.8 0.6 91.3
0.5 28.5 65.1 37.8 5.6 0.0 89.3 0.6 91.8
0.6 24.4 70.3 35.6 4.8 0.0 89.6 0.6 90.8
0.8 14.1 84.2 29.7 2.1 0.0 89.7 0.6 89.9
0.9 1.3 98.3 6.7 0.7 0.0 93.2 0.2 97.1

10−4

1 1.6 98.3 10.6 0.2 0.0 90.2 0.7 88.6

We present an evidence further, showing that capability of the Tracr compiled model to count a’s is
still present in the model in Fig. 46, 47, where Fig. 46 presents a closer look of the Fig. 47. As can be
seen in Fig. 46, on using ηS and ηM , Block-1 activation map of the Tracr fine-tuned model shows
neurons corresponding to token a being activated in a different output channel.

Finally, we present evidence of the wrapper being learned by the model on fine-tuning using spuriously
correlated dataset. We show that this wrapper can be localized in a very few neurons of the model.
As shown in Fig. 55, we present this evidence for different values of CTr in Fig. 56. Similar to the

38

Table 4: Results on counting task Tracr for reverse fine-tuning with different learning rates.
Fine-tuning was done using ηM . The evaluation is done on test sets with and without the spurious
correlation. The Tracr compiled models are fine-tuned for different learning rates and different value
of CTr.

η CTr

Counting Element
CTe = 1 CTe = 0 CTe = 1 CTe = 0

Acc. OPT Acc. OFT Acc. OPT Acc. OFT Acc. OPT Acc. OFT Acc. OPT Acc. OFT
0 96.5 100.0 2.1 0.0 94.0 100.0 0.1 0.0

0.2 98.5 100.0 0.1 0.0 94.9 100.0 0.1 0.0
0.5 39.4 100.0 43.6 0.0 44.9 100.0 5.6 0.0
0.6 72.9 100.0 26.7 0.0 69.4 100.0 0.2 0.0
0.8 49.3 100.0 6.5 0.0 37.1 100.0 16.6 0.0
0.9 31.3 100.0 64.0 0.0 34.1 100.0 1.7 0.0

10−1

1 69.2 100.0 3.7 0.0 65.4 100.0 6.3 0.0
0 63.3 99.9 36.6 0.1 65.5 98.6 0.0 0.0

0.2 19.5 100.0 48.8 0.0 29.6 100.0 17.5 0.0
0.5 14.3 100.0 54.4 0.0 28.9 99.9 18.7 0.0
0.6 86.2 99.9 13.8 0.1 78.3 98.6 0.0 0.0
0.8 65.6 100.0 1.7 0.0 43.7 99.5 10.8 0.0
0.9 33.3 100.0 27.9 0.0 36.5 100.0 12.6 0.0

10−2

1 99.0 99.6 0.9 0.3 95.2 96.8 0.1 0.1
0 19.8 99.9 34.9 0.0 23.7 98.6 10.2 0.0

0.2 3.9 17.1 33.8 78.0 24.4 42.9 14.7 3.0
0.5 2.0 87.6 33.2 9.5 18.9 85.7 11.9 0.9
0.6 7.1 99.8 35.4 0.1 22.3 97.3 15.4 0.1
0.8 11.6 97.2 45.8 0.3 27.3 95.5 16.5 0.5
0.9 24.2 75.2 20.3 23.6 33.5 68.8 13.1 1.5

10−3

1 68.5 99.9 26.7 0.1 65.3 98.6 5.8 0.0
0 45.2 99.9 0.1 0.1 16.9 98.5 4.9 0.0

0.2 30.1 9.4 22.7 45.1 18.1 26.2 17.9 19.5
0.5 30.1 3.2 22.7 41.3 15.7 26.1 17.9 16.2
0.6 54.1 0.0 45.9 35.9 0.0 27.8 25.7 11.9
0.8 26.8 83.0 64.5 10.9 3.0 76.8 49.2 1.3
0.9 27.9 85.0 61.5 8.4 2.1 80.9 44.2 1.1

10−4

1 45.2 99.6 31.9 0.3 42.2 96.8 12.6 0.0

analysis presented for PCFG where we prune multiple neurons, we analyze the effect of pruning
of mutliple weights and neurons in Fig. 57 and Fig. 58 respectively. These results verify that the
wrapper learned by the Tracr compiled model on fine-tuning using spuriously correlated dataset can
indeed be localized to a few weights of the Tracr model. To ensure that the gains achieved on pruning
are indeed because of removal of the wrapper, we present the histograms showing the distribution of
the predicted classes in Fig. 59, where it can be observed that after pruning the model still predicts
multiple classes.

I.3 Max identifier results

In this section, we provide additional evidence and a detailed analysis of the performance of the Tracr
compiled model on the max identifier task. We show that the model implements the sorting pattern in
the activation map of its first block in Fig. 53 and Fig-54. We present validation of our observations
on considering the spurious correlation as the difference between the fifth and seventh maximmum
element being three in Fig. 51. We validate our results for three different input data-points in Fig. 50.
A detailed visualization of the attention maps in Block-0 and Block-2 for different learning rates is
shown in Fig. 52.

39

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

----b-a-bb---a-b------------a---------b------

Block-1

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

Block-2

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

Block-1

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

Block-2

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

----b-a-bb---a-b------------a---------b------
- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - - - - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - - - - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

----b-a-bb---a-b------------a---------b------At
te

nd
in

g
To

ke
n

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - - - - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - - - - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

----b-a-bb---a-b------------a---------b------
- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - - - - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - - - - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

----b-a-bb---a-b------------a---------b------
- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - - - - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - - - - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

0.0

0.1

0.2

0.3

0.4

0.5

Tracr Program Tracr Program

CTr = 0 CTr = 1ηL

ηM

ηS

ηVS

Token Being Attended To(a) (b)
Figure 45: Counter Task: Visualization of the attention maps of the first and second blocks of
the Tracr fine-tuned models. (a) shows the analysis when the spurious correlation is not present in
the fine-tuning datatset, whereas in case of (b) the spurious correlation is present in the fine-tuning
dataset. The first row shows the maps for the Tracr compiled model and other rows shows the analysis
for different learning rates. Observation: (a) Using ηS or ηV S the model is not able to learn to
attend b’s and thus the fine-tuning task performance is poor. Whereas using ηM the model is able to
learn to attend to b’s, however the capability to count a’s is likely still present since the model still
attends to a’s. Further increasing the learning rate leads to distortion of the compiled capabilities,
and thus model learns the fine-tuning task by learning a different capability. (b) In the presence of
spurious correlation, even for large learning rate the compiled capability is still present, since the
model attends to a’s.

40

80 85 90 95 100

-
-
-
-
-
b
-
a
-
b
b
-
-
-
a
-
b
-
-
-

In
pu

t T
ok

en

Tracr

80 85 90 95 100

ηL

80 85 90 95 100

ηM

80 85 90 95 100

ηS

80 85 90 95 100

ηvs

80 85 90 95 100

-
-
-
-
-
b
-
a
-
b
b
-
-
-
a
-
b
-
-
-

In
pu

t T
ok

en

80 85 90 95 100 80 85 90 95 100 80 85 90 95 100 80 85 90 95 100

0.0 0.1 0.2 0.3 0.4 0.5

Output Channel Number

Figure 46: Counter Task: Visualization of the activated output of the first MLP layer in first and
second blocks. The visualization is shown only for channel numbers 80-100. Observation: Using
ηM preserves the Tracr compiled capability, while also learning the fine-tuning task. This shows that
the model changes behaviourally but mechanistically the compiled capabilities are still present in it.

0 25 50 75 100 125 150 175

----b-a-bb---a-b------------a---------b------

Block-1

0 25 50 75 100 125 150 175

Block-2

0 25 50 75 100 125 150 175

----b-a-bb---a-b------------a---------b------

0 25 50 75 100 125 150 175

0 25 50 75 100 125 150 175

----b-a-bb---a-b------------a---------b------In
pu

t T
ok

en

0 25 50 75 100 125 150 175

0 25 50 75 100 125 150 175

----b-a-bb---a-b------------a---------b------

0 25 50 75 100 125 150 175

0 25 50 75 100 125 150 175

(a)

----b-a-bb---a-b------------a---------b------

0 25 50 75 100 125 150 175

(b)

0.0 0.1 0.2 0.3 0.4 0.5

Tracr Program

ηL

ηM

ηS

ηVS

Output Channel Number

Figure 47: Counter Task: Visualization of the activated output of the first MLP layer in first
and second blocks. This is the complete visualization of the activation map presented in Fig. 46.

41

- - - - b - a - bb - - - a - b - - - - - - - - - - - - a - - - - - - - - - b - - - - - -

 (a)

----b-a-bb---a-b------------a---------b------

At
te

nd
in

g
To

ke
n

CTr = 0.0

- - - - b - a - bb - - - a - b - - - - - - - - - - - - a - - - - - - - - - b - - - - - -

 (b)

CTr = 0.5

- - - - b - a - bb - - - a - b - - - - - - - - - - - - a - - - - - - - - - b - - - - - -

Token Attended
 (c)

CTr = 0.8

- - - - b - a - bb - - - a - b - - - - - - - - - - - - a - - - - - - - - - b - - - - - -

 (d)

CTr = 0.9

- - - - b - a - bb - - - a - b - - - - - - - - - - - - a - - - - - - - - - b - - - - - -

 (e)

CTr = 1.0

0.0 0.1 0.2 0.3 0.4 0.5

Figure 48: Counter Task: Effect of the presence of the spuriously correlated data-points in
different fractions (CTr) in the fine-tuning dataset. The Tracr compiled model with the capability
to count a’s is fine-tuned to count b’s on different values of CTr. ηM is used for fine-tuning.
Observation: On increasing the value of CTr, the model gives lower attention to b’s and in case of
CTr = 1, almost no attention is given by the model to b’s.

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

----b-a-bb---a-b------------a---------b------

ηreFT
S

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

ηreFT
VS

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

ηreFT
M

- - - -b-a-bb- - -a-b- - - - - - - - - - - -a- - - - - - - - -b- - - - - -

ηreFT
S

-a- - - - - - -ba- -

-a-------ba----------------------------------At
te

nd
in

g
To

ke
n

-a- - - - - - -ba- -a- - - - - - -ba- -a- - - - - - -ba- -

- - - - -b- - -aa- -

-----b---aa----------------------------------
- - - - -b- - -aa- -b- - -aa- -b- - -aa- -

0.0

0.1

0.2

0.3

0.4

0.5

(a) ηM (b) ηLToken Attended

Figure 49: Counter Task: Validation of Tracr observations on Counter task on reverse fine-
tuning on three different input samples. The rows represents different input samples. Observation:
Capability revival is possible on using ηM for fine-tuning but not on using ηL.

42

k e hwmg u a t d###############

kehwmguatd###############

CTr = 0

k e hwmg u a t d###############

CTr = 1

k e hwmg u a t d###############

CTr = 0

k e hwmg u a t d###############

CTr = 1

l i t r b s u g p################

litrbsugp################At
te

nd
in

g
To

ke
n

l i t r b s u g p################ l i t r b s u g p################ l i t r b s u g p################

v c t g l y r h e u###############

vctglyrheu###############
v c t g l y r h e u############### v c t g l y r h e u############### v c t g l y r h e u###############

0.0

0.1

0.2

0.3

0.4

0.5

(a) ηVS (b) ηMToken Attended

Figure 50: Max Identifier Task: Validation of Tracr observations on max identifier task on three
different input samples. The rows represents different input samples. Observation: Using ηV S

preserves the original Tracr capabilities and therefore performs well on the fine-tuning task, whereas
using ηM distorts the compiled capabilities resulting in poor performance on the fine-tuning task.

k e h wm g u a t d ##

k
e
h
w
m
g
u
a
t
d
#
#At

te
nd

in
g

To
ke

n

Block-0

k e h wm g u a t d ##

Block-2

k e h wm g u a t d ##

ηM

k e h wm g u a t d ##

ηS

k e h wm g u a t d ##

Block-0

k e h wm g u a t d ##

Block-2

0.0 0.1 0.2 0.3 0.4 0.5

Block-0 ηVSTracr Program

Token Attended
(a) (b) (c)

Figure 51: Max Identifier Task: Validation of Tracr observations on max identifier task with the
spurious correlation defined as the difference between the indices of fifth and seventh maximum
elements being three. The rows represents different input samples. Observation: Using ηV S

preserves the original Tracr capabilities and therefore performs well on the fine-tuning task, whereas
using ηM distorts the compiled capabilities resulting in poor performance on the fine-tuning task.

43

k e h w m g u a t d # #

k
e
h
w
m
g
u
a
t
d
#
#

Block-0

k e h w m g u a t d # #

Block-2

k e h w m g u a t d # #

Block-0

k e h w m g u a t d # #

Block-2

k e h w m g u a t d # #

k
e
h
w
m
g
u
a
t
d
#
#

k e h w m g u a t d # # k e h w m g u a t d # # k e h w m g u a t d # #

k e h w m g u a t d # #

k
e
h
w
m
g
u
a
t
d
#
#At

te
nd

in
g

To
ke

n

k e h w m g u a t d # # k e h w m g u a t d # # k e h w m g u a t d # #

k e h w m g u a t d # #

k
e
h
w
m
g
u
a
t
d
#
#

k e h w m g u a t d # # k e h w m g u a t d # # k e h w m g u a t d # #

k e h w m g u a t d # #

k
e
h
w
m
g
u
a
t
d
#
#

k e h w m g u a t d # # k e h w m g u a t d # # k e h w m g u a t d # #

0.0 0.1 0.2 0.3 0.4 0.5

Tracr Program Tracr Program

CTr = 0 CTr = 1ηL

ηM

ηS

ηVS

Token Attended(a) (b)

Figure 52: Max Identifier Task: Visualization of the attention maps of the zeroth and second
blocks of the Tracr fine-tuned models on the max identifier task. (a) shows the analysis when
the spurious correlation is not present in the fine-tuning datatset, whereas in case of (b) the spurious
correlation is present in the fine-tuning dataset. The first row shows the maps for the Tracr compiled
model and other rows shows the analysis for different learning rates. Observation: Using ηL, ηM
or ηS for fine-tuning distorts the capability of the programmed Tracr model in the Block-0 and as a
result the Block-2 attention map is not able to attend to the desired output token. Whereas using ηV S

is able to preserve the capability and as a result the fine-tuned model is able to attend to the correct
token in the attention map in Block-2.

44

50 55 60 65 70

kehwmguatd##########

In
pu

t T
ok

en

Tracr

50 55 60 65 70

ηL

50 55 60 65 70

ηM

50 55 60 65 70

ηS

50 55 60 65 70

ηVS

50 55 60 65 70

kehwmguatd##########

In
pu

t T
ok

en

50 55 60 65 70 50 55 60 65 70 50 55 60 65 70 50 55 60 65 70

0.0 0.1 0.2 0.3 0.4 0.5

Output Channel Number

Figure 53: Max Identifier Task: Visualization of the activated output of the first MLP layer in
first and second blocks for the max identifier task. The visualization is shown only for channel
numbers 50-70. Observation: Using ηV S for fine-tuning, which enables the model to learn the
fine-tuning task, preserves the Tracr compiled model’s compiled capability of sorting tokens in
Block-1. Whereas other learning rates are not able to preserve this capability.

0 20 40 60 80 100

k
e
h
w
m
g
u
a
t
d
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Block-1

0 20 40 60 80 100

Block-2

0 20 40 60 80 100

k
e
h
w
m
g
u
a
t
d
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

0 20 40 60 80 100

0 20 40 60 80 100

k
e
h
w
m
g
u
a
t
d
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

At
te

nd
in

g
To

ke
n

0 20 40 60 80 100

0 20 40 60 80 100

k
e
h
w
m
g
u
a
t
d
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

0 20 40 60 80 100

0 20 40 60 80 100

(a)

k
e
h
w
m
g
u
a
t
d
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

0 20 40 60 80 100

(b)

0.0 0.1 0.2 0.3 0.4 0.5

Tracr Program

ηL

ηM

ηS

ηVS

Output Channel Number

Figure 54: Max Identifier Task: Visualization of the activated output of the first MLP layer in
first and second blocks. This is the complete visualization of the activation map presented in Fig. 53.

45

Base W1 W2 W3 W4

30

65

100

Ac
c.

 O
PT

Base W1 W2 W3 W4

30

65

100
Ac

c.
 O

FT

CTe = 0 CTe = 0

(a) CTr = 0 (b) CTr = 1

ηL ηM ηS

Figure 55: Counter Task: Pruning evaluation on Tracr model fine-tuned to count b’s. Observa-
tion: Higher value of CTr leads to the learning of the wrapper on top of the Tracr compiled capability.
This wrapper is learned on using ηM and ηS and can be localized in a few weights of the model.

Base W1 W2 W3 W4

30

65

100

Ac
c.

 O
PT

Base W1 W2 W3 W4

30

65

100

Ac
c.

 O
FT

CTe = 0 CTe = 0

(a) CTr = 0.5 (b) CTr = 0.8

ηL ηM ηS

Figure 56: Counter Task: Pruning evaluation on Tracr model fine-tuned to count b’s. Observa-
tion: Observations are consistent with Fig-7.

46

25
50
75

100
Ac

c.
 O

PT

CTe = 0 CTe = 0.5 CTe = 0.8 CTe = 1

0 5 10 15 20

 (a)

25
50
75

100

Ac
c.

 O
FT

0 5 10 15 20

 (b)

0 5 10 15 20

 (c)

0 5 10 15 20

 (d)
Number of Pruned Weights

lr1e-1 lr1e-2 lr1e-3

Figure 57: Counter Task, weight pruning: Pruning weights of the Tracr model fine-tuned to
count b’s using different learning rates. Observation: In the presence of spurious correlation the
model learns a wrapper when learning rates ηM and ηS are used. This wrapper can be localized in a
few weights of the model.

25
50
75

100

Ac
c.

 O
PT

CTe = 0 CTe = 0.5 CTe = 0.8 CTe = 1

0 5 10 15 20

 (a)

25
50
75

100

Ac
c.

 O
FT

0 5 10 15 20

 (b)

0 5 10 15 20

 (c)

0 5 10 15 20

 (d)
Number of Pruned Neurons

lr1e-1 lr1e-2 lr1e-3

Figure 58: Counter Task, neuron pruning: Pruning neurons of the Tracr model fine-tuned to
count b’s using different learning rates. Observation: In the presence of spurious correlation the
model learns a wrapper in case of ηM and ηS . This wrapper can be localized in a few weights of the
model.

0 1 2 3 4
0

10
20
30
40
50
60

Ac
c.
O P

T

CTr = 0

0 2 4 6 80

50

100

150

No-Prune

0 2 4 6 80
100
200
300
400
500
600 B1WV97-0 Pruned

0 2 4 6 80
50

100
150
200
250
300

No-Prune

0 2 4 6 80

100

200

300

B1WK148-1 Pruned

0 1 2 3 4
Pruned Weight

 (a)

0
10
20
30
40
50
60

Ac
c.

 (C
ou

nt
 a

) CTr = 1

0 2 4 6 80

50

100

150

0 2 4 6 80

100

200

300

0 2 4 6 80

100

200

300

0 2 4 6 80

100

200

300

ηM ηS

Predicted Class Label(b) (c)

ηL ηM ηS

Figure 59: Counter Task: Effect of pruning a single weight on the distribution of predicted class
labels. Observation: Even after pruning, the model predicts different classes indicating that the gain
in accuracy on pruning is indeed because the model has removed the wrapper.

47

J Additional PCFG results

In this section, we provide a detailed analysis of the PCFG results on the counter task. More
specifically, we analyze the effect of the presence of weakly and strongly relevant capability in
the model across three different parameters: training iterations (niters), fraction of fine-tuning data
samples with spurious correlation (CTr) and the probability of sampling operand token (O) to be a
during pre-training (PT). PT essentially determines whether the capability present in the pre-trained
model is strongly relevant or weakly relevant for the fine-tuning task. Additionally we also analyze
the effect of using the spuriously correlated (CTe = 1) and uncorrelated test set (CTe = 0) for
evaluation of the fine-tuned model. We present the summary of the results in Tables 5, 6 for the
counting task and Tables 7,6 for the index of occurrence tasks. Then we discuss the effect of learning
rate on fine-tuning pre-trained models with weakly and strongly relevant capabilities in Fig. 60, 61.
We observe that the observations are consistent for the considered counting and index of occurrence
tasks. Next we analyze the effect of the presence of weakly and strongly relevant capability in the
pre-trained model for different fractions of spuriously correlated data-points (CTr) and different
pre-training iterations (niters) in Fig. 62, 64, 66 for the counting element task and Fig. 63, 65, 67 for
the index of occurrence task. We observe that the observations are fairly consistent across both the
tasks and different values of niters. Next we present the effect of the spuriously correlated data and
presence of weakly and strongly correlated capabilities on the learning of the wrapper in Fig. 68, 69
on using uncorrelated test set for evaluation on counting and index of occurrence tasks respectively.
Similar analysis on using test set with spuriously correlated samples is present in Fig. 70 and 71.
We present the capability revival analysis on the Counter task for niters = 200K and niters = 50K
pre-trained models for weakly and strongly relevant capability fine-tuned models in Fig. 76 and
Fig. 77 respectively. A similar analysis for different number of pre-training iterations is present in
Fig. 78.

Table 5: Results on the PCFG counting task with 200K iterations of pre-training.

η PT (a) CTr

Acc OPT Acc OFT
Acc PT CTe = 0 CTe = 1 Acc PT CTe = 0 CTe = 1

1K 10K 1K 10K 1K 10K 1K 10K

10−4

0.999

0

100

9.7 9.5 14.5 0

27.1

99.4 100 74.9 87.5
0.5 7.2 9.7 1.3 0 75.9 99.9 95.9 100
0.8 5.6 10.8 0.2 0 60 99.8 98.1 100
1 17.2 15.2 0.2 0 0 1.6 98.9 100

0.9

0

100

99.9 92.6 13.6 67.2

99.9

99.8 100 100 92.8
0.5 100 90.7 15.6 73.5 99.8 99.4 99.9 100
0.8 99.9 43.4 11.4 33.2 99.4 99.2 100 100
1 99.8 15.9 16.5 2.4 99.6 9.4 6.1 100

0.5

0

99.9

98.9 14.7 76.6 44.1

99.9

99.9 100 87.6 99.2
0.5 95.1 23.6 71.2 33.4 99.7 100 99.8 99.9
0.8 92.8 12.2 79.8 2.2 99.9 99.9 98.7 99.9
1 49.5 19 60.6 0 25.8 16 99.8 100

10−5

0.999

0

100

48.9 10.2 51.9 4.6

27.1

39.8 99.8 13.9 79.7
0.5 19.7 11.6 12.3 1.2 18.4 98.1 81.4 99.7
0.8 12.1 6.6 7.7 0.2 6.1 85.7 98.4 99.7
1 0.4 17.5 0 0 0 0 99.9 100

0.9

0

100

100 85.3 94.8 56.9

99.9

99.8 99.9 83.3 87.3
0.5 99.9 67.2 94.9 55.4 99.9 99.9 99.3 99.8
0.8 100 34.6 94.8 21.7 99.8 99.4 99.7 100
1 98.5 13.5 88.6 0.8 58.3 3.6 99.8 100

0.5

0

100

100 97.5 97.5 65.7

99.9

100 100 95.6 95.4
0.5 99.9 94.1 98.1 69 100 100 99.3 100
0.8 99.9 87.4 93.8 67.7 99.8 100 100 100
1 99.6 41.2 91.8 53.3 90.1 19.6 99.8 100

10−6

0.999

0

100

100 29 96.6 25.7

27.1

28.5 51.8 15.1 29.2
0.5 98.7 21.8 88.9 10.6 23.3 23.7 20.3 87.5
0.8 83 15.1 69.7 6.8 18.4 8.9 26.5 99.7
1 71.7 2.3 56 0 15.7 0 29.5 99.9

0.9

0

100

100 100 95.4 91.8

99.9

99.8 99.5 84.1 84.6
0.5 100 99.9 96 94.4 99.6 99.5 95.9 99.6
0.8 99.8 99.4 95.9 92.6 99.6 99.3 94.8 99.6
1 99.8 51.6 95.1 63.9 99.5 30.5 94.2 99.7

0.5

0

99.9

100 99.9 97.7 98.1

99.9

99.8 99.8 95.4 95.6
0.5 100 99.9 97.9 93.7 100 99.9 98.5 99.6
0.8 100 100 98.8 93.1 100 99.9 98.3 99.9
1 100 97.6 98.6 85.1 99.8 73.9 98.3 100

48

25
50
75

100
CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1.0

25
50
75

100

25
50
75

100

Ac
c.

 O
FT

0 2.5K 5K 7.5K 10K

 (a)

25
50
75

100

0 2.5K 5K 7.5K 10K

 (b)
0 2.5K 5K 7.5K 10K

 (c)
0 2.5K 5K 7.5K 10K

 (d)

T(a) = 0.999

T(a) = 0.99

T(a) = 0.9

T(a) = 0.5

ηL ηM ηS

Figure 60: Counter Task, niters = 200K, CTe = 0: Effect of learning rate (LR) on fine-tuning
pre-trained models with weakly and strongly relevant capabilities and using different values of CTr

for fine-tuning. Observation: In the presence of strongly relevant capability, training with ηS yields
good performance on the fine-tuning dataset. The convergence time to learn the fine-tuning task
increases with an increase in CTr.

25
50
75

100
CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1.0

25
50
75

100

25
50
75

100

Ac
c.

 O
FT

0 2.5K 5K 7.5K 10K

 (a)

25
50
75

100

0 2.5K 5K 7.5K 10K

 (b)
0 2.5K 5K 7.5K 10K

 (c)
0 2.5K 5K 7.5K 10K

 (d)

T(a) = 0.999

T(a) = 0.99

T(a) = 0.9

T(a) = 0.5

ηL ηM ηS

Figure 61: Index of Occurrence Task, niters = 200K, CTe = 0. The settings are consistent with
Fig. 60

49

25
50
75

100
CTe = 0 CTe = 1 CTe = 0 CTe = 1

25
50
75

100

25
50
75

100

Ac
c.

 O
FT

0 2.5K 5K 7.5K 10K

 (a)

25
50
75

100

0 2.5K 5K 7.5K 10K

 (b)

0 2.5K 5K 7.5K 10K

 (c)

0 2.5K 5K 7.5K 10K

 (d)

ηM ηS

T(a) = 0.5

T(a) = 0.9

T(a) = 0.99

T(a) = 0.999

CTr = 0 CTr = 0.25 CTr = 0.5 CTr = 0.8 CTr = 1

Figure 62: Counter Task, niters = 200K: Effect of the presence of strongly or weakly relevant
pretuning capability on fine-tuning performance on using ηM and ηS . Test sets with and without
the spurious correlations are used for evaluation. Observation: The convergence time for learning
the fine-tuning task in the absence of strongly relevant capability is higher as compared to when
the strongly relevant is present in the model. The time further increases if spurious correlations are
present in the fine-tuning set. However, in the presence of spurious correlations, the convergence time
to learn the spurious correlation is small and is possible even on using the learning rate ηS . Using
ηS is unable to yield learning of the fine-tuning task if a weakly relevant capability is present in the
model.

25
50
75

100
CTe = 0 CTe = 1 CTe = 0 CTe = 1

25
50
75

100

25
50
75

100

Ac
c.

 O
FT

0 2.5K 5K 7.5K 10K

 (a)

25
50
75

100

0 2.5K 5K 7.5K 10K

 (b)

0 2.5K 5K 7.5K 10K

 (c)

0 2.5K 5K 7.5K 10K

 (d)

ηM ηS

T(a) = 0.5

T(a) = 0.9

T(a) = 0.99

T(a) = 0.999
CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1

Figure 63: Index of Occurrence Task, niters = 200K: The settings are consistent with Fig. 62.

50

Table 6: Results on the PCFG counting task with 50K iterations of pre-training.

η PT (a) CTr

Acc OPT Acc. OFT
Acc. PT CTe = 0 CTe = 1 Acc. PT CTe = 0 CTe = 1

1K 10K 1K 10K 1K 10K 1K 10K

10−4

0.999

0

99.9

10.8 9.1 2 0.1

5.17

98.9 100 86.3 93.6
0.5 11.7 8.9 2.1 0.1 90.2 99.9 97.9 99.8
0.8 5.5 11 0 0 64.9 100 98.9 99.9
1 20.2 15.9 0 0 0 1.9 99.9 100

0.9

0

99.9

9.1 10.3 0.7 0.1

15.8

99.6 100 84.2 94.4
0.5 11.4 10.6 1.5 0 93.2 99.9 97.9 100
0.8 4.2 9.2 0.1 0 63.1 100 97.8 100
1 18.4 16.4 0 0 0.5 5 100 99.9

0.5

0

99.8

87.7 10.1 62.6 0

99.7

99.9 100 89.3 93.5
0.5 90.1 9.4 67.4 0 99.5 100 99.9 100
0.8 59.5 10.1 29.3 0.1 99.2 99.9 100 99.9
1 18.7 15.2 5.1 0 17.4 14.2 100 100

10−5

0.999

0

99.9

3 9.3 16.6 0.6

5.17

32.6 99.8 12.4 88.7
0.5 30.9 11.4 4.1 0.6 12.7 99.1 93 99.7
0.8 6.3 10.8 1 0.1 1.4 93.9 99 99.8
1 2.1 20.7 0.2 0 0 0 99.8 99.9

0.9

0

99.9

28 10.9 34.7 0.1

15.8

39.6 99.8 23.4 88.6
0.5 33.2 8.9 4.2 0 22.7 99.6 92.8 100
0.8 13.1 9.3 2.9 0 9.4 95.1 98.9 100
1 1.9 19.8 0.3 0 0 0.1 99.7 100

0.5

0

99.8

99.6 73.7 88.1 46

99.7

99.9 99.9 86.4 89.2
0.5 99.6 79.3 82.7 57.1 99.8 99.9 99.1 99.9
0.8 99.6 60.8 80 33.6 99.5 99.9 99.3 100
1 81.7 12.9 68.6 0.5 46.4 16.1 98.8 100

10−6

0.999

0

99.9

94.1 18.6 81.9 18.8

5.17

9 49.1 0.4 24.4
0.5 38.8 37.2 20 5.6 6 23.8 50.7 93.7
0.8 14.4 8.8 4.2 0.2 0.9 7.8 74.8 99.9
1 8.9 5.8 2.3 0.2 1.3 0 79.2 99.8

0.9

0

99.9

99.7 21 94.3 20.6

15.8

24.4 56.8 14.6 28.4
0.5 46.9 38.6 19.7 3.6 11.8 28.6 39.4 92
0.8 30.4 10.4 8.7 1.6 3.6 12.3 62.8 98.9
1 27 6.3 6.7 0.4 1.3 0 70.4 99.5

0.5

0

99.8

99.8 99.6 94.4 82.7

99.7

99.9 99.8 81 84.6
0.5 100 99.5 91.4 80.1 99.7 99.9 95.9 99.6
0.8 99.7 97 90.1 74.6 99.7 99.3 96.2 99.3
1 99.8 55.7 91.2 61 99.4 30 96.3 99.4

0
25
50
75

100
CTe = 0 CTe = 1 CTe = 0 CTe = 1

0
25
50
75

100

25
50
75

100

Ac
c.

 O
FT

0 2.5K 5K 7.5K 10K

 (a)

0
25
50
75

100

0 2.5K 5K 7.5K 10K

 (b)

0 2.5K 5K 7.5K 10K

 (c)

0 2.5K 5K 7.5K 10K

 (d)

ηM ηS

T(a) = 0.5

T(a) = 0.9

T(a) = 0.99

T(a) = 0.999
CTr = 0 CTr = 0.25 CTr = 0.5 CTr = 0.8 CTr = 1

Figure 64: Counter Task, niters = 50K: Effect of the presence of strongly or weakly relevant
pretuning capability on fine-tuning performance on using ηM and ηS . Test sets with and without the
spurious correlations are used for evaluation. The observations are consistent with Fig. 62.

51

Table 7: Results on the PCFG index of occurrence task with 200K< iterations of pre-training.

η PT (a) CTr

Acc. OPT Acc OFT
Acc. PT CTe = 0 CTe = 1 Acc. PT CTe = 0 CTe = 1

1K 10K 1K 10K 1K 10K 1K 10K

10−4

0.999

0

99.0

5.8 0.0 23.9 0.0

9.3

71.8 99.7 46.1 99.5
0.5 9.0 0.0 23.0 0.0 66.6 99.6 81.0 100.0
0.8 14.9 0.0 0.8 0.0 36.8 99.1 99.5 100.0
1 33.6 9.5 0.0 0.0 3.7 5.8 100.0 100.0

0.9

0

99.2

96.2 0.0 88.6 0.1

97.1

98.5 99.9 98.6 99.7
0.5 96.8 0.0 83.5 0.0 97.3 99.5 100.0 100.0
0.8 96.8 0.0 84.8 0.0 97.4 99.2 100.0 100.0
1 72.6 1.3 79.1 0.0 37.3 24.0 100.0 100.0

0.5

0

98.0

95.7 4.5 96.5 3.6

98.9

99.5 99.7 99.8 99.8
0.5 95.2 5.6 78.2 3.5 99.1 99.8 100.0 100.0
0.8 96.0 17.7 90.2 5.6 98.8 99.4 100.0 100.0
1 91.3 15.8 79.8 14.5 48.0 28.8 100.0 100.0

10−5

0.999

0

99.0

94.6 2.6 86.2 18.6

9.3

17.0 85.4 16.0 68.5
0.5 98.4 3.4 97.6 7.7 14.3 79.8 27.2 97.8
0.8 94.1 5.1 94.0 0.2 10.7 66.6 37.6 99.7
1 77.6 27.7 70.8 0.0 4.9 3.7 56.6 100.0

0.9

0

99.2

99.2 88.5 99.0 79.3

97.1

97.3 99.1 98.9 99.1
0.5 99.2 91.9 99.2 77.9 97.3 98.3 100.0 100.0
0.8 98.8 95.6 98.9 84.3 96.9 98.7 99.9 100.0
1 98.0 65.4 98.0 72.7 81.3 31.8 99.9 100.0

0.5

0

98.0

97.3 95.8 100.0 89.1

98.9

99.1 99.9 99.9 99.4
0.5 97.6 95.9 98.8 75.4 99.2 99.3 100.0 100.0
0.8 97.4 95.1 97.8 80.3 99.6 99.1 100.0 100.0
1 97.4 87.7 98.0 81.0 97.2 51.8 100.0 100.0

10−6

0.999

0

99.0

99.0 80.4 99.4 73.0

9.3

14.6 23.3 19.5 15.5
0.5 98.9 94.2 99.5 94.3 13.7 20.2 22.0 40.5
0.8 99.2 67.8 98.7 61.2 13.2 9.2 25.1 71.8
1 99.4 61.6 98.8 11.3 12.9 4.5 19.3 95.6

0.9

0

99.2

98.8 99.6 99.5 99.6

97.1

97.3 97.0 98.0 98.4
0.5 99.0 98.8 99.8 99.2 96.6 96.6 98.8 99.9
0.8 98.7 99.2 99.7 99.0 97.1 96.7 99.3 100.0
1 98.7 98.0 99.4 95.8 97.8 70.7 99.3 100.0

0.5

0

98.0

97.8 97.9 99.8 99.6

98.9

99.2 98.9 99.2 99.7
0.5 98.7 98.0 99.8 98.2 98.9 99.0 99.8 100.0
0.8 97.4 97.9 99.6 98.2 99.5 98.9 100.0 100.0
1 98.1 96.7 99.9 96.4 98.9 94.5 99.9 100.0

25
50
75

100
CTe = 0 CTe = 1 CTe = 0 CTe = 1

25
50
75

100

25
50
75

100

Ac
c.

 O
FT

0 2.5K 5K 7.5K 10K

 (a)

25
50
75

100

0 2.5K 5K 7.5K 10K

 (b)

0 2.5K 5K 7.5K 10K

 (c)

0 2.5K 5K 7.5K 10K

 (d)

ηM ηS

T(a) = 0.5

T(a) = 0.9

T(a) = 0.99

T(a) = 0.999
CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1

Figure 65: Index of Occurrence Task, niters = 50K: The settings are consistent with Fig. 64.

52

Table 8: Results on the PCFG index of occurrence task with 50K iterations of pre-training.

η PT (a) CTr

Acc OPT Acc OFT
Acc. PT CTe = 0 CTe = 1 Acc. PT CTe = 0 CTe = 1

1K 10K 1K 10K 1K 10K 1K 10K

10−4

0.999

0

94.2

0.5 0.0 11.7 0.1

3.2

77.1 99.6 66.1 99.4
0.5 3.2 0.0 2.0 0.0 60.0 98.5 92.5 100.0
0.8 6.7 0.1 1.0 0.0 26.7 96.8 98.7 100.0
1 23.1 10.9 0.0 0.0 3.8 5.1 99.6 100.0

0.9

0

94.2

43.2 0.0 34.6 0.8

69.9

86.1 99.6 75.1 97.5
0.5 48.2 0.0 56.2 0.1 81.0 98.9 97.5 99.9
0.8 53.5 0.0 53.1 0.0 74.0 97.0 98.8 100.0
1 12.8 11.0 32.8 0.0 4.4 3.4 99.8 100.0

0.5

0

88.6

72.1 2.3 59.6 2.6

91.5

95.2 98.6 90.2 99.6
0.5 65.4 2.3 70.4 0.0 91.4 99.3 98.8 100.0
0.8 56.6 1.5 65.5 0.0 88.7 97.4 99.7 100.0
1 39.0 12.8 40.2 0.0 6.1 5.3 99.9 100.0

10−5

0.999

0

94.2

5.0 0.1 6.4 7.7

3.2

18.4 88.9 10.3 86.5
0.5 74.1 1.4 42.3 0.4 10.1 77.0 55.2 98.8
0.8 37.4 3.8 13.2 0.7 6.9 45.9 86.9 98.7
1 48.0 19.1 2.7 0.0 0.5 4.4 95.2 100.0

0.9

0

94.2

89.2 18.9 69.6 26.8

69.9

74.0 91.1 66.8 82.8
0.5 91.9 25.0 75.9 38.9 70.8 86.9 82.0 99.2
0.8 92.4 30.4 75.9 32.1 60.8 80.2 87.8 99.8
1 69.7 8.8 73.9 8.4 13.8 4.4 92.6 100.0

0.5

0

88.6

87.6 64.0 77.7 51.4

91.5

93.1 95.6 85.5 90.9
0.5 85.9 57.5 80.0 57.0 90.4 95.5 93.9 100.0
0.8 84.9 46.8 78.2 50.4 89.2 91.6 96.8 100.0
1 80.1 33.5 77.6 13.3 38.6 5.5 98.1 100.0

10−6

0.999

0

94.2

87.5 3.7 73.8 14.2

3.2

8.3 23.0 15.8 20.7
0.5 95.3 49.3 83.3 19.2 5.4 13.7 27.5 76.9
0.8 94.0 31.0 71.4 7.7 3.9 7.2 38.7 93.7
1 88.1 43.0 50.6 2.1 0.3 1.1 44.7 97.5

0.9

0

94.2

93.6 88.2 73.2 70.7

69.9

69.6 75.6 56.9 66.9
0.5 94.3 92.2 73.1 76.4 70.3 69.7 67.4 88.6
0.8 92.7 89.8 75.7 80.3 65.3 63.6 71.8 94.7
1 95.6 56.2 72.8 72.3 60.2 7.8 71.9 97.9

0.5

0

88.6

87.3 87.0 80.0 76.6

91.5

90.3 93.8 85.1 88.3
0.5 87.7 84.5 80.4 80.8 93.4 91.5 90.3 97.6
0.8 90.6 83.2 83.1 80.5 92.3 87.9 90.1 98.6
1 89.0 77.3 79.8 70.2 92.4 23.0 91.9 99.7

0
25
50
75

100
CTe = 0 CTe = 1 CTe = 0 CTe = 1

0
25
50
75

100

25
50
75

100

Ac
c.

 O
FT

0 2.5K 5K 7.5K 10K

 (a)

0
25
50
75

100

0 2.5K 5K 7.5K 10K

 (b)
0 2.5K 5K 7.5K 10K

 (c)
0 2.5K 5K 7.5K 10K

 (d)

ηM ηS

T(a) = 0.5

T(a) = 0.9

T(a) = 0.99

T(a) = 0.999
CTr = 0 CTr = 0.25 CTr = 0.5 CTr = 0.8 CTr = 1

Figure 66: Counter Task, niters = 10K: Effect of the presence of strongly or weakly relevant
pretuning capability on fine-tuning performance on using ηM and ηS . Test sets with and without the
spurious correlations are used for evaluation. The observations are consistent with Fig. 62.

53

25
50
75

100
CTe = 0 CTe = 1 CTe = 0 CTe = 1

25
50
75

100

25
50
75

100

Ac
c.

 O
FT

0 2.5K 5K 7.5K 10K

 (a)

25
50
75

100

0 2.5K 5K 7.5K 10K

 (b)

0 2.5K 5K 7.5K 10K

 (c)

0 2.5K 5K 7.5K 10K

 (d)

ηM ηS

T(a) = 0.5

T(a) = 0.9

T(a) = 0.99

T(a) = 0.999
CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1

Figure 67: Index of Occurrence Task, niters = 10K: The settings are consistent with Fig. 66.

25
50
75

100
CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1.0

25
50
75

100

Ac
c.

 O
PT

0 2.5K 5K 7.5K 10K

 (a)

25
50
75

100

0 2.5K 5K 7.5K 10K

 (b)

0 2.5K 5K 7.5K 10K

 (c)

0 2.5K 5K 7.5K 10K

 (d)

niters = 200k

niters = 50k

niters = 10k

T(a) = 0.999 T(a) = 0.99 T(a) = 0.9 T(a) = 0.5

Figure 68: Counter Task, ηM , CTe = 0 : Learning of the wrapper in presence of different fraction of
spuriously correlated data, values of PT (a) during pre-training, and training iterations. Observation:
Using a higher fraction of spuriously correlated data in the fine-tuning set (higher value of CTr) leads
to faster degradation in the pre-training accuracy. Further this degradation is even faster in presence
of weakly relevant capability.

54

25
50
75

100
CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1.0

25
50
75

100

Ac
c.

 O
PT

0 2.5K 5K 7.5K 10K

 (a)

25
50
75

100

0 2.5K 5K 7.5K 10K

 (b)

0 2.5K 5K 7.5K 10K

 (c)

0 2.5K 5K 7.5K 10K

 (d)

niters = 200k

niters = 50k

niters = 10k

T(a) = 0.999 T(a) = 0.99 T(a) = 0.9 T(a) = 0.5

Figure 69: Index of Occurrence Task, Medium LR, CTe = 0: The settings are consistent with
Fig. 68.

25
50
75

100
CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1.0

25
50
75

100

Ac
c.

 O
PT

0 2.5K 5K 7.5K 10K

 (a)

25
50
75

100

0 2.5K 5K 7.5K 10K

 (b)

0 2.5K 5K 7.5K 10K

 (c)

0 2.5K 5K 7.5K 10K

 (d)

niters = 200k

niters = 50k

niters = 10k

T(a) = 0.999 T(a) = 0.99 T(a) = 0.9 T(a) = 0.5

Figure 70: Counter Task, ηM , CTe = 1 : Learning of the wrapper in presence of different fraction of
spuriously correlated data, values of PT (a) during pre-training, and training iterations. Observation:
Using a higher fraction of spuriously correlated data in the fine-tuning set (higher value of CTr) leads
to faster degradation in the pre-training accuracy. Further this degradation is even faster in presence
of weakly relevant capability.

55

25
50
75

100
CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1.0

25
50
75

100

Ac
c.

 O
PT

0 2.5K 5K 7.5K 10K

 (a)

25
50
75

100

0 2.5K 5K 7.5K 10K

 (b)

0 2.5K 5K 7.5K 10K

 (c)

0 2.5K 5K 7.5K 10K

 (d)

niters = 200k

niters = 50k

niters = 10k

T(a) = 0.999 T(a) = 0.99 T(a) = 0.9 T(a) = 0.5

Figure 71: Index of Occurrence Task, Medium LR, CTe = 1 : The settings are consistent with
Fig. 70.

25
50
75

100
CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1.0

25
50
75

100

Ac
c.

 O
PT

0 2.5K 5K 7.5K 10K

 (a)

25
50
75

100

0 2.5K 5K 7.5K 10K

 (b)

0 2.5K 5K 7.5K 10K

 (c)

0 2.5K 5K 7.5K 10K

 (d)

niters = 200k

niters = 50k

niters = 10k

T(a) = 0.999 T(a) = 0.99 T(a) = 0.9 T(a) = 0.5

Figure 72: Counter Task, ηS , CTe = 0 : Learning of the wrapper in presence of different fraction of
spuriously correlated data, values of PT (a) during pre-training, and training iterations. Observation:
The observations are consistent with Fig. 68

56

25
50
75

100
CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1.0

25
50
75

100

Ac
c.

 O
PT

0 2.5K 5K 7.5K 10K

 (a)

25
50
75

100

0 2.5K 5K 7.5K 10K

 (b)

0 2.5K 5K 7.5K 10K

 (c)

0 2.5K 5K 7.5K 10K

 (d)

niters = 200k

niters = 50k

niters = 10k

T(a) = 0.999 T(a) = 0.99 T(a) = 0.9 T(a) = 0.5

Figure 73: Index of Occurrence Task, ηS , CTe = 0 : The settings are consistent with Fig. 72

25
50
75

100
CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1.0

25
50
75

100

Ac
c.

 O
PT

0 2.5K 5K 7.5K 10K

 (a)

25
50
75

100

0 2.5K 5K 7.5K 10K

 (b)

0 2.5K 5K 7.5K 10K

 (c)

0 2.5K 5K 7.5K 10K

 (d)

niters = 200k

niters = 50k

niters = 10k

T(a) = 0.999 T(a) = 0.99 T(a) = 0.9 T(a) = 0.5

Figure 74: Counter Task, ηS , CTe = 1 : Learning of the wrapper in presence of different fraction of
spuriously correlated data, values of PT (a) during pre-training, and training iterations. Observation:
The settings are consistent with Fig. 70

25
50
75

100
CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1.0

25
50
75

100

Ac
c.

 O
PT

0 2.5K 5K 7.5K 10K

 (a)

25
50
75

100

0 2.5K 5K 7.5K 10K

 (b)

0 2.5K 5K 7.5K 10K

 (c)

0 2.5K 5K 7.5K 10K

 (d)

niters = 200k

niters = 50k

niters = 10k

T(a) = 0.999 T(a) = 0.99 T(a) = 0.9 T(a) = 0.5

Figure 75: Index of Occurrence Task, ηS , CTe = 1 : The settings are consistent with Fig. 74

57

25
50
75

100
CTe = 0 CTe = 1 CTe = 0 CTe = 1

25
50
75

100

Ac
c.

 O
PT

25
50
75

100

102 103 104

25
50
75

100

102 103 104 102 103 104 102 103 104

T(a) = 0.999

T(a) = 0.99

T(a) = 0.9

T(a) = 0.5

(a) ηM (b) ηS

CTr = 0.0 CTr = 0.25 CTr = 0.5 CTr = 0.9 CTr = 1.0

Figure 76: Counter Task, niters = 200K: Reverse Fine-tuning on weakly and strongly relevant
capability fine-tuned models. Medium and small learning rates are used for reverse fine-tuning in
the presence of different degrees of spuriously correlated data-points present in the train-set. The
fine-tuned model was fine-tuned using Large LR. Observation: When the model possesses weakly
relevant capability, the convergence time is lower for models fine-tuned on dataset with spurious
correlations. If the model possesses strongly relevant capability, this difference is less. The “revival”
of pre-training capability is observed for all values of CTr. Even though fine-tuning was done using a
large learning rate of 10−4, capability revival is possible even on using a small learning rate.

58

25
50
75

100
CTe = 0 CTe = 1 CTe = 0 CTe = 1

25
50
75

100

Ac
c.

 O
PT

25
50
75

100

102 103 104

25
50
75

100

102 103 104 102 103 104 102 103 104

T(a) = 0.999

T(a) = 0.99

T(a) = 0.9

T(a) = 0.5

(a) ηM (b) ηS

CTr = 0.0 CTr = 0.25 CTr = 0.5 CTr = 0.9 CTr = 1.0

Figure 77: Counter Task, niters = 50K: Reverse Fine-tuning on weakly and strongly relevant
capability fine-tuned models. ηM and ηS are used for capability reverse fine-tuning in the presence of
different fraction of spuriously correlated data-points present in the train-set. The fine-tuned model
was fine-tuned using Large LR. Observation: The observations are consistent with Fig. 76

25
50
75

100
CTe = 0 CTe = 1 CTe = 0 CTe = 1

25
50
75

100

Ac
c.

 O
PT

102 103 104

25
50
75

100

102 103 104 102 103 104 102 103 104

(a) ηM (b) ηS

niters = 200k

niters = 50k

niters = 10k

Iters (Log Scale)

L
T H

T CTr = 0 CTr = 1

Figure 78: Counter Task: Reverse fine-tuning analysis for different pre-training iterations.
Observation: Capability Revival is seen for models pre-trained with different number of iterations.

59

J.1 Pruning Analysis

In this section, we present detailed results on pruning analysis of the PCFG setup on both counting
and index of occurrence tasks. We provide an exhaustive evaluation in Fig. 79, 82, 84, 86 and 88 for
the Counter task and Fig. 80, 83, 85, 87 and 89 for the index of occurrence task.

25
50
75

100
CTe = 0 CTe = 1 CTe = 0 CTe = 1 CTe = 0 CTe = 1

25
50
75

100

Ac
c.

 O
PT

0 25 50 75 100

25
50
75

100

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
(c) ηS(b) ηM(a) ηL

niters = 200k

niters = 50k

niters = 10k

CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1.0

Figure 79: Counter task, PT (a) = 0.999, Pruning Analysis: Revival of pre-training capability
analysis for different learning rates, pre-training iterations and different values of CTr. Observation:
(a) On using ηL the model learns the wrapper only when fine-tuning on CTe = 1. This wrapper is
learned only on fine-tuning set with the spurious correlations . (b) On using ηM the model learns the
wrapper on fine-tuning with smaller values of CTe as well. However, still this wrapper is learned only
on fine-tuning set with the spurious correlations. (c) On using ηS the model learns the wrapper for all
values of CTe and for all the data samples.

60

25
50
75

100
CTe = 0 CTe = 1 CTe = 0 CTe = 1 CTe = 0 CTe = 1

25
50
75

100

Ac
c.

 O
PT

0 25 50 75 100

25
50
75

100

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
(c) ηS(b) ηM(a) ηL

niters = 200k

niters = 50k

niters = 10k

CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1.0

Figure 80: Index of Occurrence task, PT (a) = 0.999, Pruning Analysis: The settings are
consistent with Fig. 79

30
65

100

Ac
c.

 O
PT

CTe = 0 CTe = 1 CTe = 0 CTe = 1

0 5 10 15

30
65

100

Ac
c.

 O
FT

0 5 10 15 0 5 10 15 0 5 10 15
(a) ηM (b) ηS

CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1.0

Figure 81: Index of Occurrence task, PT (a) = 0.999, Pruning Analysis: The settings are
consistent with Fig. 7

61

25
50
75

100
CTe = 0 CTe = 1 CTe = 0 CTe = 1 CTe = 0 CTe = 1

25
50
75

100

Ac
c.

 O
PT

25
50
75

100

0 5 10 15 20

25
50
75

100

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

T(a) = 0.999

(c) ηS(b) ηM(a) ηL

T(a) = 0.99

T(a) = 0.9

T(a) = 0.5

CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1.0

Figure 82: Counter task, niters = 200K, Pruning Analysis: Revival of pre-training capability
analysis for different learning rates, weakly and strongly relevant capability fine-tuned models, and
different values of CTr. Observation: Learning of the wrapper is possible for weakly as well as
strongly relevant capability pre-trained models.

25
50
75

100
CTe = 0 CTe = 1 CTe = 0 CTe = 1 CTe = 0 CTe = 1

25
50
75

100

Ac
c.

 O
PT

25
50
75

100

0 5 10 15 20

25
50
75

100

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

T(a) = 0.999

(c) ηS(b) ηM(a) ηL

T(a) = 0.99

T(a) = 0.9

T(a) = 0.5

CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1.0

Figure 83: Index of Occurrence task, niters = 200K, Pruning Analysis: The settings are consistent
with Fig. 82

62

25
50
75

100
CTe = 0 CTe = 1 CTe = 0 CTe = 1 CTe = 0 CTe = 1

25
50
75

100

Ac
c.

 O
PT

25
50
75

100

0 25 50 75 100

25
50
75

100

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

T(a) = 0.999

(c) ηS(b) ηM(a) ηL

T(a) = 0.99

T(a) = 0.9

T(a) = 0.5

CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1.0

Figure 84: Counter task, niters = 200K Pruning Analysis: Revival of pre-training capability
analysis for different learning rates, weakly and strongly relevant capability fine-tuned models and
different values of CTr. Here larger number of neurons are pruned as compared to Fig. 82.

25
50
75

100
CTe = 0 CTe = 1 CTe = 0 CTe = 1 CTe = 0 CTe = 1

25
50
75

100

Ac
c.

 O
PT

25
50
75

100

0 25 50 75 100

25
50
75

100

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

T(a) = 0.999

(c) ηS(b) ηM(a) ηL

T(a) = 0.99

T(a) = 0.9

T(a) = 0.5

CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1.0

Figure 85: Index of Occurrence task, niters = 200K, Pruning Analysis: Here larger number of
neurons are pruned. The settings are consistent with Fig. 84

63

25
50
75

100
CTr = 0.0 CTr = 0.5 CTr = 0.8 CTr = 1.0

25
50
75

100

Ac
c.

 O
PT

0 25 50 75 100

 (a)

25
50
75

100

0 25 50 75 100

 (b)

0 25 50 75 100

 (c)

0 25 50 75 100

 (d)

niters = 200k

niters = 50k

niters = 10k

T(a) = 0.999 T(a) = 0.99 T(a) = 0.9 T(a) = 0.5

Figure 86: Counter task, ηL, CTe = 0, Pruning analysis: Effect of strongly and weakly relevant
capabilities for different number of pre-training iterations and different values of CTr Observation:
Fine-tuning a model with strongly relevant capability leads to learning of an “inhibitor” on its pre-
training capability, i.e., a wrapper that disallows use of the pretraining capability. Revival of the
pre-training capability is partly possible on pruning, if the model has strongly relevant capability
and it was fine-tuned on dataset without spurious correlations.The inhibitor is mainly learned for the
200K iteration pre-trained model.

25
50
75

100
CTr = 0.0 CTr = 0.5 CTr = 0.8 CTr = 1.0

25
50
75

100

Ac
c.

 O
PT

0 25 50 75 100

 (a)

25
50
75

100

0 25 50 75 100

 (b)

0 25 50 75 100

 (c)

0 25 50 75 100

 (d)

niters = 200k

niters = 50k

niters = 10k

T(a) = 0.999 T(a) = 0.99 T(a) = 0.9 T(a) = 0.5

Figure 87: Index of Occurrence task, ηL, CTe = 0, Pruning analysis: The settings are consistent
with Fig. 86

64

25
50
75

100
CTr = 0.0 CTr = 0.5 CTr = 0.8 CTr = 1.0

25
50
75

100

Ac
c.

 O
PT

0 25 50 75 100

 (a)

25
50
75

100

0 25 50 75 100

 (b)

0 25 50 75 100

 (c)

0 25 50 75 100

 (d)

ηL

ηM

ηS

T(a) = 0.999 T(a) = 0.99 T(a) = 0.9 T(a) = 0.5

Figure 88: Counter task, niters = 200K, CTe = 0, Pruning analysis: Effect of the strongly and
weakly relevant capabilities for different number of pre-training iterations and different values of
fraction of spurious correlations present in the fine-tuning dataset. Observation: Learning of the
inhibitor is observed on using ηL.

25
50
75

100
CTr = 0.0 CTr = 0.5 CTr = 0.8 CTr = 1.0

25
50
75

100

Ac
c.

 O
PT

0 25 50 75 100

 (a)

25
50
75

100

0 25 50 75 100

 (b)

0 25 50 75 100

 (c)

0 25 50 75 100

 (d)

ηL

ηM

ηS

T(a) = 0.999 T(a) = 0.99 T(a) = 0.9 T(a) = 0.5

Figure 89: Index of Occurrence task, niters = 200K, CTe = 0 Pruning analysis: the settings are
consistent with Fig. 88

65

25
50
75

100
CTr = 0 CTr = 1

25
50
75

100
CTr = 0 CTr = 1

25
50
75

100

Ac
c.

 O
PT

25
50
75

100

Ac
c.

 O
FT

B0 B1 B2 B3 B4 B5 B6

25
50
75

100

B0 B1 B2 B3 B4 B5 B6 B0 B1 B2 B3 B4 B5 B6

25
50
75

100

B0 B1 B2 B3 B4 B5 B6

ηL

ηM

ηS

(a) (b)Probed Block

T(a) = 0.999 T(a) = 0.99 T(a) = 0.9 T(a) = 0.5

Figure 90: Counter task, niters = 200K , CTe = 0, Probing analysis: The effect of different
values of learning rate, weakly and strongly relevant capabilities is shown. Observation: Using
ηL hampers the pre-training capability to count a especially when the probed model has a weakly
relevant capability. The performance on the pre-training task of counting a’s continues to be high,
especially with ηS . The accuracy of counting b’s shows that fine-tuning capability is learned on
using ηL. On using ηS , models with weakly relevant capabilities are not able to learn the fine-tuning
capability well.

25
50
75

100
CTr = 0 CTr = 1

25
50
75

100
CTr = 0 CTr = 1

25
50
75

100

Ac
c.

 O
PT

25
50
75

100

Ac
c.

 O
FT

B0 B1 B2 B3 B4 B5 B6

25
50
75

100

B0 B1 B2 B3 B4 B5 B6 B0 B1 B2 B3 B4 B5 B6

25
50
75

100

B0 B1 B2 B3 B4 B5 B6

ηL

ηM

ηS

(a) (b)Probed Block

T(a) = 0.999 T(a) = 0.99 T(a) = 0.9 T(a) = 0.5

Figure 91: Index of Occurrence task, niters = 200K , CTe = 0, Probing analysis: The settings
are consistent with Fig. 90

66

25
50
75

100
CTr = 0 CTr = 1 CTr = 0 CTr = 1

25
50
75

100

Ac
c.

 O
PT

Ac
c.

 O
FT

B0 B1 B2 B3 B4 B5 B6

25
50
75

100

B0 B1 B2 B3 B4 B5 B6 B0 B1 B2 B3 B4 B5 B6 B0 B1 B2 B3 B4 B5 B6

ηL

ηM

ηS

(a) (b)Probed Block

T(a) = 0.999 T(a) = 0.99 T(a) = 0.9 T(a) = 0.5

Figure 92: Counter task, niters = 50K, CTe = 0, Probing analysis: The observations are consistent
with Fig. 90

25
50
75

100
CTr = 0 CTr = 1 CTr = 0 CTr = 1

25
50
75

100

Ac
c.

 O
PT

Ac
c.

 O
FT

B0 B1 B2 B3 B4 B5 B6

25
50
75

100

B0 B1 B2 B3 B4 B5 B6 B0 B1 B2 B3 B4 B5 B6 B0 B1 B2 B3 B4 B5 B6

ηL

ηM

ηS

(a) (b)Probed Block

T(a) = 0.999 T(a) = 0.99 T(a) = 0.9 T(a) = 0.5

Figure 93: Index of Occurrence task, niters = 50K, CTe = 0, Probing analysis: The settings are
consistent with Fig. 92

J.2 Probing Analysis

In this section, we present detailed results on probing analysis of the PCFG setup on both counting
and index of occurrence tasks. We provide an exhaustive evaluation in Fig. 92, 95, 97 for the Counter
task and Fig. 93, 96, 98 for the index of occurrence task.

67

B0 B1 B2 B3 B4 B5 B6

30
65

100

Ac
c.

 O
PT

CTr = 0

B0 B1 B2 B3 B4 B5 B6

CTr = 1

B0 B1 B2 B3 B4 B5 B6

CTr = 0

B0 B1 B2 B3 B4 B5 B6

CTr = 1

(a) ηM (b) ηS

H
T M

T L
T

Figure 94: Index of Occurrence task, niters = 200K , CTe = 0, Probing analysis: The settings
are consistent with Fig. 10

25
50
75

100
CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1

25
50
75

100

Ac
c.

 O
PT

Ac
c.

 O
FT

B0 B1 B2 B3 B4 B5 B6

(a)

25
50
75

100

B0 B1 B2 B3 B4 B5 B6

(b)

B0 B1 B2 B3 B4 B5 B6

(c)

B0 B1 B2 B3 B4 B5 B6

(d)

ηL

ηM

ηS

Probed Block

T(a) = 0.999 T(a) = 0.99 T(a) = 0.9 T(a) = 0.5

Figure 95: Counter task, niters = 200K , CTe = 0, Probing analysis. Observation: With an
increase in CTr, the accuracy on counting a’s also increases for both weakly as well as strongly
relevant capability models.

68

25
50
75

100
CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1

25
50
75

100

Ac
c.

 O
PT

Ac
c.

 O
FT

B0 B1 B2 B3 B4 B5 B6

(a)

25
50
75

100

B0 B1 B2 B3 B4 B5 B6

(b)

B0 B1 B2 B3 B4 B5 B6

(c)

B0 B1 B2 B3 B4 B5 B6

(d)

ηL

ηM

ηS

Probed Block

T(a) = 0.999 T(a) = 0.99 T(a) = 0.9 T(a) = 0.5

Figure 96: Index of Occurrence task, niters = 200K , CTe = 0, Probing analysis: The settings
are consistent with Fig. 95

25
50
75

100
CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1

25
50
75

100

Ac
c.

 O
FT

Ac
c.

 O
FT

B0 B1 B2 B3 B4 B5 B6

(a)

25
50
75

100

B0 B1 B2 B3 B4 B5 B6

(b)

B0 B1 B2 B3 B4 B5 B6

(c)

B0 B1 B2 B3 B4 B5 B6

(d)

ηL

ηM

ηS

Probed Block

T(a) = 0.999 T(a) = 0.99 T(a) = 0.9 T(a) = 0.5

Figure 97: Counter task, niters = 50K , CTe = 0, Probing analysis. Observation: With an
increase in CTr, the accuracy on counting b’s also decreases for both weakly as well as strongly
relevant capability models.

69

25
50
75

100
CTr = 0 CTr = 0.5 CTr = 0.8 CTr = 1

25
50
75

100

Ac
c.

 O
FT

Ac
c.

 O
FT

B0 B1 B2 B3 B4 B5 B6

(a)

25
50
75

100

B0 B1 B2 B3 B4 B5 B6

(b)

B0 B1 B2 B3 B4 B5 B6

(c)

B0 B1 B2 B3 B4 B5 B6

(d)

ηL

ηM

ηS

Probed Block

T(a) = 0.999 T(a) = 0.99 T(a) = 0.9 T(a) = 0.5

Figure 98: Index of Occurrence task, niters = 50K , CTe = 0, Probing analysis: The settings are
consistent with Fig. 97

70

	Introduction
	Defining our notion of capabilities
	Building Capable Models: Tracr and PCFGs
	Evaluation setup details

	Results and Discussion
	Conclusion
	Organization of Appendix
	Related Work
	Additional results
	Validating our Hypotheses on Tracr
	Validating our Hypotheses on PCFG using Probing
	Validating our Hypotheses on TinyStories

	Additional details on Datasets
	Tracr Details
	PCFG
	TinyStories Instruct

	Details on Training and Evaluation
	Tracr
	PCFG

	Mechanistic Interpretability Tools Setup
	Additional results
	Fine-tuning in presence of some pre-training data
	Jailbreaking Analysis
	Sample efficiency analysis for Reverse Fine-tuning
	Reverse Fine-tuning a more safety-oriented fine-tuning protocol

	Details and Results on Tinystories Experiments
	Model Training
	Evaluation Metrics
	Results

	Additional Tracr Results
	Behavioral results on fine-tuning
	counter results
	Max identifier results

	Additional PCFG results
	Pruning Analysis
	Probing Analysis

