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Figure 1: Diverse applications of our inference-time scaling method. Pretrained flow models
struggle to generate images that align with complex prompts (left side of each case), whereas our
inference-time scaling effectively extends their capabilities to achieve precise alignment (red box).

Abstract

We propose an inference-time scaling approach for pretrained flow models. Re-
cently, inference-time scaling has gained significant attention in LLMs and diffusion
models, improving sample quality or better aligning outputs with user preferences
by leveraging additional computation. For diffusion models, particle sampling has
allowed more efficient scaling due to the stochasticity at intermediate denoising
steps. On the contrary, while flow models have gained popularity—offering faster
generation and high-quality outputs—efficient inference-time scaling methods used
for diffusion models cannot be directly applied due to their deterministic generative
process. To enable efficient inference-time scaling for flow models, we propose
three key ideas: 1) SDE-based generation, enabling particle sampling in flow
models, 2) Interpolant conversion, broadening the search space, and 3) Rollover
Budget Forcing (RBF), maximizing compute utilization. Our experiments show
that SDE-based generation and variance-preserving (VP) interpolant-based genera-
tion, improves the performance of particle sampling methods for inference-time
scaling in flow models. Additionally, we demonstrate that RBF with VP-SDE
achieves the best performance, outperforming all previous inference-time scaling
approaches. Project page: flow-inference-time-scaling.github.io,
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1 Introduction

Over the past years, scaling laws of Al models have mainly focused on increasing model size
and training data. However, recent advancements have shifted attention toward inference-time
scaling [57,159], leveraging computational resources during inference to enhance model performance.
OpenAl ol [42] and DeepSeek R1 [11] exemplify this approach, demonstrating consistent output
improvements with increased inference computation. Recent research in LLMs [41] attempting to
replicate such improvements has introduced fest-time budget forcing, achieving high efficiency with
limited token sampling during inference.

For diffusion models [54,56], which are widely used for generation tasks, research on inference-time
scaling has been growing in the context of reward-based sampling [23} 30, 53]]. Given a reward
function that measures alignment with user preferences [26] or output quality [50, 31]], the goal is to
find the sample from the learned data distribution that best aligns with the reward through repeated
sampling. Fig. [T|showcases diverse applications of inference-time scaling using our method, enabling
the generation of faithful images that accurately align with complex user descriptions involving objects
quantities, logical relationships, and conceptual attributes. Notably, naive generation from text-to-
image models [48, 28] often fails to fully meet user specifications, highlighting the effectiveness of
inference-time scaling.

Our goal in this work is to extend the inference-time scaling capabilities of diffusion models to
flow models. Flow models [32]] power state-of-the-art image [15} 28] and video generation [7,
72], achieving high-quality synthesis with few inference steps, enabled by trajectory stratification
techniques during training [35]]. Beyond just speed, recent pretrained flow models, equipped with
enhanced text-image embeddings [46] and advanced architectures [15], significantly outperform
previous pretrained diffusion models in both image and video generation quality.

Despite their advantages in generating high-quality results more efficiently than diffusion models, flow
models have an inherent limitation in the context of inference-time scaling. Due to their ODE-based
deterministic generative process, they cannot directly incorporate particle sampling at intermediate
steps, a key mechanism for effective inference-time scaling in diffusion models. Building on the
formulation of stochastic interpolant framework [[1], we adopt an SDE-based sampling method for
flow models at inference-time, enabling particle sampling for reward alignment.

To further expand the exploration space, we consider not only stochasticity but also the choice of the
interpolant. While typical flow models use a linear interpolant, diffusion models commonly adopt
a Variance-Preserving (VP) interpolant [56] [18]]. Inspired by this, for the first time, we incorporate
the VP interpolant into the particle sampling of flow models and demonstrate its effectiveness in
increasing sample diversity, enhancing the likelihood of discovering high-reward samples.

We emphasize that while we propose converting the generative process of a pretrained flow model to
align with that of diffusion models—i.e.,VP-SDE-based generation—inference-time scaling with
flow models offers significant advantages over diffusion models. Flow models, particularly those
with rectification fine-tuning [35! [36], produce much clearer expected outputs at intermediate steps,
enabling more precise future reward estimation and, in turn, more effective particle sampling.

We additionally explore a strategy for tight budget enforcement in terms of the number of function
evaluations (NFEs) of the velocity prediction network. Previous particle-sampling-based inference-
time scaling approaches for diffusion models [30} 53] allocate the NFEs budget uniformly across
timesteps in the generative process, which we empirically found to be ineffective in practice. To
optimize budget utilization, we propose Rollover Budget Forcing, a method that adaptively reallocates
NFEs across timesteps. Specifically, we perform a denoising step upon identifying a new particle
with a higher expected future reward and allocate the remaining NFEs to subsequent timesteps.

Experimentally, we demonstrate that our inference-time SDE conversion and VP interpolant conver-
sion enable efficient particle sampling in flow models, leading to consistent improvements in reward
alignment across two challenging tasks: compositional text-to-image generation and quantity-aware
image generation. Additionally, our Rollover Budget Forcing (RBF) provides further performance
gains, outperforming all previous particle sampling approaches. We also demonstrate that for differen-
tiable rewards, such as aesthetic image generation, integrating RBF with a gradient-based method []]
creates a synergistic effect, leading to further performance improvements.

In summary, we introduce an inference-time scaling for flow models, analyzing three key factors:



* ODE vs. SDE: We introduce an SDE generative process for flow models to enable particle sampling.

* Interpolant: We demonstrate that replacing the linear interpolant of flow models with Variance Pre-
serving interpolant expands the search space, facilitating the discovery of higher-reward samples.

* NFEs Allocation: We propose Rollover Budget Forcing that adaptively allocates NFEs across
timesteps to ensure efficient utilization of the available compute budget.

2 Related Work

2.1 Reward Alignment in Diffusion Models

In the literature of diffusion models, reward alignment approaches can be broadly categorized into
fine-tuning-based methods [5} 169} 62}, 9 43| 167]] and inference-time-scaling-based methods [30,
53, [131 164, 16]. While fine-tuning diffusion models enables the generation of samples aligned with
user preferences, it requires fine-tuning for each task, potentially limiting scalability. In contrast,
inference-time scaling approaches offer a significant advantage as they can be applied to any reward
without requiring additional fine-tuning. Moreover, inference-time scaling can also be applied to
fine-tuned models to further enhance alignment with the reward. Since our proposed approach is an
inference-time scaling method, we focus our review on related literature in this domain.

When the reward is differentiable, gradient-based methods [} 3, [71} (16} 17} |63l 4] have been
extensively studied. We note that inference-time scaling can be integrated with gradient-based
approaches to achieve synergistic performance improvements.

2.2 Particle Sampling with Diffusion Models

The simplest iterative sampling method that can be applied to any generative model is Best-of-N
(BoN) [57, 159} 58], which generates N samples and selects the one with the highest reward. For
diffusion models, however, incorporating particle sampling during the denoising process has been
shown to be far more effective than naive BoN [53}[30]. This idea has been further developed through
various approaches that sample particles at intermediate steps. For instance, SVDD [30] proposed
selecting the particle with the highest reward at every step. CoDe [53]] extends this idea by selecting
the highest-reward particle only at specific intervals. On the other hand, methods based on Sequential
Monte Carlo (SMC) [164] 16 23| [13]] employ a probabilistic selection approach, in which particles
are sampled from a multinomial distribution according to their importance weights. Despite the
success of particle sampling approaches for diffusion models, they have not been applicable to flow
models due to the absence of stochasticity in their generative process. In this work, we present
the first inference-time scaling method for flow models based on particle sampling by introducing
stochasticity into the generative process and further increasing sampling diversity through trajectory
modification.

2.3 Inference-Time Scaling with Flow Models

To our knowledge, Search over Paths (SoP) [39] is the only inference-time scaling method proposed
for flow models, which applies a forward kernel to sample particles from the deterministic sampling
process of flow models. However, SoP does not explore the possibility of modifying the reverse kernel,
which could enable the application of more diverse particle-sampling-based methods [30, 53| [23]. To
the best of our knowledge, we are the first to investigate the application of particle sampling to flow
models through the lens of the reverse kernel.

3 Problem Definition and Background

3.1 Inference-Time Reward Alignment

Given a pretrained flow model that maps the source distribution, a standard Gaussian distribution
p1, into the data distribution p, our objective is to generate high-reward samples xo € R? from the
pretrained flow model without additional training—a task known as inference-time reward alignment.
We denote the given reward function as 7 : R? — R, which measures text alignment or user
preference for a generated sample. Following previous works [27, 160, [61]], our objective can be
formulated as finding the following target distribution:

po = argmax Ex,q [r(x0)] =8 Dk [glpo] , (M
q N—— N ——
Reward KL Regularization



which maximizes the expected reward while the KL divergence term prevents pf(Xo) from deviating
too far from pg(x¢), with its strength controlled by the hyperparameter 5. As shown in previous
work [45]], the target distribution p§ can be computed as:

pitx0) = i) exp (7520, @
where Z is a normalization constant. We present details in Appendix However, sampling from
the target distribution is non-trivial.

A notable approach for sampling from the target distribution is particle sampling, which maintains a
set of candidate samples—referred to as particles—and iteratively propagates high-reward samples
while discarding lower-reward ones. When combined with the denoising process of diffusion models,
particle sampling can improve the efficiency of limited computational resources in inference-time
scaling. In the next section, we review particle sampling methods used in diffusion models and, for
the first time, we explore insights for adapting them to flow models.

3.2 Particle Sampling Using Diffusion Model

A pretrained diffusion model generates data by drawing an initial sample from the standard Gaussian
distribution and iteratively sampling from the learned conditional distribution py(x:—a¢|x:). Building
on this, previous works [29][61] have shown that data from the target distribution in Eq. [2]can be
generated by performing the same denoising process while replacing the conditional distribution
po(Xi—at|x:) with the optimal policy:

Po(Xt—at|Xt) exp (v(xtT*m))

f Po(Xt—ae|Xt) exp ( 1)7(Xt5At> ) dxi—at

) 3

Po(Xe—aelxi) =

where the details are presented in Appendix We denote v(-) : R? — R as the optimal value
function that estimates the expected future reward of the generated samples at current timestep.
Following previous works [8, 23| 30} 3], we approximate the value function using the posterior mean
computed via Tweedie’s formula [47], given by v(x;) = r(Xo), Where Xqp = Ex;pg(xox:) [X0]-

Since directly sampling from the optimal policy distribution in Eq. [3]is nontrivial, one can first
approximate the distribution using importance sampling while taking pg(x;—a¢|x;) as the proposal
distribution:
SO _
p;(xtht|Xt) ~ Z Kt;%(sx(i) s {Xil,)At 75(:1 ~ pe(thAt‘XtL 4
im1 Qi1 Wilap TR

where K is the number of particles, wgi_)At = exp (v(xgi_)m)/ﬁ) is the weight, and 5x(i) is a

t—At

Dirac distribution. SVDD [30] proposed an approximate sampling method for the optimal policy by
selecting the sample with the largest weight from Eq. 4]

Notably, a key factor in seeking high-reward samples using particle sampling is defining the proposal
distribution to sufficiently cover the distribution of high-reward samples. Consider a scenario where
high-reward samples reside in a low density region of the original data distribution, which is common
when generating complex or highly specific samples that deviate from the mode of the pretrained
model distribution. In this case, the proposal distribution must have a sufficiently large variance to
effectively explore these low density regions. This highlights the importance of the stochasticity of
the proposal distribution, which has been instrumental in the successful adoption of particle sampling
in diffusion models. In contrast, flow models [32]] employ a deterministic sampling process, where
all particles x;_a¢ drawn from x; are identical. This restricts the applicability of particle sampling
methods in flow models. One of the main contributions is the investigation of how these particle
sampling methods can be efficiently applied to flow models.

To this end, we propose an inference-time approach that introduces stochasticity into the generative
process of flow models to enable particle sampling. We first transform the deterministic sampling
process of flow models into a stochastic process (Sec.[d.2). We further identify a sampling trajectory
that expands the search space of the flow models (Sec.[4.3). Note that while stochastic sampling and
trajectory conversion have been studied in prior works, their primary goals have been to improve
sample quality [68, 70} 49| 24, 38] or to accelerate inference [[19, 52, |51} 22]. To the best of our
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knowledge, we are the first to investigate sampling stochasticity and trajectory conversion for efficient
particle-based sampling in flow models.

Additionally, previous particle sampling methods in diffusion models allocated a fixed computational
budget (i.e., a uniform number of particles) across all denoising timesteps, potentially limiting
exploration. We explore sampling with the rollover strategy, which adaptively allocates compute
across timesteps during the sampling process (Sec. [6)).

4 SDE-Based Particle Sampling in Flow Models

In this section, we review flow and diffusion models within the unified stochastic interpolant frame-
work (Sec. .T) and introduce our inference-time approaches for efficient particle sampling in flow

models (Sec.[4.2]and [£.3).

4.1 Background: Stochastic Interpolant Framework

At the core of both diffusion and flow models is the construction of probability paths {pt}ogtg,
where x; ~ p,; serves as a bridge between x; ~ p; and xg ~ po:

X; = ayXq + 04 X1, (5)

where o and o, are smooth functions satisfying g = 01 = 1, 1 = 09 = 0, and & < 0,5, > 0;
we denote the dot as a time derivative. This formulation provides a flexible choice of interpolant
(¢, 0¢) which determines the sampling trajectory.

4.2 Inference-Time SDE Conversion

Flow models [32,[35] learn the velocity field u; : R¢ — R¢, which enables sampling of x by solving
the Probability Flow-ODE [56] backward in time:

dXt = Ut (Xt)dt (6)

The deterministic process in Eq. [f] accelerates the sampling process enabling few-step generation of
high-fidelity samples. However, as discussed in Sec.[3.2] the deterministic nature of this sampling
process limits the applicability of particle sampling in flow models.

To address this, we transform the deterministic sampling process into a stochastic process. The
reverse-time SDE that shares the same marginal densities as the deterministic process in Eq. [6}

2
dxy = fi(x;)dt + gedw,  fi(x¢) = up(x4) — %VIOgPt(Xt)a @)

where f;(x;) and g; represent the drift and diffusion coefficient, respectively, and w is the standard
Wiener process. This conversion introduces a noise schedule g;, which can be freely chosen. Although
SiT [38] arrives at the same conclusion, we provide a more comprehensive proof in Appendix [B] In
our case, we set g; = 2, scaled by a factor of 3. Note that in the case where g; = 0 the process
reduces to deterministic sampling in Eq. [6]

Using the velocity u:(x;) predicted by a pretrained flow model, the score function V log p;(x:)
appearing in the drift coefficient f;(x;) can be computed as:

1 apue(xt) — dpx
Vlogpi(x:) = ;%- (8)



This enables the conversion of the deterministic sampling to stochastic sampling, which we refer to
as inference-time SDE conversion. Given the drift coefficient term f; (x;) and diffusion coefficient g;,
the proposal distribution in the discrete-time domain is derived as follows:

pg(xtht|Xt) = N(Xt - ft(Xt)At, gtzAt I) (9)

While previous works have proposed converting an SDE to an ODE to improve sampling effi-
ciency [22, 155} 137, 156]], the reverse approach—transforming an ODE into an SDE—has received
relatively less attention and has primarily focused on improving sample quality [68 38]]. To the best
of our knowledge, this work is the first to explore SDE conversion in flow models specifically to
expand the search space of proposal distribution for efficient particle sampling.

Since flow models utilize the linear interpolant (o = 1 — ¢, 04 = t), we refer to the generative
processes of the flow models using Eq.[6|and Eq. [7]as Linear-ODE and Linear-SDE, respectively. In
Fig. 2] (left), we visualize the sampling trajectories of Linear-ODE and Linear-SDE. The samples
generated using Linear-ODE are identical and collapse to a single point, restricting exploration. In
contrast, Linear-SDE introduces sample variance, allowing for broader exploration and increasing the
likelihood of discovering high-reward samples.

In Fig. 3| (a-b), we visualize images sampled from Linear-ODE and Linear-SDE using FLUX [28]].
As discussed previously, the particles drawn from the proposal distribution of Linear-ODE are
identical. In contrast, Linear-SDE introduces variation across different particles, thereby expanding
the search space for identifying high-reward samples. In the next section, we introduce inference-time
interpolant conversion, which further increases the search space.

4.3 Inference-Time Interpolant Conversion

To further expand the search space of Linear-SDE, we draw inspiration from the effective use
of particle sampling in diffusion models, where we identified a key difference: the interpolant.
While the forward process in diffusion models follows the Variance Preserving (VP) interpolant

(v = exp’% s Beds g = 4/1 —exp™ s ﬁﬁds), with 5, denoting a predefined variance schedule,

flow models adopt a linear interpolant.

As shown in the previous works [33] [52]], we note that given a velocity model u; based on an
interpolant (o, o) (e.g., linear), one can transform the vector field and generate a sample based
on a new interpolant (&, 75) (e.g., VP) at inference-time. The two paths X; = @sXo + 75X and
Xy = X + 04X are connected through scale-time transformation:

Xg = CsXt, ts == 071(5(5)) Cs = 5'3/0'1‘,57 (10)

where p(t) = ¢+ and p(s) = 2= define the signal-to-noise ratio of the original and the new interpolant,
respectively. The velocity for the new interpolant is given as:
atsés—ﬁsdtsi . 0'125 (5'3545*@55'3)

s (%) = SR, + catsur, <X—) = JteTs T OsTtels iy = _an

) — . .
Cs s Uts a—g (O—ts Oty — Qg Uts)

Plugging the transformed velocity into the proposal distribution in Eq. [9]after computing the score
using Eq. [8] gives our efficient proposal distribution.
2

Po(Xs—ns|Xs) =N (scs - {us(is) - %Vlogps(is)} As, g°As I) ) (12)
Since the new trajectory follows the VP interpolant, we refer to this as VP-SDE. We visualize
VP-SDE sampling in Fig. 2| (right). At inference-time, we query the velocity of the new interpolant
from the original interpolant (purple arrow). In Fig.[3](c), we visualize the sample diversity under
VP-SDE using FLUX [28]] which generates more diverse samples than Linear-SDE. This property of
VP-SDE effectively expands the search space, improving particle sampling efficiency in flow models.
In Sec.[5] we provide further analysis on how interpolant conversion contributes to sample diversity.

Previous works focused on interpolant conversion that enables stable training [49, [12, 24] and
accelerated inference [51}122) 52]. We utilize interpolant conversion to enhance the sample diversity
in particle sampling, which has not been unexplored before. Importantly, while we modify the
generative process of flow models to align with that of diffusion models, inference-time scaling with
flow models still provides distinct advantages. The rectified trajectories of flow models [135, 36, [28]]
allow for a much clearer posterior mean, leading to more precise future reward estimation and, in
turn, more effective particle filtering.



S Analysis of the Interpolant Conversion and Sample Diversity

In this section, we analyze how the interpolant conver-

sion affects the variance of the proposal distribution 8
and explain why VP-SDE yields higher sample di-
versity than Linear-SDE, as illustrated in Fig.[3] To g
investigate this behavior, Fig. E] visualizes the log- <
SNR (log(af / O’?)) of commonly used interpolants g °
including linear and VP across timesteps ¢ € (0,1).
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Then consider initializing the Linear-SDE timesteps
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This ensures that the log-SNR of the corresponding :
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each step (see the horizontal dashed line in Fig. ). i
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)_(s) =N ()_(s - f.s(}_(s)Asy QEAS I) = 150( | csxts)'
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Since Ats < As at early denoising steps, timestep conversion results in smaller variance gfs At than
VP-SDE for a fixed diffusion coefficient. Hence, to match the variance of Linear-SDE (%) to that

of VP-SDE, one can scale the diffusion coefficient to g; = g5/cs+/As/At,. Note that this scaling

significantly increases the stochasticity at early denoising steps as ¢; &~ 1 and y/As/At, > 1. While
this scaling can enhance sample diversity, applying it in isolation injects excessive noise, causing
samples to deviate from the predefined denoising trajectory and ultimately degrading output quality.

In fact, interpolant conversion counteracts excessive noise injection by pairing diffusion coefficient
scaling with timestep conversion. The two mechanisms act synergistically to increase the sample
diversity without harming the sample quality. In Sec.[/| we validate this analysis with an ablation
study that isolates the effect of each factor.

Comparison under Identical Timestep and Diffusion Coefficient. We next analyze the case
where both Linear-SDE and VP-SDE operate under identical, fixed timestep schedules and diffusion
coefficients. While this setting yields identical proposal distribution variances, Fig. 4] shows that the
VP interpolant maintains a consistently lower log-SNR, indicating that at any given timestep, VP-SDE
samples contain a larger noise component (see the vertical dashed line). Consequently, the VP-SDE
proposal distribution effectively samples from a noisier latent at each step, resulting in higher sample
diversity. This reflects the observation that noisier latents produce more diverse samples [40]. While
this work focuses on the interpolant perspective, a systematic exploration of timestep scheduling and
diffusion coefficient scaling remains a promising direction for future research.

6 Rollover Budget Forcing

In the previous sections, we have introduced our inference-time approaches to expand the search
space of proposal distribution. Here, we propose a new budget-forcing strategy to maximize the use of
limited compute in inference-time scaling. To the best of our knowledge, previous particle sampling
methods for diffusion models [30} 53] employ a fixed number of particles across all denoising steps.
However, our analysis shows that this uniform allocation may lead to inefficiency, where the NFEs
required at each denoising step to obtain a sample x;_ o; with a higher reward than the current sample
x; significantly varies across different runs. We present the analysis results in Appendix [C]

This motivates us to adopt a rollover strategy that adaptively allocates NFEs across timesteps. Given a
total NFEs budget, the NFEs quota () is allocated uniformly across timesteps. Then at each timestep,
if a particle x;_ A+ yields a higher reward than the current sample x; within the quota, we immediately
proceed to the next timestep from the newly identified high-reward sample, rolling over the remaining
NFE:s to the next step. If the allocated quota is exhausted without identifying a better sample, we
select the particle with the highest expected future reward from the current set, following the strategy
used in SVDD [30]. The pseudocode of RBF is presented in Appendix [D| In the next section, we
demonstrate the effectiveness of RBF, along with SDE conversion and interpolant conversion.
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Figure 5: Quantitative results of compositional text-to-image generation. T denotes the given
reward used in inference-time scaling (left). Notably, performance consistently improves from
Linear-ODE to and for both given and held-out rewards (left, middle), without
significant quality degradation, as evidenced by the comparable aesthetic score [50] (right).

7 Applications

In this section, we present the experimental results of particle sampling methods for inference-time
reward alignment. In Appendix, we present i) implementation details of the search algorithms, ii)
aesthetic image generation, iii) comparisons between diffusion and flow models, iv) scaling behavior
comparison of Best-of-N (BoN) and RBF, and v) additional qualitative results.

7.1 Experiment Setup

Tasks. In this section, we present the results for the following applications: compositional text-to-
image generation and quantity-aware image generation, where the rewards are non-differentiable.
For the differentiable reward case, we consider aesthetic image generation (Appendix [E.I). In
compositional text-to-image generation, we use all 121 text prompts from GenAl-Bench [21] that
contain three or more advanced compositional elements. For quantity-aware image generation, we
use 100 randomly sampled prompts from T2I-CompBench++ [20] numeracy category.

For all applications, we use FLUX [28§]] as the pretrained flow model. We fix the total number of
function evaluations (NFEs) to 500 and set the number of denoising steps to 10, which allocates 50
NFEs per denoising step. As a reference, we also include the results of the base pretrained models
without inference-time scaling. Additionally, we present a comparison between flow models and
diffusion models in Appendix [E.2]

Baselines. We evaluate inference-time search algorithms discussed in Sec. [2] including Best-of-N
(BoN), Search over Paths (SoP) [39], SMC [23]], CoDe [53]], and SVDD [30]. We categorize BoN
and SoP as Linear-ODE-based methods, as their generative processes follow the deterministic process
in Eq. @ For SMC, we adopt DAS [23]]; however, when the reward is non-differentiable, we use the
reverse transition kernel of the pretrained model as the proposal distribution.

7.2 Compositional Text-to-Image Generation

Evaluation Metrics. In this work, we refer to the reward used for inference-time scaling as the given
reward. Here, the given reward is VQAScore, measured with CLIP-FlanT5 [31], which evaluates
text-image alignment. For the held-out reward, which is not used during inference, we evaluate the
score using a different model, InstructBLIP [10]. Additionally, we evaluate aesthetic score [50]] to
assess the quality of the generated images.

Inference-Time SDE and Interpolant Conversion. The quantitative and qualitative results of
compositional text-to-image generation are presented in Fig. [5|and Fig.[6] respectively. As discussed
in Sec.[d.2] the deterministic sampling process in flow models limits the effectiveness of particle
sampling, whereas introducing stochasticity significantly expands the search space and improves
performance—highlighting a key contribution of our work: enabling effective particle sampling in
flow models. The results in Fig.[5]support this finding, showing that Linear-SDE (yellow) consistently
improves the given reward (left in Fig.[5) over the Linear-ODE (green) across all particle sampling
methods, even surpassing BoN and SoP [39], which were previously the only available inference-time
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Figure 6: Qualitative results of compositional text-to-image generation. We use VQAScore [31],
which measures text-image alignment, as the given reward for inference-time scaling. SDE and
interpolant conversion enable more effective exploration during inference, enhancing the performance
of all particle sampling methods [23} [53} [30]], including RBF.

scaling approaches for ODE-based flow models. Additionally, through inference-time interpolant
conversion, VP-SDE (red) further improves performance across all particle sampling methods on
both given and held-out rewards (left, middle in Fig.[5)) by expanding the search space, demonstrating
the effectiveness of our proposed distribution. Notably, particle sampling methods with Linear-
SDE and VP-SDE generate high-reward samples without significantly compromising image quality,
as evidenced by aesthetic scores that remain comparable to the base FLUX model [28] (right in
Fig.5). Qualitatively, SDE conversion and interpolant conversion shown in Fig. [f]bring consistent
performance improvements (see Appendix [G.I]for additional results).

Rollover Budget Forcing. As discussed in Sec. [f] instead of fixing the number of particles
throughout the denoising process, we explore adaptive budget allocation through RBF. We demonstrate
that budget forcing provides additional performance improvements, outperforming the previous
particle sampling methods in the given reward (left in Fig.[5)). We present qualitative comparisons of
inference-time scaling methods in Appendix [G.2]

Ablation study of interpolant conversion. Table 1: Ablation Study of Interpolant Con-
Building on the analysis in Sec.[5] we examine version. " denotes the given reward.

how interpolant conversion contributes to sample
diversity and reward alignment through its two

Method | LPIPS-MPD 1 VQAScore! t Inst. BLIP 1

underlying mechanisms, timestep conversion and  Linear-ODE - 0.788 0789
diffusion coefficient scaling. Tab. [T extends the ' }neSPr 058 0000 o8

¢ ! lng. - + Adapt. Time.| 0270 0.908 0.813
results of Fig.[5|by isolating the effect of each com-  + Adapt. Diff. 0.429 0.702 0571
ponent to sample diversity, measured by LPIPS- __ VP-SDE 0.509 0.925 0.843

MPD [23], and reward alignment.

We observe that timestep conversion (row 3) yields only modest diversity gains: the benefit of
sampling at lower log-SNR (Fig. ) is offset by smaller discretization steps that reduce proposal
variance, limiting improvements in reward alignment. On the other hand, applying diffusion coeffi-
cient scaling without timestep conversion (row 4) increases sample diversity but simultaneously leads
to a significant drop in reward alignment indicating excessive noise injection. Lastly, the VP-SDE
interpolant conversion (row 5) synergistically combines both components, achieving high sample
diversity without sacrificing quality and consequently yielding the highest reward.

7.3 Quantity-Aware Image Generation

Evaluation Metrics. Here, the given reward is the negation of the Residual Sum of Squares (RSS)
between the target counts and the detected object counts, computed using GroundingDINO and
SAM [23] (details in Appendix [F). Additionally, we report object count accuracy, which evaluates
whether all object quantities are correctly shown in the image. For the held-out reward, we report
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Figure 7: Quantitative results of quantity-aware image generation. © denotes the given reward,
RSS [34], with the y-axis truncated for better visualization (left). We observe consistent performance

improvements by converting Linear-ODE to ,and for most cases.
Linear-ODE Linear-SDE VP-SDE Linear-ODE Linear-SDE VP-SDE
“Four balloons, one cup, “Four candles, two balloons, one dog,

two tomatoes and three helicopters.”

four desks, two dogs and four microwaves.”

Figure 8: Qualitative results of quantity-aware image generation. At inference-time, we guide
generation using the negation of RSS [34]] (Residual Sum of Squares) as the given reward, which
measures the discrepancy between detected and target object counts. SDE and interpolant conversion
expands the search space to identify high reward samples.

VQAScore measured with CLIP-FlanT5 [31]]. As in the previous application, we evaluate the quality
of the generated images using the aesthetic score [50].

Results. The quantitative and qualitative results are presented in Fig.[7]and Fig. 8] respectively.
The trend in Fig.[7)align with those in Sec. [7.2] demonstrating that SDE conversion and interpolant
conversion synergistically enhance the identification of high-reward samples. Notably, particle
sampling methods with Linear-SDE already outperform Linear-ODE-based methods (BoN and
SoP [39]), while interpolant conversion further improves accuracy, achieving a 4 ~ 6x improvement
over the base model [28]]. Our RBF achieves the highest accuracy, outperforming all other particle
sampling methods. Qualitatively, Fig.[8|shows that SDE and interpolant conversion effectively identify
high-reward samples that accurately match the specified object categories and quantities. Additional
qualitative comparisons of the inference-time scaling methods are provided in Appendix[G.2]

8 Conclusion and Limitation

We introduced a novel inference-time scaling method for flow models with three key contributions:
(1) ODE-to-SDE conversion for particle sampling in flow models, (2) Linear-to-VP interpolant
conversion for enhanced diversity and search efficiency, and (3) Rollover Budget Forcing (RBF)
for adaptive compute allocation. We demonstrated the effectiveness of VP-SDE-based generation
in applying off-the-shelf particle sampling to flow models and showed that our RBF combined with
VP-SDE generation outperforms previous methods. However, our method introduces additional
inference-time overhead, which could become a bottleneck when the base model prediction is
computationally intensive. Also, since the pretrained model may have been trained on uncurated
datasets, our approach may produce undesirable outputs upon malicious attempts.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our analysis and experiments support the claims in the abstract and introduc-
tion.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We present limitations in the last section.
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: We present proofs in Appendix.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide implementation details and experiment setups.
Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Code is publicly released.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We specify hyperparameters in the paper.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Due to computational constraints, we were unable to include error bars.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We specify memory usage and inference time in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: This work conforms with the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss societal impacts in the paper.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We do not provide or use prompts that may generate harmful or disruptive
content.

Guidelines:
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12.

13.

14.

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited the relevant works.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: Does not involve research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Does not involve research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Core method development of our work did not involve usage of LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Proofs

A.1 Derivation of the Target Distribution

From Eq.[I] we obtain the target distribution pj, which maximizes the reward while maintaining
proximity to the distribution of the pretrained model py:

po(x0) = argmax Exg~q [1(%0)] — BDxkw [g][po] ,
q

= arg [IInaX Eoxgng [T(XO) ~Plog 1;]0(();00)>}

= arg;nin Ex~qg [log ;)((XXOO)) - ;r(xo)]
= argqmin/q(xo) log ];]0(();00)) dxg — % /q(Xo)T(Xo)dXO.

This can be solved via calculus of variation where the functional J is given as follows:

Tlatxal) = [ atxo) <10g ;(f;)o)) . ;r(xO)> dxo.

Substituting G(x, €) := q(x0) + en(xo) gives:

7 it 0] = [ xa.e) (108 T2 - 216 ) e

where 7)(x0) is an arbitrary smooth function, and € is a scalar parameter.

Introducing a Lagrange multiplier \ to constraint [ ¢(x¢)dxo = 1 gives:

j [Cj(Xo,E)] = /C](X(),E) <log qpfo}z(;oe)) _ ;T(Xo)> + A(j(X(),G)dXO

~ [ Haxayaxo

Then the problem boils down to finding a function §(xo, €) satisfying:

0T

|, ="

e=0

This can be solved using the Euler-Lagrange equation:

Oq dxg0q -

where ¢’ is a derivative of ¢ with respect to xq and tilde notation is dropped since the condition is to
be satisfied at € = 0.

Note that ¢’ does not appear in f, so the Euler-Lagrange equation simplifies to:

o = 5 () (1o 25— 2] + gt ) =0

po(Xo)
q(x0) 1
=1lo ——=r(xg)+1+A=0. (13)
po(x0) B (x0)
Solving Eq.|13|gives the target distribution pfj, which minimizes the objective function in Eq.
. r(x
po(%0) = po(xo) exp ( (50) —1- A) (14)
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Lastly, the Lagrangian multiplier A is obtained from the normalization constraint, exp(\) =

J po(x0) exp ( % - 1) dxg. Plugging this into Eq. [14{ gives the target distribution presented

in Eq.

Po(xo) exp (T(;O))

J po(x0) exp (T(ZO)> dxg

po(x0) = ; 15)

A.2 Derivation of the Optimal Policy

Here, we provide the derivations of the optimal policy given in Eq. 3] for completeness, which is
proposed in previous works [60} [61]].

To sample from the target distribution defined in Eq.[T5] previous studies utilize an optimal policy
P} (x¢—a¢|x¢). The optimal value function v(x,) is defined as the expected future reward at current
timestep ¢:

0(x2) = 108 By {EXp (r(zo)ﬂ (16)

The optimal policy is the policy that maximizes the objective function:

Py (Xe—ne|xt) = ar% ‘maXExt,A,Nq(th) [v(x:—at)] — BDkL [q(-[%¢)[[po(-|x¢)]
q(-|Xt

_ pe(thAt\Xt) €xXp (%U(Xpm)) (17)
fpe(xtht|Xt) exp (éU(XFAtD dxi— At

_ pe(xt—At|Xt) €xp (%U(Xt—At)> (18)

exp (%v(xt))

where the last equality follows from the soft-Bellman equations [61]. For completeness, we present
the theorem.

Theorem 1. (Theorem 1 of Uehara ez al. [61l]). The induced distribution of the optimal policy in
Eq.[I7)is the target distribution in Eq.[I5]

P (x0) = / {m(xl) I1 vitx
s=T

However, computing the optimal value function in Eq. [I6] is non-trivial. Hence, we follow the
previous works [23} [30] and approximate it using the posterior mean Xo|; := Ex)~p, (x0|x;) [X0]:

v(x¢) = Blog (/ CXP<7%®>pa(X0|Xt)dX0)

~ Blog (exp(r();)t)>) = r(%op)- (19)

N
S

B Choice of Diffusion Coefficient

Ma et al. [38] have shown that the diffusion coefficient can be chosen freely within the stochastic
interpolant framework [[1]. Here, we present a more comprehensive proof. We use w interchangeably
to denote the standard Wiener process for both forward and reverse time flows.

Proposition 1. For a linear stochastic process x; = q;Xg + 04X1 and the Probability-Flow ODE
dx; = uy(x¢)dt that yields the marginal density p,(x;), the following forward and reverse SDEs
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with an arbitrary diffusion coefficient g; > 0 share the same marginal density:

2
Forward SDE: dx; = [ut (x¢) + %V log pt(xt)} dt 4 g:dw (20)
2
Reverse SDE: dx; = [ut(xt) — %V logpt(xt)} dt + g;dw. 21

Proof. When velocity field u; generates a probability density path p;, it satisfies the continuity
equation:

o) = =V - (s uex) @)

Similarly, for the SDE dx; = f;(x;)d¢ + g;dw, the Fokker-Planck equation describes the time
evolution of p;:

1
%ﬁt(xt) = -V (De(xe)fi(x4)) + §9t2v217t(xt) (23)

where V2 denotes the Laplace operator.

To find an SDE that yields the same marginal probability density as the ODE, we equate the probability
density functions in Eq.[23|and Eq.[22] resulting in the following equation:

V- (pueEux) + 507V pi(x0) =~V - (pul e (x0)

V- () () — we(x0))) = 67 V%pu(x) (24)

This implies that any SDE with drift coefficient f; (x;) and diffusion coefficient g; that satisfies Eq.
will generate p;. One particular choice is to set p;(x¢)(f;(x;) — u¢(x¢)) proportional to Vp;(x;),
L.e.pe(xe) (£ (x¢) — ur(xe)) = A Vpe(xy). Then Eq. [24]can be rewritten as:

1
AVpi(x4) = 59 IV2p (%),

which leads to the relation A; = % g?2. Similarly, the drift coefficient is given by:

1 Qth(Xt)
27" Pe(Xt)

1
= uy(X¢) + §9t2V10gpt(Xt)

£ (x¢) = ue(x¢) + =

Thus, a family of SDEs that generate p; takes the following form:
1
dx; = |ug(x) + ngVlogpt(xt)} dt + grdw,

which is the forward SDE presented in Eq.[20] Similarly, the reverse SDE in Eq. 2] can be derived by
applying the time reversal formula, following Anderson et al. [2]]. O

2 G

Corollary 1. If diffusion coefficient is chosen as gy = /2 (O’tO't -0ty ) then the score function

V log pi(x) inside the forward SDE vanish and it can be written as:

dx; = %xtdt + \/2 (O’tdt — crtza )dW (25)
e Qi

Proof. Velocity field u:(x;) for linear stochastic process X; = ;X + 0+ X is given as:

&
up(xe) = a—txt — (atat — O't ” ) V log pi(x:) (26)

t
Plugging this equation into forward SDE Eq. 20| we can immediately see that when g, =

2 (O'tO't - ot ) the score function term vanishes and the remaining terms constitute Eq. [
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Figure 9: Analysis of number
of function evaluations (NFEs)
across timesteps. The NFEs re-
quired to achieve a higher reward
for each timestep. The plot il-
lustrates the +1 sigma variation
band. The blue-dotted line rep-
resents the uniform allocation of
compute (NFEs) across timesteps.
H ) We observe that the NFEs required
_ jinitorn to identify a higher-reward sample
0 10 20 30 40 50 may exceed the uniformly allocated
First occurence of higher reward budget (blue dotted line).
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C Adaptive Time Scheduling and Rollover Strategy

In this section, we provide details of adaptive time scheduling and NFE analysis result which inspired
rollover strategy.

Adaptive Time Scheduling. As discussed in Sec. 4.3 to maximize the exploration space in VP-
SDE sampling, we design the time scheduler to take smaller steps during the initial phase—when
variance is high—and gradually increase the step size in later stages. Specifically, we define the time
scheduler as tnew = /1 — (1 — t)2. While this approach can be problematic when the number of
steps is too low—resulting in excessively large discretization steps in later iterations—we find that
using a reasonable number of steps (e.g.,10) works well in practice, benefiting from the few-step
generation capability of flow models. This setup effectively balances a broad exploration space with
fast inference time, highlighting one of the key advantages of flow models over diffusion models.

NFE Analysis. As discussed in Sec. |§|, we analyze the number of function evaluations (NFEs)
required to obtain a sample with a higher reward than the current one. In Fig.[9] we visualize the
variance band of the required NFEs across timesteps, with the blue-dotted line representing the
uniform allocation used in previous particle sampling methods [30, 53]. Notably, uniform compute
allocation may constrain exploration and fail to identify high-reward samples, as evidenced by
crossings within the variance band. This observation motivates the use of a rollover strategy to
optimize compute utilization efficiently. As demonstrated in Sec.[7} our experiments confirm that
RBF provides additional improvements over previous particle sampling methods [30, 53]

CoDe SVDD RBF

A ) A
11117| o) 2

$ ? $ ? °coQo0| 000
o[gJoc o] oool0lo] @0 -
Figure 10: Schematics of inference-time search algorithms. Linear-ODE-based methods, BoN

and SoP use a deterministic sampling process, whereas particle-sampling-based methods follow a
stochastic process. Note that RBF adaptively allocates NFEs across denoising timesteps.

D Search Algorithms

In this section, we introduce the inference-time search algorithms discussed in Sec. [2| along with
their implementation details. An illustrative figure of the algorithms is provided in Fig. Here, we
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define the batch size (N) as the number of initial latent samples and the particle size (K) as the
number of samples drawn from the proposal distribution pg (x:—a¢|X;) at each denoising step.

Best-of-N (BoN) [57, 58] is a form of rejection sampling. Given NN generated samples
{X(()Z) }N |, BoN selects the sample with the highest reward.
X0 = argmax r(x(()i)).
{x(()l)}fil
As presented in Sec. [/} we fixed the total compute budget to 500 NFEs and the number of denoising
steps to 10, which sets the batch size of BoN to NV = 50.

Search over Paths (SoP) [39] begins by sampling N initial noises and running the ODE
solver up to a predefined timestep ¢y. Then the following two operations iterate until reaching ¢ = 0:

1. Applying the forward kernel: For each sample in the batch at time ¢, K particles are sampled
using the forward kernel, which propagates them from ¢ to ¢ + A .

2. Solving the ODE: The resulting N - K particles are then evolved from ¢ + A tot + Ay — Ay by
solving the ODE. The top IV candidates with the highest rewards are selected.

We followed the original implementations [39] for Ay and A,. We used N = 2 and K = 5.

Sequential Monte Carlo (SMC) [23||14] extends the idea of importance sampling to a time-sequential
setting by maintaining N samples and updating their importance weights over time:

(4)
S0 Pk o _ Do) exp(v(x25)/6) (0
t—At t .
q(Xe—ae]x:) q(thAt‘Xt)eXP(”("E”)/ﬁ)

where ¢(x;_a:|X;) is a proposal distribution and the last equality follows from the optimal policy
Eq.[I8] We used the reverse process of the pretrained model as the proposal distribution, which leads
to the following importance weight equation:

exp <U(X£?m)/ﬂ)
exp (v(x(")/5)

(%)
th—At =

w!. Q27)

N2 ,
At each step when effective sample size (Zjvzl w! )) /N (w”)? is below the threshold, we

perform resampling, i.e.,, indices {a,(f)}i:1 are first sampled from a multinomial distribution based
on the normalized importance weights:

| IRORE
{GEZ)}]'\LI ~ Multinomial N7 %
; N (4)
7j=1 wt 1=1

These ancestor indices agi) are then used to replicate high-weight particles and discard low-weight

()
ones, yielding the resampled set {X)Eat )}Z-Ail. If resampling is not performed, the indices are simply

, (i)
set as agl) = 1. Lastly, one-step denoised samples are obtained from {xff“ )}fvzlz

(@

ai”)
X, ap ~ Po(Xe—atlxg 't 7).

When resampling is performed, the importance weights are reinitialized to one, i.e.,, wy = 1. The
importance weights for the next step, w;_a; are subsequently computed according to Eq.
regardless of whether resampling was applied.

We used N = 50 for all applications.
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Controlled Denoising (CoDe) [53] extends BoN by incorporating an interleaved selection
step after every L denoising steps.

Xi—LAr = argmax exp (U(XEZ—)LAt)/ﬁ)
{X(EQLAt ha)

Weused N = 2, K = 25, and L = 2 for all applications.

SVDD [30] approximates the optimal policy in Eq. [3| by leveraging weighted K particles:

K (9)
Wy~
Po(Xe-aexe) B Y (700 (28)

K Xi At
i=1 Zj:l Wy At

(x L ~ pa(xeadlxi)

sz?At = exp (U(XE?M)/5> .

At each timestep, the approximate optimal policy in Eq. [28|is sampled by first drawing an index
a;— ¢ from a categorical distribution:

w® K
. t—At
ay— ¢ ~ Categorical =K 0 (29)
j=1 WAt ) ;4
This index is then used to select the sample from {xg At szl’ 1e.,, Xi_Ap & xgiztm). In practice,
SVDD uses 8 = 0, replacing sampling from the categorical distribution with a direct arg max
operation, i.e.,, selecting the particle with the largest importance weight. Following the original
implementation [30]], we used N = 2 and K = 25 for all applications.

Rollover Budget Forcing (RBF) adaptively allocates compute across denoising timesteps.
At each timestep, when a particle with a higher reward than the previous one is discovered, it
immediately takes a denoising step, and the remaining NFEs are rolled over to the next timestep,
ensuring efficient utilization of the available compute. To maintain consistency with SVDD [30],
we set N = 2, with the compute initially allocated uniformly across all timesteps. We present the
pseudocode for sampling from the stochastic proposal distribution with interpolant conversion in
Alg.[T] Specifically, the pseudocode for RBF with SDE conversion and interpolant conversion is
provided in Alg.[2| Here, we denote {S) M. as a sequence of timesteps in descending order, where
SM =1 and SM) = 0, and M is the total number of denoising steps.

E Additional Results

E.1 Aesthetic Image Generation

In this section, we demonstrate that inference-time scaling can also be applied to gradient-based
methods, such as DPS [8]], for differentiable rewards. Specifically, we consider aesthetic image
generation and show that RBF leads to synergistic performance improvements. We first derive the
formulation of the proposal distribution for differentiable rewards and then present qualitative and
quantitative results.

E.1.1 Gradient-Based Guidance

Uehara ef al. [61]] have shown that the marginal distribution p; (x;) is computed as follows:

P (X¢) oc exp (U(;t)> pe(x¢) ~ exp (T();O't)) pe(xe),
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Algorithm 1: stoch_denoise: I-step Algorithm 2: Rollover Budget Forcing (RBF)

Inputs: Number of denoising steps M,
timesteps {S()}M ., NFE quota

stochastic denoising

Inputs: original velocity field u,

o {1,
original interpolant («, ), Outputs: Aligned sample X
new interpolant (&, &), 1 X1 ~N(,I) r* < 7r(Xo1)

diffusion coefficient g, current 2 fori € {1,..., M} do

3| s+ 80 As SO g0+ 4 Q0
sample X, current timestep s, 4 for j € {1,...,q} do
denoising step size As 5 )‘(ij_)As + stoch_denoise (Xs, s, AS)
Outputs: Stochastically denoised " Alg'lzl ,
e x 6 if r* < T(iéﬁ,m) then
sample Xs_As . ; . .
L i 7 QU QU+ 4 Q) — 4
te < p7H(p(s)) s Ts/on, /1 Sec.[f]
U — S%, + et ouy, (’%) /I Eq. m 8 e ’"(’_‘éﬁ_m) Xs—As <
P //Eq, %V s,
I 9 break
£, =1, — Ls, I Eq.{] o
10 if j = ¢ then
z ~ N(0,I) 1 k" < argmaxgeqy g T(ié]rs)—As)
Xs_ As & X5 — fsAs+ gV As z 12 %o ns ii’fgs
SVDD [30] urs
FLUX [28] DPS [8] DPS * }1‘3]2 }()g )
“Bird”

Table 2: Quantitative results of aesthetic
image generation. © denotes the given re-
ward used in inference time. The best result
in each row is highlighted in bold.

Model Aestbetic ImageReward
Score' (held-out)
FLUX [28] 5.795 0.991
DPS 6.438 0.605
SVDD [30]+DPS 6.887 1.077
RBF (Ours)+DPS [§] | 7.170 | 1.152

Figure 11: Qualitative results of aesthetic image
generation. At inference-time, we guide generate
using the aesthetic score as the given reward,
which assesses visual appeal.

where the approximation follows from Eq.[T9] When the reward is differentiable (e.g.,, aesthetic
score [50]), one can simulate samples from p; (x;) by computing its score function:

Vlogp; (x;) = Vlog {GXP<T(XO|t)>Pt(Xt)]

g
1
= — Vr(xqt) + Vlog pi(x¢) - (30)
s —_— T
Guidance Pretrained Score

For differentiable rewards, we incorporate the gradient-based guidance defined in Eq. [30]into the
SDE sampling process described in Eq.[7] Notably, this approach is orthogonal to inference-time
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Table 3: Comparison of diffusion and flow models.

Type Model ImageReward [67] HPS [65] PickScore [20] CLIP Score [44] Steps
e SD2 [48] 0.429 0.280 0.218 0.269 50
Diffusion
SANA-1.5 [66] 0.894 0.284 0.222 0.270 20
- SD3 [15] 1.154 0.294 0.226 0.277 28
ow
FLUX [28] 1.054 0.290 0.226 0.275 5

scaling, and RBF can be additionally utilized to further enhance performance. In the next section, we
experimentally demonstrate that RBF can be effectively integrated with gradient-based guidance.

E.1.2 Aesthetic Image Generation Results

The aesthetic image generation task aims to sample images that best capture human preferences, such
as visual appeal. We use 45 animal prompts from previous work, DDPO [3]]. The aesthetic score [50]
serves as the given reward, while ImageReward [67] is used as the held-out reward.

We present quantitative and qualitative results of aesthetic image generation in Tab. 2] and Fig. [TT]
Notably, RBF, implemented with DPS [8]], achieves significant improvements on both the given and
held-out rewards, even surpassing SVDD [30]. Qualitatively, RBF effectively adapts the pretrained
flow model to better align with human preferences, particularly in terms of visual appeal.

E.2 Comparison of Diffusion and Flow Models

We present quantitative comparisons between text-to-image diffusion and flow models in Tab.
using compositional text prompts from GenAl-Bench [21]. As shown, flow-based models outper-
form diffusion models across all evaluation metrics assessing image quality [67, 165, 26] and text
alignment [44] 67]]. In the flow-based models, FLUX [28]] achieves competitive performance while
requiring fewer steps compared to Stable Diffusion 3 [15].

E.3 Scaling Behavior Comparison

As discussed in Sec.[d] expanding the exploration space and applying budget forcing significantly
enhance the efficiency of RBF, leading to superior performance improvements over BoN. Here, we
compare the scaling behavior of BoN, a representative Linear-ODE-based method, with RBF across
different numbers of function evaluations (NFEs).

We report qualitative and quantitative scaling results for quantity-aware image generation (Fig.[12]
Tab. ) and for compositional text-to-image generation (Fig. Tab. [3)), respectively. Our results
indicate that allocating more compute leads to performance improvements for both BoN and RBF.
However, the performance of BoN plateaus after 300 NFEs, whereas RBF continues to scale and
achieves the highest reward in both tasks. Notably, RBF shows similar trend in the held-out reward,
outperforming BoN and demonstrating its efficiency.

Time Complexity and Compute Analysis. We present time complexity of scaling methods in
Tab.[6] Let S as the number of denoising steps, IV as the NFE budget, and ¢, and ¢, as the costs of
the denoising and verification, respectively. Since all methods share the same NFE budget N, the
total denoising cost is fixed at N - ¢4. For the verification cost, although BoN has the lowest cost, RBF
consistently outperforms BoN across all NFE budget regimes in both compositional text-to-image
generation and quantity-aware image generation tasks (Fig.[12]and Fig. [I3) while incurring only a
marginal increase in verification overhead.

Additionally, at inference time, a user can specify the compute budget (NFEs), which determines the
total runtime of our method. We report the runtime of RBF in Tab.[/| Under a 500-NFE budget, scaling
for compositional text-to-image generation (VQAScore [31]) requires 635.01 seconds per image.
Runtime can be reduced by lowering the NFE budget—at the cost of reward performance—and
further accelerated by decreasing output resolution or increasing batch size.
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Table 4: Quantitative results of quantity- 00 1000 ——
aware image generation in NFE scaling ex- soq (Ours)
. —e— BoN
priment. We use the same 100 prompts from 081
T2I-CompBench [20]]. " denotes the given re- >0 o
ward. @
o}
g 06
NFEs RSS* Acc. VQAScore [31] Aesthetic 0.5
134] | (held-out) 1 Score [S50] 1
0.4 4
50 4360 0.400 0.758 5.408 =
100 | 3280 0510 0.750 5522 RSS (Log Scale)
g 300 | 2190 0.570 0.755 5.463
500 | 1760 0580 0756 5420 Figure 12: Quantity-aware image generation
1000 | 1340 0.590 0.759 5.466 . . .
scaling behavior comparison of BoN and RBF.
50 3.250 0.410 0.756 5.560 We plot the known reward (RSS) [34] against
o§ 100 1.860 0.590 0.760 5.627 accuracy for different numbers of function eval-
= 300 | 069 0720 0.779 3.503 uations: {50, 100, 300,500, 1,000}. Note that
m . .. . . .
@ 500 | 0540 0800 0.769 5381 the horizontal axis is displayed on a logarithmic
1000 | 0.290 0.880 0.777 5526
scale.
Table 5: Quantitative results of compositional 088
text-to-image generation in NFE scaling ex- oos ';B; (Ours)
. - ——
priment. We use the 121 prompts from GenAl- N
Bench [21]]. T denotes the given reward. o o84 300
E‘ 50 100 1000
NFEs VQAScore f Inst.BLIP [10] Aesthetic 13 082 Z00% 1000
31 1 (held-out) T 1501 < 500
0.80
50 0.8310 0.8011 52246 n ¢
100 0.8459 0.7959 5.2594 078
Z
g 300 0.8775 0.8250 5.1414 —
500 0.8790 0.8200 5.1620 VQAScore
1000 0.8886 0.8269 5.2055
50 0.8577 0.8253 52704 F1gu.re 13: (?0mp051t1?nal text-to‘-lmage gen-
E 100 0.8824 0.8212 513213 eration scaling behavior comparison of BoN
S/ 300 0.9146 0.8387 5.2837 and RBF. We plot the known reward (VQAS-
g 500 0.9250 0.8430 5.2370 core) [31]] against the held-out reward [10]
1000 0.9283 0.8369 52593 for different numbers of function evaluations:
{50, 100, 300, 500, 1, 000}.
Table 6: Time complexity of scaling methods. Table 7: Runtime of RBF.
Base BoN SMC 3 SV];];FBOJ’ | 50 100 300 500 1000
Runtime (sec) 84.00 140.11 383.89 635.01 1243.68
S-cqg N-ca+%-co, N-ca+N-c, N-ca+N-c, VQAScore [31] | 0.858 0.882 0915 0925 0.928

For all experiments, we use FLUX [28], which requires approximately 32GB of GPU memory,
accounting for the majority of overall memory usage. All evaluations are performed on an NVIDIA
RTX A6000 GPU.

F Implementation Details

F.1 Choice of Hyperparameters

We report quantitative results on aesthetic score [50] and diversity [23] for images generated under
different settings of the number of denoising steps and the diffusion coefficient. As shown in
Tab. [§[a), the number of denoising steps beyond 10 gives marginal gains. Hence, we fixed the number
of denoising steps to 10 to ensure fair and efficient evaluation across all methods. Note that once the

30



Table 8: Choice of hyperparameters. Evaluation of the images generated with different (a) number
of denoising steps and (b) diffusion coefficient.

Aesthetic [50] Diversity [23] Aesthetic [50] Diversity [23]

Norm > 5
Steps | Aesthetic [50] ~ Diversity [23] g(t) =t g(t) =t g(t) =t g(t) =t
10 5.635 0.084 1 5.635 0.084 5.652 0.083
20 5.680 0.103 3 5.168 0.153 5.436 0.158
5 4.608 0223 4.838 0.187

(a) Number of denoising steps

(b) Diffusion coefficient

number of denoising steps is fixed, the total particle count per step is automatically determined by
dividing the total NFE budget by the number of steps. Additionally, Tab. [§[b) reports results obtained
under varying diffusion coefficients scaled by different norms. We found that using g(t) = 3t2
consistently offered the best trade-off between sample diversity and output fidelity, so we adopt this
setting for all SDE sampling.

F.2 Compositional Text-to-Image Generation

In the compositional text-to-image generation task, we use the VQAScore as the reward, which
evaluates image-text alignment using a visual question-answering (VQA) model (CLIP-FlanT5 [31]]
and InstructBLIP [[10]). Specifically, VQAScore measures the probability that a given attribute or
object is present in the generated image. To compute the reward, we scale the probability value by
setting 8 = 0.1 in Eq.

F.3 Quantity-Aware Image Generation

In quantity-aware image generation, text prompts specify objects along with their respective quantities.
To generate images that accurately match the specified object counts, we use the negation of the
Residual Sum of Squares (RSS) as the given reward. Here, RSS is computed to measure the

discrepancy between the detected object count C; and the target object count C; in the text prompt:

N2
RSS = Y0, (CZ- - CZ-) , where n is the total number of object categories in the prompt. We

additionally report accuracy, which is defined as 1 when RSS = 0 and 0 otherwise. For the held-out
reward, we report VQAScore measured with CLIP-FlanT5 [31]] model.

Object Detection Implementation Details. To compute the given reward, RSS, it is necessary to
detect the number of objects per category, C;. Here, we leverage the state-of-the-art object detection
model, GroundingDINO [34]] and the object segmentation model SAM [25]], which is specifically
used to filter out duplicate detections.

We observe that naively using the detection model [34] to compute RSS leads to poor detection
accuracy due to two key issues: inner-class duplication and cross-class duplication. Inner-class
duplication occurs when multiple detections are assigned to the same object within a category, leading
to overcounting. This often happens when an object is detected both individually and as part of a
larger group. Cross-class duplication arises when an object is assigned to multiple categories due to
shared characteristics (e.g.,, a toy airplane being classified as both a toy and an airplane), making it
difficult to assign it to a single category.

To address inner-class duplication, we refine the object bounding boxes detected by Ground-
ingDINO [34]] using SAM [25] and filter out overlapping detections. Smaller bounding boxes
are prioritized, and larger ones that significantly overlap with existing detections are discarded. This
ensures that each object is counted only once within its category. To resolve cross-class duplication,
we assign each object to the category with the highest GroundingDINO [34]] confidence score which
prevents duplicate counting across multiple classes.

More qualitative results are presented in the following pages.
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G Additional Qualitative Results

G.1 Comparisons of Inference-Time SDE Conversion and Interpolant Conversion

| Linear-ODE Linear-SDE VP-SDE

Linear-ODE Linear-SDE VP-SDE

“Six peaple galhered for a picnic.”
o @

Quantity

SMC [23]

“Four candles, two balloons, one dog, two tomatoes and three helicopters.”

‘ob dath

' - o ®a
oo0 o

Quantity

SMC [23]

C]C]CJ

“Two frogs in tracksuits, competing in a high jump.
The frog in blue tracksuit jumps higher than the frog not in blue tracksuit.”

Composition

SMC [23]

“Three purple gemstones and one pink gemstone,
with the pink g having the hest looking surface.”

| Linear-ODE Linear-SDE

Linear-ODE Linear-SDE VP-SDE

“Seven helmets”

g 2

Quantity

EE A

“Four couches, three candles, two fish, one frog and three plates.”

“Seven lamps.”

il . Ey

Quantity

CoDe [53]

“In a collection of hats, each one is plain, but one is adorned with feathers.”

Composition

CoDe [53]

“A frog with a baseball cap is crouching on a lotus leaf,
and another frog without a cap is crouching on a bigger lotus leaf.”

Figure 14: Additional qualitative results of inference-time SDE conversion and interpolant

conversion.
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| Linear-ODE Linear-SDE

Linear-ODE Linear-SDE

“Six bottles.”

“Five hamburgers sizzled on the
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>
wn
“Two people and two bicycles in the street, “There are two cups on the table, the cup without coffee
the bicycle with the larger wheels belongs to the taller person.” is on the left of the other filled with coffee.”
) a ¢
= r e em— . |
Sk (
)
=k - ® @ 8
> O
2 &
| Linear-ODE Linear-SDE VP-SDE Linear-ODE Linear-SDE VP-SDE
Two 8 iraffes, three eggs, two breaz.ix, » “Four pears, four desks, three paddles and two rabbits.”
three microwaves and four strawberries.
~
)
5 ﬁ 7
- i
e LR
4° Aadle &
~
“Seven women.”
—_ ' |
%) 1
5
2
%
&
m
o~
“Two birds are chasing each other in the air, with the one
flying higher having a long tail and the other bird having a short tail.”
~~
4
=5
=X
B £
mo
2

Figure 15: Additional qualitative results of inference-time SDE conversion and interpolant

conversion.
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G.2 Comparisons of Inference-Time Scaling

BoN SoP [39] SMC CoDe [53] SVDD [30] RBF (Ours)

“Three mugs are placed side by side;
the two closest to the faucet each contain a toothbrush, while the one furthest away is empty.”

" 4t

“An open biscuit tin contains three biscuits,

one without sultanas is square-shaped and the other two are round-shaped.”

Figure 16: Additional qualitative results of compositional text-to-image generation task.
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BoN SoP [39] SMC [23]] CoDe [53]] SVDD [30] RBF (Ours)

“Seven balloons, four bears and four swans.’

q‘-

“Six airplanes flying over a desert with seven camels

walking below.”
oy - —~ ‘#ﬂ&f

v ~ - E

M&w@@gmmw_ i h

Figure 17: Additional qualitative results of quantity-aware image generation task.
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