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ABSTRACT

The concept of sharpness has been successfully applied to traditional architectures
like MLPs and CNNs to predict their generalization. For transformers, however,
recent work reported weak correlation between flatness and generalization. We
argue that existing sharpness measures fail for transformers, because they have
much richer symmetries in their attention mechanism that induce directions in
parameter space along which the network or its loss remain identical. We posit that
sharpness must account fully for these symmetries, and thus we redefine it on a
quotient manifold that results from quotienting out the transformer symmetries,
thereby removing their ambiguities. Leveraging tools from Riemannian geometry,
we propose a fully general notion of sharpness, in terms of a geodesic ball on the
symmetry-corrected quotient manifold. In practise, we need to resort to approxi-
mating the geodesics. Doing so up to first order yields existing adaptive sharpness
measures, and we demonstrate that including higher-order terms is crucial to re-
cover correlation with generalization. We present results on diagonal networks
with synthetic data, and show that our geodesic sharpness reveals strong correlation
for real-world transformers on ImageNet.

1 INTRODUCTION

Predicting generalization performance of neural networks, i.e., the difference between performance on
training data and that on a held-out test set, is an open problem. Metrics predictive of generalization
performance are useful because, for example, one can explicitly regularize such a metric during
training to improve generalization (as in Foret et al. (2021)), or to study generalization more broadly.

There is a long history of hypotheses relating sharpness and generalization, with conflicting theories
and conflicting evidence (Hochreiter & Schmidhuber, 1994; Andriushchenko et al., 2023). General-
ization has been speculated as correlating with sharpness, it has been speculated as correlating with
flatness, and recent evidence has indicated that it has little to no correlation whatsoever, especially
in the case of transformers. Measures of sharpness have ranged from the trace of the Hessian to
worst-case loss in a neighbourhood, and have included adaptive and relative variations (Kwon et al.,
2021; Petzka et al., 2021). We wonder whether some of the confusion has resulted from the specificity
of the problem these measures have sought to overcome: the issue of parameter rescalings.

In contrast, we believe rescaling (Dinh et al., 2017) is a special case of a more pervasive and general
obstacle to measuring sharpness accurately, which we address here at a fundamental level and from a
principled perspective: the issue of full and continuous parameter symmetries. While the relationship
between sharpness and generalization is likely still a complex one, a crucial step towards studying it
must be to ensure we are studying the right quantity, and to do this we must overcome the obstacle of
symmetry.

In addition to discrete permutation symmetries over the parameters, continuous symmetries within
the parameter space occur naturally in neural networks (NNs), and are an intrinsic, data-independent
property. They emerge from the standard components we stack into larger architectures: normalization
layers (Ioffe & Szegedy, 2015; Ba et al., 2016; Wu & He, 2018) induce scale invariance on the
pre-normalization weights (Salimans & Kingma, 2016); homogeneous activation functions like
ReLU introduce re-scaling symmetries between pre- and post-activation weights (Dinh et al., 2017);
some normalization layers and softmax impose translation symmetries in the preceding layer’s
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Figure 1: Quantities from the Riemannian quotient manifold respect the loss landscape’s
symmetry; Euclidean quantities do not. We illustrate this here for a synthetic least squares
regression task with a two-layer NN, where x 7→ θ2θ1x with scalar parameters θ ∈ R2 and input
x ∈ R (i.e. each layer is a linear function). The NN is re-scale invariant, i.e. has GL(1) symmetry:
For any α ∈ R \ {0}, the parameters (θ′1, θ

′
2) = (α−1θ1, αθ2) represent the same function. (a)

The loss function inherits this symmetry and has hyperbolic level sets. (b) The Euclidean gradient
norm does not share the loss function’s geometry and changes throughout an orbit where the NN
function remains constant. (c) The Riemannian gradient norm follows the loss function’s symmetry
and remains constant throughout an orbit, i.e., it does not suffer from ambiguities for two points in
parameter space that represent the same NN function.

biases (Kunin et al., 2021). Arguably, almost any NN, along with its corresponding loss, exhibit
symmetries and can therefore represent the same function using different parameter values (Figure 1a).

Adaptive flatness accounts for some symmetries, both element-wise and filter-wise, but does not
capture the full symmetry of the attention mechanism, represented by GL(h) (re-scaling by invertible
h×h matrices, where h is the hidden dimension), as we will discuss later. We argue that flatness mea-
sures for generalization should be constructed in a symmetry-invariant fashion, such that parameters
which are equivalent w.r.t. the neural net function are treated identically.

Aiming to break the cycle between discovery of a symmetry and techniques to deal with it, we ask:

Can we provide a one-fits-many recipe to develop symmetry-invariant quantities for a wider range of
symmetries?

We answer this question positively in this paper by proposing a principled approach to eliminate
ambiguities stemming from symmetry. Essentially, this boils down to using a geometry that correctly
captures the symmetry-imposed equivalence of parameters. We apply concepts from Riemannian
geometry to work on the Riemannian quotient manifold implied by a symmetry group (Boumal,
2023, Chapter 9). We thus identify objects on the quotient manifold—like the Riemannian metric
and gradient—and show how to translate them back to the Euclidean space.

Our contributions are the following :

(a) We introduce the application of Riemannian geometry (Boumal, 2023) to the study of neural
network parameter space symmetry: we propose using geometry from the quotient manifold
induced by a symmetry as a general recipe to remove symmetry-induced ambiguities in
parameter space. We do so by translating concepts like gradients from the quotient manifold
back to the original space through horizontal lifts.

(b) We thus propose geodesic sharpness, a novel adaptive sharpness measure. Through Taylor
expansions in our refined geometry, we show that (a) symmetries do introduce curvature into
the parameter space, and (b) ignoring that curvature results in previous adaptive sharpness
measures.

(c) We solve geodesic sharpness analytically for diagonal networks, where we find a strong
correlation between sharpness and generalization. We apply our approach to the GL(h)
symmetry in the attention mechanism, which has been unstudied and is higher-dimensional
than previously considered symmetries. We empirically verify our approach on large vision
transformers and find a stronger correlation than any previously seen in the literature (that
we are aware of) between sharpness and generalization, both for in-distribution and for all
distributional shifts we tested.
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2 RELATED WORK

Symmetry versus reparameterization Recently, Kristiadi et al. (2023) pointed out how to fix
ambiguities stemming from incorrect reparameterization, i.e. a change of variables to a new parameter
space. They show that invariance under reparameterization follows by correctly transforming the
(often implicitly treated) Riemannian metric, into the new coordinate system. Our work focuses
on invariance of the parameter spaceM under a symmetry group G with action ψ : G ×M →
M, (g,θ) 7→ ψ(g,θ) that operates on a single parameter space.

Symmetry teleportation: Other ways to circumvent the ambiguity is to view it as a degree of free-
dom and develop adaptation heuristics to improve algorithms which are not symmetry-agnostic (Zhao
et al., 2022a).

Geometric constraints & NN dynamics Some works aim at understanding the footprint of
symmetries onto the parameter space, e.g. in terms of geometrical constraints on derivatives like
the gradient or Hessian, or conserved quantities preserved throughout training (Kunin et al., 2021).
We choose a different approach in this work and aim at eliminating the ambiguity stemming from a
symmetry in a principled manner. Our approach is to take the parameter space’s quotient w.r.t. the
underlying symmetry group. While it reduces to many of the proposed post-hoc ‘fixes’ for simpler,
well-studied, symmetries like GL(1), we illustrate this approach for larger symmetry group that is
prevalent in the attention mechanism of modern neural network architectures. This symmetry is
GL(h) with h denoting the attention head’s dimension, and removes more degrees of freedom than
previously studied symmetries.

Kunin et al. (2021) study the impact of continuous differentiable parameter space symmetries on
the Euclidean gradient, Hessian, and gradient flow dynamics. They show that such symmetries
lead to geometrical constraints on the Euclidean derivatives, which themselves lead to conserved
quantities throughout gradient flow training. They focus on one-dimensional symmetries, such as
translation, scale, and re-scale symmetry, whose groups are isomorphic to R or R+. Their approach
is based on augmenting a symmetric function f : M → R to F = f ◦ ψ : M× G → R with
F
∣∣
g
= f ∀θ ∈M. The geometric constraints follow from differentiation in the ‘augmented space’,

which leads to interactions between the parameter spaceM and the symmetry group G.

This is different to our approach which tackles the reverse direction. We consider the geometry on the
quotient space induced by a symmetry group. This is akin to restricting the function f

∣∣
M/G :M→ R

to the quotient space rather than an augmented space. We then ‘lift’ objects that reside in the quotient
space and feature its more sophisticated, symmetry-aware geometry, back into the original space
where computations happen. This should be seen as a form of symmetry correction to the Euclidean
objects, e.g. the gradient or Hessian.

Our approach can also be applied to the one-dimensional symmetries studied by Kunin et al. (2021).
We go beyond those cases by considering a higher-dimensional variant of re-scale symmetry, rep-
resented by the group of invertible matrices GL. To the best of our knowledge, this symmetry has
not been studied in the context of neural networks, although it is present in the attention mechanism
of large language models. We believe that the principled approach provided by quotient manifolds
enables a general treatment of symmetries, and allows going beyond one-dimensional cases that lead
to a more aggressive dimensionality reduction.

3 PRELIMINARIES: DEFINITIONS, NOTATION, AND MATHEMATICS

Generalization measures: We consider a neural network fw with parameters w ∈ RD that is
trained on a data set Dtrain using a loss function ℓ by minimizing the empirical risk

LDtrain(w) :=
1

|Dtrain|
∑

(x,y)∈D

ℓ(fw(x),y)

Our goal is to compute a quantity on the training data that is predictive of the network’s generalization,
i.e. performance on a held-out data set.
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Sharpness One avenue to assess generalization is through the concept of sharpness, i.e.,how much
the loss changes when weights are perturbed. One can do this by considering expected sharpness or
worst-case sharpness over a neighbourhood of parameters, Savg and Smax, respectively. Usually,

Savg = ES∼D [LS(w + δ)− LS(w)] , δ ∼ N (0, ρ2) (1)

Smax = ES∼D

[
max

∥δ∥2≤ρ
(LS(w + δ)− LS(w))

]
(2)

where S ⊂ Dtrain, |S| = m. Near critical points, these measures are closely related to the Hessian
(and thus the curvature of parameter space): Savg ∼ Tr(H) and Smax ∼ λmax(H).

Problems with sharpness measures under symmetries: A problem with the above Hessian-based
sharpness measures is that they can assume different values at points in parameter space where the
neural network represents the same function. This is the case whenever the network has symmetries,
and is therefore very common for almost any architecture, e.g. scale/rescale symmetries.

Adaptive sharpness: To fix the above inconsistency, Kwon et al. (2021) proposed adaptive sharp-
ness (invariant under special symmetries), and Andriushchenko et al. (2023) utilize adaptive notions
of sharpness, which can be shown to be invariant to element-wise scalings :

Sρ
max(w, c) = ES∼D

[
max

∥δ⊙c−1∥p≤ρ
LS(w + δ)− LS(w)

]
(3)

where S is a batch of size m drawn from the training data, and c a vector with respect to which the
adaptive sharpness is considered, usually taken to be |w| Kwon et al. (2021).

The problem: Adaptive sharpness only considers a special symmetry. But symmetries of trans-
formers go beyond the invariance that adaptive sharpness was built for. Maybe unsurprisingly,
Andriushchenko et al. (2023) find inconsistent trends for adaptive sharpness in transformers versus
other architectures. We hypothesize this is related to adaptive sharpness not accounting for the full
symmetry in transformers. In this paper, we aim to fix this. The central question is: If adaptive
sharpness is the fix for a special symmetry, can we do something similar for the symmetries of
transformers to fix the above inconsistency?

3.1 SYMMETRIES IN NEURAL NETWORKS

Here, we give a brief overview and make more concrete the notion of NN symmetries, focusing on
those previously studied in Kunin et al. (2021).

Those symmetries lead to rather small effective dimensionality reduction as they are often of GL(1)
or GL+(1), but they can still impact the network behaviour considerably. Let θ denote the parameters
of a neural network, 1A a binary mask, and 1¬A its complement such that their sum is a vector of
ones, 1A + 1¬A = 1. Let θA :− θ ⊙ 1A with ⊙ the element-wise product. Further, let A1,2 be
two disjoint subsets, A1 ∩ A2 = ∅ with masks 1A1 ,1A2 . Then we have the following common
symmetries, characterized by their symmetry group G, such that for any g ∈ G the parameter ψ(g,θ)
represents the same function as θ:

• Translation: ψ(α,θ) = 1A ⊙α+ θ with α ∈ Rh

• Scaling: ψ(α,θ) = αθA + θ¬A with α ∈ R>0

• Re-scaling: ψ(α,θ) = αθA1 + 1/αθA2 + θ¬(A1∨A2) with α ∈ R>0

Their associated groups are G = Rh,GL+(1),GL+(1), respectively. In practise, there may be
multiple symmetries acting onto disjoint parts of the parameter space. Note that the re-scaling
symmetry is essentially the symmetry that adaptive sharpness corrects for.

3.2 RE-SCALE SYMMETRY OF TRANSFORMERS

Transformers exhibit a higher-dimensional symmetry than the previous examples; we formalize the
treatment of this symmetry in the following canonical form.

Definition 3.1 (Functional building block with GL symmetry). Consider a function f(G,H) on
Rm×h × Rn×h that consumes two matrices G ∈ Rn×h,H ∈ Rm×h but only uses the product
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GH⊤, i.e. f(G,H) = g(GH⊤) for some g over Rm×n. f is symmetric under the general linear
group

GL(h) :=
{
A ∈ Rh×h | A invertible

}
(4a)

with dimension dim(GL(h)) = h2 and action

ψ(A, (G,H)) = (GA−1,HA⊤) . (4b)

In other words, we can insert then absorb the identity A−1A into G,H to obtain equivalent
parametersGA−1,HA⊤ that represent the same function.

Example A.2 illustrates GL symmetry for a shallow linear net. Indeed, many popular NN building
blocks feature this form—most prominently the attention mechanism in transformers—and introduce
GL symmetries into the loss landscape. We give the attention symmetry in Example A.1, and we
provide the symmetry for for low-rank adapters (Hu et al., 2022) in Example A.3.

Examples A.1 to A.3 are NN building blocks that introduce GL symmetries into a loss function
produced by an architecture and can all be treated through the canonical form in Definition 3.1. In
contrast to symmetries from Section 3.1, they lead to more drastic dimensionality reduction. Consider
for example a single self-attention layer where d = dv = dk. The number of trainable parameters is
4d2 and the two GL(d) symmetries reduce the effective dimension to 4d2 − 2 dim(GL(d)) = 2d2,
i.e. they render half the parameter space redundant. We hypothesize that the range of objects like the
Euclidean Hessian’s trace (Dinh et al., 2017) in the presence of a low-dimensional symmetry may be
amplified for such higher-dimensional symmetries.

3.3 MATHEMATICAL CONCEPTS FOR RIEMANNIAN GEOMETRY

We now outline properties of manifolds that are needed for the full development of our approach. We
list essential concepts here, and provide definitions and a brief review of these concepts in Appendix B.
For further information, the interested reader is referred to, e.g. Lee (2003)

x

[x] = [x′]

y

[y]

x′

ξx

ξVx

ξHx

ξ[x]

M

E
M = M/G

E Linear embedding space
M Total space
M Quotient space
G Symmetry group
x̄, ȳ Points on the total space
x, y Points on the quotient space
ξ̄x̄ Tangent vector in the tangent space at

point x̄, Tx̄M
ξx Tangent vector in the tangent space at

point x, TxM
ξ̄Vx̄ Vertical component of ξ̄x̄ in the vertical

space Vx̄M
ξ̄Hx̄ Horizontal component of ξ̄x̄ in the hor-

izontal space Hx̄M ≃ TxM, horizon-
tal lift of ξx

Figure 2: Illustrative sketch relating total and quotient space and their tangent spaces. A tangent
vector at a point in total space, ξ̄x̄ ∈ Tx̄M can be decomposed into a horizontal component ξ̄Hx̄ and a
vertical component ξ̄Vx̄ . The vertical component points along the direction where the quotient space
x = [x̄] remains unaffected. The horizontal component points along the direction that changes the
equivalence class. We can use ξ̄Hx̄ as a representation of the tangent vector ξx ∈ TxM on the quotient
space. The component ξ̄Hx̄ represents the horizontal lift of ξx.

Ambient embedding space We assume our parameter manifold to be embedded in linear Euclidean
space E ≃ Rd with d the number of parameters. We can think of E as the computation space. For
instance, for a loss function ℓ : E → R,θ 7→ ℓ(θ) , we can use ML libraries to evaluate its value, as
well as its Euclidean gradient

gradθ ℓ =

(
∂ℓ(θ)

∂θi

)
i=1,...,d

∈ Rd. (5)
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Because the geometry of E is flat, i.e. uses the standard metric ⟨θ1,θ2⟩ := θ⊤1 θ2, this object consists
of partial derivatives. However, the Riemannian generalization will add correction terms. In what
follows we consider only the restriction of objects like ℓ to the parameter space.

Definition 3.2. We takeM to be the manifold of parameters of our network, and consider it as being
an embedded submanifold of an ambient vector space E , the computational space of matrices on
which all our numerical calculations are done. We callM the total space. On the total space we have
a loss function ℓ :M→R.

As discussed in the previous section, we intend on calculating derivatives/geometric quantities after
removing the symmetries from our neural architecture. The symmetry relation induces natural
equivalence classes, which we write [x], and explain in Appendix B.1 We let M = M/ ∼
represent the quotient of the original parameter space manifold by the equivalence relation associated
with the symmetry (Appendix B.2). We also require tangent vectors; these are straightforward
on the total space M, but the tangent space of the quotient manifold, M, in turn requires more
machinery: vertical and horizontal spaces, and corresponding lift. These concepts are all defined in
Appendix B.3.

If endow our total spaceM with a smooth inner product over its tangent vectors then we end up
with a Riemannian manifold (defined in Appendix B.4). This construction will let us analyze several
differential objects that live on quotient manifolds, on the ambient space in natural way, as we will
see. Furthermore, this allows us to define the horizontal space as the orthogonal complement of the
vertical space (also in Appendix B.4), and to define a Riemannian gradient (Appendix B.5). Most
properties from the Euclidean case are still true for the Riemannian gradient, but of particular interest
to us is the fact that the direction of gradf(x) is still the steepest-ascent direction of f at a point x.

We additionally make use of the notions of geodesic curves. Intuitively, geodesic curves can either be
seen as curves of minimal distance between two points on a manifoldM, or equivalently, as curves
through a given point with some initial velocity, and whose acceleration is zero— a generalization of
Euclidean straight lines. See Appendix B.6 for details.

4 GEODESIC SHARPNESS

We posit that adaptive sharpness measures should take into account the geometry of the quotient
parameter manifold, that arises after removing symmetries from the parameter space. We base our
sharpness measure on the notion of geodesic ball: the set of points that can be reached by geodesics
starting at a point p and whose initial velocity has a norm smaller than ρ. In R this is just the usual
definition of a ball, since the geodesics are straight lines. Putting it all together, if ξ̄ ∈ Hw is a
horizontal vector, and γ̄(t) is a geodesic starting at w and with initial velocity ξ̄:

Sρ
max(w) = ES∼D

[
max

||ξ̄||γ̄(0)≤ρ
LS(γ̄ξ̄(1))− LS(γ̄ξ̄(0))

]
, (6)

If the initial velocity, ξ̄, y, is a horizontal vector, then the velocity of the geodesic, ˙̄γξ̄, will stay
horizontal. The choice of t = 1 in γ̄ξ̄(1) is not as arbitrary as it seems (do Carmo, 1992) : for a
positive a, γ̄ξ̄(at) = γ̄aξ̄(t).

When we do not have an analytical solution for the geodesic, we can use the approximation:

γ̄i(t) = γ̄i(0) + ξ̄it− 1

2
Γi
klξ̄

k ξ̄lt2 +O(ξ̄3) (7)

where ξ̄ = (ξ̄i) is the initial (horizontal) velocity, and Γi
kl are the Christoffel symbols. With this

approximation Eq. 6 becomes

Sρ
max(w) = ES∼D

[
max

||ξ̄||γ̄(0)≤ρ
LS

(
γ̄ξ̄(0) + ξ̄i − 1

2
Γi
klξ̄

k ξ̄l
)
− LS(γ̄ξ̄(0))

]
, (8)

We show geodesic sharpness reduces to adaptive sharpness measures in Appendix F.1.
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5 GEODESIC SHARPNESS IN PRACTICE

We now apply geodesic sharpness to concrete examples. A fully worked out scalar toy model is
provided in Appendix D. Following previous works by Dziugaite et al. (2020);Kwon et al. (2021);An-
driushchenko et al. (2023), we use the Kendall rank correlation coefficient (Kendall, 1938) in the
empirical validations of our approach:

τ(t, s) =
2

M(M − 1)

∑
i<j

sign(ti − tj) sign(si − sj)

where t and s are the vectors between which we are trying to measure correlation.

5.1 DIAGONAL NETWORKS

We next study diagonal linear networks, one of the simplest non-trivial neural networks. Diagonal
networks have two parameters, u,v, and predict a label, y given an input, x, via y = xT (u⊙ v).
We consider a linear regression problem with labels y ∈ Rn and data matrixX ∈ Rn×d. We take as
our loss L(u,v) = ||X(u⊙ v)− y||22. Our parameter manifoldM will be Rd ×Rd. The symmetry
present in these diagonal networks is that of element-wise re-scaling: (u,v)→ (αu, α−1v), leaves
β = u⊙ v invariant and hence the loss.

Metric: At a point (u,v) ∈M, for two tangent vectors η = (ηu, ηv), ν = (νu, νv) ∈ T(u,v)M,
we have

g [(ηu, ηv) , (νu, νv)] =

d∑
i=1

ηiuν
i
u

(ui)2
+
ηivν

i
v

(vi)2
(9)

Horizontal space: H(u,v) = {(ηu, ηv) ∈ T(u,v)M | ηi
u

ui =
ηi
v

vi ∀i ∈ {1, . . . , d}}

Geodesics: We defineBi =
ηi
u

ui =
ηi
v

vi ∀i ∈ {1, . . . , d}, so that

γ(t)i = (u(t),v(t)) =
(
ui
0 exp(Bit),v

i
0 exp(Bit)

)
∀i ∈ {1, . . . , d} (10)

where ui
0 and vi0 are the initial positions for our parameters, i.e., the parameters that the network

actually learned.

Geodesic sharpness: We assume that in what follows XTX = Idd, and we denote β0 =
u0 ⊙ v0,γt =

(
exp
(
2B1t

)
, . . . exp

(
2Bdt

))
,βt = (ut ⊙ vt) = β0 ⊙ γt,β∗ = XT y. Note that

β∗ is just the optimal least squares predictor whenXTX = Id. With this notation

Smax = max
||B||≤ρ2

d∑
i

[
(βi

0)
2(γt ⊙ γt − 1)

]
− 2(β0 ⊙ γt − 1)Tβ∗ (11)

At a first glance, this expression does not seem to have a simple interpretation, but we Taylor expand
it to second order inB (since ρ is supposed to be small):

Smax ≈ max
||B||≤ρ2

4BTr + 4BTDβ0,β∗B (12)

where r = {βi
0(β

i
0 − βi

∗), i = 1, . . . , d}, r′ = {(βi
0 − βi

∗), i = 1, . . . , d} and Dβ0,β∗ =
diag(βi

0(2β
i
0 − βi

∗)) = diag(βi
0(β

i
0 + (r′)i)). We separate the analysis of Eq.12 into two cases:

CASE A): r ̸= 0 AND FIRST ORDER SUFFICES Eq.12 becomes
Smax = max

||B||≤ρ2
4BTr

with solution Smax = 4ρ||r||. This is essentially the gradient norm– a useful quantity for understand-
ing generalization (Zhao et al., 2022b).
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CASE B): r = 0 Here we necessarily have to consider the second order terms, so that Eq.12
becomes

Smax = max
||B||≤ρ2

4BTDβ0,β∗B

This has the well known solution of Smax = ρ2λmax(Dβ0,β∗) = ρ2 max((βi
0)

2). This is just ||β||2∞,
which is the square of what we would get by using adaptive sharpness, Eq.33, with a very carefully
chosen hyper-parameter c. This is a quantity that is useful when our ground-truth, β∗ is dense.

5.1.1 EMPIRICAL VALIDATION

Experimental setup: We emulate the setup used in Andriushchenko et al. (2023). We generate a
randomly distributed data matrix X , a random ground-truth vector β∗ that is 90% sparse, and we
train 50 diagonal networks to 10−5 training loss on a regression task. We take d = 200. We solve the
maximum sharpness optimization problem for the geodesics using Lagrange multipliers and Eq. 12.
Results: We see that in this particular instance, all three notions of sharpness are able to predict, to
some degree, generalization. Geodesic sharpness although closely related for diagonal networks with
adaptive worst-case sharpness, does slightly better. While we do not use notions of average sharpness
in other results, we included it here to further illustrate the effect that different notions of sharpness
have when studying generalization. The Kendall taus indicate a strong correlation.
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Figure 3: We show for 50 diagonal models trained on sparse data the generalization gap (here just
the test loss) vs. average-case adaptive sharpness (left), worst-case adaptive sharpness (middle) and
geodesic sharpness (right). The x axis is given by the various sharpness notions we consider, and
the y axis is the test error. The plots for maximum sharpness are approximately linear with some
dispersion.

5.2 ATTENTION LAYERS

We take as our computation space E := Rn×h × Rm×h ≃ R(n+m)h

In what follows we restrict our weight matrices to have full column rank.
Assumption 5.1. The rank of G,H corresponds to their number of columns, rank(G) =
rank(H) = h.

This implies h ≤ n,m, which is usually satisfied in (multi-head) attention layers (Example A.1) for
the default choices of dv, dk. While the weights of multi-head attention layers tend to have high rank,
they are not guaranteed to be full rank. To account for this we introduce a small relaxation parameter,
ϵ, s.t. GTG→ GTG+ ϵIh. We observe that as long as ϵ is sufficiently small, it does not affect our
results. In the following, we therefore restrict bothG,H to the set of fixed-rank matrices,

M← Rn×h
h × Rm×h

h (13a)
where

Rn×h
k :−

{
B ∈ Rn×h | rank(B) = k

}
. (13b)

We can represent a point x̄ ∈ M by a matrix tuple (G,H) ∈ Rn×h
h × Rm×h

h . Its tangent space
Tx̄M is

TxM =
{
η ∈ Rn×h × Rm×h

}
(14)

and a tangent vector η ∈ Tx̄M is represented by a matrix tuple (ηG, ηH) ∈ Rn×h × Rm×h.
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Metric: We endowM with the metric ⟨·, ·⟩x̄ : Tx̄M× Tx̄M→ R,

⟨η̄, ζ̄⟩x = Tr
(
(G⊤G)−1η̄⊤

Gζ̄G + (H⊤H)−1η̄⊤
H ζ̄H

)
, (15)

different from the Euclidean metric that simply flattens and concatenates the matrix tuples into vectors
and takes their dot product, ⟨η, ζ⟩ = Tr

(
η⊤GζG + η⊤HζH

)
. Importantly, this metric is invariant under

the symmetries of the attention mechanism, and thus defines a valid metric on the quotient manifold
(Absil et al., 2008) .
Horizontal space: Hx̄M =

{
(ξ̄G +GΛ, ξ̄H −HΛ⊤) | ξ ∈ TxM

}
Λ is the solution of the Sylvester equation AΛ + ΛA⊤ = B, with A = G⊤GH⊤H , B =
G⊤GH⊤ξ̄H − ξ̄⊤GGH⊤H .
Geodesics: As far as we are aware there is no analytical solution for the geodesics of metric (15),
so we use the approximation given by Eq.7.

For horizontal tangent vectors (ξ̄G, ξ̄H)

Γi
klξ̄

k
Gξ̄

l
G = −ξ̄G(GTG)−1

[
ξ̄TGG+GT ξ̄G

]
+G(GTG)−1ξ̄TGξ̄G (16)

Proof in Appendix I.2.

5.3 TRANSFORMERS

Transformers will have a mix of attention layers and layers with more restricted symmetries for which
adaptive sharpness is more appropriate. We present in Appendix C.1 more details on how we treat
the multi-layer schema of transformers. In Appendix C.2 we present Algorithm 1, which we use to
solve for geodesic sharpness.
5.3.1 EMPIRICAL VALIDATION: IMAGENET AND VISION TRANSFORMERS

Experimental setup: We follow the lead of Andriushchenko et al. (2023), and look at models
obtained from CLIP fine-tuning on ImageNet-1k from CLIP Radford et al. (2021). To be more
specific, we study the already trained classifiers obtained by Wortsman et al. (2022), after fine-tuning
a CLIP ViT-B/32 on ImageNet with randomly selected hyperparameters. We evaluate our measure and
adaptive worst-case sharpness on the same 2048 data points from the training set of ImageNet, divided
into batches of 256 points. We calculate sharpness on each batch separately and average the results.
We take the generalization gap to be the difference between test and training error. We present our
results also on the distribution shifts Imagenet-R (Hendrycks et al., 2021a), ImageNet-Sketch (Wang
et al., 2019), and ImageNet-A (Hendrycks et al., 2021b).

Results: We show our results in Figure 5.3.1. We find a consistent, strong, correlation between
geodesic sharpness and the generalization gap on ImageNet. This correlation is stronger than that
observed with adaptive sharpness alone, and is consistently negative, implying that the geodesically
sharpest models studied on ImageNet are those that generalize best.
5.3.2 EMPIRICAL VALIDATION: MNLI AND BERT

Experimental Setup We also validate our measure on 35 models from (McCoy et al., 2020),
obtained after fine-tuning BERT on MNLI (Williams et al., 2018). We evaluate our measure and
adaptive worst-case sharpness on the same 1024 data points from the MNLI training set, divided into
batches of 128 points. As was done for ImageNet, we calculate sharpness on each batch separately
and average the results.

Results We show our results in Figure 8. We find a consistent, strong, correlation between geodesic
sharpness and the generalisation gap on MNLI. This correlation is stronger than that observed with
adaptive sharpness alone, and is now positive, implying that the geodesically flattest models studied
on MNLI are those that generalise best.

6 LIMITATIONS AND FUTURE WORK

Limitations: First, while our geodesic sharpness is more general than previous measures, there are
still symmetries for which taking the quotient may be computationally expensive or intractable. Still,
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Figure 4: We show for the 72 models from Wortsman et al. (2022) the generalization gap on ImageNet
(and distributional shifts) vs. worst-case adaptive sharpness (top) and geodesic sharpness (bottom).
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Figure 5: The generalization gap on the MNLI dev matched set (Williams et al., 2018) vs. worst-case
adaptive sharpness (left) and geodesic sharpness (right), is shown for 35 models from (McCoy et al.,
2020)

it provides an important tool for analysing NNs: accounting for some symmetry is better than none,
and under computational constraints it could be useful as an occasional diagnostic “probe”.

Our proposed sharpness measure for transformers can struggle when attention weights approach being
singular. We mitigate this with a relaxation parameter. This comes at the expense of an additional
hyper-parameter, though in practise we found our results were robust to this parameter.

Future work The role of data and how it can be integrated into our overall framework has not been
explored. A more complete understanding of the simultaneous dual invariance induced by data and
parameter symmetries is sure to be invaluable in further understanding the connection of sharpness
with generalisation.

As demonstrated by Foret et al. (2021), having a relatively simple quantity accessible during training
that correlates to generalisation is useful, and further work might enable the creation of optimizers
well-suited to large scale transformers.

7 CONCLUSION

In this paper, motivated by the success of adaptive sharpness measures in the study of generalization,
we propose a novel adaptive sharpness measure: geodesic sharpness. We frame it in the context of Rie-
mannian geometry and provide a one-size-fits-all recipe for including various parameter symmetries
in the calculation of sharpness. We find that the symmetries introduce curvature into the parameter
space and that by ignoring that curvature we recover traditional adaptive sharpness measures. We
analytically investigate our measure on widely studied diagonal networks and empirically verify our
approach on large scale transformers, finding a strong correlation between geodesic sharpness and
generalization.
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Hide & Seek: Transformer Symmetries Obscure Sharpness &
Riemannian Geometry Finds It (Supplemental Material)

We provide in Table 1 a summary of correlation coefficients between sharpness and generalization
for our experiments.

Rank correlation coefficient τ

Setting Adaptive sharpness Geodesic sharpness

Diagonal networks -0.52 -0.57
ImageNet -0.41 -0.7

MNLI 0.06 0.25

Table 1: Summary of the correlation between sharpness measures and generalization. We boldface
the best performing metric

In the sections that follow, we provide additional details to supplement the main text.

A ADDITIONAL EXAMPLES OF GL SYMMETRIES SYMMETRIES IN NEURAL
NETWORKS

Example A.1 (Self-attention( Vaswani et al. (2017))). Given a sequenceX ∈ Rt×d with t tokens
and model dimension d, self-attention (SA) uses four matricesWq,Wk ∈ Rd×dk ,Wv,W

⊤
o ∈ Rd×dv

(usually, d = dv = dk) to produce a new t× d sequence
SA(Wq,Wk,Wv,Wo)

= softmax

(
XWqW

⊤
k X

⊤
√
dk

)
XWvWo .

(17)

This block contains two GL symmetries: one of dimension dk between the key and query projection
weights,G,H ←Wq,Wk, and one of dimension dv between the value and out projection weights,
G,H ← Wv,W

⊤
o . Similar to Eq. 18, we can account for biases in the key, query, and value

projections by appending them to their weight,

G,H ←
(
Wk
b⊤k

)
,

(
Wq
bq

)⊤

, G,H ←
(
Wv
bv

)
,W⊤

o .

Commonly, H attention heads {W i
q ,W

i
k ,W

i
v,i,W

i
o}Hi=1 independently processX and concatenate

their results into the final output (usually dk = dv = d/H). This introduces 2H GL symmetries.
Everything also applies to general attention where, instead of X , independent data is fed as keys,
queries, and values to Eq. 17.
Example A.2 (Shallow linear net). Consider a two-layer linear net NN(W2,W1) =W2W1x with
weight matricesW1 ∈ Rh×din ,W2 ∈ Rdout×h and some input x ∈ Rdin . This net has GL symmetry
with correspondenceG,H ←W2,W1

⊤ to Definition 3.1. With first-layer bias, we have

W2(W1x+ b1) =W2 (W1 b1)

(
x
1

)
, (18)

corresponding toG,H ←W2, (W1 b1)
⊤.

Example A.3 (Low-rank adapters (LoRA, Hu et al. (2022))). Fine-tuning tasks with large language
models add a trainable low-rank perturbation L ∈ Rd1×h,R ∈ Rd2×h to the pre-trained weight
W ∈ Rd1×d2 ,

LoRA(W ) =W +LR⊤ , (19)
introducing a GL(h) symmetry whereG,H ← L,R. Yen et al. (2024) propose an invariant way to
train the parameters L,R and show that doing so improves the result obtained via LoRA.
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B CONCEPTS AND REVIEW FOR RIEMANNIAN GEOMETRY

Recall thatM is the total space: the manifold of parameters of our network. Also, on the total space
we have a loss function ℓ :M→ R. Useful resources are Lee (2003), Absil et al. (2008), and Boumal
(2023).

B.1 ORBIT OF x

A symmetry relation naturally defines an equivalence relation: two points x, y ∈M are equivalent
under the symmetry, if they can be mapped onto each other by the action,

x ∼ y ⇔ ∃g ∈ G : y = ψ(g, x) . (20)

In other words, if we let orbit(x) :− {ψ(g, x) | g ∈ G} be all points on the total space that are
reachable from x through the action of G, all points in an orbit are equivalent. Instead of orbit(x),
we will write

[x] := {y ∈M | y ∼ x} (21)

for the symmetry-induced equivalence class [x] of x ∈M.

Let’s further assume that ℓ is symmetric under G, i.e. for any x ∈M and all g ∈ G, ℓ(x) = ℓ(ψ(g, x)).

B.2 QUOTIENTM AND NATURAL PROJECTION

If we take the quotient of the original parameter space manifoldM, by the equivalence relation, ∼,
induced by the symmetries of our neural architecture, we get a quotientM =M/ ∼. Under certain
conditions,M is a quotient manifold. The mapping between a point in total space to its equivalence
class is called the natural projection:

Definition B.1. Let π :M→M/ ∼, be defined by x 7→ x. π is called the natural, or canonical
projection. We use π(x) to denote x viewed as a point ofM :−M/ ∼.

B.3 TANGENT SPACE, VERTICAL AND HORIZONTAL SPACES

Tangent vectors on the total spaceM, embedded in a vector space E can be viewed as tangent vectors
to E , but the tangent space of the quotient manifold,M is not as straightforward. First, note that
any element ξ̄ ∈ Tx̄M that satisfies Dπ(x̄)[ξ̄] = ξ (where D is the differential) is a candidate for a
representation of ξ ∈ TxM. These aren’t unique, and as we wish to work without any numerical
ambiguity we introduce the notions of the vertical and horizontal spaces:

Definition B.2. For a quotient manifoldM =M/ ∼, the vertical space at x̄ ∈M is the subspace
Vx̄ = Tx̄F = kerDπ(x) where F = {ȳ ∈ M : ȳ ∼ x̄} is the fiber of x̄. The complement of Vx̄ is
the horizontal space at x̄: Tx̄M = Vx̄ ⊕Hx̄.

Definition B.3. There is only one element ξ̄x̄ that belongs to Hx̄ and satisfies Dπ(x̄)[ξ̄x̄] = ξ. This
unique vector is called the horizontal lift of of ξ at x̄. We denote the operator that affects the procedure
by liftx̄(·) When the ambient space, E is a subset of Rn×p, the horizontal space can also be seen as
such a subset, providing a convenient matrix representation of a priori abstract tangent vectors ofM.

B.4 RIEMANNIAN MANIFOLD

We give our total spaceM a smooth inner product over its tangent vectors to give a Riemannian
manifold.

Definition B.4. A Riemannian manifold is a pair (M, g), whereM is a smooth manifold and g is a
Riemannian metric, defined as the inner product on the tangent space TxM for each point x ∈M,
gx(·, ·) : TxM× TxM→ R. We also use the notation ⟨·, ·⟩x to denote the inner product.

Note that this definition is not as arcane as it may appear since any smooth manifold admits a
Riemannian metric, and we can consider the space of parameters of most neural architectures as
constituting a smooth manifold, admitting at least a simple, Euclidean, metric.
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The horizontal space can now be defined as the orthogonal complement of the vertical space:
Hx̄ = (Vx̄)

⊥ = {u ∈ Tx̄M : ⟨u, v⟩x = 0 for all v ∈ Vx̄}. Additionally, letting ḡx̄ denote the metric
onM, if for every x ∈ M and every ξx, ζx in TxM, ḡx̄(ξ̄x̄, ζ̄x̄) does not depend on x̄ ∈ π−1(x)
then, gx(ξx, ζx) = ḡx̄(ξ̄x̄, ζ̄x̄) defines a valid metric on the quotient manifoldM.

B.5 RIEMANNIAN GRADIENT

Definition B.5. If f̄ is a smooth scalar field on a Riemannian manifoldM, then the gradient of f̄ at
x̄, gradf̄(x̄) is the unique element of Tx̄M such that

⟨gradf̄(x̄), ξ̄⟩x̄ = Df̄(x̄)[ξ̄],∀ξ̄ ∈ Tx̄M

If f̄ is a function onM, that induces a function f on a quotient manifoldM ofM, then we can
express the horizontal lift of grad f at x̄ as

liftx̄(grad f) = gradf̄(x̄).

B.6 GEODESIC CURVES

Definition B.6.

(a) Geodesic curves, γ̄, are the curves of minimal distance between two points on a manifold
M. The distance along the geodesic is called the geodesic distance. IfM is a Riemannian
quotient manifold of M, with canonical projection π, and γ̄ is a geodesic on M, then
γ = π ◦ γ̄ is a geodesic curve onM.

(b) Alternatively, geodesics, γ̄(t) = 0 can be defined as curves from a given point p ∈ M,
(i.e., γ̄(0) = p), with initial velocity, ˙̄γ(0) = ξ̄ ∈ Tp̄M, such that their acceleration is zero
(a generalization of Euclidean straight lines). This characterization provides us with the
following equation in local coordinates for the geodesic:

d2γλ

dt2
+ Γλ

µν

dγµ

dt

dγν

dt
= 0

where Γλ
µν are the Christoffel symbols, Γλ

µν = 1
2g

λσ
(

∂gσµ

∂xν + ∂gσν

∂xµ − ∂gµν

∂xσ

)
. Additionally,

the geodesics can also be derived as the curves that are minima of the energy functional

S(γ) =

∫ b

a

gγ(t)(
˙γ(t), ˙γ(t))dt

This second perspective will prove useful for the geodesics of the attention layers.

If the initial velocity tangent vector, ξ, is horizontal then, ∀t, ˙̄γ(t) ∈ Hγ̄(t), that is, if the
velocity vector starts out as horizontal, then it will stay horizontal. We call these geodesics,
horizontal geodesics. The curve γ = π ◦ γ̄ is a geodesic of the quotient manifoldM, with
the same length as γ̄. This also holds the other way, i.e., a geodesic in the quotient manifold
can be lifted to a horizontal geodesic in the total space.

C GEODESIC SHARPNESS: PRACTICAL CONCERNS

C.1 TRANSFORMERS

Transformers, introduced by Vaswani et al. (2017), consists of multi-headed self-attention and feed-
forward layers, both wrapped in residual connections and layer normalization. Visual transformers,
in addition tend to have convolutional layers.
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Figure 6: Diagram of multi-headed attention, taken from Vaswani et al. (2017)

Mathematically, focusing for the moment on the multi-headed attention blocks,

MultiHead(Q,K, V ) =
[
head1, . . . , headh

]
W o

where headi = Attention
(
QWQ

i ,KW
K
i , V WV

i

)
where Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V . From this we can ascertain the following symme-

tries:

1) (WQ
i ,W

K
i )→ (WQ

i G
−1,WK

i GT ) ,∀G ∈ GLn(dhead)

2) (WV
i ,W

o
i )→ (WV

i G
−1,W o

i G
T ) ,∀G ∈ GLn(dhead)

where W o
i are the columns of W o that are relevant for the matrix multiplication with each WV

i ,
taking into consideration the head concatenation procedure.

In the full transformer model when solving for geodesic sharpness, for each layer, we apply Eq. 7
to each (WQ

i ,W
K
i ) and (WV

i ,W
o
i ), using Eq. 16. This results in horizontal vectors (ξ̄Qi , ξ̄

K
i ) and

(ξ̄Vi , ξ̄
o
i ). For the non-attention parameters,w, (belonging to fully connected layers, convolutional lay-

ers and layer norm), we keep to the recipe of adaptive sharpness, so that ||ξ̄w|| = ||
(
ξ̄w ⊙ |w|−1

)
||2.

The norm of the full update vector ξ̄ = concat(ξ̄Qi , ξ̄
K
i , ξ̄

V
i , ξ̄

o
i , ξ̄w), where a sum over all parameters

of the network is implicit, ||ξ̄||2 =
∑(
||(ξ̄Qi , ξ̄Ki )||2 + ||(ξ̄Vi , ξ̄oi )||2 + ||ξ̄w||2

)
.

C.2 ALGORITHM

Following the lead of Andriushchenko et al. (2023), we use Auto-PDG, proposed in Croce & Hein
(2020), but now optimizing the horizontal vector ξ̄ instead of the input. In Algorithm 1, ℓ is the loss
over the batch we are optimizing over, S is the feasible set of horizontal vectors, ξ̄, with norm smaller
than ρ, and PS is the projection onto this set. Γ are the Christoffel symbols for the parameters. η
and W are fixed hyperparameters, which we keep as in Andriushchenko et al. (2023), and the two
conditions in Line 13 can be found in Croce & Hein (2020). The only differences to the algorithm
employed to calculate adaptive sharpness are in lines 3, 8, 10, and 12.

C.3 COMPLEXITY

Geodesic sharpness is slightly more expensive than adaptive sharpness in the following sense: Our
approach consists of three steps: 1) perturbing the weights according to Equation 8, 2) optimizing
the perturbations with gradient descent, and 3) projecting them onto the feasible set, i.e. horizontal
vectors within the geodesic ball with a small enough nerm.

Steps 1) and 2) are also present in adaptive sharpness. Step 1) in our approach is slightly more
expensive because we need to evaluate the quadratic form that involves the Christoffel symbols
(given by 16); this step introduces nparams weight matrix multiplications, but these are quite efficient.
Making the gradients Riemannian, costs another nparams weight matrix multiplications. Neither of
these bottleneck our approach. Step 3) requires solving a Sylvester equation to project the direction
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Algorithm 1 Auto-PGD

1: Input: objective function ℓ, perturbation set S, ξ̄(0), initial weights w(0), η, Niter, W =
{w0, . . . , wn}

2: Output: ξ̄max, ℓmax
3: v(1) ← w(0) + ξ̄(0) − 1

2Γξ̄
(0)ξ̄(0) ▷ Perturb weights according to Eq. 7

4: ξ̄(1) ← PS
(
ξ̄(0) + η∇ξ̄ℓ(v

(1))
)

5: ℓmax ← max{ℓ(w(0)), ℓ(v(1))}
6: ξ̄max ← ξ̄(0) if ℓmax ≡ ℓ(w(0)) else ξ̄max ← ξ̄(1)

7: for k = 1 to Niter − 1 do
8: v(k+1) ← w(0) + ξ̄(k) − 1

2Γξ̄
(k)ξ̄(k) ▷ Perturb weights according to Eq. 7

9: if w(0) is an attention weight then
10: g ← ∇ξ̄ℓ(v

(k+1))w(0),Tw(0) ▷ Make attention gradients Riemannian
11: else
12: g ← ∇ξ̄ℓ(v

(k+1))⊙ (w(0))2 ▷ Make the other gradients Riemannian
13: end if
14: z(k+1) ← PS

(
ξ̄(k) + ηg)

)
15: ξ̄(k+1) ← PS

(
ξ̄(k) + α(z(k+1) − ξ̄(k)) + (1− α)(ξ̄(k) − ξ̄(k−1))

)
16: if ℓ(v(k+1)) > ℓmax then
17: ξ̄max ← ξ̄(k+1) and ℓmax ← ℓ(v(k+1))
18: end if
19: if k ∈W then
20: if Condition 1 or Condition 2 then
21: η ← η/2 and w(k+1) ← wmax
22: end if
23: end if
24: end for

of the updated geodesic back onto the horizontal space. This solve is cubic in h (Kirrinnis, 2001), but
h is usually small (e.g. h = 64 in the ImageNet and BERT experiments).

On practical transformers, we expect the bottleneck to be the forward and backward propagations,
just like in adaptive sharpness.

D GEODESIC SHARPNESS: SCALAR TOY MODEL

To make our approach explicit, we illustrate it on a NN with two scalar parameters G and H , square
loss, and a single (scalar) training point (x, y). For this example, everything is analytically tractable.
We also contrast our sharpness measure with previously proposed ones to highlight its invariance.

Since we require full column-rank, our parameter space isM = R∗ × R∗ with R∗ = R \ {0}.

Metric At a point (G,H) ∈M, for two tangent vectors η = (ηG, ηH), ν = (νG, νH) ∈ T(G,H)M,
we have

g [(ηG, ηH) , (νG, νH)] =
ηGνG
G2

+
ηHνH
H2

= η⊤
(

1
G2 0
0 1

H2

)
︸ ︷︷ ︸

gkl

ν (22)

We denote the inverse metric by gkl =
(
G2 0
0 H2

)
Horizontal space H(G,H) = {(ηG, ηH) ∈ T(G,H)M | ηG

G = ηH

H }

Geodesics To compute the geodesics on the quotient space, we need the Christoffel symbols Γi
km.

Using a coordinate system (p1, p2) = (G,H), we have the following equation for a geodesic
γ(t) = (γG(t), γH(t)), with initial conditions γ(0) = (G0, H0) and γ̇(0) = (ηG0 , ηH0)

17
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d2γG
dt2

+ Γ1
11

(
dγG
dt

)2

= 0

and similarly for H with Γ2
22 instead of Γ1

11.

The Christoffel symbols can be found using the metric, g, and its inverse. Using the Einstein notation
and denoting the inverse of g by the use of upper indices:

Γi
kl =

1

2
gim

(
∂gmk

∂xl
+
∂gml

∂xk
− ∂gkl
∂xm

)
Then

Γ1
11 =

1

2
g1m

(
∂gm1

∂p1
+
∂gm1

∂p1
− ∂gkl
∂pm

)
= − 1

G

Γ2
22 = − 1

H

All other Christoffel symbols are 0. Our geodesic equations then become (we omit the derivation for
H, which is identical but with G↔ H)

d2γG
dt2

− 1

γG

(
dγG
dt

)2

= 0

This ODE has the (unique) solution γG(t) = AG exp(BGt). Taking into account the initial conditions,
AG = G0, AH = H0 and due to the definition of the horizontal space, BG = ηG

G0
and BH = ηH

H0
,

this becomes

γ(t) =

(
G0 exp

(
ηG
G0

t

)
, H0 exp

(
ηH
H0

t

))
One important detail to note is that these geodesics are not complete, that is, not all two points can
be connected by a geodesic. Points with different signs can not be connected, which makes sense
since we excluded the origin from the acceptable parameters and in 1D we need to cross it to connect
points with differing signs. All points that lie in the same quadrant as (G0, H0) can be connected
through a geodesic.

Putting it all together

Sρ
max((G0, H0)) =

[
max

||B||≤ρ
x2G2

0H
2
0 (exp(4B)− 1)− 2yxG0H0(exp(2B)− 1)

]
, (23)

Letting y0 = G0H0x, this becomes:

Sρ
max((G0, H0)) =

[
max

||B||≤ρ
y20(exp(4B)− 1)− 2yy0(exp(2B)− 1)

]
, (24)

Since ηH is completely determined by ηG we can ignore the maximization over it.

Since in practice we’ll take ρ≪ 1, we Taylor expand to get

Sρ
max ≈ 4ρ|y0||y − y0|

This presents an issue when the residual, |y − y0|, is zero, so we also can expand to second order, to
get, when |y − y0| ≈ 0

Sρ
max ∝ ρ2|y0||y − 2y0| = 2ρ2y20

This is, up to constants, just ||G⊙H||22. This is also invariant to GL1 transformations, as expected.

Very close to the minimum we only capture (second-order in ρ) properties of the network, a bit further
away from it we capture a (first-order in ρ) mix of data and network properties.
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Comparison with more traditional measures The local average and worst case Euclidean sharp-
ness (at a minimum) are

Savg = Tr∇2LS = G2 +H2

Smax = λmax(∇2LS) = G2 +H2

Adaptive sharpness is defined as

Sρ
avg(w, c) = ES∼Pm [LS(w + δ)− LS(w)] , δ ∼ N (0, ρ2diag(c2))

Sρ
max(w, c) = ES∼Pm

[
max

∥δ⊙c−1∥p≤ρ
LS(w + δ)− LS(w)

]
,

By picking c very carefully one can get

Sρ
avg(w, c) = |GH|

Sρ
max(w, c) = |GH|

By contrast, in our approach there is no need for careful hyperparameter choices

Geodesic flatness with more data points How does the geodesic flatness look like with more data
points?

LS(G,H) =
1

n

n∑
i=1

(GHxi − yi)2

which leads to (defining y0i = GHxi):

Sρ
max = max

B

1

n

n∑
i=1

[
(y0i )

2

(
exp

(
B

|B|
2
√
2ρ

)
− 1

)
− 2yy0i

(
exp

(
B

|B|
√
2ρ

)
− 1

)]
(25)

Taylor expanding (in ρ) once more, we see that

Sρ
max ≈ max

B

1

n

n∑
i=1

[
2
√
2ρ

B

|B|
y0i (y

0
i − y) + 2ρ2(y0i )

2

]
(26)

WhichB maximizes Eq. 26, depends on the sign of
∑n

i=1

[
y0i (y

0
i − y)

]
: B < 0 if the sum is negative,

the reverse if the opposite is true.

D.1 TRADITIONAL FLATNESS

In Figure 7 we extend Figure 1 to include the trace of the Hessian, both Euclidean and Riemannian.
The reason we picked the trace of the network Hessian is that it is a quantity that can be used to
quantify flatness. We plot, for the scalar toy model, the level sets of: a) the loss function; b) the
Euclidean and Riemannian gradient; c) the traces of the Euclidean and Riemannian network Hessian.
Of note is that a) the Riemannian version of the gradient and Hessian have the same level set geometry
as the loss function; b) both the Riemannian gradient norm and the trace of the Riemannian hessian
have smaller values throughout than their Euclidean equivalents; c) the trace of Riemannian hessian
actually reaches 0 when at the local minimum, whereas the Euclidean hessian actually attains its
highest value there; d) the Euclidean trace of the hessian is unable to distinguish between a minimum
and a maximum whereas the Riemannian trace can actually do so. Even for simple flatness measures,
correcting for the quotient geometry can provide a much clearer picture.

E GEODESIC SHARPNESS: DIAGONAL NETWORKS IN FULL GENERALITY

In this appendix, we continue the analysis from the main body and extend it to
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(a) Loss
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Figure 7: Quantities from the Riemannian quotient manifold respect the loss landscape’s
symmetry; Euclidean quantities do not. We use a synthetic least squares regression task with
a two-layer NN x 7→ θ2θ1x with scalar parameters θi ∈ R and input x ∈ R. The NN is re-scale
invariant, i.e. has GL(1) symmetry: For any α ∈ R \ {0}, the parameters (θ′1, θ

′
2) = (α−1θ1, αθ2)

represent the same function. (a) The loss function inherits this symmetry and has hyperbolic level sets.
(b,c) The Euclidean gradient norm does not share the loss function’s geometry and changes throughout
an orbit where the NN function remains constant. (d,e) The Riemannian gradient norm follows
the loss function’s symmetry and remains constant throughout an orbit, i.e. it does not suffer from
ambiguities for two points in parameter space that represent the same NN function. All quantities
were normalized to [0; 1] and we fixed six points in parameter space and computed the level sets
running through them to illustrate the geometry.

CASE C): r ̸= 0 AND WE NEED BOTH FIRST AND SECOND ORDER TERMS In this case, Eq.12
needs to be considered in full, and we solve the maximization problem using Lagrange multipliers.
The Lagrangian will be

L = −4BTr − 4BTDβ0,β∗B + λ(BTB − ρ2)

The KKT conditions then are

∂L
∂B

= −4r − 8Dβ0,β∗B + 2λB = 0 (27)

λ(BTB − ρ2) = 0 (28)
λ ≥ 0 (29)

If the constraint is not active, then λ = 0 and

B∗ = −1

2
D−1

β0,β∗
r

In practice, unless ρ is large the constraint will always be active, in which case 27 becomes

− 4r − 8Dβ0,β∗B + 2λ(B) = 0

(BTB − ρ2) = 0

λ ≥ 0

this then becomes
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B∗ = 2 (λI − 4Dβ0,β∗)
−1
r

4

d∑
i

(ri)2(
λ− 4(βi

0(β
i
0 + r

′)
)2 = ρ2

λ ≥ 0

F GEODESIC SHARPNESS: HERE BE METRICS

F.1 GL1 SYMMETRY AND ADAPTIVE SHARPNESS

What happens if instead of a general GLn symmetry, we factor out a GL1 re-scaling symmetry? That
is, we identify, element-wise, (x̄, ȳ) ∼ (x̄′ȳ′) if ∃α ∈ R∗ = R \ {0} s.t. x̄ = αx̄′ and ȳ = α−1ȳ.

This is the symmetry present in diagonal networks, and so we utilize the metric given by Eq. 9,
reproduced below for convenience of the reader:

g [(ηu, ηv) , (νu, νv)] =

d∑
i=1

ηiuν
i
u

(ui)2
+
ηivν

i
v

(vi)2
(30)

Note that this metric is equivalent to the following metric:

g [(ηu, ηv) , (νu, νv)] = g [(ηu/|u|, ηv/|v|) , (νu/|u|, νv/|v|)]euc (31)

where geuc is the usual Euclidean metric and the division is taken to be element-wise. Denoting
the concatenation of all tangent vectors by ξ, the concatenation of all parameters by w, we have
||ξ|| = ||ξ/|w|||2.

In this situation Eq. 6 becomes (γ denotes our geodesics as usual)

Sρ
max(w, c) = ES∼D

[
max

||ξ/|w|||2≤ρ
LS(γ̄ξ̄(1))− LS(γ̄ξ̄(0))

]
, (32)

If we then ignore the corrections induced by the geometry of the metric on the geodesics, i.e., take
γ̄ξ̄(1) = γ̄ξ̄(0) + ξ̄ = w + ξ̄, then we get

Sρ
max(w, c) = ES∼D

[
max

||ξ/|w|||2≤ρ
LS(w + ξ)− LS(w)

]
(33)

which is exactly the formula for adaptive sharpness.

F.2 A DIFFERENT METRIC

The metric given by Eq. 15 is not the only metric that allows for the construction of the quotient
manifold. One such family is that of metrics related to metric 15 by re-scaling and constant shifts
result: in appendix I.3 we show that the result in the same geodesic sharpness. We are aware of
only one other metric that respects the GLn symmetry and is described in the literature Mishra et al.
(2012):

⟨η̄, ζ̄⟩x = Tr
(
(H⊤H)η̄⊤Gζ̄G + (G⊤G)η̄⊤H ζ̄H

)
, (34)

which mixes the components.

Horizontal space: HxM = {(ξ̄G, ξ̄H) | GT ξ̄GH
TH = GTGξTHH, ξ̄G ∈ Rn×r, ξ̄H ∈

Rm×r}.

Projection onto the horizontal space: Πx̄(ξ̄x̄) =
(
ξ̄G +GΛ, ξ̄TH −HΛT

)
, with Λ =

1
2

(
ξ̄THH(HTH)−1 − (GTG)−1GT ξ̄G

)
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Geodesics: Applying the same procedure as in I.2, we get the following geodesic equations

G̈HTH + Ġ(ḢTH +HT Ḣ)−GḢT Ḣ = 0 (35)

ḦGTG+ Ḣ(ĠTG+GT Ġ)−HĠT Ġ = 0 (36)

F.2.1 EMPIRICAL VALIDATION

We employ metric (34) to study the same collection of BERT models that we studied using metric 15
in the main text. The experimental setup is identical to that of the main text.
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Figure 8: The generalization gap on the MNLI dev matched set (Williams et al., 2018) vs. worst-case
adaptive sharpness with metric (34) (left) and geodesic sharpness (right), is shown for 35 models
from (McCoy et al., 2020)

Interestingly, we found that this metric actually improved our results on BERT, leading to a τ of 0.34.
We suspect this is due to more favourable numerics: this new metric is of the form Tr[(HTH)ξ̄T ξ̄] as
opposed to Tr[(GTG)−1ξ̄T ξ̄], side-stepping issues with possibly large singular values. Additionally,
this metric does not require a Sylvester solver in order to project into the horizontal space, making this
metric also faster to iterate with. Mishra et al. (2012) studied this metric in the context of low-rank
matrix completion, where they argue that it is better-tuned to the squared losses commonly used in
that particular setting; something similar could be at play here as well.

G GEODESIC SHARPNESS: ABLATIONS

In this appendix we conduct ablation studies on geodesic sharpness 6. There are two main components
to our recipe that differ from adaptive sharpness: a) the norm ||ξ̄||; b) the weight update formula,
which instead of the usual wi = wi + ξ̄ takes into account the curvature induced by the parameter
space symmetrieswi = wi + ξ̄i − 1

2Γ
i
klξ̄

k ξ̄l. Below we turn off these components one by one and
re-compute the resulting sharpness on MNLI using the BERT models described in Section 5.3.2.

Metric (15) In Figure 9 we show the results for our ablation studies using metric (15). The
norm component is much more impactful than the second-order weight corrections. Turning off the
second-order weight corrections results in a small performance drop only.

Metric (34) In Figure 10 we show the results for our ablation studies using metric (34). The
norm component is still much more impactful than the second-order weight corrections for this
metric, but now the second-order weight corrections are essential, and without them sharpness loses a
considerable amount of predictive power.
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Figure 9: The generalization gap on the MNLI dev matched set (Williams et al., 2018) vs. worst-case
adaptive sharpness with metric (15) is shown for 35 models from (McCoy et al., 2020). On the
left we plot the results when we turn off the corrected norm, and on the right when we turn off the
second-order weight corrections. Bottom are the results with no ablations.

H GEODESIC SHARPNESS: RANKS AND RELAXATION

H.1 RANKS: HOW NATURAL IS ASSUMPTION 5.1?

In general, in non-linear networks there is a tendency towards low-rank representations, which might
make Assumption 5.1 seem excessive and counter to realistic situations. However, while the learned
WQW

T
K tend to be low-rank, WQ and WK (on which Assumption 5.1 ought to apply) themselves

are usually high/full (column) rank Yu & Wu (2023).

H.2 RELAXATION

Due to the definition of metric 15, we need to invert matrices of the type of WT
QWQ. When these

are not full-rank, numerical stability can suffer. Due to floating-point precision rounding errors, in
practice WT

QWQ is always invertible, but sometimes the inverted matrices have huge singular values.
To combat this, we introduce a relaxation parameter, so that WT

QWQ → WT
QWQ + ϵIh, which

dampens the resulting singular values. Although we cannot take it to be exactly zero, as long as it is
small enough, numerical stability is improved and the results remain roughly the same. We study the
effects of varying this parameter on our results empirically below (Figure 11), using the same setup
as in Section 5.3.2. The results are not significantly affected by the variation of this parameter.
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Figure 10: The generalization gap on the MNLI dev matched set (Williams et al., 2018) vs. worst-case
adaptive sharpness with metric (34) is shown for 35 models from (McCoy et al., 2020). On the
left we plot the results when we turn off the corrected norm, and on the right when we turn off the
second-order weight corrections. Bottom are the results with no ablations.

I ADDITIONAL DERIVATIONS AND PROOFS

I.1 PROOF THAT EQ. 15 DEFINES A VALID RIEMANNIAN METRIC

Eq. 15 defines a valid metric on the total spaceM if it is smooth, and for each point (Ḡ, H̄) ∈M
it defines a valid inner product on the tangent space T(Ḡ,H̄)M. That it is smooth is obvious, so we
show that ⟨η̄, ζ̄⟩(Ḡ,H̄) = Tr

(
(G⊤G)−1η̄⊤Gζ̄G + (H⊤H)−1η̄⊤H ζ̄H

)
defines a valid inner product:

(i) Symmetry ⟨η̄, ζ̄⟩ = ⟨ζ̄, η̄⟩: omitting the H term as it is identical, ⟨η̄, ζ̄⟩ =
Tr
(
(G⊤G)−1η̄⊤Gζ̄G

)
= Tr

(
(G⊤G)−1ζ̄⊤Gη̄G

)
= ⟨ζ̄, η̄⟩ ;

(ii) Bilinearity ⟨aη̄ + bζ̄, λ̄⟩ = a⟨η̄, λ̄⟩ + b⟨ζ̄, λ̄⟩ = ⟨λ̄, aη̄ + bζ̄⟩: follows by linearity of the
trace;

(iii) Positive Definiteness ⟨η̄, η̄⟩ ≥ 0: using assumption 5.1,GTG is invertible and is positive-
definite; this means that (GTG)−1 is also positive-definite, and so ⟨η̄, η̄⟩ ≥ 0, with equality
only when η̄ = 0.

I.2 DERIVATION OF THE GEODESIC CORRECTIONS FOR ATTENTION

We apply the Euler-Lagrange formalism to the energy functional to derive the geodesic equation on the
attention quotient manifold, and hence Γi

klξ̄
k
Gξ̄

l
G, remembering that geodesics, in local coordinates,

obey the equation d2γi

dt2 + Γi
kl

dγk

dt
dγl

dt = 0.

Starting from
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Figure 11: The generalization gap on the MNLI dev matched set (Williams et al., 2018) vs. worst-case
adaptive sharpness (left) and geodesic sharpness (right), is shown for 35 models from (McCoy et al.,
2020). The difference between each plot is only in the relaxation parameter. The results stay broadly
the same.

E(γ) =

∫ 1

0

L dt =
∫ 1

0

⟨γ̇(t), γ̇(t)⟩γ(t)dt (37)

=

∫ 1

0

[
Tr
(
γG(t)T γG(t)

)
γ̇G(t)T γ̇G(t) + Tr

(
γH(t)T γH(t)

)
γ̇H(t)T γ̇H(t)

]
dt (38)

,

The Euler-Lagrange equation, for theG part only, reads

d

dt

(
∂L
∂Ġ

)
− ∂L
∂G

= 0 (39)

We have

∂L
∂G

= −2G
(
GTG

)−1
(
ĠT Ġ

) (
GTG

)−1
(40)

d

dt

(
∂L
∂Ġ

)
= 2G̈

(
GTG

)−1 − 2Ġ
(
GTG

)−1
(
ĠTG+GT Ġ

) (
GTG

)−1
(41)
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So that Eq. 39 becomes:

G̈− Ġ
(
GTG

)−1
(
ĠTG+GT Ġ

)
+G

(
GTG

)−1
(
ĠT Ġ

)
= 0 (42)

From which we read

Γi
klξ̄

k
Gξ̄

l
G =

[
−ξ̄
(
GTG

)−1 (
ξ̄TG+GT ξ̄

)
+G

(
GTG

)−1 (
ξ̄T ξ̄

)]i
(43)

I.3 METRICS RELATED BY SCALING AND CONSTANTS

If g is a metric and gscaled = Cg +D, then from Eq. 37 and Eq. 39 we see that the geodesics induced
by gscaled are the same as those induced by g. The geodesic sharpness induced by gscaled is

Sρ
max(w) = ES∼D

[
max

||ξ̄||γ̄scaled≤ρ
LS(γ̄ξ̄;scaled(1))− LS(γ̄ξ̄;scaled(0))

]
=

= ES∼D

[
max

C||ξ̄||γ̄+D≤ρ
LS(γ̄ξ̄(1))− LS(γ̄ξ̄(0))

]
,

= ES∼D

[
max

||ξ̄||γ̄≤ρ′
LS(γ̄ξ̄(1))− LS(γ̄ξ̄(0))

]
,

So they are the same up to some re-definition of the hyperparameter ρ.
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