Under review as a conference paper at ICLR 2024

DEEP REINFORCEMENT LEARNING FROM
HIERARCHICAL WEAK PREFERENCE FEEDBACK

Anonymous authors
Paper under double-blind review

ABSTRACT

Reward design is a fundamental, yet challenging aspect of practical reinforcement
learning (RL). For simple tasks, researchers typically handcraft the reward func-
tion, e.g., using a linear combination of several reward factors. However, such
reward engineering is subject to approximation bias, incurs large tuning cost, and
often cannot provide the granularity required for complex tasks. To avoid these
difficulties, researchers have turned to reinforcement learning from human feed-
back (RLHF), which learns a reward function from human preferences between
pairs of trajectory sequences. By leveraging preference-based reward modeling,
RLHF learns complex rewards that are well aligned with human preferences, al-
lowing RL to tackle increasingly difficult problems. Unfortunately, the applica-
bility of RLHF is limited due to the high cost and difficulty of obtaining human
preference data. In light of this cost, we investigate learning reward functions for
complex tasks with less human effort; simply by ranking the importance of the
reward factors. More specifically, we propose a new RL framework — HERON,
which compares trajectories using a hierarchical decision tree induced by the given
ranking. These comparisons are used to train a preference-based reward model,
which is then used for policy learning. We find that our framework can not only
train high performing agents on a variety of difficult tasks, but also provide addi-
tional benefits such as improved sample efficiency and robustness.

1 INTRODUCTION

Over the past decade, significant advancements in deep learning techniques, along with unprece-
dented growth in computational power, have facilitated remarkable achievements in the field of deep
reinforcement learning (RL) across diverse domains, including finance, transportation, and auto-
matic programming (Deng et al., 2016; Haydari & Yilmaz,2020; |Le et al.| 2022). A key component
of modern RL is the reward function, typically predefined in benchmark environments such as the
OpenAl gym or games (Mnih et al., 2013} |Silver et al.| 2016; |Brockman et al., [2016). When deal-
ing with complex real-world environments, however, the absence of a predefined reward function
necessitates explicit reward design based on human knowledge or implicit reward learning (Dewey),
2014 [Sutton & Bartol [2018).

Handcrafting a reward function based on human knowledge poses significant challenges, as usually
no single factor captures all aspects of agent behavior. Therefore, practitioners often use multiple
reward factors 21, ..., 2, €ach of which describes different facets of the agent’s behavior. These
factors serve as the basic components for explicit reward design, and can usually be obtained with
minimal computational cost. The most common approach to utilizing these factors involves linear or
non-linear combinations (e.g., r = Zi wi*z;) (Booth et al.|[2023;|Le et al.||2022; [Zhang et al.,|2019).
The hyperparameters w; are tuned to optimize the agent’s task performance, a process commonly
known as reward engineering (Fu et al., 2017; Wu et al., [2021)).

Although reward factors may contain useful information, reward engineering is often not an opti-
mal way to incorporate human knowledge about these factors. This is because reward engineering
assumes the ground-truth reward can be formed as a simple combination of rewards factors, an
assumption that may suffer from large approximation bias. Moreover, reward engineering usually
requires a large tuning cost, as the optimal reward weights are not necessarily intuitive to human
overseers and therefore must be chosen through trial and error. In particular, some reward fac-

Under review as a conference paper at ICLR 2024

tors may have different magnitudes as well as intricate dependencies with other reward factors. In
this case, determining the weight from human prior knowledge becomes challenging, and multiple
weights must be tuned at the same time since their respective reward factors are correlated.

To mitigate the aforementioned issues, researchers have explored alternatives for incorporating hu-
man knowledge into reward design. One straightforward approach is to employ human annotators
to assign a reward to each agent trajectory (Knox & Stonel [2009; Pilarski et al 2011} |Griffith et al.,
2013)). However, this approach presents two major challenges: rewards assigned by different an-
notators exhibit significant variability, and rewards from the same annotators lack consistency. As
a solution, reinforcement learning from human (preference) feedback (RLHF) has emerged, which
employs annotators to rank agent trajectories. RLHF is currently one of the most promising ap-
proaches for reward design (Knox & Stone, 2008} (Christiano et al., 2017} |Stiennon et al., [2020;
Ouyang et al., 2022)). RLHF utilizes human preferences over a large set of state-action trajectories
to train a reward model that mimics such preferences. Subsequently, the reward model is used to
train RL agents that are aligned with human preferences. This preference-based reward modeling
approach has demonstrated impressive performance and has yielded state-of-the-art chatbots like
InstructGPT (Ouyang et al.| 2022) and GPT-4 (OpenAll 2023)). Despite its efficacy and versatility,
RLHF’s practicality is constrained by the substantial cost associated with hiring human annotators.

/" “Step 1: Collect data *, -~ Step 2: Create , I/'Step 3: Train reward *, // Step 4: Train policy R
with behavior model comparison rule from model with weak on reward model
weak domain knowledge preference elicitation

1
I il il i h
1 i L]] 1
! Write a python function|! ! " [. !
| Prompt toidentty nonprime. || | Domain . . O n Policy !
' numbers. 11 Knowledge - i Sample) N |
! iyt [1 1 Trajectories [!
1 1 [[|
1 L) & [] 1
| Behavior " passAl |l " '
! Model | | Factor Ranking [] rassrercent | | Weak :: i
1 1 [] astsm ! Preference 1 1
\ " | | Elicitation " i
1 i G L]] 1
| Completion " | | " . " '
! 1 1 Hierarchical | " 'Ip;lrgzjrélReward | [Environment Reward Model,
1 11 Decision Rule g M 1 1 1
\) N) 1\ 1

Figure 1: The HERON framework illustrated on the code generation task.

Seeking to improve upon the limitations of reward engineering and motivated by the recent success
of RLHF, we propose to design reward functions based on a different form of domain knowledge:
the importance ranking of each reward factor. Importance rankings of reward factors provide a
natural means to express human domain knowledge, allowing practitioners to directly guide the
agent in prioritizing different aspects of the task. To leverage these rankings effectively, we intro-
duce a novel RL framework called HERON (Hierarchical preference-based wEak ReinfOrcement
learNing). HERON compares RL trajectories using a hierarchical decision tree induced by the im-
portance ranking. The decision tree first compares trajectories based on the most important factors
and, if inconclusive, proceeds to assess less important factors. These comparisons are then used
for training a preference-based reward model, which assigns higher rewards to trajectories that are
favored more often. The reward model provides us a principled manner to convert rankings over the
reward factors into a numerical reward. Ultimately, the reward function is used for policy learning.
In contrast to reward engineering, HERON does not rely on the magnitude of each reward signal and
enables the design of reward functions without specifying numerical weights for each reward fac-
tor. This approach not only significantly reduces the tuning cost but also improves the accessibility
of the reward design process for individuals without RL expertise. Despite relying on this weaker
form of domain knowledge (hence the weak RL designation), HERON’s combination of hierarchi-
cal comparison and reward modeling allows for the creation of more complex rewards compared to
those designed through reward engineering. An illustration of HERON can be found in Figure T}

We empirically validate the HERON framework through extensive experiments on classic control
tasks, robotic control, multi-agent traffic light control, and large language model fine-tuning for
code generation (Brockman et al.,[2016; |Coumans & Bai, [2016; [Le et al.| 2022). In the control and
traffic light environments, HERON consistently outperforms or achieves comparable performance
to policies trained with reward engineering techniques, despite only utilizing the importance ranking
of the reward factors as input. Regarding the code generation task, HERON demonstrates the ability
to achieve higher Pass@ K scores compared to the hand-crafted rewards employed in state-of-the-

Under review as a conference paper at ICLR 2024

art approaches. Notably, we observe that HERON exhibits robustness to changes in the training
environment, as it does not rely on the scale of individual reward factors, in contrast to reward
engineering-based training.

Our contributions can be summarized as follows: (1) We propose the incorporation of a new form
of domain knowledge — rankings over the importance of reward factors — into reward design; (2) We
develop an algorithm called HERON, which utilizes a hierarchical comparison rule to effectively
learn from such weak domain knowledge; (3) We validate the efficacy of HERON in various rein-
forcement learning environments, demonstrating that it not only matches the performance of reward
engineering but also provides additional benefits such as improved sample efficiency and robustness.

2 RELATED WORK

Besides reward engineering and RLHF, there are several works that attempt to improve reward de-
sign for RL.

Reward Shaping. Reward shaping aims to accelerate the convergence of RL algorithms by incor-
porating auxiliary reward information through shaping functions (Ng et al., 1999} [Tenorio-Gonzalez
et al., [2010; [Devlin & Kudenko} [2012). These approaches typically aim to mitigate the sparsity of
a pre-defined reward function. While reward shaping has demonstrated success in practice, it often
necessitates extensive reward engineering. To circumvent the need for costly tuning, several meth-
ods have been proposed to automatically shape rewards by utilizing an abstract MDP (Marthi,|2007),
tile coding (Grzes & Kudenko) 2008), and bi-level optimization (Fu et al.,|2019; Hu et al., 2020). In
contrast, our work pursues a different direction that eliminates the requirement for a pre-specified
reward function and does not assume that the reward is a linear combination of auxiliary factors.

AutoRL. AutoRL (Afshar et al. [2022; [Parker-Holder et al., 2022)) automates various aspects of
hyperparameter selection in RL, including parameters related to the reward. Particularly relevant to
our work, |[Faust et al.| (2019) and |Chiang et al.| (2019) treat reward weights as hyperparameters and
optimize them using population-based training.

Weakly Supervised Reinforcement Learning. In recent years, researchers have started investigat-
ing weakly supervised RL approaches, where only partial information about the reward is provided
(Li & Yang| 2021;Cao et al.,|2021}; |Kuutti et al.| [2021)). Our work shares similarities with the study
by [Lee et al.| (2020)), as both approaches learn from weak reward signals. However, there are large
distinctions in both the goal and methodology: |[Lee et al.|(2020) aims to leverage simple weak signal
comparisons for faster learning of new tasks, while our work focuses on learning a reward from
weak domain knowledge using more sophisticated hierarchical comparisons.

Inverse Reinforcement Learning. Inverse reinforcement learning (IRL) aims to learn a reward
function from expert demonstrations (Ng et al., 2000; |Abbeel & Ng|, |2004; Boularias et al., [2011)).
Although IRL enables the learning of complex behaviors without manual reward tuning, it requires
observed, optimal behavior. These demonstrations are often costly to obtain, and in our experiments,
acquiring them would be far more expensive than obtaining a hierarchy of weak reward signals.
Furthermore, IRL methods typically require unstable bi-level optimization procedures, which our
approach does not involve.

3 METHOD
3.1 PROBLEM SETUP

We consider a Markov decision process (S, A, P, R,~) where an agent interacts with an environ-
ment over a series of discrete time steps. At time step ¢, the agent receives an observation s; € S,
takes an action a; € A, and receives the next state observation s;+1 € S and reward r; € R. The
goal of the agent is to find a policy that maximizes the discounted sum of the reward, »_,~,v'r:.

Rather than assuming that we receive a reward at each time step, we instead consider a more realistic
setting where a set of n reward factors z}, ..., 2P are given at each time step. This setting is highly
relevant to real-world applications where the ground truth reward function is unknown, but multi-
ple measurements of a trajectory’s quality can be obtained. We denote segments of the resulting
trajectory as 7 = (S¢, G¢, 21,5 21)5 -+ - (Stqks Gtrks 2y s - - - 24 1,)- Note that we overload the
notation for z; such that z;(7) = Z(St)at) . Zi(8¢, a¢). Similar to the RLHF approach, our goal is to

Under review as a conference paper at ICLR 2024

learn policies that act according to human preferences (Christiano et al.| 2017). In our experiments,
we may measure the performance of our algorithms by the ground truth reward (if one is known) or
by alternative metrics not given during training.

3.2 ALGORITHM

The HERON algorithm trains policies based on human rankings over the reward factors. This is
accomplished by iteratively carrying out the following four steps: (1) collecting trajectory data
through policy rollouts, (2) eliciting weak preferences, (3) reward learning, and (4) policy learning.

Data Collection. The first step of the HERON algorithm is collecting trajectory data with a properly
selected behavior policy. The collected data will later be used to train the reward model. There are
several options for obtaining the behavior policy: For tasks such as code generation where expert
demonstrations data are available, behavior cloning can be employed to acquire the behavior policy;
When a handcrafted reward is available, it can be used to pre-train a behavior policy; The behavior
policy can also be a purely randomized policy if no other options are available. However, using a
purely randomized policy may introduce significant sampling bias due to the substantial discrepancy
between it and the optimal policy. To address this issue, we employ multi-stage training as a means
to enhance policy learning, which is further explained in Section 4]

Weak Preference Elicitation. To train the reward model over the collected data, HERON first
compares trajectories based on an intuitive form of domain knowledge: rankings over the reward
factors. In particular, we assume z, ...z, have been ordered in descending order of importance
by an expert with domain knowledge. We then elicit a preference i € {0, 1,2} between trajectory
pairs (71, 7o) with a bifurcating decision tree induced by the given reward factor hierarchy. A tie is
denoted by = 0, u = 1 means 7 is preferred, and = 2 means 75 is preferred.

The decision tree is constructed as follows. We first set the current level [= 1. We then calculate
0 if |z(71) — zi(72)| < 60
p=1<1 ifz(m) > z(m)+d
2 ifZl(T2)>Zl(T1)+5l,

where ¢; is a margin hyperparameter for level [. The margin parameter §; is important since it ensures
that we only elicit a preference using z; if the two trajectories are significantly different according
to z;. The margin §; can be used to inject further domain knowledge into the HERON algorithm, but
in our experiments we set J; to the standard deviation of z; over the collected data.

If 4w = 0, we update [< [+ 1 and compare the trajectories with the next most important reward
factor. If the two trajectories are not significantly different in any of the reward factors (i.e. [> n),
we discard the trajectory pair. In this way a trajectory is preferred over another trajectory if it
receives a significantly higher or similar scores on the reward factors that are most important to the
human overseer. Our complete preference elicitation algorithm can be found in Algorithm [I|along
with an accompanying diagram in Figure [2]

Reward Learning. Given a labeled dataset D of trajectories (7, 7;) where 7, is the trajectory
preferred by the weak preference elicitation algorithm (i.e. 4 = 1), we would like to assign a higher
reward to the preferred trajectory (we remove all ties from the dataset, since we find including them
has negligible effect on training). To accomplish this, we train a reward model Ry : S x A = R
where Ry (7) = >_(5, a,)er Llo(5t, ar). To assign a higher reward to the preferred trajectory 7, we
follow the methodology in|Ouyang et al.|(2022) and optimize the loss

L($) = —E(r,.m)~b {log <1 n exp(_(R¢(1¢u,) — Ras(Tl))))] '

We remark that this loss essentially employs the Bradley-Terry preference model (Bradley & Terryl
1952). Once we have trained the reward model R4, we can assign a reward to each trajectory 7 as

Ry (7).
To enhance flexibility and further incorporate domain knowledge into the reward, we propose mul-
tiplying the reward R4(7) by a shaping constant, denoted as o’ (7). Here, « represents a hyperpa-

rameter, while F'(7) corresponds to the average level of the decision tree the trajectory 7 wins at.
By tuning «, we can effectively control the reward’s shape and the degree of separation between the

Under review as a conference paper at ICLR 2024

best and worst trajectories. A deeper discussion and visualization of this shaping constant can be
found in Appendix We focus our « tuning efforts exclusively on the code generation task due to
its higher complexity compared to the other tasks under consideration.

Policy Learning. Using the reward R4 we can train a policy 79 : & x A — R to optimize the
expected discounted return,

JO) =Eror,

> WtR¢(5t’at)]-

(St7at)€‘l'

This objective can be optimized via popular reinforcement learning algorithms such as Q-learning
or Proximal Policy Optimization (Sutton & Barto, 2018};|Schulman et al.,|[2015;2017).

Algorithm 1 Weak Preference Elicitation 8 =1
Input: 7 ranked reward factors {z1, ...z}, @hu});{f}gz Z‘{ffg‘)_iﬁ () @
margins {41, . . .8, }, and trajectory pair (71, 72).) = 2(1 o
Output: p € {0,1,2}.
l<1,p¢0 i=2
while / < n and p = 0 do @Z « D_Zf?g'@ 20> 0) @
if Zl(Tl) > ZZ(TQ) + 6; then TEn) =),
p1 i
else if z;(m2) > z;(71) + 6; then
w2 I=n L
else @zﬂﬂ)7 o2 2(m) >, @
l+<1+1 . o
end if
end while Figure 2: Weak preference elicitation.

4 EXPERIMENTS

We investigate the efficacy of our algorithm in a variety of single and multi-agent RL environments,
including large scale language model finetuning.

4.1 ENVIRONMENTS AND BASELINES

Classic Control. We test HERON on two classic control environments: pendulum and continuous
mountain car. In these environments a ground truth reward has been constructed as a linear com-
bination of factors such as the location, force applied, and angle. To rank these reward factors for
HERON, we simply use the magnitude of the weight of each factor. In this setting, we use DDPG
as the RL algorithm and parameterize the reward model with a three layer MLP. For this task the
behavior policy is randomly initialized, which as we mentioned before may lead to a large sampling
bias for reward model training. We therefore adopt a multi-stage training approach, where the re-
ward model is continually updated using trajectories collected from the most recent policy. Exact
training details can be found in Appendix [B] We evaluate over 10 random seeds.

Robotic Control. To test if HERON can be applied to more complex settings, we evaluate it on
three robotic control tasks: Ant, Half-Cheetah, and Hopper. We use the PyBullet simulator, where
the ground-truth reward is formulated as a linear combination of several factors such as the robot’s
potential, the power cost, whether the joints are at their limit, and whether the robot’s feet collide
(Coumans & Bail [2016). More details on this environment can be found in Appendix@

Multi-Agent Traffic Light Control. In this scenario, cooperative agents learn to increase the
throughput and minimize the wait of cars passing through a traffic network. For the ground truth
reward, [Zhang et al.| (2019) designs the reward as a linear combination of the following six weak
reward factors: queue length, number of vehicles in each lane, average vehicle wait time, average
vehicle delay, number of vehicle emergency stops, number of light phase changes, and number of
vehicles passing through the system.

We use the same weak reward factors to build a variety of reward hierarchies. Our reward model
is parameterized by a three-layer MLP that is learned by multi-stage training. We use QCOMBO
(Zhang et al., 2019), a Q-learning based algorithm as the RL algorithm and conduct experiments

Under review as a conference paper at ICLR 2024

using the Flow framework (Wu et al.| [2017). We train the MARL policies on a two-by-two grid
(four agents), each parameterized by a three-layer MLP. For more details on the environment and
experimental setting, see Appendix [E]

In this setting we evaluate the learned policies based on the reward tuned in|Zhang et al.|(2019) and
by examining the different weak reward signals. We remark that in traffic light control there is no
one optimal reward function, and different reward functions may be preferred in different scenarios.

Code Generation. RL has recently gained considerable attention for its state-of-the-art performance
in various text generation tasks. Therefore, we investigate if HERON can achieve similar improve-
ments in LLM performance solely based on rankings over weak reward signals. In particular, we
consider the code generation task.

In the code generation task, the goal of the agent is to write a program that will satisfy the criteria
specified in a given problem. Recently, [Le et al.|(2022) demonstrated state-of-the-art performance
can be achieved by training with RL. |[Le et al.|(2022) (CodeRL) use a reward engineering approach
where a weighted combination of reward signals including whether a program passes the unit tests
and the type of program error is used as the reward. [Shojaee et al.|(2023) (PPOCoder) build upon
this work, integrating more reward factors such as a program’s abstract syntax tree (AST) similarity
to expert demonstrations. Our decision tree is based on three factors: whether a program passes all
tests, the percent of tests a program passes, and the AST similarity to expert demonstrations.

To train policies we follow the implementation of [Le et al.| (2022). We initialize our policies with
the CodeT5plus-large model and our reward model with CodeT5-small (Wang et al., 2021). The
policies are first trained with behavior cloning on the expert demonstrations. Next, we generate 20
samples per training program, and conduct RL training over these generated samples. We train with
the policy gradient objective. We evaluate the performance of each algorithm using the pass@K
metric, which is the number of programming problems passed with K submissions per problem
(Chen et al., [2021)). We primarily evaluate HERON on APPS, a python programming datasets con-
taining 5000 test problems (Hendrycks et al.,2021). Each question in the dataset comes with expert
demonstrations and test cases the program should pass. To evaluate each algorithm, we generate
200 programs per problem. In total, each method is evaluated on 1 million generated programs. To
evaluate the generalization ability of the policies, we evaluate each policy in a zero-shot manner on
the MBPP dataset, which contains 974 basic python programming questions (Austin et al.| 2021).

Baselines. To demonstrate the efficacy of HERON, we compare the HERON framework with
policies trained on the ground truth reward, a reward engineering baseline, and two ensemble-
based baselines inspired by [Brys et al.| (2017). The ensemble approaches train a separate policy
on each reward factor and then select an action at each timestep by a weighted combination of
each policy. Formally, given a set of policies 7, ..., mT,, we select an action at each timestep as
a 4 argmax,c 4 > p_, wrTk(s, a), where wy, is a weight to be chosen. We use two variants of this
algorithm: a linear variant, where wy = % and a preference based variant, where wy = oF (my, is
trained on the kth most important factor) and v € [0, 1] is a hyperparameter to be tuned. For the
reward engineering baseline, the reward is formulated as > ; B%z;, where 3 is a hyperparameter
selected from {0.3,0.4,...,0.9,1.0} and z; are the normalized reward factors. The reward factors
are ordered according to the HERON reward hierarchy, making this a very realistic and competative
reward engineering baseline. See Appendix [C|for detailed description and evaluation of the baseline
algorithms. For the code generation setting, we use the carefully tuned CodeRL and PPOCoder
rewards as reward engineering baselines.

We evaluate the performance of each policy based on the reward engineering reward received for
the control environment and by Pass@K for the code generation experiments.

4.2 MAIN RESULTS

Control Environments. The results for the pendulum and continuous mountain car control can be
found in Figure[3] From Figures[3aland[3b] we can see that policies trained with HERON algorithm
achieve comparable performance to policies trained with the ground truth reward. The results for
robotic control can be found in Table [3) where we observe that although HERON cannot always
perform as well as the ground truth reward, it can always exceed the performance of the reward
engineering baseline. We remark that there is no clear reward hierarchy in the classic control or
robotics environments, so in this case we mainly want to evaluate if HERON can be used to train

Under review as a conference paper at ICLR 2024

a reasonable policy. Together, these results support our claim that high performing policies can be
trained using only rankings over reward factors.

Multi-Agent Traffic Light Control. This setting is a perfect environment to evaluate HERON in,
as there are many reward factors. In Figure[3c| we plot the evaluation reward of policies in the traffic
light control environment. We observe that the policy trained with HERON perform significantly
better than the policies trained with the reward engineering baseline or by the ground-truth reward
developed inZhang et al.|(2019). We hypothesize that HERON can utilize each reward signal better
than a linear combination does; a significant change in a single reward factor may be drowned out in
the linear combination, but HERON can flexibly incorporate this information due to its hierarchical
nature. In addition, HERON’s smooth reward function (opposed to sparse rewards from raw reward
factors) may be more conducive for learning, and therefore lead to higher reward.

The ensemble-based methods do not perform well in any of the environments, as the policies trained
on some of the less important reward factors will not learn information useful for completing the
task. Even if we combine the policies according to the importance ranking, the ensemble-based
baselines cannot compete with HERON.

1 0 -20
2 _523?): 40
e _75! -60
S_3
= —-1001 -80
[} "o o f
@ —-41 o HERON - Ens:Preference | —125] —-100
_ Ground Truth-»- Reward Eng. —1501 -120
1. Ens:Linear —-1751 | —140
6 7 8 0 101112131415 0 20 40 60 80 100 120 140 0 1000 2000 3000 4000
Training Episode Training Episode Evaluation Time Step
(a) Mountain Car (b) Pendulum (c) Traffic Light Control

Figure 3: Training and evaluation curves on different tasks (mean + one standard deviation).

Code Generation. We display the results for the code generation task in Table [[, We also show
performance across different question types in Table @] HERON outperforms all other approaches.
This is most likely because reward engineering only gives a large reward to programs that pass all
the unit tests or are similar to the expert demonstrations, while HERON can give a large reward to
programs that may fail some unit tests but the reward model predicts as being likely to satisfy the
prompt. This means that HERON will promote a more diverse set of programming strategies. In
addition, the smoothness of HERON’s reward function may benefit policy optimization.

Table 1: Raw Pass@K on APPS.

Pass@1 Pass@5 Pass@10 Pass @20 Pass@50

Behavior Cloning (770M) 1.59 3.82 5.19 6.74 6.74
CodeRL Reward 1.71 4.12 5.57 7.26 9.81
PPOCoder Reward 1.23 3.08 4.19 5.50 7.62
HERON 1.72 4.19 5.71 7.49 10.19

Table 2: Filtered Pass@K on APPS. Table 3: Ground-truth reward obtained in robotics

environments.
Pass@1 Pass@10 Pass @20
Behavior Cloning 470 6.36 6.44 Ant Hopper Cheetah
CodeRLReward 573 857 896 Ground-truth 0.99(0.0) 0.86(0.01) 0.94(0.10)
PPOCoder 560 8.61 8.93 Reward Eng. 0.88(0.02) 0.72(0.05) 0.61(0.04)
HERON 574 9.03 943 HERON 1.0(0.01) 0.78(0.04) 0.62(0.04)

We further analyze code generation performance using the filtered Pass@ K metric, which only
submits programs that pass unit tests provided in the prompt (Chen et al, 2021). As seen in Table[2]
HERON uniformly outperforms the baselines, confirming the efficacy of HERON.

As in|Le et al.|(2022), we evaluate the performance of policies trained by HERON on the MBPP
dataset. The results are displayed in Table [5] We display results for small K only as larger K

Under review as a conference paper at ICLR 2024

Table 4: Pass@50 on APPS Table 5: Pass@K on MBPP
Intro. Interview Comp. Pass@1 Pass@2 Pass@5
Behavior Cloning 18.8 4.23 2.10 CodeRL Reward 6.58 10.27 16.24
PPOCoder Reward 6.58 10.09 15.85

CodeRL Reward 23.7 6.93 4.51
PPOCoder Reward 18.6 5.41 3.23
HERON 24.6 7.28 4.53

HERON 7.40 11.03 16.54

may result in high variance on the smaller MBPP dataset. HERON outperforms the other methods,
indicating that HERON can result in generalizable policies.

4.3 FLEXIBILITY OF HIERARCHICAL REWARD MODELING

In various tasks, there is no one ideal reward, and the aspects of an agent’s behavior that should
be prioritized depend on the practitioner’s preference. As a result, a crucial characteristic that re-
ward design algorithms should possess is flexibility. In particular, modifying the domain knowledge
inputted should result in corresponding changes in the behavior of the agent. To evaluate the flexi-
bility of HERON, we examine how changing the reward factor rankings changes agent behavior in
the traffic light control environment.

In this experiment we always set the most important factor as the number of cars passed, and then
we use the queue length, wait time, or delay as the second factor. The performance of HERON
policies trained with these reward hierarchies can be seen in Figure @ All of the policies have a
similar number of cars passing through the system, which makes sense since this factor is priori-
tized. However, for wait time, only the policy that has wait time ranked second maintains stable
performance. Similarly, for delay and queue length the policies that prioritize these factors achieve
better performance than the policy that prioritizes wait time. From these experiments we can ob-
serve that HERON is quite flexible, and that by changing the reward hierarchy we can significantly
influence the agent’s behavior. The results with more hierarchies can be found in Appendix |G| To
further increase the flexibility of HERON, we could tune the margin parameter of each reward factor,
therefore impacting the fraction of decisions made at each level of the decision tree.

L1 ‘
—— Num. Passed,Delay,Queue,Wait 40 ‘ 3.2 40

1.0 Num. Passed,Queue,Delay,Wait }
3.0

0 9 — Num. Passed,Wait,Delay,Queue
30 ﬁ f I f’w\%

,\,08 W,j..m/u, FMM o 28 WMW«,,,/\MM o
gor W OM\M ‘ WAMWWMW I . MX/W\MVCWWWN) \‘WMW
v 2

0.5

0457000 2000 3000 4000 © 0 1000 2000 3000 4000 0 1000 2000 3000 4000 ° 0 1000 2000 3000 4000
Evaluation Time Step Evaluation Time Step Evaluation Time Step Evaluation Time Step
(a) Num. Passed (b) Wait Time (c) Delay (d) Queue Length

Figure 4: Evaluation curves with different reward hierarchies (mean =+ one standard deviation).

4.4 ROBUSTNESS

A subtle advantage of HERON is that unlike reward engineering, it does not depend on the mag-
nitude of the different reward factors. This is because the weak preference elicitation algorithm
will label trajectory pairs with . € {0, 1,2}, regardless of the scale of the different factors. This
scale-invariance is beneficial, since algorithms that do depend on the scale of the reward factors may
be vulnerable to changes in the environment during training. For example, if the scale of a reward
factor suddenly doubles, (i.e. the traffic on a highway doubles due to rush hour) then two things
will happen: (1) the scale of the reward signal may sharply increase, which is similar to a sudden
change in learning rate (2) the weight vector used in reward engineering to combine the reward
factors will effectively be changed. The first phenomenon may cause training instability, and the
second phenomenon could cause the agent to be misaligned with the human overseer’s desires.

We hypothesize that HERON’s invariance to the reward scale will provide robustness against
changes in the training environment. To test this hypothesize, we change the speed of the cars
halfway into training (this a realistic setting, since many areas have time-dependent speed lim-

Under review as a conference paper at ICLR 2024

its). We then evaluate each policy after training under the new environment, and see which algo-
rithms were able to adapt the best. We compare the HERON-trained policy with two policies trained
with the reward engineering: one that uses the optimal learning rate in the unchanged environment
(1 x 10~3) and one that uses a smaller, more stable learning rate of 1 x 107°.

- -25 -
o 40 = 40 WW W/‘\N\me
o NA'H WWWWM 60 M . -60
T 10 Yy g0l \ B 80 \R |
2 0 100 = ~
% 140, —— HERON 1o \/ | 125 oo
-160/ —— Reward Eng: Small LR -120 -150 \‘ -120
-180 ‘— Reward Eng: Optimal LR | _, o -175 “‘ _140
) 1000 2000 3000 4000 0 1000 2000 3000 4000 <00 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Evaluation Time Step Evaluation Time Step Evaluation Time Step Evaluation Time Step
(a) 25 MPH (b) 30 MPH (c) 40 MPH (d) 45 MPH

Figure 5: Evaluation curves with different speed changes during training (mean + one standard
deviation). The normal speed limit is 35 mph.

From Figure 5] we can see that reward engineering is quite sensitive to changes in the environment
during training. This can be combatted with a smaller learning rate, but this will result in slower
learning and a sub-optimal reward. On the other hand, HERON is able to attain a high reward re-
gardless of the environment change, supporting our hypothesis that HERON’s scale-invariant design
leads to increased robustness.

4.5 ANALYSIS

Training Time. The main computational cost of HERON comes from the reward model training, as
data collection is already a part of most RL algorithms and weak preference elicitation is very fast.
When we do multi-stage training we can accelerate training by using an annealed training schedule
(see Appendix [[). The normalized training time of HERON, reward engineering, and ensemble-
based learning can be found in Figure [fa] HERON is 25% slower than reward engineering on
average, which is quite reasonable given that the tuning cost of reward engineering is usually large.

Ablation. Depending on the application, HERON introduces up to two hyperparameters, J; and
o. We only tune « on the code generation task, where the underlying reward may be very complex.
We set §; to the standard deviation of z; over the collected data in our experiments. Nonetheless,
we evaluate the sensitivity of HERON to these parameters in Figure [6f Tuning « can improve
performance, but HERON is on par with reward engineering for all choices of . Appendix [L1]
presents a plot illustrating the relationship between the reward shape and «. For d;, we find values
in [0, 2 * 0;] work well, where o; is the standard deviation of z;.

10 =
ola 050 § 10 B 20
812

8

Elo
6 008
4 VOG

’“04
2

302
0

1.0 2.0 3.0

Pass@80

eet@”

. cal M © _ gen-
oure®® %e“du\;iaﬁ'\c Corgode

e et o e‘.\du\u affic _\9\'\ \(C\"
(a) Training Time b) (¢) &;

Figure 6: Training time and ablation study for HERON.
5 DISCUSSION

In this work we propose HERON as an alternative to reward engineering. Which one can better
capture the reward may be problem specific. In our experiments, we find that HERON usually
performs better than reward engineering, while reducing the tuning cost. Another direction for
future work regards multi-objective RL (MORL). MORL attempts to find an optimal policy for each
linear combination of reward factors and is useful for settings where the agent needs to adapt to
different rewards (Van Moftfaert & Nowé, [2014;|Yang et al.;,2019). To adapt to changes in the weak
domain knowledge, it would be would be interesting to extend HERON to learn a policy for each
possible reward factor ranking in a similar manner to MORL.

Under review as a conference paper at ICLR 2024

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Reza Refaei Afshar, Yingqian Zhang, Joaquin Vanschoren, and Uzay Kaymak. Automated rein-
forcement learning: An overview. arXiv preprint arXiv:2201.05000, 2022.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Serena Booth, Bradley W Knox, Julie Shah, Scott Niekum, Peter Stone, and Alessandro Allievi.
The perils of trial-and-error reward design: misdesign through overfitting and invalid task speci-
fications. In AAAI Conference on Artificial Intelligence, 2023.

Abdeslam Boularias, Jens Kober, and Jan Peters. Relative entropy inverse reinforcement learning.
In Proceedings of the fourteenth international conference on artificial intelligence and statistics,
pp. 182-189. IMLR Workshop and Conference Proceedings, 2011.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324-345, 1952.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Tim Brys, Anna Harutyunyan, Peter Vrancx, Ann Nowé, and Matthew E Taylor. —Multi-
objectivization and ensembles of shapings in reinforcement learning. Neurocomputing, 263:48—
59, 2017.

Zehong Cao, KaiChiu Wong, and Chin-Teng Lin. Weak human preference supervision for deep
reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems, 32(12):
5369-5378, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Hao-Tien Lewis Chiang, Aleksandra Faust, Marek Fiser, and Anthony Francis. Learning navigation
behaviors end-to-end with autorl. IEEE Robotics and Automation Letters, 4(2):2007-2014, 2019.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. 2016.

Yue Deng, Feng Bao, Youyong Kong, Zhiquan Ren, and Qionghai Dai. Deep direct reinforcement
learning for financial signal representation and trading. IEEE transactions on neural networks
and learning systems, 28(3):653-664, 2016.

Sam Michael Devlin and Daniel Kudenko. Dynamic potential-based reward shaping. In Proceedings
of the 11th international conference on autonomous agents and multiagent systems, pp. 433-440.

IFAAMAS, 2012.

Daniel Dewey. Reinforcement learning and the reward engineering principle. In 2014 AAAI Spring
Symposium Series, 2014.

Aleksandra Faust, Anthony Francis, and Dar Mehta. Evolving rewards to automate reinforcement
learning. arXiv preprint arXiv:1905.07628, 2019.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse rein-
forcement learning. arXiv preprint arXiv:1710.11248, 2017.

10

Under review as a conference paper at ICLR 2024

Zhao-Yang Fu, De-Chuan Zhan, Xin-Chun Li, and Yi-Xing Lu. Automatic successive reinforcement
learning with multiple auxiliary rewards. In IJCAI pp. 2336-2342, 2019.

Shane Griffith, Kaushik Subramanian, Jonathan Scholz, Charles L Isbell, and Andrea L. Thomaz.
Policy shaping: Integrating human feedback with reinforcement learning. Advances in neural
information processing systems, 26, 2013.

Marek Grzes and Daniel Kudenko. Learning potential for reward shaping in reinforcement learning
with tile coding. In Proceedings AAMAS 2008 Workshop on Adaptive and Learning Agents and
Multi-Agent Systems (ALAMAS-ALAg 2008), pp. 17-23, 2008.

Ammar Haydari and Yasin Yilmaz. Deep reinforcement learning for intelligent transportation sys-
tems: A survey. IEEE Transactions on Intelligent Transportation Systems, 23(1):11-32, 2020.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with apps. arXiv preprint arXiv:2105.09938, 2021.

Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao, Feng Wu, and
Changjie Fan. Learning to utilize shaping rewards: A new approach of reward shaping. Advances
in Neural Information Processing Systems, 33:15931-15941, 2020.

W Bradley Knox and Peter Stone. Tamer: Training an agent manually via evaluative reinforcement.
In 2008 7th IEEE international conference on development and learning, pp. 292-297. 1EEE,
2008.

W Bradley Knox and Peter Stone. Interactively shaping agents via human reinforcement: The tamer
framework. In Proceedings of the fifth international conference on Knowledge capture, pp. 9-16,
2009.

Sampo Kuutti, Richard Bowden, and Saber Fallah. Weakly supervised reinforcement learning for
autonomous highway driving via virtual safety cages. Sensors, 21(6):2032, 2021.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. Advances
in Neural Information Processing Systems, 35:21314-21328, 2022.

Lisa Lee, Ben Eysenbach, Russ R Salakhutdinov, Shixiang Shane Gu, and Chelsea Finn. Weakly-
supervised reinforcement learning for controllable behavior. Advances in Neural Information
Processing Systems, 33:2661-2673, 2020.

Zutong Li and Lei Yang. Weakly supervised deep reinforcement learning for video summarization
with semantically meaningful reward. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 3239-3247, 2021.

Bhaskara Marthi. Automatic shaping and decomposition of reward functions. In Proceedings of the
24th International Conference on Machine learning, pp. 601-608, 2007.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278-287. Citeseer, 1999.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, vol-
ume 1, pp. 2, 2000.

OpenAl. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730-27744, 2022.

11

Under review as a conference paper at ICLR 2024

Jack Parker-Holder, Raghu Rajan, Xingyou Song, André Biedenkapp, Yingjie Miao, Theresa Eimer,
Baohe Zhang, Vu Nguyen, Roberto Calandra, Aleksandra Faust, et al. Automated reinforcement
learning (autorl): A survey and open problems. Journal of Artificial Intelligence Research, 74:
517-568, 2022.

Patrick M Pilarski, Michael R Dawson, Thomas Degris, Farbod Fahimi, Jason P Carey, and
Richard S Sutton. Online human training of a myoelectric prosthesis controller via actor-critic

reinforcement learning. In 2011 IEEE international conference on rehabilitation robotics, pp.
1-7. IEEE, 2011.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889-1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K Reddy. Execution-based code
generation using deep reinforcement learning. arXiv preprint arXiv:2301.13816, 2023.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484—489, 2016.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008-3021, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ana C Tenorio-Gonzalez, Eduardo F Morales, and Luis Villasenor-Pineda. Dynamic reward shap-
ing: training a robot by voice. In Advances in Artificial Intelligence—IBERAMIA 2010: 12th
Ibero-American Conference on Al, Bahia Blanca, Argentina, November 1-5, 2010. Proceedings
12, pp. 483-492. Springer, 2010.

Kristof Van Moffaert and Ann Nowé. Multi-objective reinforcement learning using sets of pareto
dominating policies. The Journal of Machine Learning Research, 15(1):3483-3512, 2014.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. arXiv preprint
arXiv:2109.00859, 2021.

Cathy Wu, Aboudy Kreidieh, Kanaad Parvate, Eugene Vinitsky, and Alexandre M Bayen. Flow: A
modular learning framework for autonomy in traffic. arXiv preprint arXiv:1710.05465, 2017.

Zheng Wu, Wenzhao Lian, Vaibhav Unhelkar, Masayoshi Tomizuka, and Stefan Schaal. Learning
dense rewards for contact-rich manipulation tasks. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pp. 6214—6221. IEEE, 2021.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective
reinforcement learning and policy adaptation. Advances in neural information processing systems,
32,2019.

Zhi Zhang, Jiachen Yang, and Hongyuan Zha. Integrating independent and centralized multi-agent
reinforcement learning for traffic signal network optimization. arXiv preprint arXiv:1909.10651,
2019.

12

Under review as a conference paper at ICLR 2024

A APPENDIX

B CLASSIC CONTROL EXPERIMENT DETAILS

For the classic control experiments we use the OpenAl gym (Brockman et al, 2016). To train all
policies we use the DDPG algorithm, where the policies are parameterized by three layer MLPs
with 256 hidden units per layer. We use the Adam optimizer, and search for a learning rate in
[1x1075,1x 1073].

For mountain car we train for a total of 15000 timesteps and begin training after 5000 timesteps. For
pendulum, we train for a total of 50000 timesteps and begin learning after 25000 timesteps.

C BASELINES

Beyond the ground-truth reward, we compare the HERON algorithm with two ensemble baselines
inspired by [Brys et al.[(2017). These ensemble baselines train a separate policy on each reward fac-
tor, and then combine the policies’ outputs in a given state to select an action. In every environment
we train each policy in the ensemble with the similar parameters as used for the reward engineering
baseline and we again tune the learning rate in [1 x 107°,1 x 1073].

As described in the main text, we consider two variants of this ensemble based algorithm: one where
the action is selected according to an average over each policy (a < argmax . 4 ZZ=1 %ﬂk (s,a))
and one where the preference ranking used as input to HERON is used to combine the ac-
tions (@ < argmax,c 4> pr_;7"mk(s,a)). With the second variant, v is selected from
{0.25,0.35,0.45,--- ,0.95,0.99,1}.

We also examine the performance of a reward engineering baseline where the reward is formulated
as Y., B'z;, where 3 is a hyperparameter selected from {0.3,0.4, ...,0.9, 1.0} and z; are the nor-
malized reward factors. The reward factors are ordered according to the HERON reward hierarchy,
making this a very realistic and competitive reward engineering baseline. However, we came across
a few challenges when trying to make this algorithm work. First, the reward factors all need to be
normalized, which either requires complex algorithms or multiple agent rollouts before training. In
addition, we find that this baseline is very sensitive to 3 and therefore has a higher tuning cost. In
addition, it can often not beat the performance of HERON. We plot the performance of the reward
engineering baseline in Figure [/| Note that this plot shows performance over all of training, and
HERON typically displays larger reward (comparatively) in the last stages of training.

As we can see from Figure [/ the reward engineering baseline requires extensive tuning to achieve
good performance. In addition, the choice of normalization strategy is very important (Figure [7f).
These results further show the benefits of HERON.

D ROBOTICS

All of our experiments are conducted with the PyBullet simulator (Coumans & Bail, [2016). The
reward factors in each environment are as follows: for Ant, it is whether the robot is alive, the
progress towards the goal state, whether the joints are at their limits, and whether the feet are collid-
ing. For HalfCheetah, the factors are the potential and the power cost. For Hopper, the factors are
the potential, an alive bonus, and the power cost.

E TRAFFIC LIGHT CONTROL

In our experiments we train four agents in a two by two grid. The length of each road segment is
400 meters and cars enter through each in-flowing lane at a rate of 700 car/hour. The traffic grid can
be seen in Figure[§] The control frequency is 1 Hz, i.e. we need to input an action every second.
The reward is based on the following attributes for each agent n:

* ¢": The sum of queue length in all incoming lanes.

* wt™: Sum of vehicle waiting time in all incoming lanes.

13

Under review as a conference paper at ICLR 2024

1.05
1.00
0.95
2
50.90
0851 —e— Reward Eng.
0.80 - Ground Truth
- HERON
0.75
03 04 05 06 07 08 09 10
(a) Ant
—40
—60 4
—-80 A
-
-100 / o
-120 S \ _

160 s max
-180 ! Ly

140 —»— standard—s— cli

P

—+— weight ---- Ground Truth

--- HERON

- — - - —

03 04 05 06 07 08 09 1.0
B

(d) Traffic Lights

Reward

0.7
0.6

0.2
0.1
0.0

0.80

0.75
T 070
o
H
& 0.65

0.60

03 04 05 06 07 08 09 10

(b) Half-Cheetah

e

-12.5

-15.0
-17.5
-20.0
=225
-25.0
-27.5
-30.0

03 04 05 06 07 08 09 10

B

(e) Pendulum

03 04 05 06 07 08 09 10

B

(c) Hopper

BV

—e— Reward Eng.
---- HERON
---- Ground Truth

03 04 05 06 07 08 09 10

B
(f) Mountain Car

Figure 7: Ablation study of the reward engineering baseline.

* dI™: The sum of the delay of all vehicles in the incoming lanes.

* em™: The number of emergency stops by vehicles in all incoming lanes.
e fl"™: A Boolean variable indicating whether or not the light phase changed.
e vl™: The number of vehicles that passed through the intersection.

We can then define the reward-engineering reward as

R"™ = —0.5¢" — 0.5wt™ — 0.5dI™ — 0.25em™ — fI™ + vl™.

All algorithms have the same training strategy. Each agent is trained for three episodes with 3000
SUMO time steps each. At the beginning of training the agent makes random decisions to populate
the road network before training begins. Each algorithm is evaluated for 5000 time steps, where the
first 1000 seconds are used to randomly populate the road. For adversarial regularization, we use

the /o norm to bound the attacks ¢.

Figure 8: Traffic light control environment.

F RLHF COMPARISON

To explicitly compare RLHF with HERON, we compare the algorithms in the pendulum environ-
ment. To simulate human feedback, we rank one trajectory over another if the ground truth reward
achieved by that trajectory is higher than the ground truth reward achieved by the other trajectory.

14

Under review as a conference paper at ICLR 2024

We then evaluate the performance of this simulated RLHF algorithm when varying amounts of feed-
back are given. The results can be seen in Figure 0] In this table we vary the number of feedbacks
in RLHF, while keeping the number of feedbacks for HERON constant. In this setting HERON can
perform as well as RLHF, but such good performance is not guaranteed in every environment.

0
-20
-40
-60
-80

-100
-120
-140
-160

Reward

1 9 25 60 100
Percent of Trajectories Labelled

Figure 9: RLHF comparison in the Pendulum Environment.

G HERON FLEXIBILITY

In this section we evaluate how the behavior of the policies trained by HERON change when we
change the reward hierarchy. We plot several hierarchies in Figure [I0] The reward engineering is
the thick black line. We try three factors as the most important factor (num_passed, wait time, and
delay). We notice that all these observations can outperform the reward engineering reward, even
though we measure the return with the reward engineering reward. One important deviation from
this good performance is when wait time is not ranked highly. The wait time is a very important
factor, and when we do not put this variable high up in the hierarchy, the performance becomes
unstable when measured according to the reward engineering reward. This is because if we ignore
the wait time of cars, the policy may make some cars wait for a long time, which is not ideal.
However, this can easily be accounted for in the reward design process.

s \
-40 S WU T e Sl XN
o\ P AN
—60 A \ A \,-\f‘:vf X
RN \,—’é.,(jw-\,__:v.fx"-,__/'l_,\
—80 . = \/ - -
-100 | —
wait,num_passed,queue - num_passed,wait,queue delay,wait.num_passed delay,wait,num_passed
—-120 num_passed,queue,delay num_passed,delay, wait delay,queue,num_passed === Reward Engineering
140 num_passed,wait,delay num_passed,delay,queue |
0 1000 2000 3000 4000

Evaluation Time Step

Figure 10: Different reward hierarchies in HERON.

We also show the level the decision tree induced by HERON reaches in Figure[TT] This may change
with different reward hierarchies (this one in particular priorities queue length, wait time, and delay),
but as we can see from the figure, a relatively similar proportion of decisions are made at each level
of the decision tree. We also remark different reward factors may be correlated (i.e. queue length
and number passed), so the second factor may not have many decisions made with it.

H CoODE GENERATION
In this section we describe details for the code generation task.

H.1 BEHAVIOR CLONING
To train the initial behavior model we use behavior cloning (supervised fine-tuning) to adapt the pre-

trained CodeTS5 to the APPS task. In particular, we use train with the cross-entropy loss for 12000
iterations, using a batch size of 64. We use the Adam optimizer with a learning rate of 2 x 1075,

15

Under review as a conference paper at ICLR 2024

Proportion

o
S

o
N}

BN Queue Length B Number Passed B Number of Switches
Wait Time 8 Emergency Stops skip
N pelay

0.0 T T T T v v
o 5 10 15 20 25
Reward Model Epoch

Figure 11: Different level reached by decision tree in HERON.

H.2 TEMPERATURE SELECTION

A hyperparameter that can have a large impact on generation quality is the temperature parameter,
which essentially alters how greedy we are in the next-token sampling step. In all settings we follow
the implementation of (2022), using a temperature of 0.6 for APPS and 1.2 for MBPP. In
addition, we sample tokens greedily to construct a baseline sample for each problem.

H.3 REWARD MODEL

It has been noted that reward models often overfit to the dataset (Ouyang et al, [2022). Therefore
we use a smaller version of CodeT5 for our reward model with only 220 million parameters. We
train this model for around 40000 steps with a batch size of 64. This is roughly a single epoch on
the preference dataset, which is comprised of 20 samples per problem sampled from the behavior
model and some expert samples provided by the APPS dataset. We use the Adam optimizer with a
learning rate of 2 x 107°.

H.4 REINFORCEMENT LEARNING

Once we have trained the reward model, we assign a reward to each program in our preference
dataset and train using reinforcement learning on this dataset. Similar to (2022)), we train
on the policy gradient loss and add the cross entropy loss as a regularization term. We compare our
method to two reward engineering rewards:

CodeRL reward. The first reward we compare HERON to is from CodeRL, which defines the
reward as

—1.0 if program s fails to compile
—0.6 if program s has a runtime error
—0.3 if program s fails a unit test
1.0 if program s passes all unit tests.

T'CodeRL (S) =

PPOCoder reward. The second reward we compare HERON to is based on PPOCoder, which has
the insight to include syntactic similarity to expert samples in the reward. This effectively smooths
the reward, and can therefore make the reward more informative. In particular, they compare the
abstract syntax trees of the generated programs with the expert example programs. This is computed
as

Rusi(s,5) = Count(AST, ASTs)/Count(ASTs).

We then construct the final PPOCoder based reward as 7ppocoder(S) = TcoderL(S) +
AMEAN3(rqs:(s,5)), where MEAN is the mean operator. We tune A € {0.001,0.01,0.1,1}.
We remark that the original PPOCoder reward contains more reward factors, but we do not use all
of them due to the large tuning cost required to tune the ourselves.

For both of these rewards and the HERON reward we tune the learning rate in {3 x 107 5 x
1076,8 x 1079}

16

Under review as a conference paper at ICLR 2024

H.5 EXAMPLE PROGRAMS

To further analyze the performance of HERON, we examine some of the programs generated by
HERON. These programs are randomly selected. We display concatenated prompts and completions

in Figure [12]
I REWARD TRAINING

In this section we detail our reward model training. For the classic control tasks and the traffic light
control task we do not have a good initial behavior policy, so we must train our reward model in an
iterative manner. In these settings, we iteratively update the reward model using samples from the
current version of the policy. In this way the reward model is trained on samples generated from
progressively better policies.

As we mentioned in our discussion on the computational costs of HERON, the cost of reward model
training depends on the frequency at which the reward model is trained. For the classic control
environments we simply use a linear training schedule, in which the reward model is updated every
400 steps. For traffic light control we train the reward model with an annealed frequency, where the
reward model is trained every 100v? steps, where v is set 1.3 and ¢ is the current time step.

We demonstrate the multi-step reward model training in Figure [[3] The sharp drop in accuracy
occurs at time step 1000, where the behavior model changes from random to a trained policy. This
large change in accuracy indicates that multi-step reward model training is needed, as reward models
trained on random behavior do not perform as well when the behavior changes.

1.1 THE o« HYPERPARAMETER

Formal description of shaping factor: Given a trajectory 7, let us compare it with n other tra-
jectories 7y, ..., 7,. Let F(7) denote the average level of the decision tree T wins at. To allow us
to incorporate domain knowledge into HERON, we multiply the reward assigned to 7 by a factor
aF () where « is a hyperparameter. When the reward factors are categorical, F' (1) can capture
which category 7 lies in, and multiplying the reward by «'(7) can control the reward separation
between different categories.

Visual description of shaping factor:As mentioned in the main text, the o hyperparameter can be
used to control the shape of the rewards. In Figure[T4] we show how changing « changes the reward
shape in the code generation task.

J COMPUTATIONAL SETUP

For the classic control tasks and traffic light control experiment we run experiments on Intel Xeon
6154 CPUs. For the code generation task, we train with Tesla V100 32GB GPUs.

K ROBOTICS LEARNING CURVES

In Figure[T5|we display the learning curves in the robotics environments.

L LIMITATIONS

The main limitation of HERON is that not every problem will contain an obvious ranking over the
reward factors, as some factors may be equally important. We propose to mitigate this limitation in
future works by allowing for ties or using a randomized decision tree in the preference elicitation
procedure.

17

Under review as a conference paper at ICLR 2024

You are an expert Python programmer, and here is your task: Write a function to find the list with minimum length us

ing lambda function. Your code should pass these tests:

assert min_length_list([[e], (1, 3], [5, 71, [9, 11], [13, 15, 17]1])==(1, [@]
assert min_length_list([[1,2,3,4,5],(1,2,3,4],[1,2,3],(1,2], [1]])==(1, [1])
assert min_length_list([[3,4,5],(6,7,8,9],[10,11,12],[1,2]])==(2,(1,2])

class Solution:
def min_length_list(self, xinvars):
Wi

:type invars: List[List[int]]
:rtype: (int, List[int])
i
res, index = fleat('inf'), [I]
for item in invars:
if item == float('inf'):
return 1, index
elif not res:
index = index + [len(item)]
else:
if index[-1] < len(item):
res, index = len(item), index + [len(item)]
else:
index = index + [len{item)]
return res, index

You are an expert Python programmer, and here is your task: Write a function to find the nth tetrahedral number. You

r code should pass these tests:

assert tetrahedral_number(5) == 35.0
assert tetrahedral_number(6) == 56.0
assert tetrahedral_number(7) == 84.0

class Solution:
def tetrahedral_number(self, *n):
print(n)

def f(x, x1, x2, y):
if y < @: return -1.0
X, ¥ =x+x1, y+yl
if ((x > 5e-6 or y > 5e-6) and (x - x1 <= y - x2)): return -1.0
if (y == 5e-6 and x1 < y - x2) or y == 5e-7 and x1 == x2: return -1.0
z=0
while (x > x1 <= x2):
if (x%2==0):y-=1
X=x/f2
while (y > y1 <= y2):
if (ys2==0): x =1
y=y//2
while (z > abs(yl - x1) > abs(y2 - x2)):
z = abs(yl - x1)
x1, x2, y1, y2 = x2, x1, y2, z * (-1)
return z * y

a, b, w=s#n
p,9=1, 3
while True:
X, y=a*xg+Xx, bxw+y
z="f(x, y,a*xq, bxw+ (a+1) xq) if n else -1.0
if z < 0.0:
return y
if (a%s2==0):y=y-1
a=a/f/ 2
if (q<2): a=pxqg+q
if (p > 1.1e-6 and q
if (w > 1.2e-6): w =
qQ=p*qg+p

> 5.6e-7): p = 1.1e-5
1.2e-6

You are an expert Python programmer, and here is your task: Write a function to convert the given decimal number to

its binary equivalent. Your code should pass these tests:

assert decimal_to_binary(8) == '1000'
assert decimal_to_binary(18) == '10010'
assert decimal_to_binary(7) == '111'

class Solution:
def decimal_to_binary(self, x):

a = [8]%8;

for i in range(8):
alil+=1<<i;

return ''.join(map(str, a));

Figure 12: Example programs generate by LLMs trained with HERON.

18

Under review as a conference paper at ICLR 2024

a 0.90
©0.901
—
3
()
W)
< 0.85
[
o
o
= 0.801
o
| .
s
o 0757
o
0.70 — . . . T
0 2000 4000 6000 8000
Training Epoch
Figure 13: Reward model accuracy throughout training.
14000 Compile Error " 14000
£ 12000 Runtime Error E 12000
© Failed Test 5
gmooo Pass Tests <} 10000
& 000 & 8000
o o
@ 6000 © 6000
Qo Qo
€ 4000 £ 4000
3 >
Z 2000 Z 2000
o -0.5 0.0 05 10 "o —0.5 0.0 05 10
Reward Scores Reward Scores
(@a=1.0 b)a=2.0
14000 14000
g g
g 12000 g 12000
8‘10000 glOOOO
< 8000 & 8000
o o
% 6000 % 6000
Qo Q
£ 4000 € 4000
=1 =]
Z 2000 Z 2000
0 0
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Reward Scores Reward Scores
©)a=3.0 (da=4.0

Figure 14: Reward shape with different values of «.

19

Under review as a conference paper at ICLR 2024

12,

11 12

10

oo 10
S 08 Tos
5 0.7

~—— Ground Truth

0.5 —— HERON
0.4 —— Reward Eng.
037502 o8 12 16 20 0 04 08 12 16 20
Training Episodes (Millions) Training Episodes (Millions)
(a) Ant (b) Hopper

Reward

0 02 04 06 08 10
Training Episodes (Millions)
(c) HalfCheetah

Figure 15: Training curves in different robotics tasks.

20

	Introduction
	Related Work
	Method
	Problem Setup
	Algorithm

	Experiments
	Environments and Baselines
	Main Results
	Flexibility of Hierarchical Reward Modeling
	Robustness
	Analysis

	Discussion
	Appendix
	Classic Control Experiment Details
	Baselines
	Robotics
	Traffic Light Control
	RLHF Comparison
	HERON Flexibility
	Code Generation
	Behavior Cloning
	Temperature Selection
	Reward Model
	Reinforcement Learning
	Example Programs

	Reward Training
	The Hyperparameter

	Computational Setup
	Robotics Learning Curves
	Limitations

