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Abstract

Deep learning based image classification often requires time-consuming and expensive man-
ual annotation by experts. Incomplete-supervision approaches including active learning,
pre-training, and semi-supervised learning have thus been developed and aim to increase
classification performance with a limited number of annotated images. Up to now, these
approaches have been mostly benchmarked on natural image datasets, which differ fun-
damentally from biomedical images in terms of color, contrast, image complexity, and
class imbalance. We therefore analyzed the performance of combining seven active learn-
ing, three pre-training, and two semi-supervised methods on exemplary, fully annotated
biomedical image datasets covering various imaging modalities and resolutions. For each
method combination, the training started with using only 1% of labeled data. We in-
creased the labeled training data by 5% iteratively, evaluating the performance with 4-fold
cross-validation in each cycle. The results showed that the pre-training methods ImageNet
and SimCLR in combination with pseudo-labeling as the training strategy dominate the
best performing combinations, while no particular active learning algorithm prevailed. For
three out of four datasets, these combinations reached over 90% of the fully supervised re-
sults by only adding 25% of labeled data. An ablation study showed that pre-training and
semi-supervised learning contributed up to 25% increase in macro F1-score in each cycle.
In contrast, state-of-the-art active learning algorithms contributed less than 5% increase of
macro F1-score in each cycle. Based on the result of our study, we suggest employing pre-
training and an appropriate incomplete-supervision training strategy for biomedical image
classification when a limited number of annotated images is available. We believe that our
study is an important step towards annotation-scarce and resource-efficient model training
for biomedical classification challenges.
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1. Introduction

Recent successes of deep learning methods rely on large amounts of well-annotated training
data (Tan et al., 2018). However, annotations for biomedical images are often scarce as they
crucially depend on the availability of trained experts, whose time is expensive and limited.
Many biomedical image classification tasks can be categorized as incomplete-supervision
approaches, where labeled data is limited while unlabeled data is abundant (Zhou, 2017;
Blasi et al., 2016). From this perspective, there are three directions to take when facing an
incomplete-supervision problem:

(i) Active learning algorithms address the issue by finding the most informative instances
for further annotation (Joshi et al., 2009; Ren et al., 2020; Settles, 2009) and have
been benchmarked extensively on natural image datasets (Ash et al., 2019; Ducoffe
and Precioso, 2015; Gal et al., 2017; Holub et al., 2008; Killamsetty et al., 2020; Sener
and Savarese, 2017; Wei et al., 2015; Yoo and Kweon, 2019a,b).

(ii) Pre-training methods such as transfer learning and self-supervised learning can help to
optimize the network performance with small number of labeled images (Chen et al.,
2020a; Newell and Deng, 2020; van den Oord et al., 2018; Sagheer and Kotb, 2019).
In transfer learning, a neural network uses the representation from another model,
ideally trained on a similar dataset. A common transfer learning approach, also used
in many biomedical applications, is to initialize a model with pre-trained ImageNet
weights (Rajpurkar et al., 2017; Wang et al., 2017). In self-supervised learning, a
representation without any labels is learned (Jing and Tian, 2020). Pre-training based
on self-supervised learning for medical image analysis recently has been studied by
(Ericsson et al., 2020; Taher et al., 2021), where a variety of methods are compared.

(iii) Semi-supervised learning leverages unlabeled data in addition to labeled data during
training, to increase the performance as well as the stability of predictions (Sohn et al.,
2020; Tarvainen and Valpola, 2017).

Methodological improvements of these three approaches are mostly benchmarked on
natural image datasets. Biomedical image datasets however differ from natural images in
a couple of important characteristics: They are often strongly imbalanced, typically less
diverse in terms of shapes and color range, and classes are often distinguished by only small
feature variations, e.g., in texture and size (Esteva et al., 2017; Matek et al.). Besides that,
biomedical images are different among different domains as well as experiments.

In this paper, we address the following questions: Do approaches that perform well on
natural image datasets show the same performance on biomedical image datasets? Which
one of the three incomplete-supervision approaches work best on biomedical images? What
is the best combination of these approaches which work on biomedical images?

Thus we performed a systematic comparison on different incomplete-supervision ap-
proaches, including seven active learning algorithms (plus random sampling), three pre-
training methods (plus random initialization), and two training strategies (plus supervised
learning), on four exemplary biomedical imaging datasets. We compared each approaches
as well as their combinations on each dataset. Then we analyzed the contribution of each
approach for the top combinations. Finally, we recommended a combination of approaches
for dealing with similar biomedical classification tasks.
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2. Biomedical Imaging Datasets

We have selected four exemplary, publicly available, and fully annotated datasets from the
biomedical imaging field to evaluate the efficiency and performance of active learning algo-
rithms, pre-training methods, and training strategies (see Figure 1). For more information
about the datasets, refer to Appendix A:

(a) The white blood cell dataset contains 18,395 microscopic images of single stained
human leukocyte cells in ten classes (Matek et al., 2019b,a).

(b) The skin lesion dataset contains 25,339 dermoscopy images from eight skin cancer
classes, which can be used for melanoma diagnosis (Codella et al., 2017; Combalia
et al., 2019; Tschandl et al., 2018).

(c) The cell cycle dataset comprises 32,273 images of Jurkat cells in seven different cell
cycle stages created by imaging flow cytometry (Eulenberg et al., 2017).

(d) The diabetic retinopathy dataset consists of 3,672 color fundus retinal photography
images classified into five stages of diabetic retinopathy (APTOS, 2019)

3. Results

3.1. Experimental setup

We randomly selected 1% of data from each dataset as our initial annotated set and trained
a ResNet18 (He et al., 2016). In each cycle, we added 5% of annotated data as suggested
by one of the seven active learning algorithms (including BADGE (Ash et al., 2019), learn-
ing loss (Yoo and Kweon, 2019a), augmentation-based (Sadafi et al., 2019), Monte Carlo
dropout (Gal et al., 2017), entropy-based (Settles, 2009), margin confidence (Zhou and
Sun, 2014) and least confidence (Culotta and McCallum, 2005)) or randomly sampled 5%
as a baseline. This process was repeated eight times leading to eventually adding 40% (and
using 41%) of annotated data in total. We combined active learning with three different pre-
training methods (ImageNet (Raghu et al., 2019b), autoencoder (Goodfellow et al., 2016)
and SimCLR (Chen et al., 2020a)) and random initialization as baseline and two different
training strategies (FixMatch (Sohn et al., 2020) and pseudo-labeling (van Engelen and
Hoos, 2020)) with supervised learning as baseline resulting in 4× 8× 4× 3× 4× 9 = 13, 824
independent experiments (see Figure 2). We performed a 4-fold cross-validation in each cy-
cle and calculated macro F1-score, accuracy, precision, and recall. The macro F1-score was
used as our main metric of comparison, defined as the average F1-score over all classes, thus
accounting for the imbalanced nature of the datasets. To quantitatively compare different
combinations, we looked at the average macro F1-score across all cycles. Moreover, every
combination is reported in the form of “active learning algorithm + pre-training method +
training strategy”. (For more information about the methods, refer to Appendix B)

3.2. Experiments

Learning loss + SimCLR + pseudo-labeling on the white blood cell dataset (see Figure 3a)
achieved the highest average macro F1-score of 0.71±0.07 (mean±standard deviation on
n=8 cycles). BADGE + ImageNet + pseudo-labeling on the skin lesion dataset achieved the
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Figure 1: The four selected biomedical image datasets exhibit strong class imbalance, little
color variance and high similarity among classes.

highest average macro F1-score (0.56±0.09). BADGE + ImageNet + pseudo-labeling on the
cell cycle dataset achieved the highest average macro F1-score (0.54±0.08). Augmentation-
based + ImageNet + FixMatch on the diabetic retinopathy dataset achieved the highest
average macro F1-score (0.54±0.08).(see Figure 3).

In almost all cases (17 out of 20), the top-5 combinations were the ones that performed
well from the first cycle where no active learning is involved. ImageNet and SimCLR pre-
training, as well as pseudo-labeling, were always in the top combinations. Furthermore,
no active learning algorithm showed up in the best combinations consistently. Finally,
BADGE+ImageNet+pseudo-labeling was the top combination on two different dataset.
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Figure 2: We systematically compared combinations of different incomplete-supervision ap-
proaches on biomedical imaging datasets. Specifically, we ran 4×8×4×3×4×9 =
13, 824 independent experiments (4 datasets, 7 active learning algorithms + 1
baseline, 3 pre-training methods + 1 baseline, 2 training strategies + 1 baseline,
4-fold cross-validation and 1 initial step + 8 active learning cycles) to identify the
best out of 96 possible combinations.

3.3. Ablation study

To better understand each approach’s contribution to the performance, we selected the top
combination for each dataset (see Figure 3) and conducted a systematic ablation study.
We define the contribution to the performance of each incomplete-supervision approach by
calculating the difference in F1-score if that approach was substituted with its baseline:
active learning algorithms were substituted with random sampling, pre-training methods
with the random initialization, and training strategies with supervised learning. The anal-
ysis showed that the contribution of pre-training and semi-supervised learning can reach up
to 25% increase in macro F1-score. In contrast, the active learning algorithms contributed
up to only 5% increase in macro F1-score in each cycle (see Figure 4).
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Figure 3: ImageNet and SimCLR as pre-training methods and pseudo-labeling as the train-
ing strategy dominate the best performing combinations, while no particular ac-
tive learning algorithm prevails. In each panel (a-d) the upper bound of perfor-
mance is fully supervised learning (black dotted line).The grey lines are combina-
tions which did not achieve the top-5 rank. The baseline is plotted in light blue.
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Figure 4: Semi-supervised learning and pre-training contribute stronger to the top per-
forming combination in comparison to active learning. For every dataset, the top
combination of active learning algorithm, pre-training method, and training strat-
egy is used (see Figure 3). The contribution to performance of each approach is
calculated by substituting it with its baseline and subtracting the obtained macro
F1-score from the original.

4. Discussion

We have investigated how incomplete-supervision approaches can increase performance on
sparsely labeled biomedical datasets. With a systematic study over seven active learning al-
gorithms, three pre-training methods, and two training strategies, as well as their baselines,
we have studied how these approaches work on biomedical imaging datasets.

Our analysis showed that combining active learning algorithms, pre-training methods,
and semi-supervised learning strategies leads to superior performance as compared to their
baselines for every biomedical imaging datasets. We found that the contribution of pre-
training and semi-supervised learning can reach up to 25% increase in macro F1-score.
In contrast, we observed that the state-of-the-art active learning algorithms contribute up
to 5% increase in macro F1-score in each cycle. Therefore, we recommend investing in
time and resources on semi-supervised learning strategy and pre-training methods as the
identified best approaches, instead of finding the appropriate active learning while working
on biomedical imaging datasets.

In addition, we found that high performance on natural images does not guarantee the
same quality on biomedical images. This can be due to the fact that algorithms such as
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FixMatch, carry implicit assumptions about the data distribution, and need to be adapted
to the new domain during the implementation phase.

In terms of implementation of active learning algorithms, all of them were easy to im-
plement by following definition or provided public codes, except learning loss, as it brought
changes in the architecture, loss function, and training. For pre-training methods, the
same applies. However, SimCLR needed large batch sizes (> 2048), which led to memory
problems during the execution. Regarding the training strategies, tuning the optimal hy-
perparameters for FixMatch was difficult and the default parameters did not work. Also,
the only combinations which showed lower performance than the baseline were the ones
which included FixMatch as the training strategy. In terms of run-time, pseudo-labeling
required slightly more than supervised learning, but FixMatch took at least three times
more than supervised learning in every case (see Appendix C).

Based on the implementation and numerical considerations, we suggest that the com-
bination of BADGE (active learning), ImageNet initialization (pre-training), and pseudo-
labeling (training strategy) can be considered as a good choice for dealing with problems
where annotated data is limited. For three datasets, this combination reached more than
90% of the fully supervised results by only using 25% of the labeled data (see Figure 5).

While the selected approaches might seem somewhat arbitrary, they are selected in such
a way that they cover a wide range of methodologies. Among active learning algorithms
there are different ways of estimating uncertainty (in BADGE via gradients of the net-
work and clustering; in learning loss via separate loss function; in Augmentation-based via
input perturbation; in MC-dropout via model perturbation, Margin sampling, and least
confidence; and in entropy based via softmax output). For the pre-training methods, the
weights are calculated differently in each method (ImageNet: pre-training on natural images;
autoencoder: learning efficient codings of unlabeled data by attempting to regenerate the
input; SimCLR: using positive and negative samples to train a network with a contrastive
loss function). For the semi-supervised learnings the same applies (FixMatch: using strong
and weak augmentations and using a contrastive loss function; pseudo-labeling: using the
softmax values for generating pseudo-labels)

Due to the computational costs, we used a fixed architecture and a fixed set of pa-
rameters. While this choice might not lead to the best fully supervised performance for
each dataset (e.g., compared to much bigger architectures or series of ensemble learners
used for white blood cell [(Matek et al., 2019b) ROC = 0.99], cell cycle [(Eulenberg et al.,
2017) accuracy = 0.99], and diabetic retinopathy [ APTOS 2019 κ2 = 0.93]), it provides a
framework to systematically analyze the combination of incomplete-supervision approaches.
Based on the work of (Chen et al., 2020b), we also suggest testing bigger architectures to
figure out if there is a correlation between the architecture size and the performance for
biomedical data. Finally, based on the recent findings (Taher et al., 2021), another question
to answer in upcoming works would be to compare self-supervised learning pre-training on
natural images vs. biomedical images.

We believe that our study is an important step towards helping bioinformaticians work-
ing on annotation-scarce and resource-efficient model training of biomedical image classifi-
cation challenges.
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Appendix A. Datasets

The datasets in this study originate from different fields of medicine. The nature of image
sources and the technology used to record them are different.

• The white blood cell dataset contains 18,395 images (128x128x3 pixels) of single hu-
man leukocyte cells. To ensure a meaningful test set, neutrophils (segmented and
band), lymphocytes (typical and atypical) and immature leukocytes (myeloblasts,
promyelocytes, promyelocytes-bilobed, and myelocytes) are merged based on the class
definitions (Matek et al., 2019b,a).

• The skin lesion dataset contains 25,339 dermoscopy images (128x128x3 pixels) from
eight skin cancer classes (Codella et al., 2017; Combalia et al., 2019; Tschandl et al.,
2018), which can be used for melanoma diagnosis. The dataset has been used in the
ISIC 2018 challenge as an effort to improve melanoma diagnosis.
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• The cell cycle dataset comprises 32,273 images of Jurkat cells (64x64x3 pixels) in
seven different cell cycle stages created by imaging flow cytometry (Eulenberg et al.,
2017). For better visualization, only the bright-field channel is shown.

• The diabetic retinopathy dataset consists of 3,672 color fundus retinal photography
images (2095x2095x3) classified into five stages of diabetic retinopathy APTOS 2019
Blindness Detection. For computational reasons, the size of the images were reduced
from 2095x2095x3 to 128x128x3 pixels. The dataset has been used in the APTOS
2019 Blindness Detection challenge (APTOS, 2019).

Appendix B. Methods

B.1. Architecture

We use ResNet18 (He et al., 2016) as the training architecture. For each dataset, we pretrain
the ResNet18 using an autoencoder or SimCLR (Chen et al., 2020a). For more information
about the implementation consideration, refer to our GitHub.

B.2. Active learning algorithms

The performance of a model fθ with parameters θ can be increased by labeling images
from the set of unlabeled images U , thus adding pairs of images and corresponding labels
(xi, yi) to the set of labeled images L. The labeling of unlabeled images is carried out in
cycles, in which s images S ⊆ U with |S| = s are selected for annotation and added to
L, after the performance of the model converges with the previous labeled set L. Active
learning algorithms aim on selecting images in U for annotation, such that the addition of
these images to L results in a maximum increase in the evaluation metrics M . The main
difference between active learning algorithms is how images in the U are prioritized for
labeling. The algorithms evaluated in this paper are based on uncertainty δ. Uncertainty δ
is a scalar value which is attributed to each image in U . The s images S ⊆ U with |S| = s
with the highest uncertainty are selected for labeling in each cycle.

B.2.1. Monte Carlo dropout (MC-dropout)

Dropout is a commonly used technique for model regularization, which randomly ignores
a fraction of neurons during training to mitigate the problem of overfitting. It is typically
disabled during test time. MC-dropout involves the assessment of uncertainty in neural
networks using dropout at test time (Kendall and Gal, 2017; Srivastava et al., 2014) and
thus estimates the uncertainty of the prediction of an image. MC-dropout generates non-
deterministic prediction distributions for each image. The variance of this distribution can
be used as an approximation for model uncertainty δ (Gal and Ghahramani, 2016). During
each active learning cycle, the s images with the highest variance are annotated and added
to the labeled set L. This has been shown to be an effective selection criterion during active
learning (Gal et al., 2017).
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B.2.2. Augmentation-based sampling

Let a be a function that performs stochastic data augmentation, such as cropping, hor-
izontal flipping, vertical flipping, or erasing on a given image. Each unlabeled image
ui ∈ U is transformed using a and this process is repeated J times to obtain the set
Ui = {u1i , u2i , u3i , ..., uJi} with |Ui| = J . The random transformations are followed by a
forward-pass through the model fθ. This results in J predictions Q̂i = {q̂1i , q̂2i , q̂3i , ..., q̂Ji},
where q̂i = argmax[P θ(ŷi|ui)] is the most probable class according to the model output
for each set Ui of perturbed copies of an unlabeled image ui ∈ U . The model uncertainty
δ can be estimated by keeping a count of the most frequently predicted class (mode) for
each image. The idea behind this approach is that if the model is certain about an image,
it should output the same prediction for randomly augmented versions. Thus, the lower
the frequency of the mode, the higher the uncertainty δ (Sadafi et al., 2019). During each
active learning cycle, the images with the lowest frequency of the most frequently predicted
class are annotated and added to the labeled set L.

B.2.3. Entropy-based sampling

Entropy measures the average amount of information or ”bits” required for encoding the
distribution of a random variable. Here, entropy is used as a criterion for active learning
to select the s images S ⊆ U , whose predicted outcomes (softmax layer) have the high-
est entropy, assuming that high entropy of predictions means high model uncertainty δ.
By definition, entropy focuses on taking the complete predictive distribution into account
(Settles, 2009).

B.2.4. Least confidence

Least confidence sampling is the simplest and most common form of uncertainty sampling.
The difference between the most confident prediction out of all class predictions (the highest
softmax value) and 100% confidence is used as a metric. Hence, by selecting the s images
(S ⊆ U) which the model is least confident about, the model performance is optimized
(Culotta and McCallum, 2005).

B.2.5. Learning loss

Learning loss includes a second network, called loss prediction module, which can be added
to an active learning network, namely the target model. It is trained to predict the losses of
the target model on unlabeled inputs, simultaneously with the training of the target model.
For the next active learning cycle, this module can be used to select images for which the
target model is likely to produce a wrong prediction (Yoo and Kweon, 2019a).

B.2.6. BADGE

BADGE (Ash et al., 2019) is an active learning algorithm that selects diverse samples
which incur a large magnitudinal shift in the gradient space. The model is considered to
be uncertain about an image if knowing the label of the image results in a large gradient of
the loss with respect to model parameters. As the labels are not known, BADGE considers
the predicted labels as true labels. Secondly, to ensure that a diverse batch of images
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is selected, BADGE uses the kMEANS + + algorithm (Arthur and Vassilvitskii, 2006).
Hence, BADGE trades off between uncertainty and diversity of the s images S ⊆ U which
are selected for active learning.

B.2.7. Margin confidence sampling

Margin confidence sampling is similar to least confidence sampling. The difference between
the most confident prediction and the second most confident prediction is used as the metric
only for margin confidence sampling. The main idea is that the smaller the difference is,
the higher the model uncertainty on an image. As a result, the s images S ⊆ U with the
least difference are selected (Zhou and Sun, 2014).

B.2.8. Random sampling (baseline)

During each active learning cycle, an image set S ⊆ U is chosen arbitrarily. Random
sampling acts as a baseline. Hence, all other algorithms are expected to perform better
than random sampling.

B.3. Pre-training methods

Network initialization can increase the performance of neural networks (Hanin and Rolnick,
2018). It is shown to be even more essential when the amount of annotated data is not
considerably large (Holmberg et al., 2020). In this work, we utilize three different pre-
training methods plus random initialization (baseline).

B.3.1. ImageNet weights

ImageNet weights are obtained by training a feature extraction network on the ImageNet
dataset. After training on ImageNet data, the weights of the feature extractor network can
be used to initialize the models, which are to be trained on other datasets (Raghu et al.,
2019a). This has become a standard pre-training for classification tasks as it often helps
the network to converge faster than with random initialization. Additionally, it has been
shown to be beneficial in biomedical imaging (Raghu et al., 2019b).

B.3.2. Autoencoders

Autoencoders are a class of neural networks used for feature extraction (Goodfellow et al.,
2016). The objective of the autoencoders is to reconstruct the input. An encoder network
enc encodes the input x into its latent representation enc(x). The encoder typically includes
a bottleneck layer with relatively few nodes. The bottleneck layer forces the encoder to
represent the input data in a compact form. This latent representation is then used as
an input to a decoder network dec, which aims to output a reconstruction dec(enc(x)) of
the original input. Hence, autoencoders do not require labels for training, and the whole
dataset can be used for training an autoencoder architecture. For pre-training, the encoder
is used as a feature extraction network while the decoder is generally discarded. This has
been shown to significantly improve network initialization on biomedical imaging datasets
(Ferreira et al., 2020).
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B.3.3. SimCLR

SimCLR is a framework for contrastive learning of visual representations (Chen et al.,
2020a). It learns representations in a self-supervised manner by using an objective function
that minimizes the difference between representations of the model fθ on pairs of differently
augmented copies of the same image. Let a function perform stochastic data augmentations
(such as cropping, adding color jitter, horizontal flipping, and grayscale) on a given image.
Each image x ∈ D in a mini-batch of size B is passed through the stochastic data augmen-
tation function twice to obtain xi = {x1i , x1i}. These pairs can be termed as positive pairs
as they originate from the same image xi. A neural network encoder enc(x) extracts the
feature vectors h from the augmented images. A multi-layer perceptron with one hidden
layer is used as a projection head for projecting the feature vectors h to the projection
space, where then a contrastive loss is applied. The contrastive loss function is a softmax
loss function applied on a similarity measure between positive pairs against all the negative
examples in the batch and is weighted by the temperature parameter τ that controls the
weight of negative examples in the objective function. Using SimCLR as a pre-training
method shows significant improvement in ImageNet classification (Chen et al., 2020a).

B.3.4. Random initialization (baseline)

It has been shown that complete random initialization performs poorly compared to more
sophisticated initialization measures (Glorot and Bengio, 2010). We thus use Kaiming He
initialization (He et al., 2015) (which has been shown to boost the performance) as a baseline
random initialization method.

B.4. Training strategies

Large amounts of unlabeled data are typically available in biomedical applications. Ideally,
this unlabeled data is not only used for network initialization but also during training.
Thus, we compare the performance of training the model only using the existing labeled
data a.k.a. supervised learning versus two semi-supervised strategies, which incorporates
the unlabeled data in the training process.

B.4.1. FixMatch

Fixmatch is a semi-supervised learning strategy which combines consistency regulariza-
tion (Sajjadi et al., 2016) and pseudo-labeling (Lee, 2013). The FixMatch loss consists of
a supervised loss term, i.e., the multi-class cross-entropy loss and the unsupervised loss
term. The unsupervised loss term is calculated by passing the unlabeled dataset through a
stochastic weak augmentation function aweak (e.g., rotation or translation) and then apply-
ing pseudo-labeling on the output prediction distribution with a threshold. Another set of
pseudo-labels is obtained by passing the unlabeled dataset through a strong stochastic aug-
mentation function astrong (e.g. color distortion, random noise, or random erasing). After
calculating the two sets of pseudo-labels for unlabeled images, consistency regularization is
applied by calculating cross-entropy between the pseudo-labels. The loss function contains
the weighting parameter λ, which weighs the unsupervised loss term:

Lfixmatch = Lsupervised + λLunsupervised (1)
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Using FixMatch, a significant performance improvement has been observed compared to
supervised training in a low-annotation regime (Sohn et al., 2020).

B.4.2. Pseudo-labeling

Pseudo-labeling is a semi-supervised learning strategy (van Engelen and Hoos, 2020). It
involves training a base learner on L = {(x1, y1), (x2, y2), ..., (xN , yN )} with |L| = N as well
as U = {u1, u2, ..., uK} with |U | = K, for which the labels are acquired through pseudo-
labeling (McLachlan, 1975). The training process involves two steps. First, the base learner
is trained on L as well as the pseudo-labeled set from previous cycles and predictions (ŷ).
Second, the unlabeled images, for which the base learner outputs predictions with a high
confidence, are assigned the corresponding predicted label and added to the training set as
pseudo-labeled images for the next cycle.

B.4.3. Supervised learning (baseline)

In supervised learning, we are looking for a model fθ with parameters θ to learn a mapping
Ŷ = fθ(L) such that the objective function Loss(ŷi, yi) is minimized. Supervised learning
uses only labeled data. The model’s performance can be evaluated using an evaluation
metric M such as accuracy, recall, etc. The objective function used in this paper is the
multi-class cross-entropy loss function,

Loss = −
N∑
l

C∑
j

log(ŷij) (2)

with C being the total number of classes in the dataset and N being the size of L.

Appendix C. Approach considerations

C.1. Active learning

Our combinatorial-search showed that no single best active learning algorithm outperforms
the others consistently. Even though they perform better than random sampling, the results
of using learning loss, augmentation-based, BADGE, and MC-dropout are dataset depen-
dent. In terms of implementation, all of the methods were straightforward except learning
loss, as it brought changes in the architecture, loss function, and implementation.

C.2. Pre-training

Regarding pre-training methods, ImageNet and SimCLR led consistently to top results,
while autoencoder pre-training did not prove to be effective. After close inspection of all
combinations (Top-5 combination shown in Figure 2), we observed SimCLR to be more
effective than ImageNet in combination with supervised learning. This observation is in
alignment with recent papers where SimCLR and other self-supervised methods outperform
ImageNet on biomedical applications (Raghu et al., 2019a; Azizi et al., 2021; Holmberg et al.,
2020). However, in our analysis ImageNet and SimCLR pre-training performed compara-
tively similarly when being combined with a semi-supervised method. As semi-supervised
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learning strategies incorporate unlabeled data in their training, using self-supervised meth-
ods is redundant. In terms of implementation, SimCLR implementation was straightforward
but needed large batch sizes (> 2048), which was cumbersome during the execution.

C.3. Training strategy

Semi-supervised learning outperformed supervised learning in all cases as it exploits unla-
beled data during training. In particular, pseudo-labeling was the top choice for all datasets,
while FixMatch only performed well for the diabetic retinopathy dataset. The augmenta-
tions in FixMatch are not designed for biomedical images (see Methods), which could have
worsened the performance. While the pseudo-labeling implementation was straightforward,
tuning the optimal hyperparameters for FixMatch was difficult. In terms of run-time,
pseudo-labeling required slightly more more training time than supervised learning, but
FixMatch took at least three times more than supervised learning in every case (see Figure
5a).

C.4. Optimal combination

As a result of this work, we recommend an annotation and resource-efficient strategy for
biomedical imaging active learning tasks. We propose that the combination of BADGE (ac-
tive learning), ImageNet initialization (pre-training), and pseudo-labeling (training strat-
egy) can be considered as a stable choice for dealing with problems where annotated data
is limited. For three datasets, this combination reached at least 90% of the fully supervised
results by only using 25% of the labeled data (see Figure 5b).

Figure 5: The annotation and resource-efficient combination, BADGE + ImageNet +
pseudo-labeling, reaches above 90% of the fully supervised result in three out
of four biomedical datasets by using only 25% of annotated data.

For three out of four datasets, the top combinations reached more than 90% in macro F1-
score of the fully supervised approach (see Figure 3 and Figure 5b), with only 26% of the data
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being labeled (1% randomly selected and 25% added in 5 active learning cycles). Notably,
this was not the case for the diabetic retinopathy dataset, where the top combination still
lacked 12% from the fully supervised results with using 41% of the labeled data. One reason
might be image resolution: For computational reasons, we had to reduce the height and
width of the images from 2095x2095 to 128x128 pixels, which might have contributed to
misclassifications between the ‘proliferate’ and ‘severe’ classes (data not shown).
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