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ABSTRACT

Masked Language Models (MLMs) have proven to be effective for second-pass
rescoring in Automatic Speech Recognition (ASR) systems. In this work, we
propose Masked Audio Text Encoder (MATE), a multi-modal masked language
model rescorer which incorporates acoustic representations into the input space
of MLM. We adopt contrastive learning for effectively aligning the modalities by
learning shared representations. We show that using a multi-modal rescorer is
beneficial for domain generalization of the ASR system when target domain data
is unavailable. MATE reduces word error rate (WER) by 4%-16% on in-domain,
and 3%-7% on out-of-domain datasets, over the text-only baseline. Moreover, with
very limited amount of training data (0.8 hours) MATE achieves a WER reduction
of 8%-23% over the first-pass baseline.

1 INTRODUCTION

Performance of Automatic Speech Recognition (ASR) systems has been traditionally improved during
inference time via second-pass rescoring (i.e., re-ranking ASR hypotheses) using language models
(Xia et al., 2017; Hu et al., 2020). In recent studies, Transformer-based pre-trained Large Language
Models (LLMs) have shown promising results when used as second-pass rescorers. Previous works
(Xu et al., 2022; Salazar et al., 2020; Udagawa et al., 2022) have shown that deep bidirectional
Transformers (Devlin et al., 2019) perform better than their unidirectional counterparts such as GPT-2
(Radford et al., 2019).

While LLMs are trained on giant text corpora, they may not be representative of the specific domain
of interest, in this case, speech transcriptions. This may result in limited generalization ability
without domain-specific fine-tuning. Further, ASR applications warrant robustness to noise and other
distortions, which text-only LLMs are incapable of handling on their own at rescoring time.

A potential solution to mitigate these limitations is to incorporate the speech input into LLM rescorers.
Recent studies have demonstrated the effectiveness of leveraging audio information during second-
pass rescoring (Sainath et al., 2019; Gandhe & Rastrow, 2020; Hu et al., 2020; 2022) to improve
performance. However, a tight integration of rescorer, attending to a shared speech encoder used
in the first-pass, relies on ASR architecture, training mechanism and internal features, limiting the
flexibility of being applied to other ASR systems.

Inspired by recent multi-modal LLM works (Tsimpoukelli et al., 2021; Gao et al., 2022), we propose
MATE, a multi-modal MLM rescorer, which is compatible with encapsulated ASR systems. To the
best of our knowledge, this is the first work to integrate a pre-trained self-supervised learning (SSL)
speech representation model (Baevski et al., 2019; 2020; Hsu et al., 2021; Chen et al., 2021) into
the second-pass rescoring. One key challenge of incorporating acoustic information into LLMs is to
transform the speech into a form that can be accepted by the language model. We overcome this by
using a cross-modal adaptation module consisting of Convolutional Neural Network (CNN) (LeCun
et al., 1989) and adapter network (Houlsby et al., 2019). We experiment with different auxiliary
alignment losses for audio-text alignment, to effectively learn shared representations across the two
modalities, and adopt contrastive learning which significantly improves the model performance.
Empirically, we show that MATE transfers well to new domains in zero-shot and few-shot settings,
outperforming text-only baselines.
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Figure 1: MATE is trained with two losses: (1) The MLM which takes concatenated cross-modal
representation as input and computes LMLM on masked text tokens. (2)LCTR to align the audio and
text latent representations.

2 APPROACH

MATE consists of a pre-trained masked language model BERT, an self-supervised learning (SSL)
based speech encoder WavLM (Chen et al., 2021) and a modality matching module (CNN and adapter
network), as illustrated in Figure 1.

2.1 SYSTEM ARCHITECTURE

Masked Language Model We use BERT, a pre-trained bidirectional MLM, as the primary compo-
nent of our rescorer. In this work, we extend BERT to incorporate speech data along with text. The
pre-trained embedding layers of BERT serve as the text embedding module, while the intermediate
encoder layers take both acoustic and lexical representations as input.

Pre-trained Speech Encoder To extract the acoustic representation, we use WavLM model,
pre-trained on masked speech prediction and speech denoising tasks, achieving state-of-the-art perfor-
mance on various speech processing tasks and outperforming other models like Wav2Vec2(Baevski
et al., 2020) and HuBERT(Hsu et al., 2021) on SUPERB (Yang et al., 2021) benchmark.

Cross-modal Adaptation To align the acoustic and lexical representations in the same feature space,
we design a cross-modal adaptation module. It is composed of two sub-modules: (i) Convolutional
Neural Network (CNN) based subsampling component, to balance the sequence length between
the modalities, and (ii) A bottleneck adapter network to project the acoustic representations to the
BERT encoder input space. The outputs from the adapter network A and lexical embedding L
are concatenated1 horizontally A⌢L, and passed through the BERT encoder layers to fuse the
information from the two modalities.

2.2 ALIGNMENT LOSS

Pre-trained Masked Language Models are trained on text corpora (Devlin et al., 2019). To explicitly
align audio and text modalities, we propose introducing an explicit alignment loss function, thereby
further enhancing the quality of cross-modal learning.

1We have also experimented with a cross-attention based merging mechanism, which leads to inferior
performance.
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Table 1: Performance measured by WER ↓ and CWER ↓. All models except (2-3) are multi-modal.
(2) GPT2-text: Full fine-tuning of GPT2 on training corpora transcriptions. (3) BERT-text: Full
fine-tuning of BERT on training corpora transcriptions, also denoted as ”text-only baseline”. (4) Multi-
modal-GPT2: A multi-modal uni-directional baseline with GPT2, accepting acoustic information
from WavLM. (5) MATE-NA: MATE without additional alignment loss; (6) MATE-MSE: MATE
trained with MSE loss instead of contrastive loss. (8) Frozen-ME (Masked Encoder): Fine-tune all
parameters in multi-modal system except masked encoder (BERT) layers with only MLM objective.
(9) WavLM-adapter: add bottleneck adapter to speech encoder (WavLM) and do adapter-tuning on
WavLM, all other parameters are trainable. (10) ME (Masked Encoder)-adapter: do adapter-tuning
on masked encoder (BERT), all other parameters are trainable.

In-domain Out-of-domain
MTDialogue LS test-clean LS test-other Voxpopuli WSJ ConvAI SLURP

WER CWER WER CWER WER CWER WER CWER WER CWER WER CWER WER CWER
(1) No rescoring 9.47 14.63 6.75 8.07 11.98 15.61 11.06 10.33 8.16 8.75 5.89 9.00 24.91 29.53
(2) GPT2-text 9.32 14.37 6.45 7.78 11.70 15.11 10.72 9.94 7.64 8.40 5.76 8.66 24.91 29.53
(3) BERT-text 9.05 13.88 5.50 7.20 10.70 14.45 10.33 9.96 6.46 8.20 5.38 8.37 24.48 29.27
(4) Multi-modal-GPT2 9.24 14.17 6.35 7.69 11.54 14.93 10.56 9.83 7.55 8.20 5.69 8.59 24.89 29.40
(5) MATE-NA 9.05 13.90 5.55 7.29 10.75 14.51 10.34 9.92 6.49 8.10 5.40 8.36 24.46 29.24
(6) MATE-MSE 7.49 11.41 5.22 6.95 10.31 13.97 10.10 9.62 6.10 7.65 5.07 7.92 23.84 28.24
(7) MATE (ours) 7.64 11.70 5.16 6.84 10.30 13.81 9.91 9.47 6.01 7.46 5.10 7.91 23.77 28.14

Parameter-Efficient Tuning
(8) Frozen-ME 9.21 14.22 5.57 7.34 10.82 14.65 10.37 9.80 6.55 8.15 5.42 8.34 24.39 29.13
(9) WavLM-adapter 9.15 14.02 5.58 7.41 10.81 14.69 10.23 9.86 6.52 8.05 5.47 8.39 24.56 29.27

(10) ME-adapter 9.19 14.12 5.56 7.43 10.79 14.63 10.09 9.60 6.43 8.20 5.42 8.35 24.34 29.08

We adopt a contrastive loss function to enforce the mapping of acoustic representations A and lexical
representations L to a shared feature space. We denote the average-pooled vectors by (āi, l̄j), from
the acoustic or lexical representation Ai and Li respectively. Given acoustic-lexical representations
(āi, l̄i)1≤i≤N where N is the batch size, we use the paired vectors (āi, l̄i) as positive samples and
the unpaired vectors (āi, l̄j)i ̸=j in the same mini-batch as negative samples. The training objective is
to minimize the following contrastive loss LCTR with Negative Log-Likelihood (NLL) function:

LCTR = −
N∑
i=1

log
exp(sim(āi, l̄i))∑N
j=1 exp(sim(āi, l̄j))

(1)

where sim(·, ·) is a similarity metric, implemented as dot product in our experiments. Contrastive
loss promotes a higher level of similarity between paired acoustic and lexical representations, as
compared to unpaired representations, thus enhancing the alignment between the two modalities.

2.3 TRAINING AND INFERENCE

Training MATE is trained jointly on the MLM objective LMLM, similar to that employed in the
pre-training of BERT, and the contrastive loss LCTR.

L = LMLM + α · LCTR (2)

Following BERT pre-training, a portion of tokens in the text sequence are randomly selected for
prediction, and are replaced by the [MASK] token, a random token or left unchanged. In order to
optimize the model’s performance, the model is trained end-to-end and all the parameters are updated
during the training process.

Inference We use pseudo-log-likelihood (PLL) scoring (Wang & Cho, 2019; Salazar et al., 2020) to
compute sequence level scores. Given an acoustic sequence A = (s1, ..., sR) and a lexical sequence
L = (t1, ..., tT ), let L\k = (t1, ..., tk−1, [MASK], tk+1, ..., tT ), PLL score is computed by summing
conditional log probabilities logPMLM(Li|A,L\i) of each masked lexical token:

PLL(A;L) =

T∑
i=1

logPMLM(Li|A,L\i) (3)

The final score of an utterance is computed as a linear interpolation of the first-pass and second-pass
PLL scores, leveraging the complementary information to improve performance while allowing a
trade-off between them.
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3 EXPERIMENTS

3.1 DATASETS

Training Set The training corpora consist of 10K+ hours of paired audio-text data, sampled from
both public and in-house datasets. This data regime is representative of a variety of ASR systems
used for various speech applications, with a mix of accents, speakers, sampling rates, and background
noise. Less than 5% of the data are synthetic audios generated using AWS Polly Text-to-Speech
(TTS) 2 neural backend.

Evaluation Set We evaluate MATE on six datasets: MTDialogue (movie-twitter) 3, LibriSpeech
(LS) (Panayotov et al., 2015) and VoxPopuli (Wang et al., 2021) are in-domain sets, as the training
set includes their corresponding train data splits. Wall Street Journal (WSJ) (Garofolo et al., 1993),
ConvAI (in-house), SLURP (Bastianelli et al., 2020) datasets are out-of-domain (OOD) datasets for
zero-shot evaluation. The details are described in Appendix A.

3.2 EVALUATION METRICS

We use word error rate (WER) and content word error rate (CWER) as the evaluation metrics. CWER
is computed on content words only (e.g., “pizza”, “parliament”, “airline”), where we apply rule based
method to filter out function words. Furthermore, we evaluate Spoken Language Understanding
(SLU) performance on SLURP dataset using standard SLU metrics (accuracy and F1 score); SLU
predictions (scenario, action and entity) are generated by a bi-directional Long Short-Term Memory
(BiLSTM) NLU module (Appendix B).

4 RESULTS AND ANALYSIS

We summarize the observations and analysis of the results from our experiments 4 as follows:

MATE excels at both in-domain and out-of-domain generalization: Table 1 summarizes the
performance of the proposed MATE and multiple baseline models, under various settings, across
in-domain and OOD datasets. Overall, we observe that our proposed approach (row 7) significantly
outperforms text-only baseline (row 3) on in-domain datasets indicating that audio information
helps even when we have sufficient target domain corpus for fine-tuning. Furthermore, results on
OOD datasets indicate that MATE generalizes much better to new domains in the complete absence
of domain data (zero-shot setting), when compared to the text-only baseline, by utilizing the rich
information from audio.

MLMs are more effective multi-modal rescorers than uni-directional LMs: Rows 2-4 indicate
a significant performance gap between BERT and GPT-2 rescorers. BERT-Text, which is a text-only
baseline, outperforms even the multi-modal GPT2 indicating the root cause of the gap is the lack
of bi-directional (left and right) context in GPT2 which is necessary for reliable and effective LLM
scoring, hence validating the choice of MLM in MATE.

Alignment loss gives significant performance boost: To study the effect of alignment loss, we
train the multi-modal rescorer with two loss functions: Mean squared error (MSE) loss and contrastive
loss. Significant performance gains (row 5 vs. row 6-7) in Table 1 indicate that explicit alignment
techniques greatly improve learning of multi-modal representations. Specifically, contrastive loss not
only aligns relevant pairs like MSE loss, but also promotes distancing irrelevant samples, leading to
improved generalization on OOD sets.

Parameter-efficient fine-tuning results in limited gains: Rows 8-10 study the performance of
a multi-modal rescorer under different parameter efficient fine-tuning settings. We observe that

2https://aws.amazon.com/polly/
3https://github.com/Phylliida/Dialogue-Datasets
4Appendix C contains experimental setup details, including hyperparameters and infrastructure setting.
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Table 2: Zero-shot evaluation on SLURP SLU: Accuracy for Scenario/Action. F1 score for Entity.

Scenario Action Entity
No rescoring 78.01 72.53 53.23
GPT2-text 78.01 72.53 53.23
Multi-modal-GPT2 78.07 72.65 53.26
BERT-text 77.72 72.45 53.37
MATE 78.76 73.70 54.26

performance degrades as we move from full fine-tuning to adapter-tuning and freezing the full
BERT encoder layers, indicating that fine-tuning BERT encoder is the most beneficial in terms of
performance improvement. As expected, in comparison to model with full fine-tuning (row 5), rows
8-10 exhibit lower performance. This suggests that frozen or parameter-efficient training methods
may lack the model capacity to fully leverage the acoustic information present in the multi-modal
data.
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Figure 2: Relative WER reduction (over first-pass) versus domain specific training data size.

MATE is the most effective few-shot learner: To study the effect of few-shot learning, we plot the
relative WER reduction (WERR) on Voxpopuli and WSJ datasets across different resource conditions
as shown in Figure 2. We observe that MATE transfers well to the new domains in the zero-shot
setting with no training or domain data at all. Few-shot performance clearly improves with more
examples and goes a reasonable way towards closing the gap from zero-shot performance to full
fine-tuning performance. We also observe that MATE consistently has superior performance to
text-only baseline across both datasets, confirming the ability to rapidly adapt to new domains by
leveraging additional information from the audio modality.

MATE achieves best zero-shot performance improvement on downstream SLU tasks: To
evaluate the effectiveness of the proposed approach on the end goals in a dialog system, we compare it
with other baselines using metrics such as scenario/action accuracy and entity F1 score in a zero-shot
setting on SLURP dataset. From results in Table 2, we observe that MATE consistently outperforms5

the other baselines on end-to-end goals indicating that the improvements are mainly on recognition
of content words and slot entities. 6

5 CONCLUSIONS

We propose a novel multi-modal rescorer, MATE, which achieves significant WER, CWER reduction
on in-domain and OOD datasets. In zero-shot and few-shot settings, MATE performs well on unseen
domains and adapts rapidly with limited data. The domain generalization capability of MATE makes
it an effective choice as a second-pass rescorer for scaling ASR systems to new domains.

5The SLURP is a challenging corpus, which mimics the noisy use cases of smart home assistants. Hence, by
improving rescoring method alone, we achieve less than 2% absolute improvement in WER and SLU metrics.

6Qualitative examples are presented in Appendix F.
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APPENDIX

A DATASET DETAILS

In-domain Evaluation Set We evaluate the proposed MATE approach on both synthetic and
real datasets from various domains. MTDialogue (movie-twitter) is based on a public lexical
dialogue corpus 7 which consists of movie subtitles and twitter user interactions. The audios are
generated from TTS system. MTDialogue dataset is a seen dataset for open-book evaluation; i.e.,
all its data samples are covered in training data. An subset of 1.2 hour is sampled for evaluation.
LibriSpeech(LS) (Panayotov et al., 2015) is a read English speech corpus based on LibriVox
audiobooks. We consider the two official evaluation sets: test-clean and test-other, each with 5.0
hours of test audios. VoxPopuli (Wang et al., 2021) consists of public political speech, sampled from
2009-2020 European Parliament event recordings. For our evaluation purpose, we utilize a 5-hour
subset of VoxPopuli English data.

Out-of-Domain Evaluation Set We also evaluate MATE on OOD evaluation sets: ConvAI, WSJ,
and SLURP. The Wall Street Journal (WSJ) (Garofolo et al., 1993) corpus contains conventional and
spontaneous dictation by journalists. The test eval93 split of 0.4 hour is selected for our evaluation.
ConvAI is based on in-house user utterances of a task-oriented conversational AI system. The typical
usage scenarios include booking flights, ordering food and querying health insurance information,
etc. The 2.0 hours of audios are generated from TTS system. SLURP (Bastianelli et al., 2020) is a
public dataset for smart home virtual assistant development. Top usage scenarios include checking
calendar, playing music, and asking about time, etc. We utilized the 10 hr test set for evaluation.

Ethical Considerations We have reviewed all licenses of public datasets, which allow the usage
for research and paper publication. The in-house dataset ConvAI is internally approved for research
purposes. All datasets are sets are de-identified to ensure anonymity. We also make sure the datasets
cover various English accents, speakers and backgrounds.

B SLURP SLU SEMANTICS AND NLU MODULE

SLURP dataset consists of user interactions with smart home virtual assistants. The semantics are
annotated with three levels of semantics: Scenario, Action and Entity. For example, ASR transcript
“how do I make a turkey” is the annotated with semantics “scenario: cooking | action: recipe | entities:
[(type: food | filler: turkey)]”. The SLU semantics spans over 18 different scenarios, 46 defined
actions and 55 different entity types (Bastianelli et al., 2020).

In the NLU module, we treat semantics prediction as a sequence-to-sequence problem. Specifically,
given an ASR transcript after rescoring “how do I make a turkey”, the goal is to predict: “scenario:
cooking | action: recipe | entities: [(type: food | filler: turkey)]”. The NLU module has an encoder-
decoder structure based on bi-directional Long Short-Term Memory (Bi-LSTM). Both the encoder
and the decoder have hidden dimention 256. The encoder has 2 layers while the decoder has 3 layers.
We use Negative Log-Likelihood (NLL) loss for as training objective for sequence prediction. We
train the model on ground truth ¡transcript, NLU semantics¿ paris from SLURP training dataset. The
learning rate is set to 3e-4 and the training is conducted for 20 epochs with batch size 16.

C EXPERIMENTAL SETUP

MATE has 217M parameters in total. For both masked language model and speech encoder, we
utilize base size models for efficiency (BERT-Base 110M and WavLM-Base+ 95M respectively). The
convolutional network contains 3 layers with 768 channels with strides (2, 1, 2) and kernel widths
(3, 1, 1). The bottleneck adapter layer has compression factor 0.5.

The training experiment for MATE is conducted end-to-end: we train all modules simultaneously. We
use Adam optimizer (Kingma & Ba, 2014) with linear decay of learning rate. We set initial learning
rate to 5e− 5 and batch size to 32. We searched the hyperparameter α in Eq.2 with (1.0, 3.0, 10.0),

7https://github.com/Phylliida/Dialogue-Datasets

9



Published at ICLR 2023 Workshop on Domain Generalization

and the final value is set to 1.0. The training was conducted for 88K steps. All the experiments are
performed with NVIDIA Tesla V100 GPUs in a single run. The training for MATE takes 39.7 hours
on a Tesla V100 8-GPU machine.

Our first-pass ASR model has a conformer-CTC (Gulati et al., 2020) architecture. which is trained on
50K+ hours audio-transcript paired data. The conformer encoder consists of 20 layers of conformer
blocks with hidden dimension 2048; while the shallow decoder is a single Transformer-based layer
with the same hidden dimension of 2048. The conformer-CTC model has approximately 140M
parameters,

We use SCTK8 package for WER and CWER evaluation. CWER has the same logic as WER
computation except that we filter out function words. We use SLURP toolkit9 for SLU semantics
evaluation.

D ATTENTION VISUALIZATION

We visualize the learned self-attention plots extracted from the proposed MATE model in Figure 3.
The model has 12 Transformer layers and with 12 heads in each multi-head self-attention. We selected
6 representative plot from the 144 total attention plots with a sample utterance from wsj eval93 test
set. The input utterance has 33 tokens and 77 frames for the acoustic feature, the acoustic features are
appended to the lexical embedding before fed into the BERT model. Our observations are listed as
follows:

• (a) (b) (c) and (d) The plots highlight the border of the text input and audio input (the vertical
straight line on position 32). We can conclude that even without feeding any modality border
information to MATE, it can learn the border of two modalities itself.

• (a), (d), (e) and (f) The monotonic audio-to-text position alignment is clearly shown in the
plots. This indicates that the acoustic and lexical representations are successfully mapped to
one unified feature space. Interestingly, plots (a), (e) and (f) show that text-to-audio position
alignment can also be learned by MATE.

8https://github.com/chinshr/sctk
9https://github.com/pswietojanski/slurp
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(a) Layer 4 head 3

(e) Layer 11 head 1 (f) Layer 11 head 8

(c) Layer 7 head 5

(b) Layer 6 head 6

(d) Layer 8 head 2

Figure 3: Selected attention plots from the self-attention layers of the 12-layer BERT encoder
The sample utterance (from wsj eval93) contains 110 total frames: the first 33 frames are lexical
embedding, followed by 77 acoustic embedding frames. The utterance is: ”last year new hampshire
enacted legislation enabling banks from outside the state to acquire new hampshire banks but
restrictions in the bill discouraged potential buyers”

E LIMITATIONS AND RISKS

One limitation of our approach is that incorporating acoustic features from an SSL speech encoder, in
our case WavLM, introduces extra latency overhead, as we use a standalone ASR model for first-pass.
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Dataset Utterance
SLURP Ground Truth remove tuesday alarm of nine a m

Rescored 1-best by BERT-text move to alarm of nine a m
Rescored 1-best by MATE remove tuesday alarm at nine a m
Ground Truth hoover the hallway
Rescored 1-best by BERT-text who in the hallway
Rescored 1-best by MATE hoover the hallway
Ground Truth cancel business meeting on wednesday
Rescored 1-best by BERT-text council business meeting on wednesday
Rescored 1-best by MATE cancel business meeting on wednesday
Ground Truth can you let delta know i am never using them again
Rescored 1-best by BERT-text can you let doctor know i am never using them again
Rescored 1-best by MATE can you let delta know i am never using them again
Ground Truth i want to play fifa seventeen
Rescored 1-best by BERT-text i want to leave for seventeen
Rescored 1-best by MATE i want to play fifa seventeen
Ground Truth what do you know about fringe in edinburgh next year
Rescored 1-best by BERT-text what do you know about french in edinburgh next year
Rescored 1-best by MATE what do you know about fringe in edinburgh next year

Voxpopuli Ground Truth for example the report talks about the rule of law and corruption
Rescored 1-best by BERT-text for example the report talks about the rule of law on corruption
Rescored 1-best by MATE for example the report talks about the rule of law and corruption
Ground Truth i have met them they are young capable and visionary
Rescored 1-best by BERT-text i have met them they are young capable and missionary
Rescored 1-best by MATE i have met them they are young capable and visionary

MTDialogue Ground Truth it’s muffled
Rescored 1-best by BERT-text it’s muff
Rescored 1-best by MATE it’s muffled
Ground Truth how much she got to pay
Rescored 1-best by BERT-text how much he got to pay
Rescored 1-best by MATE how much she got to pay

ConvAI Ground Truth why did the noodle box in greensborough fail its health inspection
Rescored 1-best by BERT-text why did the noodle box in greensboro fail its health inspection
Rescored 1-best by MATE why did the noodle box in greensborough fail its health inspection
Ground Truth tell me about duty free shopping
Rescored 1-best by BERT-text tell me about duty free shop
Rescored 1-best by MATE tell me about duty free shopping

Table 3: Qualitative examples: We contrast the 1-best outputs of BERT-text model and MATE in
reference to ground truth. We can observe that MATE improves recognition of content words and
slot entities.

Therefore, our approach may not be appropriate for certain applications that have exceptionally low
latency constraints.

Another limitation is that while multi-modal LLMs have the potential to improve ASR performance,
they can be more complex and harder to interpret than text-only LLMs. This makes it more challenging
to understand the model’s decision making process or debug any potential errors.

The proposed system, MATE, incorporates both pre-trained language model (BERT) and speech
model (WavLM) into its design. Such pre-trained models can contain biases and stereotypes against
certain religion, race and gender groups (Rekabsaz et al., 2021; Delobelle et al., 2022).

F QUALITATIVE EXAMPLES

To better understand why MATE yields better WER score, we selected several representative cases
from the evaluation sets. Table 3 clearly shows that MATE can correct more vocabulary or grammar
errors present in the n-best list. We observe MATE is able to correct many ASR errors which are
not resolvable by text information alone. In the example from SLURP, both “who in the hallway”
and “hoover the hallway” are plausible utterances in an informal style of daily speech. With the aid
of acoustic information, MATE is able to assign higher score to the correct utterance “hoover the
hallway”.
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