
GUI-Reflection: Empowering Multimodal GUI Models
with Self-Reflection Behavior

Penghao Wu♠, Shengnan Ma♡, Bo Wang♡, Jiaheng Yu♡, Lewei Lu♡, Ziwei Liu♠ ∗

S-Lab, Nanyang Technological University♠, SenseTime Research♡
Project Page: https://penghao-wu.github.io/GUI_Reflection/

Might find the
file size in File
setting. Click it!

I am correct! Next,
click Font Size to
find the answer.

I am correct!
Next, click 4 to
find the answer.

Might find the
file size in File
setting. Click it!

I am wrong! No
size info here.
Press back.

File setting is wrong,
so probably should be
Info. Click it!

I am correct! Size
is 369 Bytes!

1. Recognize the mistake.

2. Undo the incorrect action and get back on track.

3. Summarize the mistake and make another try.

GUI Models with Self-Reflection BehaviorsCurrent GUI Models

Task: Find the size of the file.

Figure 1: Illustrative comparison of typical GUI models versus our proposed GUI model with
self-reflection behaviors. While current models fail to recognize and recover from errors (left), our
model (right) demonstrates the ability to: 1. Recognize its mistake; 2. Undo the incorrect action and
get back on track; 3. Summarize the mistake and make another try, ultimately succeeding.

Abstract

Multimodal Large Language Models (MLLMs) have shown great potential in
revolutionizing Graphical User Interface (GUI) automation. However, existing
GUI models mostly rely on learning from nearly error-free offline trajectories, thus
lacking reflection and error recovery capabilities. To bridge this gap, we propose
GUI-Reflection, a novel framework that explicitly integrates self-reflection and
error correction capabilities into end-to-end multimodal GUI models throughout
dedicated training stages: GUI-specific pre-training, offline supervised fine-tuning
(SFT), and online reflection tuning. GUI-reflection enables self-reflection behavior
emergence with fully automated data generation and learning processes without
requiring any human annotation. Specifically, 1) we first propose scalable data
pipelines to automatically construct reflection and error correction data from exist-
ing successful trajectories. While existing GUI models mainly focus on grounding
and UI understanding ability, we propose the GUI-Reflection Task Suite to learn
and evaluate reflection-oriented abilities explicitly. 2) Furthermore, we built a
diverse and efficient environment for online training and data collection of GUI
models on mobile devices. 3) We also present an iterative online reflection tuning
algorithm leveraging the proposed environment, enabling the model to continu-
ously enhance its reflection and error correction abilities. Our framework equips
GUI agents with self-reflection and correction capabilities, paving the way for
more robust, adaptable, and intelligent GUI automation, with all data, models,
environments, and tools to be released publicly.

∗Corresponding authors: ziwei.liu@ntu.edu.sg

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://penghao-wu.github.io/GUI_Reflection/

1 Introduction

Graphical User Interface (GUI) automation stands as a critical frontier for enhancing productivity
and accessibility across the vast landscape of digital applications and devices. The advent of large
language models (LLMs) and multimodal large language models (MLLMs) has catalyzed significant
progress in this area. Typical GUI agents can be mainly categorized into two groups: agent-based
frameworks and end-to-end GUI models. Agent-based frameworks [49, 52, 40, 39, 1] usually leverage
the reasoning and generalization capabilities of some foundation models (e.g. GPT-4o [20]) with
agentic modules and external tools to complete tasks. While representing a leap forward, such
agent-based modular frameworks often rely on intricate prompt engineering and complex workflows,
suffering from high computation and cascaded errors, potentially limiting their adaptability in real-
world scenarios. As for end-to-end multimodal GUI models [14, 43, 44, 30] which interact with
GUIs more like humans do, the perception, reasoning, and action grounding are integrated within
a single model. Such models not only promise more adaptable and scalable GUI agents but also
provide a potentially valuable avenue for studying broader aspects of artificial general intelligence 2 .

The current paradigm for training end-to-end multimodal GUI models includes a GUI pre-training
stage to inject GUI-related knowledge into the base MLLM, followed by a supervised fine-tuning
(SFT) stage with demonstration trajectories. However, one big issue of this paradigm is that it relies
heavily on offline datasets composed of pre-collected successful interaction trajectories. While this
approach teaches models to mimic expert demonstrations for specific tasks, it inherently limits their
ability to handle the complexities and unpredictability of real-world interactions. When encountering
unfamiliar UI interfaces, incorrect attempts, or execution failures, these models lack the capability
to recognize the error, understand its cause, or formulate a corrective plan based on failed attempts.
Crucially, even though the base models (the base MLLM before GUI-specific training) they trained
on might originally contain certain reflection and reasoning abilities, this offline SFT process, focused
solely on successful examples, can inadvertently diminish such capabilities or behaviors.

Recent LLM research has shown that through online training like reinforcement learning (RL), the
reasoning and reflection abilities of the base models can be greatly enhanced. Moreover, recent
studies [34, 48, 15] have shown that the verification and reflection behaviors of the base model are
crucial for the success of RL training, and such capabilities in the base models largely affect the
performance upper bound in the RL stage. However, for end-to-end multimodal GUI models, the
current paradigm makes it difficult to sample or explore potentially corrective or reflective behaviors
after the offline SFT stage, and further RL training cannot effectively activate or enhance such
reflection abilities. UI-TARS [30] explores the incorporation of reflection and correction behaviors
through an online bootstrapping mechanism. However, its design primarily focuses on the final online
stage and depends on human-annotated feedback to guide learning.

To address these fundamental limitations, we introduce an automatic framework designed to explicitly
integrate self-reflection and error correction capabilities into end-to-end multimodal GUI models
throughout different training stages. We first decompose the reflection and error correction ability
for GUI agents into three core capabilities: (1) verifying the correctness of previous actions and
recognizing errors or deviations, (2) backtracking when deviating from the correct trajectory, and
(3) reflecting on erroneous attempts to learn from mistakes and inform subsequent actions. Our
framework strategically embeds the learning of these abilities across distinct training phases, including
GUI-specific pre-training, offline supervised fine-tuning, and online training, aiming to cultivate GUI
models capable of robust error handling and adaptive recovery as illustrated in Fig 1.

Specifically, during the GUI pre-training phase, while current efforts primarily focus on GUI visual
grounding and general UI understanding, we identify a critical gap: the lack of explicit training
signals for reflection and correction related abilities, which leads to the degradation of reflection
behaviors in the base MLLM. To address this, we propose the GUI-Reflection Task Suite with
Action Verification, Action Reversal, and Mistake-Informed Reattempt tasks, specifically designed to
evaluate and cultivate the reflection-oriented capabilities for GUI models. Besides, we have designed
a scalable automatic data pipeline to construct realistic reflection and error correction scenarios
derived from existing offline successful trajectories and inject such data into the offline SFT stage.
This allows the model to learn the behaviors of reflection and correction.

2See Appendix A for a detailed discussion of related work.

2

frefre fre

GUI Offline SFT
Reflection behavior learning
from error-free data

Should’ve
clicked here

GUI Online Learning
Learning via interactions
with reflection tuning

Action

Verification

Action

Reversal

GUI Pre-training

Reflection-oriented

Skill Cultivation

Mistake-

informed

Reattempt

Figure 2: The GUI-Reflection framework includes (1) Learning basic reflection-oriented skills from
GUI-Reflection Task Suite in the GUI pre-training stage; (2) Learning reflection and correction
behaviours from automatically generated error scenarios in the offline SFT stage; (3) Continuously
enhancing reflection and correction capabilities via reflection tuning in the online learning stage.

Furthermore, to further improve the GUI models through real interactions, we have built a robust and
extensible environment for Android-based tasks. The environment includes 215 programmatic task
templates in a distributed framework. Within this learning environment, we design a simple iterative
online reflection tuning algorithm. This algorithm allows the model to interact with the environment
and receive automatically generated pre-error correction and post-error reflection supervisions to
continuously enhance its general capability and reflection and error correction capabilities iteratively.

Our main contributions are: 1) We propose GUI-Reflection Task Suite, designed to explicitly train
and evaluate the crucial reflection-oriented abilities of GUI models during GUI pre-training. 2) We
introduce a scalable, automatic data pipeline to construct reflection and error correction scenarios
from existing successful trajectories, enabling the injection of these behaviors during offline SFT
without manual annotation. 3) We develop an online learning environment for mobile GUI agents
and an iterative online reflection tuning algorithm, allowing models to continuously enhance their
reflection and error correction capabilities through online interaction and learning from mistakes.

2 GUI-Reflection Framework

In this section, we first describe the core architecture of our GUI model and then elaborate on our
GUI-Reflection framework (illustrated in Fig 2), which injects the self-reflection and correction
behaviors into GUI models through pre-training, offline SFT, and online training stages.

2.1 End-to-End Multimodal GUI Agent Model

2.1.1 Action Space

As we mainly focus on mobile tasks, the action space includes the following common atomic
actions for mobile device interactions: Click, Long Press, Scroll, Type, Press Enter,
Press Back, Press Home, Open App, Task Impossible, Task Complete. Besides the
above common actions, we also include two actions that are often ignored in current datasets
or methods. First, the GUI model often needs to retrieve and integrate information or answer certain
questions, therefore, an Answer action is added into the action space for the agent to provide certain
information or answers. Second, many tasks often require dozens of steps to complete, and it would
be implausible and inefficient to contain complete history information like past screenshots in the
context. Therefore, it is necessary to extract and keep certain information obtained in the process
of the task execution as a reference for the usage in future steps (e.g. the model needs to search for
different information online and send the information to someone via email). To achieve this, we
additionally define a Memorize action which stores certain important information at certain steps into
a memory bank for future references. The detailed descriptions of actions are provided in Appendix E.

2.1.2 Model Structure

We adopt InternVL2.5-8B[13] as the base MLLM of our GUI model. The input of the model includes
the following parts: 1) The overall instruction of the task; 2) The screenshots of the past n steps; 3)
The screenshot of the current step; 4) The memory bank; 5) The complete action history.

The model output consists of three parts: 1) action thought, 2) action description, and 3) atomic
action. The action thought is the thinking process behind the action decided to take. And it may

3

contain aspects including analysis of the current screen state, assessment of the prior step’s outcome,
reflection about previous steps’ actions, consideration of overall task progress, and the rationale for
the chosen action. These elements are included dynamically and cohesively, only when pertinent to
the decision process, without rigid structure or explicit labels. The action description describes the
action in natural language, while the action atomic is a certain action type with the corresponding
parameters. Detailed input and output formats and examples can be found in Appendix E.

Based on the input and output definitions, a training sample at step t in a trajectory can then be defined
as (G,Mt, It−n:t, a0:t−1; a

thought
t , adesct , at), where G denotes the overall task goal, Mt denotes the

current memory content at step t, It−n:t represents the screenshots of the past n steps and the current
step, a0:t−1 represents the complete past actions, athoughtt represents the action thought of the current
step, adesct represents the action description of the current step, and at is the grounded atomic action.
We use at = (athoughtt , adesct , at) to represent the action outputs.

2.2 GUI-Reflection Task Suite: Reflection-oriented Abilities in Pre-training

While GUI grounding and understanding are crucial for basic GUI interactions, we argue that it
is also important to maintain or enhance the model’s nascent abilities for self-reflection and error
recognition within the GUI context. In this pre-training stage, we do not directly incorporate the
complete GUI-related reflection and correction behaviors, instead, we further decompose such
reflection and correction behaviors into smaller reflection-oriented atomic capabilities and design the
GUI-Reflection Task Suite to evaluate and learn such capabilities.

Action Verification A GUI agent with reflection ability might execute an incorrect action due to
limited knowledge or unfamiliarity with the task, but it would recognize the mistake by observing
the outcome of the action. Recognizing the error or mistake is the very first and crucial step in
the reflection and correction process. To address this foundational capability, our first introduced
pre-training task is Action Verification. The core idea is to test the model’s ability to determine if
an implicit action, executed on a previous GUI state, accomplished a specific purpose, based on
observing the resulting GUI state outcome.

In this task, the model is presented with screenshots of two consecutive steps together with a textual
action purpose describing potential goals or outcomes that the action performed on the first screen
aimed to achieve. The model’s objective is to meticulously inspect the visual differences between
the screenshots and judge whether that specific purpose was successfully fulfilled by the implicit
action. To construct data for this task, we randomly sample paired screenshots together with the
corresponding action from GUI trajectory datasets. We adopt an MLLM to annotate the true action
purpose for this action to be a positive sample and annotate a negative purpose, which corresponds to
a different action and is not accomplished in the second outcome screenshot.

Action Reversal Our second task is termed Action Reversal. This task addresses the scenario where
an undesired or incorrect action has been recognized, and the objective is to determine the subsequent
action required to revert the GUI to its state immediately preceding the execution of the original action.
In essence, the model learns how to effectively undo a given action and eliminate its consequences.
This capability is crucial for enabling more sophisticated error correction and exploration strategies.

We define this task as multiple-choice questions. The step-wise action, paired with the screenshot
before and after the action execution, is presented to the model, and the model needs to choose the
correct undo action. We construct the data from GUI trajectory datasets and use MLLMs to annotate
the undo action and interference options.

Mistake-informed Reattempt After recognizing an error and potentially reverting the state, a critical
reflective capability is to make an informed new attempt based on the known mistakes. To evaluate
this ability, we introduce the Mistake-informed Reattempt task. In this task, the model is first asked to
ground GUI elements based on a given instruction. We then identify the samples that are incorrectly
grounded. The model is informed of the prior mistake and is asked to make a new prediction. This
process can also be repeated multiple times with multiple failed attempts.

We construct both training and evaluation data for these three tasks. For the Action Verification and
Action Reversal tasks, the training and evaluation data are constructed from the training and test splits
of AndroidControl [21] and GUI-Odyssey [27]. We have 1206 and 420 samples for the evaluation
of these two tasks, respectively, where the evaluation data has been filtered by human annotators to

4

Question:

Choose the undo action after

execution of the action: Click

[Messages icon]

Answer:
C. Click [Home icon]

Action ReversalAction Verification

Answer:
Purpose 1: Yes

Purpose 2: No

Purpose 1:
Search for 'Northern Lights, Iceland

itinerary' on Threads

Purpose 2:
Follow the 'northern.lights.icelandics' user

account

Question:
Inspect two screenshots, does the action

executed on the prev step satisfy the

following purpose?

Prev Step Current Step Prev Step Current Step

Mistake-Informed Reattempt

Instruction:
Favorite the music

Response:
The bbox.

First Attempt

Second Attempt

Instruction:
Favorite the music (is not the target)

Response:
The bbox.

First Attempt Second Attempt

Options:
A. Click [Messages button]

B. Scroll [Down]

C. Click [Home icon]

D. Click [Activity button]

E. Click [Add button]

F. Click [Profile icon]

Figure 3: Examples of Action Verification (left), Action Reversal (middle), and Mistake-informed
Reattempt (right) tasks from the GUI-Reflection Task Suite.

ensure correctness. For the Mistake-informed reattempt task, the training data is constructed from
Wave-UI [2], AMEX [11], and OS-ATLAS-Desktop [43]. For this task, we evaluate directly on
ScreenSpot [14] and ScreenSpotv2 [43]. Examples of these three tasks are provided in Fig 3. The
detailed data construction process and statistics are provided in Appendix F.

2.3 Automatic Grounded Action Annotation

Before introducing the reflection data generation for the offline SFT stage, we first discuss how to
generate grounded action annotations for GUI models without human annotations. End-to-end GUI
models need to provide the final grounded action (e.g. the start and end position of scroll action
or the clicked point of click action). Therefore, one difficulty of automatic action annotation for
end-to-end GUI models is to generate the grounded action together with the paired action thought
consistently. In order to solve this problem, we utilize the strong generalization ability of the current
general MLLMs and the specific action grounding ability of GUI models. More precisely, to annotate
the action outputs (including the action thought, action description, and the grounded atomic action),
we first utilize general MLLMs to generate the desired action thought and action description. Next,
we concatenate the generated action thought and description together with the input information for
the GUI model, and let the GUI model output the grounded atomic action correspondingly. Due
to the auto-regressive nature of LLM, the GUI model outputs the atomic action conditioned on the
provided action thought and action description. To ensure the generated grounded atomic action is
consistent with the action thought and action description, we sample multiple atomic actions from
the GUI model and utilize the MLLMs again for filtering.

2.4 Reflection Behavior in Offline SFT

During the SFT stage, the GUI model is trained on offline GUI interaction trajectories that are mostly
error-free. The ability to recognize possible mistakes based on execution results and the ability to
recover or learn from mistakes are greatly limited in such a training approach. Therefore, we design a
scalable automatic data pipeline to create realistic reflection and correction data from the existing
successful trajectories.

The difficulty of creating reflection and correction data from existing error-free trajectories is how
to get an incorrect action and its corresponding outcome screenshot. We design two approaches to
address this problem. For the first approach, we adopt an MLLM to modify the original goal G to G̃
such that an action at at a certain step t becomes an incorrect one. The modified goal is constructed
to make the now-incorrect action appear as an easy or natural mistake that a user unfamiliar with
the app, button functions, or certain operations might make. Based on G̃ and at, we now construct
the new action outputs at step t + 1 after the mistake. At step t+ 1, the agents should recognize
the previous mistake made in the last step and make reflections in ãthoughtt+1 , with ãdesct+1 and ãt+1

generated accordingly. Note that ãt+1 could be some rollback action, such as press back, if the
previous incorrect action ãt leads to an off-track state or could also be some correction action where
the agents can directly continue with the correct action towards the modified goal. A reflection data
sample (G̃,Mt+1, It−(n−1):t+1, a0:t; ã

thought
t+1 , ãdesct+1 , ãt+1) is then constructed.

Furthermore, for cases where ãt+1 is press back, we assume the screenshot Ĩt+2 after execution
of ãt+1 is the same as It. Then we can further generate action output for step t + 2, in which we
summarize the previous error in step t, make reflections, and try a new correct action ãt+2. This
simulates the scenario where the agent learns from its mistake after backtracking and attempts an

5

Task Pool

Weighted Sampling

Distributed Environment

Programmatic &

MLLM-based

Verifier

Step-wise filtering

Locate

error-step

Prior steps

Error step

Pre-error

correction

Post-error

correction

Training

Pool

Iterative Online Reflection Tuning

෥𝒂𝑡,𝑝𝑟𝑒

෥𝒂𝑡+1,𝑝𝑜𝑠𝑡
෥𝒂𝑡+2,𝑝𝑜𝑠𝑡

𝒂𝑡

𝒂0, … 𝒂𝑡−1

𝒂0, … 𝒂𝑇

Figure 4: The Iterative Online Reflection Tuning algorithm. It features weighted task sampling,
interaction in a distributed environment, and programmatic/MLLM-based verification. Successful
trajectories are further filtered step-wise, while unsuccessful ones are mined for correct prior steps
and undergo automated pre-error and post-error (reflection) correction annotation.

alternative action to achieve the goal from the restored state. And this data sample can be represented
as (G̃,Mt+1, [It−(n−2):t+1, It], [a0:t, ãt+1]; ã

thought
t+2 , ãdesct+2 , ãt+2).

For the second approach, we keep the original task instruction goal. For some step t in the original
successful trajectory, we construct an ineffective incorrect action ã which should not change the
screenshot It (e.g. scroll down when it is already the bottom or click on some non-interactive
element). Then we assert this action before the actual at, and modify the original athoughtt to ãthoughtt
by adding reflection content about the added ineffective incorrect action. The data sample created in
this approach is represented as (G,Mt, [It−(n−1):t, It], [a0:t−1, ã]; ã

thought
t , adesct , at).

2.5 Iterative Online Reflection Tuning

2.5.1 Environment

Effective online training necessitates a diverse, efficient, and scalable environment. However, current
public online environments for training mobile GUI agents [7, 41] only include overly simple or
repetitive tasks, which lack the complexity and diversity agents likely to encounter in real-world
scenarios. To overcome these limitations, we developed a specialized environment for efficient online
learning, testing, and data collection of mobile GUI agents.

Specifically, our environment includes 215 task templates across 11 Apps. Each task template can
be instantiated randomly with dynamic parameters. Based on the complexity of the tasks, we split
the tasks into two levels, where 135 level-1 tasks include relatively easier ones, and 80 level-2 tasks
have higher complexity. Our platform is a distributed host-worker system. The workers only run
CPU-intensive Android Emulators, and all GPU-related inference or training tasks are running on
the host machine. For trajectory collection, the agent model deployed on the host machine receives
environment observations from the worker and sends the predicted action back to the worker to
interact with the environment.

For task evaluation, we support both programmatic and MLLM-based verifiers. Programmatic verifier
directly evaluates the success of the task by accessing the device’s system states and databases,
providing accurate reward signals. For the MLLM-based verifier, the task information, action history,
and the corresponding screenshots will be provided to an MLLM, which determines whether the task
is successful. This is helpful for tasks where some critical information or intermediate results needed
for the evaluation are not accessible from the device states. Besides, the MLLM-based evaluation
is also able to check the step-wise correctness of the trajectory, providing dense process reward.
To improve the accuracy of the MLLM-based evaluations, we also provide task guidance for each
task template, describing the general procedures and important points of the task. Details about the
environment and verifiers are provided in Appendix H.

2.5.2 Algorithm

We design an iterative reflection tuning algorithm for the GUI model trained with offline SFT to further
improve the general and reflection capabilities through interacting with our online environment.

To elaborate, in each iteration, the current GUI model collects multiple rollouts by interacting with
the environment. Different from the regular filtered behavior cloning algorithm, which directly takes
all successful trajectories for training and discards the unsuccessful ones, for successful trajectories,

6

Table 1: Evaluation results on the three tasks in GUI-Reflection Task Suite

(a) Evaluation results on Action Verification and Action Re-
versal tasks. Acc denotes the overall accuracy. TN and TP
denote the accuracy for negative samples (action purpose
not fulfilled) and positive samples (action purpose fulfilled),
respectively. All numbers are in %. The best numbers among
open-source models are in bold.

Models Action Verification Action Reversal

Acc TN TP Acc

Gemini-2.5-Flash 87.85 92.02 83.69 95.24
Gemini-2.5-Pro 88.22 88.04 88.40 95.71
Claude-3.7-Sonnet 71.53 57.48 85.58 90.00
GPT-4o 86.68 93.11 80.25 86.19

Qwen2.5-VL-7B 76.36 69.32 83.41 76.90
Qwen2.5-VL-72B 86.48 90.38 82.59 91.90
InternVL2.5-8B 62.76 51.07 74.46 48.33
InternVL3-8B 60.11 26.86 93.36 63.80
InternVL3-78B 68.24 52.07 84.41 82.38

GUI-Pretrain-8B 57.95 21.55 94.36 40.71
GUI-Pretrain-Ref-8B 87.56 93.53 81.59 93.81

(b) Evaluation results on the Mistake-informed
Reattempt task. The average scores of the mobile,
desktop, and website subsets of the benchmarks
are reported. The best numbers are in bold.

ScreenSpot ScreenSpotv2

InternVL3-8B 71.59 72.02
- 2nd attempt 73.84 (↑ 2.25) 74.42 (↑ 2.40)
- 3rd attempt 75.13 (↑ 3.54) 75.73 (↑ 3.71)
- pass@3 77.90 (↑ 6.31) 80.09 (↑ 8.07)

GUI-Pretrain 83.58 84.84
- 2nd attempt 84.50(↑ 0.92) 85.65 (↑ 0.81)
- 3rd attempt 84.75(↑ 1.17) 85.85 (↑ 1.01)
- pass@3 87.24 (↑ 3.66) 88.39 (↑ 3.45)

GUI-Pretrain-Ref 85.12 86.88
- 2nd attempt 88.00 (↑ 2.88) 89.27 (↑ 2.61)
- 3rd attempt 89.61 (↑ 4.49) 90.50 (↑ 3.62)
- pass@3 87.35 (↑ 2.23) 88.84 (↑ 1.96)

we additionally check the step-wise correctness of each step and only keep the correct steps. For
unsuccessful trajectories, we find the first step t where the model performs an incorrect action. And
all the steps before t are kept for training. Then, for the incorrect action at at step t, a pre-error
correction action ãt,pre is annotated to be the actual correct action for step t. For the step t+ 1 after
the execution of the incorrect action at, a post-error correction action ãt+1,post is annotated, in which
the model recognizes the previous mistake and makes reflections. Furthermore, when the action
ãt+1,post is Press Back, we assume the screenshot Ĩt+2 is the same as It and assign ãt+2 to be the
same action as ãt, with additional reflection added to the action thought summarizing the previous
mistakes and making a new try accordingly. All the action annotations are automatically constructed
utilizing a general MLLM and the current GUI model. The training data collected in this iteration is
used to fine-tune the current GUI agent model. This process is illustrated in Fig 4.

After each iteration, the sampling weights for different types of tasks are dynamically adjusted based
on the corresponding success rates in this iteration, such that more difficult tasks are sampled more in
the next iteration. We also adopt the curriculum learning strategy, where in the first k iterations, only
level-1 tasks are included. After the first k iterations, level-1 tasks with success rates lower than a
certain threshold are kept and combined with level-2 tasks for subsequent iterations.

3 Experiments

3.1 Training Data

For the GUI pre-training stage, besides the reflection-related data constructed, we also include GUI-
related grounding, captioning, OCR, and VQA data. For the GUI offline SFT stage, we use public
mobile device GUI interaction datasets including AITW [33], AITZ [50], AMEX [11], GUI-Odyssey
[27], and AndroidControl [21]. We unify the action annotation of these datasets and annotate the
corresponding action thought and action description via Gemini-2.0-Flash [38]. The detailed statistics
of the training data are provided in Appendix D.

3.2 Evaluations on GUI-Reflection Task Suite

In this section, we evaluate tasks in our GUI-reflection Task Suite. For the Action Verification task
and Action Reversal task, we include 1) closed-source models: Gemini-2.5-Flash/Pro [38], Claude-
3.7-Sonnet [4], and GPT-4o [20]; 2) open-source models: Qwen2.5-VL-7/72B [9], InternVL2.5-8B
[13], and InternVL3-8/78B [53]; 3) GUI baseline: GUI-Pretrain, which is our base MLLM pre-
trained with regular GUI pre-training data, and GUI-Pretrain-Ref, which is pre-trained with additional
GUI-Reflection Task Suite training data.

7

As shown in Table 1a, powerful closed-source models perform strongly on these two tasks. The 72B
scale open-source models perform comparatively well, while 7B scale models have lower performance,
especially for the capability to recognize the failed action (TN in Action Verification) that is critical
for recognizing mistakes in the reflection process. Note that after the regular GUI pre-training, the
GUI-Pretrain model performs much worse than the previous general MLLM, indicating the loss of
such reflection-related abilities after GUI-specific pre-training. After adding the corresponding data
in the GUI pre-training phase, GUI-Pretrain-Ref retains and even greatly improves such capabilities,
performing on par with the best closed-source models.

For the Mistake-informed Reattempt task, we evaluate models’ ability to reattempt based on known
mistakes on the instruction grounding benchmarks ScreenSpot [14] and ScreenSpotv2 [43]. For
samples that are incorrectly grounded, we provide the incorrect predictions and ask the model to
make another attempt accordingly, and repeat this process for 2 rounds. We also provide the pass@3
(temperature=1.0) results for comparison. As shown in Table 1b, we observe that the general MLLM
InternVL3-8B and the GUI pre-trained model GUI-Pretrain pose limited ability to utilize the known
mistakes for more informed attempts (the 3rd attempt performance is lower than pass@3). After
adding our reflection-related training data, the GUI-Pretrain-Ref baseline can more effectively utilize
the mistakes to make better predictions (the 3rd attempt performance is higher than pass@3).

These experimental results show that large-scale general-purpose MLLMs possess some inherent
reflection capabilities in the GUI context, while such capabilities are still very limited in smaller-scale
models, and the standard GUI pre-training tends to further diminish these abilities. However, by
incorporating training data from our reflection-oriented tasks during the pre-training phase, such
essential capabilities can be effectively improved.

3.3 Effectiveness of Reflection for GUI Agents

Table 2: Ablation study on reflection data in SFT and
online training.

Reflection SFT Online Algo. Success (%)

é Filtered BC 14.58
Ë Filtered BC 23.61
Ë + Reflection Tuning 34.72

In this part, we continue from the GUI-
Pretrain-Ref model and conduct experi-
ments to validate the effectiveness of re-
flection data in the SFT and online stages.
First, we verify the effect of augmenting of-
fline GUI SFT data with reflection data and
conducting iterative reflection tuning in the
online environment. We conduct experi-
ments in our GUI environment by training
models with the level-1 tasks for 3 itera-
tions and evaluating the performance on the level-2 tasks. As shown in Table 2, the baseline model
trained without reflection data in offline SFT and using only filtered BC achieves a success rate
of 14.58% on level-2 tasks. Incorporating reflection data during the offline SFT stage significantly
boosts this to 23.61% with the same filtered BC online training. Critically, when our online reflection
tuning algorithm is applied online, the success rate further improves to 34.72%, demonstrating the
benefits of explicitly training for reflection at multiple stages.

Table 3: Comparison of our model against other base-
lines on AndroidWorld, showing Success Rates (SR).
Acc. Tree denotes Accessibility Tree. The best number
in 8B-scale end-to-end models is marked in bold.

Baseline Input SR

Agent-Based
GPT-4o + UGround [16] Image + Acc. Tree 32.8
GPT-4o + Aria-UI [45] Image + Acc. Tree 44.8
GPT-4o + Aguvis-7B [44] Image 37.1

End-to-End
Aguvis-72B [44] Image 26.1
UI-TARS-72B [30] Image 46.6
OS-Gensis-8B [36] Image + Acc. Tree 16.9
UI-TARS-7B [30] Image 33.0
GUI-Reflection-8B (Ours) Image 34.5

Figure 5: Success Rate (%) on Level-1 and
Level-2 tasks across iterative reflection tun-
ing iterations. Our iterative reflection tun-
ing with curriculum learning strategy pro-
gressively improves model performance.

8

We further conduct the full reflection tuning process in the online environment with all tasks. In the
first 3 iterations, only level-1 tasks are included, and the tasks with success rates lower than 80% are
combined with level-2 tasks for another 3 iterations. As shown in Fig 5, the model rapidly improves
on level-1 tasks, eventually reaching around 90% and maintaining this high performance. For the
more complex level-2 tasks, the agent starts at a lower success rate and shows steady improvement,
reaching 29.36% by iteration 3. When more challenging level-1 tasks are combined with all level-2
tasks, the learning on level-2 tasks continues robustly. This illustrates the effectiveness of the online
reflection tuning algorithm, enabling the model to effectively enhance its general ability and rapidly
learn to master previously unfamiliar and complex tasks.

Furthermore, to evaluate our model on more general and comprehensive tasks, we combine the
training data collected in the online training stage with a similar-sized subset of the original offline
data and fine-tune the offline SFT model to inject valuable reflection experiences while maintaining
the generalization ability. We evaluate our model on the AndroidWorld [32] benchmark. As shown
in Table 3, our model achieves a competitive success rate of 34.5% among end-to-end models,
demonstrating the effectiveness of our proposed framework.

Action Thought
I am currently in the settings

dialog for the 10:30 am alarm.

My goal is to turn this alarm on.

In the previous step, I mistakenly

clicked the alarm time instead of

the toggle switch. To correct this,

I need to close this settings

dialog first. I will click the 'Cancel'

button to return to the alarm list.

Action Thought
I see that clicking 'All files' in the previous

step did not change the screen, indicating it

was an incorrect action. I mistakenly thought

clicking the section header would reveal

browsing options, but it seems it's just a

label. To proceed with opening the specified

file, I need to initiate the file selection

process. The correct way to do this is to click

the 'SELECT FILE TO OPEN' button.

Task Instruction
Toggle on all alarms that are in AM in the Fossify Clock

App.

Task Instruction
In the LibreOffice Viewer App, open the njrh7.docx under the Meetings

folder in the sdk_gphone64_x86_64 storage area. Then export it to a

PDF with name er00f.pdf in the same director.

Action Thought – Step2
I intended to open the Simple Calendar Pro app, but I mistakenly clicked the Google Calendar

app icon. Now I am in the Google Calendar app, which is not the correct app for this task. I

need to go back to the app drawer to find and open the correct Simple Calendar Pro app.

Action Thought – Step3
I am currently in the app drawer. I previously clicked the wrong Calendar app (the blue one

with '15'), realizing it wasn't the required Simple Calendar Pro. I need to find the correct app

to proceed with creating the calendar event. I see two calendar apps here; the correct one

is the orange icon with the text 'Calendar' below it. I will click this icon now.

Task Instruction
In Simple Calendar Pro, create a calendar event in two weeks from today at 17h with the title 'Meeting with

the Team' and the description 'We will prepare for annual budget.'. The event should last for 30 mins.

Figure 6: Illustrative examples of our GUI model’s self-reflection and correction behaviours. The
model demonstrates its ability to: (Top-left) identify and undo a mis-click; (Top-right) recognize an
unproductive action and then find the correct interactive element; and (Bottom) recover from opening
an incorrect app by navigating back and selecting the correct one based on learned cues.

Reflection Behavior Examples We also provide examples of reflection and correction behaviors
from the GUI models trained with our framework in Fig 6. We observe that, without our explicit
reflection training, GUI models typically struggle to recognize or recover from errors, often leading
to task failure when encountering unexpected situations. Conversely, our framework enables models
to analyze mistakes and execute corrective steps, effectively navigating towards the task goal despite
initial incorrect attempts.

4 Conclusion

This paper introduced GUI-Reflection, a comprehensive framework designed to equip multimodal
GUI models with essential self-reflection and error correction capabilities. By systematically integrat-
ing reflection-related learning across pre-training, offline SFT, and online tuning, GUI-Reflection
enables agents to recognize their mistakes, undo incorrect actions, and learn from these errors to
make better subsequent decisions.

9

Acknowledgments

This study is supported by the Ministry of Education, Singapore, under its MOE AcRF Tier 2 (MOE-
T2EP20221-0012, MOE-T2EP20223-0002), and under the RIE2020 Industry Alignment Fund –
Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind contribution
from the industry partner(s).

References

[1] Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s:
An open agentic framework that uses computers like a human. arXiv preprint arXiv:2410.08164,
2024.

[2] AgentSea Team. Wave-UI Dataset. https://huggingface.co/datasets/agentsea/
wave-ui, 2023.

[3] AgentSea Team. Wave-UI-25K Dataset. https://huggingface.co/datasets/agentsea/
wave-ui-25k, 2024.

[4] Anthropic. Claude 3.5 sonnet. https://www.anthropic.com/news/
claude-3-5-sonnet/.

[5] Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir Zubach, Hassan Mansoor, Vincent Etter,
Victor Cărbune, Jason Lin, Jindong Chen, and Abhanshu Sharma. Screenai: A vision-language
model for ui and infographics understanding. In IJCAI, 2024.

[6] Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas Sunkara, Abhinav Rastogi, Jindong Chen,
et al. Uibert: Learning generic multimodal representations for ui understanding. In IJCAI, 2021.

[7] Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Kumar.
Digirl: Training in-the-wild device-control agents with autonomous reinforcement learning.
arXiv preprint arXiv:2406.11896, 2024.

[8] Hao Bai, Yifei Zhou, Li Erran Li, Sergey Levine, and Aviral Kumar. Digi-q: Learning q-value
functions for training device-control agents. arXiv preprint arXiv:2502.15760, 2025.

[9] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

[10] Andrea Burns, Kate Saenko, and Bryan A. Plummer. Tell me what’s next: Textual foresight for
generic ui representations. In ACL Findings, 2024.

[11] Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao, Liang Liu, Dingyu Zhang, Peng Gao,
Shuai Ren, and Hongsheng Li. Amex: Android multi-annotation expo dataset for mobile gui
agents. arXiv preprint arXiv:2407.17490, 2024.

[12] Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu,
Guirong Chen, Yupeng Huo, Yuan Yao, Yankai Lin, Zhiyuan Liu, and Maosong Sun. Guicourse:
From general vision language models to versatile gui agents. arXiv preprint arXiv:2406.11317,
2024.

[13] Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
multimodal models with model, data, and test-time scaling. arXiv preprint arXiv:2412.05271,
2024.

[14] Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Li YanTao, Jianbing Zhang, and Zhiyong
Wu. SeeClick: Harnessing GUI grounding for advanced visual GUI agents. In ACL, 2024.

[15] Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman.
Cognitive behaviors that enable self-improving reasoners, or, four habits of highly effective
stars. arXiv preprint arXiv:2503.01307, 2025.

[16] Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun,
and Yu Su. Navigating the digital world as humans do: Universal visual grounding for GUI
agents. In ICLR, 2025.

10

https://huggingface.co/datasets/agentsea/wave-ui
https://huggingface.co/datasets/agentsea/wave-ui
https://huggingface.co/datasets/agentsea/wave-ui-25k
https://huggingface.co/datasets/agentsea/wave-ui-25k
https://www.anthropic.com/news/claude-3-5-sonnet/
https://www.anthropic.com/news/claude-3-5-sonnet/

[17] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[18] Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang,
Zihan Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In CVPR, 2024.

[19] Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu,
and Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language
models. arXiv preprint arXiv:2503.06749, 2025.

[20] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

[21] Wei Li, William E Bishop, Alice Li, Christopher Rawles, Folawiyo Campbell-Ajala, Divya
Tyamagundlu, and Oriana Riva. On the effects of data scale on ui control agents. In NeurIPS,
2024.

[22] Yanda Li, Chi Zhang, Wanqi Yang, Bin Fu, Pei Cheng, Xin Chen, Ling Chen, and Yunchao Wei.
Appagent v2: Advanced agent for flexible mobile interactions. arXiv preprint arXiv:2408.11824,
2024.

[23] Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and Zhiwei Guan. Widget captioning:
Generating natural language description for mobile user interface elements. In EMNLP, 2020.

[24] Yuhang Liu, Pengxiang Li, Zishu Wei, Congkai Xie, Xueyu Hu, Xinchen Xu, Shengyu Zhang,
Xiaotian Han, Hongxia Yang, and Fei Wu. Infiguiagent: A multimodal generalist gui agent with
native reasoning and reflection. arXiv preprint arXiv:2501.04575, 2025.

[25] Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and
Jiaqi Wang. Visual-rft: Visual reinforcement fine-tuning. arXiv preprint arXiv:2503.01785,
2025.

[26] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.
[27] Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,

Kaipeng Zhang, Yu Qiao, and Ping Luo. Gui odyssey: A comprehensive dataset for cross-app
gui navigation on mobile devices. arXiv preprint arXiv:2406.08451, 2024.

[28] Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision
based gui agent, 2024.

[29] Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu,
Tiancheng Han, Botian Shi, Wenhai Wang, Junjun He, et al. Mm-eureka: Exploring the
frontiers of multimodal reasoning with rule-based reinforcement learning. arXiv preprint
arXiv:2503.07365, 2025.

[30] Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang,
Jiahao Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with
native agents. arXiv preprint arXiv:2501.12326, 2025.

[31] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
NeurIPS, 2023.

[32] Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Mary-
beth Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A
dynamic benchmarking environment for autonomous agents. arXiv preprint arXiv:2405.14573,
2024.

[33] Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. In NeurIPS, 2023.

[34] Darsh J Shah, Peter Rushton, Somanshu Singla, Mohit Parmar, Kurt Smith, Yash Vanjani,
Ashish Vaswani, Adarsh Chaluvaraju, Andrew Hojel, Andrew Ma, et al. Rethinking reflection
in pre-training. arXiv preprint arXiv:2504.04022, 2025.

[35] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback.
NeurIPS, 2020.

11

[36] Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu
Wu, Chengyou Jia, Liheng Chen, Zhoumianze Liu, et al. Os-genesis: Automating gui agent
trajectory construction via reverse task synthesis. arXiv preprint arXiv:2412.19723, 2024.

[37] Srinivas Sunkara, Maria Wang, Lijuan Liu, Gilles Baechler, Yu-Chung Hsiao, Jindong Chen,
Abhanshu Sharma, and James Stout. Towards better semantic understanding of mobile interfaces.
arXiv preprint arXiv:2210.02663, 2022.

[38] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[39] Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou Shen, Ji Zhang, Fei
Huang, and Jitao Sang. Mobile-agent-v2: Mobile device operation assistant with effective
navigation via multi-agent collaboration. In NeurIPS, 2024.

[40] Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and
Jitao Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception.
arXiv preprint arXiv:2401.16158, 2024.

[41] Taiyi Wang, Zhihao Wu, Jianheng Liu, Jianye HAO, Jun Wang, and Kun Shao. Distrl: An
asynchronous distributed reinforcement learning framework for on-device control agent. In
ICLR, 2025.

[42] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
NeurIPS, 2022.

[43] Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. OS-ATLAS: Foundation action model
for generalist GUI agents. In ICLR, 2025.

[44] Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao
Yu, and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction.
arXiv preprint arXiv:2412.04454, 2024.

[45] Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li.
Aria-ui: Visual grounding for gui instructions. arXiv preprint arXiv:2412.16256, 2024.

[46] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. NeurIPS,
2023.

[47] Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is
more for reasoning. arXiv preprint arXiv:2502.03387, 2025.

[48] Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model?
arXiv preprint arXiv:2504.13837, 2025.

[49] Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang
Yu. Appagent: Multimodal agents as smartphone users. arXiv preprint arXiv:2312.13771, 2023.

[50] Jiwen Zhang, Jihao Wu, Teng Yihua, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and
Duyu Tang. Android in the zoo: Chain-of-action-thought for GUI agents. In EMNLP Findings,
2024.

[51] Junlei Zhang, Zichen Ding, Chang Ma, Zijie Chen, Qiushi Sun, Zhenzhong Lan, and Junxian
He. Breaking the data barrier – building gui agents through task generalization. arXiv preprint
arXiv:2504.10127, 2025.

[52] Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist
web agent, if grounded. In ICML, 2024.

[53] Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Yuchen Duan,
Hao Tian, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time
recipes for open-source multimodal models. arXiv preprint arXiv:2504.10479, 2025.

12

5 NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction have clearly state the claims and the contributions
of the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Sec B in the appendix.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: There is no theoretical result in this paper.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have clearly described the details of our model structure, training data,
training process, and implementation details in the paper.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We do not provide access to the code or data during the submission phase.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provide the training details in Appendix Sec D.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not report error bars as it would be too computationally expensive.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provide the experiments resources in Appendix Sec D.

9. Code of ethics

13

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms with the NeurIPS Code of Ethics in every respect.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses both potential positive societal impacts and negative
societal impacts in Appendix Sec C.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of data and models used in this paper are
properly cited, and the licenses for the data are provided in the Appendix Sec D.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper has describe how LLMs are used in the data construction pipeline
and how LLMs are used as verifiers in the environment.

14

https://neurips.cc/public/EthicsGuidelines

A Related Works

A.1 Mobile GUI Agents

Driven by the success of large language models and multimodal large language models, research in
mobile GUI automation has seen significant advancements. Current approaches to developing mobile
GUI agents can be broadly categorized into agent-based frameworks and end-to-end models, each
with distinct characteristics and trade-offs.

Agent-based By leveraging the advanced reasoning, planning, generalization capabilities, and broad
knowledge of foundation LLMs (e.g. GPT-4o), agent-based frameworks structure sophisticated
agentic workflows. One approach uses foundation models to directly engage with GUI interfaces
[49, 22, 39]. Such methods usually depend on accessible device information, particularly accessibility
trees, to allow the model to ground actions at the element level. These systems primarily consume
textual information from accessibility trees, often enriched with screenshots featuring Set-of-Mark
(SoM) augmentations for improved visual understanding. To enhance their operational efficacy, these
workflows frequently incorporate components such as memory [39], reflection [22, 39], knowledge
documents [49, 22], task decomposition [39], and visual tool integration [28], thereby improving task
completion and overall agent robustness.

Another agent-based approach [16, 45] combines a powerful foundation model with a specialized
GUI grounding model. In this setup, the LLM handles high-level planning and reasoning, while the
dedicated GUI grounding model is responsible for accurately identifying and interacting with GUI
elements based on a low-level instruction or element description from the LLM. UGround [16] trains
a universal GUI grounding model and combines it with a planning model. Aria-UI [45] improves the
grounding model by providing more task context, like overall task instruction and history information.

End-to-end End-to-end GUI models [18, 14, 44, 43, 51, 30] aim to directly map raw GUI inputs
(task information and screenshots) to grounded actions within a single model. The common paradigm
for these models involves a two-stage training process: 1) GUI-specific pre-training , where the
model learns fundamental GUI understanding and accurate grounding ; 2) GUI offline SFT , where
the pre-trained model is fine-tuned on demonstration trajectories to learn task-specific behaviors .
Some methods [7, 41, 8] also apply reinforcement learning on the fine-tuned model, but experiments
are only conducted in relatively simple and repetitive tasks. Beyond only predicting the atomic
action, recent methods adopt the CoT idea to train the model to output additional components like
the thinking process [50, 44, 30] and low-level action description [50, 44]. InfiGUIAgent [24] adds
expectation-reflection components in the training data, but they only use the existing offline data, with
most steps being error-free, and the reflection component primarily learns to confirm success rather
than to actively diagnose and recover from a wide array of potential failures. UI-TARS [30] introduces
an online bootstrapping process to learn the self-reflection and correction behaviors. However, unlike
our proposed framework, which employs a fully automated pipeline for generating reflection data
and integrates reflection capability enhancement across pre-training, offline SFT, and online stages,
UI-TARS’s approach requires considerable human annotation efforts and focuses the learning of
these behaviors only in their final online bootstrapping process.

A.2 LLM and MLLM Reasoning and Reflection

The pursuit of enhanced reasoning in Large Language Models (LLMs) has evolved from structured
prompting and SFT data construction [42, 46, 47] towards leveraging Reinforcement Learning.
While initial RLHF methods [35, 31] showed promise, recent paradigms focusing on outcome-based
rewards have demonstrated great potential to intrinsically cultivate complex reasoning and even
emergent self-reflection [17]. For the multimodal domains, current research is actively exploring
how to adapt similar RL techniques to improve multimodal reasoning [19, 25, 29] involving visual
information like images and videos, though challenges related to data and effective training signals
remain. Furthermore, recent studies underscore the critical importance of the inherent capabilities
and behaviors present in the base models before task-specific fine-tuning or reinforcement learning
begins. Research indicates that foundational abilities for verification and reflection are not merely
helpful but often prerequisites for successful online learning and significantly influence the ultimate
performance ceiling achievable through RL [34, 48, 15]. This highlights a potential vulnerability in
current end-to-end GUI model training pipelines, which often rely heavily on offline SFT with near

15

error-free data. Such approaches may inadvertently suppress or fail to cultivate these vital reflective
capabilities present in the base MLLM.

B Limitation

In this work, the constructed reflection-related data focuses primarily on visual and action-grounded
errors or direct element functioning misunderstanding, potentially neglecting deeper and more
complex errors, such as errors in high-level planning or complex task decomposition. Besides, our
framework currently mainly focuses on mobile environments. While the underlying principles are
generalizable, adapting GUI-Reflection to other platforms such as desktop systems or web-based
interfaces may require domain-specific dataset construction and engineering adjustments.

C Societal Impacts

GUI-Reflection has the potential to improve digital accessibility and productivity by enabling more
robust and error-tolerant GUI agents. However, these capabilities could also be misused for automated
manipulation in malicious contexts. Furthermore, the reliance on synthetic data may introduce
biases if not carefully curated, potentially leading to unintended behaviors in sensitive applications.
Responsible deployment, transparency in usage, and alignment with human intentions are critical for
maximizing societal benefit while minimizing risks.

D Training Details

Besides the reflection-related data we construct in the GUI-Reflection pipeline, the statistics of other
data and the corresponding license information we used in the GUI pre-training and offline SFT
stages are provided in Table 4 and Table 5.

Table 4: The detailed training data information for the GUI-Pretraining Stage. The total number
reported is at the element level, while in implementation, the elements on the same image are grouped
as a single training sample in the multi-turn conversation format.

Data Source Platform Task Type Total Samples License

UI RefExp [6] Mobile Grounding 16,660 CC BY 4.0
Widget Captioning [23] Mobile Grounding 96,648 CC BY 4.0

SeeClick-Rico [14] Mobile Grounding 173,275 CC BY 4.0
RICO Semantics [37] Mobile Grounding 31,560 CC BY-SA 4.0

OpenApp [10] Mobile Grounding 142,810 BSD-3-Clause license
AMEX [11] Mobile Grounding 1,360,595 CC BY 4.0

OS-Altas [43] Mobile Grounding 89,860 Apache-2.0
Wave-UI [2] Web Grounding 79,412 MIT

Wave-UI-25K [3] Web Grounding 24,978 MIT
SeeClick-Web [14] Web Grounding 2,968,695 Apache-2.0

GUIEnv [12] Web Grounding 340,477 CC BY 4.0
ScreenQA [5] Mobile VQA 62,401 CC BY 4.0

Table 5: The detailed training data information for the offline SFT stage.
Data Source Platform Total Steps License

AITW [33] Mobile 19,831 CC BY 4.0
AITZ [50] Mobile 14,686 CC BY 4.0

AMEX [11] Mobile 39,023 CC BY 4.0
AndroidControl [21] Mobile 89,603 Apache-2.0
GUI-Odyssey [27] Mobile 102,202 CC BY 4.0

For the GUI pre-training, we train the model for 1 epoch with a learning rate of 4× 10−5. For the
SFT stage, we train the pre-trained model for 1 epoch with a learning rate of 3 × 10−5. In each

16

reflection tuning iteration, we train the model on the collected data in this iteration for 2 epochs with
a learning rate of 1× 10−5. For our final model, we randomly sample 51694 samples from the offline
SFT data and combine them with 63353 samples collected in the online iterations and finetune the
model after offline SFT for 1 epoch with a learning rate 2× 10−5. We use AdamW [26] optimizer for
all the training. All the training is conducted on 32 H100 GPUs. The pre-training stage takes about
11.5 hours, and the SFT stage takes about 8.5 hours. Each training iteration during the online training
stage needs about 2 hours, and the final training stage takes 4 hours.

E Implementation Details

E.1 Model Details

The detailed descriptions of the valid actions for our GUI model are provided below.

Action Space

CLICK[[x, y]]. Click the screen at position [x,y].
LONG_PRESS[[x, y]]. Long press the screen at position [x, y].
SCROLL[[x1, y1, x2, y2]]. Scroll from the position [x1, y1] to [x2, y2].
TYPE[text]. Type in the text.
MEMORIZE[summary: text; content: text]. Store information into the memory.
ANSWER[text]. Answer with the text.
PRESS_HOME. Go back to the home screen.
PRESS_BACK. Go back to the previous screen.
OPEN_APP[app_name]. Open the app named app_name.
PRESS_ENTER. Press the enter key.
WAIT. Wait for device response.
TASK_COMPLETE. Indicate the task is completed.
TASK_IMPOSSIBLE. Indicate the task is impossible.

The input and output formats of our GUI agent model are shown below.

Input Format of the GUI Agent

<image>
<image>
The images are the screenshots from the past 2 steps.
<image>
The image is the current screenshot.
<INSTRUCTION> (user instruction): {goal}
<MEMORY> (stored memory content): {current memory}
<PAST ACTIONS> (past actions): {action history}
Based on the above information, your task is to reason about the next action
and provide your thinking process and the next action. Your output should
follow the following format:
<THOUGHT>: the thinking process
<ACTION DESC>: the description about the next action
<ACTION>: the next action

Output Format of the GUI Agent

<THOUGHT>: {action thought}
<ACTION DESC>: {action description}
<ACTION>: {action}

We define the action descriptions to follow fixed formats, and the formats for different action types
are shown below.

17

Action Description Format

CLICK: click the {element} to {purpose}
LONG_PRESS: long press the {element} to {purpose}
SCROLL: scroll {direction} to {purpose}
TYPE: type in the content '{content}'
MEMORIZE: memorize {memory_summary}
ANSWER: answer with the text '{}'
PRESS_HOME. Go back to the home screen
PRESS_BACK. Go back to the previous screen
OPEN_APP: open the '{app_name}' app
PRESS_ENTER: press enter
WAIT: wait
TASK_COMPLETE: task complete
TASK_IMPOSSIBLE: task impossible

In our model implementation, the screenshot history length n is set to 4. All past screenshots except
the one in the last step are downsampled to 448× 448. We also visualized the click point on the past
screenshot using a red dot if the corresponding action is a click or long press. The coordinates in the
action representations are normalized to integers in the range 0 to 999.

E.2 Evaluation Details

The original scroll and swipe implementation in AndroidWorld [32] always uses a fixed trajectory,
so we modify it to make the scroll action trajectory follow the start and end points predicted by the
model. The original type action implementation includes clicking the target element and typing,
so we modify it to only include typing the text, and the model needs two actions (click + type) to
complete the original type action. We find that in some cases of AndroidWorld, the maximum steps
defined are impossible for agents that do not use the UI element information, so we increase the
maximum step by 5 for all test cases.

F Details of GUI-Reflection Task Suite

F.1 Action Verification

For the action verification task, we randomly sample step-wise data from AndroidControl [21] and
Odyssey [27] datasets. Each data sample consists of a ground truth action, the screenshot before the
action, and the screenshot after the action. We only consider action types including CLICK, LONG
PRESS, and SCROLL as the purposes of other actions are relatively fixed. Then, we extract the purpose
from the action descriptions of the ground truth actions to be the positive purpose. To construct the
negative purpose, we use Gemini-2.5-Pro to annotate the corresponding negative purpose for this
sample. The prompt for this annotation is shown in Table 8.

For the evaluation data of the action verification task, we have 603 positive samples and 603
corresponding negative samples from the Odyssey test split. For the training data, we construct 16220
paired samples from AndroidControl and 15616 paired samples from Odyssey. The evaluation and
training template for this task is shown in Table 9.

F.2 Action Reversal

The data for this task is constructed in two steps. First, we sample step-wise action data paired
with the screenshot before and after the action execution from existing datasets. Gemini-2.5-Pro
is instructed to generate the appropriate undo action for this data pair as the ground truth. Our
model is supposed to learn from this action reversal process. The annotation MLLM is instructed
to prioritize app-internal revert actions instead of overly relying on the general Press Back action
during this undo action generation process. When multiple revert actions are available, we select
the most straightforward and efficient option. After obtaining the correct undo action, we instruct
Gemini-2.0-Flash to generate interference options. The Press Back action is excluded from the
interference generation action space, as the functionality of the back button can vary significantly
across different applications. For this task, when the current action is CLICK, a semi-transparent red

18

Figure 7: Example of the reflection data generated with the first approach in the offline SFT stage.
The click point of the incorrect action is highlighted with a red circle on the first screenshot, and the
click point of the action at step t+ 2 is highlighted with a green circle in the third screenshot.

circle is painted at the click location on the first screenshot, serving as a visual cue. We construct the
evaluation and training data from AndroidControl and Odyssey. We have 420 samples in total for the
evaluation part and 8642 samples for training. The task template for this task is shown in Table 10.

F.3 Mistake-informed Reattempt

For this task, we construct training data from the Wave-UI [2], AMEX [11], and OS-ATLAS-Desktop
[43] datasets and directly evaluate on the grounding benchmark ScreenSpot [14] and ScreenSpot
[43]. To obtain the failed attempts in training data, we first train a GUI-Pretrain model with the three
target datasets for this task excluded. Then we conduct inference on these three datasets and select
samples with failed predictions. We also use the bounding boxes of other elements annotated on the
same image as mistake candidates. To construct mistake-informed training data, for each sample,
we randomly choose 1 to 5 failed attempts and provide these mistakes in the prompt. The bounding
boxes of the mistakes are also drawn using red rectangles on the image. We have 31836 samples in
total for the training of this task. The task template is shown in Table 11.

G Details of Reflection Data in Offline SFT

We use two approaches to construct reflection data in the offline SFT stage. For the first approach, we
first adopt Gemini-2.5-Pro [38] (prompt shown in Table 12) to modify the original goal to make the
action incorrect. With the modified goal G̃, we further generate the reflection action at t+ 1 with the
prompt shown in Table 13. If the reflection action ãt+1 is Press Back, we assume Ĩt+2 = It. Then
at step t+ 2, the agent needs to summarize the previous mistake and make an informed new attempt.
To obtain such action annotation, we first generate the correct action ãt at step t after the goal is
modified to G̃ using the prompt shown in Table 14. The action ãt does not contain the reflection part
about the mistake, so we further modify the action thought ãthoughtt to ãthoughtt+2 while keeping the
action description and grounded action by adding reflection content using the prompt provided in
Table 15.

For the second approach, we first create an ineffective incorrect action using the prompt in Table 16.
And then we modify the original athoughtt by adding reflection content about additional inserted
ineffective action using the prompt in Table 17.

We build reflection data from the AndroidControl dataset and obtain 17557 samples with the first
approach and 15394 samples with the second approach in total. Examples of the reflection data
generated via theses two approaches are provided in Fig 7 and Fig 8.

H Details of Online Iterative Reflection Tuning

The Apps in our online environment with the task statistics and examples are shown in Table 21.

For the MLLM-based verifier, we adopt Gemini-2.0-Flash as the MLLM and provide the complete
sequence of screenshots, task goal, task guidance, and action sequence to it for judgment. The prompt
for this process is provided in Table 18.

19

Figure 8: Example of the reflection data generated with the second approach in the offline SFT stage.
The click point of the ineffective action is highlighted with a red circle on the first screenshot.

In our online reflection tuning algorithm, we further check the step-wise correctness for those
successful trajectories using Gemini-2.0-Flash with the prompt shown in Table 19. For unsuccessful
trajectories, we use GPT-4o and the prompt in Table 20 to identify the first error step. The pre-
correction and post-reflection annotations are similar to the process used in Sec G with additional
task guidance provided for more accurate annotation.

I Detailed Experiment Results

We provide detailed evaluation results on ScreenSpot and ScreenSpotv2 in Table 6 and Table 7.

Table 6: Detailed evaluation results on ScreenSpot.

Model Mobile Desktop Web Avg
Text Icon/Widget Text Icon/Widget Text Icon/Widget

InternVL2.5-8B 81.32 52.40 46.39 30.00 43.48 25.24 46.47
InternVL3-8B 91.57 75.11 76.80 52.86 77.39 55.82 71.59
GUI-Pretrain 92.67 74.67 91.75 72.86 90.87 78.64 83.58

GUI-Pretrain-Ref 95.24 79.48 92.78 69.29 90.43 83.50 85.12

Table 7: Detailed evaluation results on ScreenSpotv2.

Model Mobile Desktop Web Avg
Text Icon/Widget Text Icon/Widget Text Icon/Widget

InternVL2.5-8B 80.69 57.34 45.36 29.28 35.47 27.58 45.95
InternVL3-8B 92.76 79.15 75.26 52.14 75.21 57.63 72.02
GUI-Pretrain 95.86 78.67 93.30 71.43 91.45 78.33 84.84

GUI-Pretrain-Ref 97.24 83.41 94.33 70.71 92.31 83.25 86.88

20

Table 8: Prompt for negative purpose annotation

System Role
You are an expert in understanding GUI operations.

Information Provided
You will receive the following information:
1. Two screenshots: the first screenshot corresponds to the current step, and the outcome
screenshot corresponds to the next step.
2. Current Action: the action executed at the current step
3. Current Action Purpose: The purpose of executing the current action

The current action successfully achieved the current purpose (can be seen from the outcome
of this action, which is the outcome screenshot). Your task is to come up with a new purpose,
such that it is not satisfied according to the outcome screenshot. Note that your new purpose
should be somewhat difficult and confusing, such that someone who is unfamiliar with the
GUI operations or functions might think it is satisfied by the current action executed. But
make sure your new purpose has no ambiguity so an expert can determine that it is not
satisfied based on the screenshots.

Note that the new purpose should be a verb phrase (starting with a verb) describing the
overall purpose and it should **not** be some direct low-level action instructions like
’click the xxx’.
Make sure your new purpose is NOT satisfied after the execution of the current step.
!!! Important
Make sure your new purpose can actually be satisfied by doing some **single action**
different from the current action on the **first screen**.
You also need to provide a simple explanation about what single action on the current step
can satisfy your new purpose and why an expert can tell from the outcome screen that your
new purpose is not satisfied.

Input:
Current Action: {action description}
Current Action Purpose: {action purpose}

Output Format:
Directly output your results in json format as follows:
{{
"new purpose": "your new purpose",
"explanation": "your explanation"
}}

Table 9: Task template for Action Verification

<image>
<image>
Given an action purpose and two screenshots (the first screenshot corresponds to the step
before a certain action while the second one is the outcome screenshot after the execution
of the action). You need to judge whether the action purpose has been satisfied by the action
executed between these screenshots based on the screenshots content. Directly answer Yes
or No.

Input
action purpose: {action purpose}

Output:

21

Table 10: Task template for Action Reversal

<image>
<image>
You are an expert in evaluating the behavior of GUI agents that interact with Android phone
interfaces. Your task is to assist in training intelligent agents by identifying the correct
revert operation to undo a previously executed incorrect operation.

You will be given:
- A **current action** that was performed
- A pair of screenshots:

- **Screen A**: the UI before the action
- **Screen B**: the UI after the action
- A set of **six revert operation action choices (A-F)**
- The agent must choose **the one correct revert operation** that best reverts Screen B
back to Screen A.

Valid Action Space:
- **Open app[app]**: Open the specified app.
- **Click**: Tap on a specific UI element.
- **Long Press**: Long press on a specific UI element.
- **Scroll**: Perform a scroll gesture on the screen.
- **Type[text]**: Input the specified text into a text field.
- **Press Home**: Return to the home screen.
- **Press Back**: Return to the previous screen.
- **Press Enter**: Confirm input using the enter/return key.

Evaluation Criteria:
- The **correct revert operation** must be the most effective and reasonable way to return
the UI from **Screen B** to **Screen A**, based on the change caused by the current
action.
- Only **one option** is correct. The remaining five should be plausible but incorrect.
- Evaluate the options based on:
- Whether the action targets the correct UI element
- Whether it reverses the effect of the current action

Input:

- **Current Action**: {action_desc}

- **Choices**: A-F options {undo_options}

Output Format:
Directly output the option letter only

Table 11: Task template for Mistake-informed Reattempt

<image>
You are given a screenshot of a mobile phone screen, a question, and some incorrect
answers have already been excluded for you.
You need to give a correct answer based on the screenshot. Notice that the correct answer
should be different from the incorrect answers.
The question is: {grounding instruction}
The incorrect answers (also annotated using red bbox in the image) are: {incorrect answer}
The correct answer is:

22

Table 12: Prompt for instruction modification.

System Role
You are an expert in understanding the operations from a GUI agent. The agent’s task is to
help human users operate an Android phone by completing specific instructions provided
by the user. Your goal is to modify the original instruction such that the action taken by the
agent becomes incorrect in the context of your modified instruction.

Valid Action Space
The actions that the agent may take to complete the task are as follows:
Open app[app]: Open the ’app’ APP
Click: Click on the current screen.
Long Press: Long press on the current screen.
Scroll: Scroll on the screen.
Type[text]: Type the ’text’ into the input field.
Press Home: Return to the home page.
Press Back: Go back to the previous page.
Press Enter: Click the enter button.
Wait: Wait for the device to respond or load something
Task Complete/Task Impossible: The agent indicates the task is completed or impossible.
Information Provided
You will receive the following information:
1. Task Instruction: The original task instruction for the GUI agent.
2. Past Actions: The past actions taken by the agent to complete this task before this step.
Empty if it is the first step.
3. Future Actions: The future actions taken by the agent to complete this task after this
step. Empty if it is the last step.
4. Current Action: The action taken by the agent at the current step.
5. Screenshots: The screenshot at the current step and the screenshot at the next step
after the current action is executed. The click point is highlighted using a red dot in the
current screenshot and the scroll positions are visualized using a red arrow in the current
screenshot.

Your job is to analyze the provided information to provide a modified instruction. With the
modified instruction, the current action becomes incorrect, while the past actions are still
correct (compatible with the modified instruction).
Incorrect action means that the current action taken by the agent is clearly wrong or
unnecessary for completing the modified instruction or deviates from the correct way.

! Important
Your modified instruction should be natural, reasonable, and also realistic. With your
modified instruction, the now-incorrect action (**current action**) becomes an easy or
natural mistake a user who is unfamiliar with the App, button functions, or certain operations
might make. The user will probably realize the mistake when seeing the execution of this
action (the second screenshot).

Useful Guidelines
To make the evaluation process more accurate, please follow these guidelines:
1. Based on the information, judge the feasibility of having a reasonable instruction meeting
the mentioned requirements. Ignore the following if not.
2. Provide your modified instruction.
3. Explain why the modified instruction is reasonable and realistic, and does not change
the correctness of the past actions.
4. Explain why the **current action** becomes incorrect with your modified action, and
explain why it is an easy or natural mistake a user might make.
Note that the red dot and red arrows are just for visualizing the actions; do not mention
them in your response.
Note that the future actions are provided to better understand the overall task and context;
you do not need to consider them when creating modified instruction.

23

Note that your modified instruction should clearly be possible for the agent to complete
based on the provided information.

Input:
Task Instruction: {task_instruction}
Past Actions: {past_actions}
Future Actions: {future_actions}
Current Action: {action}

Output Format:
Directly output your results in json format as follows:
{{
"Task Feasibility": "Yes or No", if no, the following entries should be empty. "Modified
Instruction": "Your modified instruction",
"Explanation 1": "Explain why the modified instruction is good and compatible with action
history.",
"Explanation 2": "Explain why the current action becomes a natural mistake for a user not
familiar with the app and certain operations."
}}

Table 13: Prompt for reflection action annotation ãt+1 of the first approach in offline SFT.

System Role
You are an expert in correcting the step-wise operation of a GUI agent. The agent’s task is
to help human users operate an Android phone by completing specific instructions provided
by the user but it performs an incorrect action at a certain step. Your task is to make a
reflection about the previous incorrect step and reason about the next correct atomic action
after this mistake, provide the action thought, and the action type.

Definition of Action Thought
The action thought is the rationale behind the actual action taken at a certain step. The
action thought should be a compact paragraph consisting of 3-4 sentences. It could include
the following aspects if they are helpful and important for the action reasoning process: -
observation: a concise description of the current screenshot, focusing on the task related
content and progress.
- reflection: a simple analysis of the unexpected situation caused by the incorrect action in
the previous step, admit and analyze the mistakes.
- action rationale: a brief reasoning process to integrate the above information and provide
a natural thinking process leading to the actual action from the perspective of the operator
The action thought should be natural and logically fluent. The action thought should *not*
be clearly separated into the above aspects and does not need to mention the keywords like
observation and reflection.

Information Provided
You will receive the following information:
1. Task Instruction: The overall task instruction for the GUI agent.
2. Past Actions: A list of past actions prior to the previous incorrect step. Empty if it is the
first step.
3. Previous Incorrect Action: The incorrect action taken at the previous step.
4. Error Action Analysis: An analysis from an expert explaining why the previous action is
incorrect.
5. Screenshots: The first screenshot corresponds to the step before the incorrect action
is taken while the second screenshot corresponds to the current step after executing the
incorrect action. The click point is highlighted using a red dot in the first screenshot.

Your job is to analyze the provided information and provide the action thought leading the
agent should take at the current step after the execution of the previous incorrect action.

24

Valid Action Space
The actions that the agent may take to complete the task are as follows:
Click: Click at a certain position on the current screen.
Long Press: Long press at a certain position on the current screen.
Scroll: Scroll on the screen, scroll down/up/left/right, where the direction is the opposite
direction of the figure movement.
Type[text]: Type the ’text’ into the input field.
Press Home: Return to the home page.
Press Back: Go back to the previous page.
Press Enter: Click the enter button.
Wait: Wait for the device to respond or load something.
Task Complete/Task Impossible: Indicate the task is completed or impossible.

Useful Guidelines
To make your reasoning and response more accurate, please follow these guidelines:
1. Analyze the provided information
2. Provide your action thought. In the action thought, use first-person description, that is,
using ’I’ instead of ’the user’ or ’the agent’
3. Provide your action type which must be consistent with your action thought.
The correct action type should be one of the following: [Click, Long Press, Scroll, Type,
Press Home, Press Back, Press Enter, Wait, Task Complete, Task Impossible]

Important Notes:
Note that the red dots for click and long press are only for better understanding of the
actions; do not mention them in your action thought.
Note that some sub-task might need multiple actions (e.g. typing something needs clicking
the text input field and then typing) and you should only give the very first atomic action
for the current step.
Note that if the previous step type in some incorrect content, you have to first find ways to
clear it before typing the correct one.
Note that when you want to click or press the backspace button, the correct action type is
click instead of Press Back (which means going back to the previous page). And in such
cases, try to use the word ’click’ instead of ’press’ in your action thought.

Input:
Task Instruction: {task_instruction}
Past Actions: {past_actions}
Previous Incorrect Action: {incorrect_action}
Error Action Analysis: {error_analysis}

Output Format:
Directly output your results in json format as follows:
{{
"Action Thought": "The action thought"
"Action Type": "The action type"
}}

Table 14: Prompt for correct action annotation ãt of the first approach in offline SFT.

System Role
You are an expert in correcting the step-wise operation of a GUI agent. The agent’s task is
to help human users operate an Android phone by completing specific instructions provided
by the user but it performs an incorrect action at a certain step. Your goal is to reason about
the correct action and provide the reasoning process leading to the correct action at this
step.

Definition of Action Thought

25

The action thought is the rationale behind the actual action taken at a certain step. The
action thought should be a compact paragraph consisting of 3-4 sentences. It could include
the following aspects if they are helpful and important for the action reasoning process:
- observation: a concise description of the current screenshot, focusing on the task related
content
- reflection: a simple analysis of whether the previous step’s action is successful and as
expected
- progress analysis: a brief summary of the progress towards the overall goal before taking
the action at the current step and a plan about the sub-tasks that still need to be done in
order to complete the final goal
- action rationale: a brief reasoning process to integrate the above information and provide
a natural thinking process leading to the actual action from the perspective of the operator
The action thought should be logically fluent, and it does not necessarily include all the
above aspects. The action thought should *not* be clearly separated into the above aspects
and does not need to mention the keywords like observation and reflection.

Information Provided
As an evaluator, you will receive the following information: 1. Task Instruction: The
overall task instruction for the GUI agent.
2. Past Actions: A list of past actions prior to this step. Empty if it is the first step.
3. Screenshots: The first screenshot corresponds to the previous step while the second
screenshot corresponds to the current step. Only the current screenshot is provided if it is
the first step. The click point is highlighted using a red dot in the first screenshot.

Your job is to analyze the provided information and provide the correct action thought
leading to the correct action that the agent should take.

Valid Action Space
The actions that the agent may take to complete the task are as follows:
Click: Click at a certain position on the current screen.
Long Press: Long press at a certain position on the current screen.
Scroll: Scroll on the screen, scroll down/up/left/right, note that the direction is the opposite
direction of the figure movement.
Type[text]: Type the ’text’ into the input field.
Open App[app]: Open the ’app’ App.
Press Home: Return to the home page.
Press Back: Go back to the previous page.
Press Enter: Click the enter button.
Wait: Wait for the device to respond or load something.
Task Complete: Indicate the task is completed
Task Impossible: Indicate the task is impossible.

Useful Guidelines
To make your reasoning and response more accurate, please follow these guidelines:
1. Based on the provided information, provide the correct action thought. In the action
thought, use first-person description, that is, using ’I’ instead of ’the user’ or ’the agent’
2. Provide the correct action type which must be consistent with your action thought.
The correct action type should be one of the following: [Click, Long Press, Open App,
Scroll, Type, Press Home, Press Back, Press Enter, Wait, Task Complete, Task Impossible]

Important Notes
Note that when you want to click or press the backspace button, the correct action type is
click instead of Press Back (which means going back to the previous page). And in such
cases, try to use the word ’click’ instead of ’press’ in your action thought.

Input:
Task Instruction: {task_instruction}
Past Actions: {past_actions}

26

Output Format:
Directly output your results in json format as follows:
{{
"Action Thought": "The correct action thought"
"Action Type": "The correct action type"
}}

Table 15: Prompt for adding reflection to action thought ãthoughtt of the first approach in offline SFT.

System Role
You are an expert in correcting the step-wise operation of a GUI agent. The agent’s task is
to help human users operate an Android phone by completing specific instructions provided
by the user. The agent performs an incorrect action at a certain step, and it needs to execute
the press back action to go back to the previous normal state. Your task is to add some
reflection content about the previous incorrect action to the correct action thought.

Definition of Action Thought
The action thought is the rationale behind the actual action taken at a certain step. The
action thought should be a compact paragraph consisting of 3-4 sentences. It could include
the following aspects if they are helpful and important for the action reasoning process:
- observation: a concise description of the current screenshot, focusing on the task related
content
- reflection: a simple analysis of whether the previous step’s action is successful and as
expected
- progress analysis: a brief summary of the progress towards the overall goal before taking
the action at the current step and a plan about the sub-tasks that still need to be done in
order to complete the final goal
- action rationale: a brief reasoning process to integrate the above information and provide
a natural thinking process leading to the actual action from the perspective of the operator
The action thought should be logically fluent, and it does not necessarily include all the
above aspects. The action thought should *not* be clearly separated into the above aspects
and does not need to mention the keywords like observation and reflection.

Information Provided
You will receive the following information:
1. Task Instruction: The overall task instruction for the GUI agent.
2. Incorrect Action: The previous incorrect action
3. Error Action Analysis: An analysis from an expert explaining why the previous action is
incorrect.
4. Correct Action Thought: The actual correct action thought leading to the correct action
5. Screenshot: The screenshot after performing the press back action to go back to the
normal status

Your job is to analyze the provided information and modify the correct action thought by
adding some reflection and lessons learned about the incorrect action narrated in the first
person as if you have performed the previous incorrect action, realize the mistake, and
press back to go to the current status.

Important Notes:
Your modified action thought should still be consistent with the provided correct action
thought.

Input:
Task Instruction: {task_instruction}
Incorrect Action: {incorrect_action}
Error Action Analysis: {error_analysis}
Correct Action Thought: {correct_action_thought}

27

Output Format:
Directly output your results in json format as follows:
{{
"Updated Action Thought": "The updated action thought with reflection added"
}}

Table 16: Prompt for creating ineffective incorrect action of the second approach in offline SFT.

System Role
You are an expert in understanding the operations from a GUI agent. The agent’s task is to
help human users operate an Android phone by completing specific instructions provided
by the user. Your goal is to come up with an incorrect ineffective Action that is different
from the correct action and would not change the current screen.

Candidate Actions
You may consider the following actions
- click: click on the current screen.
The complete format of this action is "click <element> to <purpose>", where <element> is
a noun phrase starting with ’the’ indicating the clicked element, and <purpose> is a verb
phrase indicating the direct purpose and expected outcome of clicking this UI element.

- long press: long press on the current screen.
The complete format of this action is "long press <element> to <purpose>", where <ele-
ment> is a noun phrase starting with ’the’ indicating the pressed element, and <purpose> is
a verb phrase indicating the direct purpose and expected outcome of long pressing this UI
element.

- scroll: scroll on the screen.
The complete format of this action is "scroll <direction> to <purpose>", where <direction>
is one of the following directions: [’up’, ’down’, ’left’, ’right’] and the direction is the
opposite direction of the movement of the finger. <purpose> is a verb phrase indicating the
direct purpose and expected outcome of this scrolling action.

- type: type some ’text’ into the input field.
The complete format of this action is "type in the <content>", where <content> is the typed
text.

Information Provided
You will receive the following information: 1. Task Instruction: The original task instruction
for the GUI agent.
2. Past Actions: The past actions taken by the agent to complete this task before this step.
Empty if it is the first step.
3. Future Actions: The future actions taken by the agent to complete this task after this
step. Empty if it is the last step.
4. Current Action: The action taken by the agent at the current step.
5. Screenshot: The screenshot at the current step. The click point is highlighted using a red
dot in the current screenshot.

Your job is to analyze the provided information and decide whether it is possible to come
up with an incorrect ineffective action.
The requirement of the incorrect ineffective action:
1. The action is incorrect; it is clearly wrong or unnecessary for completing the task or
deviates from the correct way.
2. It is an easy or natural mistake a user who is unfamiliar with the App, button functions,
or certain operations might make. The user will probably realize the mistake when seeing
the execution of this action.

28

3. This action has no effect on the current screen, which means the current screen will
remain exactly the same after executing the incorrect action.

Some examples: scroll down while it is already at the bottom, click the entry name instead
of the actual text field for entering information, type in something without activating the
input field yet.

Useful Guidelines
To make the evaluation process more accurate, please follow these guidelines:
1. Based on the information, judge the feasibility of having an incorrect ineffective action
meeting the mentioned requirements. Ignore the following if not.
2. Provide your incorrect ineffective action if possible.
3. Explain why the incorrect ineffective action is incorrect, and explain why it is an easy or
natural mistake a user might make.

Note that you have to strictly follow the complete format for your action.

Input:
Task Instruction: {task_instruction}
Past Actions: {past_actions}
Future Actions: {future_actions}
Current Action: {action}

Output Format:
Directly output your results in json format as follows:
{{
"Task Feasibility": "Yes or No", if no, the following entries should be empty.
"Incorrect Ineffective Action": "Your incorrect ineffective action",
"Explanation": "Explain why the action is incorrect and why it is a natural mistake for a
user not familiar with the app and certain operations."
}}

Table 17: Prompt for adding reflection about the ineffective incorrect action of the second approach
in offline SFT.

System Role
You are an expert in correcting the step-wise operation of a GUI agent. The agent’s task is
to help human users operate an Android phone by completing specific instructions provided
by the user. The agent performs an incorrect action at a certain step, and it needs to realize
the mistake and perform the correct action. Your task is to add some reflection content
about the previous incorrect action to the correct action thought.

Definition of Action Thought
The action thought is the rationale behind the actual action taken at a certain step. The
action thought should be a compact paragraph consisting of 3-4 sentences. It could include
the following aspects if they are helpful and important for the action reasoning process:
- observation: a concise description of the current screenshot, focusing on the task related
content
- reflection: a simple analysis of whether the previous step’s action is successful and as
expected
- progress analysis: a brief summary of the progress towards the overall goal before taking
the action at the current step and a plan about the sub-tasks that still need to be done in
order to complete the final goal
- action rationale: a brief reasoning process to integrate the above information and provide
a natural thinking process leading to the actual action from the perspective of the operator
The action thought should be logically fluent, and it does not necessarily include all the
above aspects. The action thought should *not* be clearly separated into the above aspects
and does not need to mention the keywords like observation and reflection.

29

Information Provided
You will receive the following information:
1. Task Instruction: The overall task instruction for the GUI agent.
2. Incorrect Action: The previous incorrect action 3. Error Action Analysis: An analysis
from an expert explaining why the previous action is incorrect and why it might happen.
4. Correct Action Thought: The actual correct action thought leading to the correct action
5. Screenshot: The screenshot of the current step after executing the incorrect action

Your job is to analyze the provided information and modify the correct action thought by
adding some observation and reflection content realizing and acknowledging the incorrect
action narrated in the first person as if you have performed the previous incorrect action.

Important Notes:
The previous incorrect action has no effect on the screenshot; that is, the screenshots before
and after the incorrect action are the same.
Your modified action thought should still be consistent with the provided correct action
thought.
!!! Note that the correct action thought does not include the previous incorrect action, so
the ’previous step’ in the correct action thought actually corresponds to the step before the
previous incorrect action. So you have to **remove** the part describing the success of the
previous step or description about the progress in the original correction action thought!
For example, you should remove parts like ’I have successfully xxx’ or ’The previous step
has successfully xxx’.
!!! In the first sentence of your thought, you should directly mention that the previous step
is unsuccessful or incorrect by observation, and then do a reflection explaining why you
made that mistake and the fact learned from this failure.

Input:
Task Instruction: {task_instruction}
Incorrect Action: {incorrect_action}
Error Action Analysis: {error_analysis}
Correct Action Thought: {correct_action_thought}

Output Format:
Directly output your results in json format as follows:
{{
"Updated Action Thought": "The updated action thought with reflection added"
}}

Table 18: Prompt for the MLLM-based verifier.

System Role
You are an expert in evaluating the performance of a GUI operation agent. The agent’s
task is to help human users operate an Android phone by completing specific instructions
provided by the user. Your goal is to evaluate whether the agent successfully completed the
task or not.

Information Provided
As an evaluator, you will receive the following information:
1. Task Instruction: The original task instruction for the GUI agent.
2: Task Guidance: An overall description about how to **correctly** complete this task as
a reference.
3: Correct Answer: The ground truth answer for this task. Empty if the answer is not
available or the task does not require an answer.
4. Operation History: A list of actions (in the form of images and corresponding actions)
taken by the agent to execute the Task Instruction.

30

5. Agent Answer: The answer provided by the agent for the task. Empty if there is no
answer action.
6. Final Status: The final task status is indicated by the agent. The status is either Task
Complete or Task Impossible.

Your job is to analyze the provided information to determine whether the agent successfully
completed the task, based on the alignment between the Task Instruction, the actions
performed (shown in screenshots and operation history), and the expected outcome.

Effective Action Space
The actions that the agent may take to complete the task are as follows:
Click[[x, y]]: Click the location [x, y] on the current screen, marked with a red circle in the
screenshot.
Long Press[[x, y]]: Click the location [x, y] on the current screen, marked with a red circle
in the screenshot.
Scroll[[x1, y1, x2, y2]]: Scroll from position [x1, y1] to [x2, y2], as shown by the arrows
in the screenshot, to access information that is not currently visible.
Type[text]: Type the ’text’ into the input field.
Memorize[text]: Store some ’text’ into an intermediate memory for future reference.
Answer[text]: The agent provides the ’text’ as the answer.
Press Home: Return to the home page.
Press Back: Go back to the previous page.
Press Enter: Click the enter button.
Wait: Wait for the device to respond or load something
Task Complete/Task Impossible: The agent indicates the task is completed or impossible.

Task Evaluation Criteria:
SUCCESS: The agent successfully performs all the necessary actions to meet the Task
Instruction.
NOT SUCCESS: The agent failed to perform at least one necessary action, or the task
could not be completed correctly, based on the screenshots and operation history.

Useful Guidelines
To make the evaluation process more accurate, please follow these guidelines:
1. Analyze the Task Instruction: You should first analyze what critical milestones have to
be completed and what necessary outcomes are expected for this task.
2. Analyze the agent’s operations, provide a definitive verdict on whether the task has been
successfully completed together your reasoning process.
3. Provide your final answer: ’SUCCESS’ or ’NOT SUCCESS’

Important Notes
When the task instruction asks a certain question or seeks certain information, the agent has
to provide the **correct** answer before completing the task, otherwise, the task should
be NOT SUCCESS.
When the agent indicates the task is impossible, you should judge whether this task is
indeed impossible to complete (e.g. due to network issues). You should output SUCCESS
only when both you and the agent indicate the task is impossible.
You should carefully examine the screenshots to double check whether the operations taken
by the agents achieve the desired and expected outcome. Any minor input or format issues
should be judged as NOT SUCCESS.
Note that the agent might make some wrong attempts during the process, and it should be
judged as SUCCESS as long as the agent has successfully completed the task at the end.

Input:
Task Instruction: {task_instruction}
Task Guidance: {task_guidance}
Correct Answer: {correct_answer}
Agent Answer: {agent_answer}
Final Status: {final_status}

31

Output Format:
Directly output your results in json format as follows:
{{
"Task Analysis": "An analysis of the task",
"Reasoning": "Reason about whether the agent has successfully completed the task",
"Final Result": "SUCCESS" or "NOT SUCCESS"
}}

Table 19: Prompt for checking the step-wise correctness of successful trajectories.

System Role
You are an expert in evaluating the step-wise operation correctness of a GUI agent. The
agent’s task is to help human users operate an Android phone by completing specific
instructions provided by the user. Your goal is to evaluate whether the current action taken
by the agent is correct in terms of completing the overall task instruction.

Information Provided
As an evaluator, you will receive the following information:
1. Task Instruction: The overall task instruction for the GUI agent.
2. Task Guidance: An overall description of how to correctly complete this task as a
reference.
3: GT Answer: The ground truth answer for this task. Empty if the answer is not available
or the task does not require an answer.
4: Stored Memory: Information the agent has stored in the intermediate memory from
previous steps. Empty if none.
5. Task Progress: A summary describing the current progress of the overall task before
taking the action at the current step. The progress is empty if it is the first step.
6. Current Action: The action taken by the agent at the current step.
7. Screenshots: The screenshot at the current step and the screenshot at the next step
after the current action is executed. The click point is highlighted using a red dot in the
current screenshot and the scroll positions are visualized using a red arrow in the current
screenshot.

Your job is to analyze the provided information to determine whether the current action
taken by the agent is correct for achieving the overall task goal.

Valid Action Space
The actions that the agent may take to complete the task are as follows: Click: Click on the
current screen, the click point is marked with a red circle in the screenshot.
Long Press: Long press on the current screen, the press point is marked with a red circle in
the screenshot.
Scroll: Scroll on the screen, the touch point and lift point of the scroll are marked with a
red arrow in the screenshot.
Type[text]: Type the ’text’ into the input field.
Memorize[text]: Store some ’text’ into an intermediate memory for future reference
Answer[text]: The agent provides the ’text’ as the answer.
Press Home: Return to the home page.
Press Back: Go back to the previous page.
Press Enter: Click the enter button.
Wait: Wait for the device to respond or load something
Task Complete/Task Impossible: The agent indicates the task is completed or impossible.

Task Evaluation Criteria:
CORRECT: The current action taken by the agent is reasonable without skipping any
necessary steps and makes correct progress towards completing the overall task instruction.

32

INCORRECT: The current action taken by the agent is clearly wrong or unnecessary for
completing the task, or deviates from the correct way. You should consider whether the
outcome of the current action (from the second screenshot) is as expected or not when
making the judgment.

Useful Guidelines
To make the evaluation process more accurate, please follow these guidelines:
1. Based on the provided information, analyze the agent’s action, provide a definitive
verdict on whether the current action is correct, together with your reasoning process.
2. Provide your conclusion: ’CORRECT’ or ’INCORRECT’
3. Based on the current progress and the screenshot for the next step, update the task
progress summarizing the overall progress after taking this current action. One or two
sentences.

Note that some sub-tasks or expected outcomes might need multiple actions (e.g. typing
something needs to click the text input field and then type), and you only need to assess the
correctness of the current action.
Note that the ’Current Action’ represents the purpose of the agent, which might be incon-
sistent with the actuation of the action due to its unfamiliarity with certain operations or
elements when the action is to click/long press/scroll. In such cases, the ’Current Action’
itself may seem correct, but the grounded action is wrong. For example, the agent’s action
(purpose) is to click App A, but it actually clicks App B as it does not know which icon is
App A. So you should also make the judgment based on the actual action and its outcome.
!!! Note that an action should be considered correct if it attempts to recover from a previous
mistake or redirect the process back toward the final goal, even if earlier steps were incorrect
or unnecessary.

Input:
Task Instruction: {task_instruction}
Task Guidance: {task_guidance}
GT Answer: {gt_answer}
Stored Memory: {memory}
Task Progress: {prev_progress}
Current Action: {action}

Output Format:
Directly output your results in json format as follows:
{{
"Reasoning": "Reason about whether the current action is correct",
"Conclusion": "CORRECT" or "INCORRECT",
"Updated Progress": "The updated task progress summary after taking this action."
}}

Table 20: Prompt for identifying the first error step of the unsuccessful trajectories.

System Role
You are an expert in evaluating the step-wise operation correctness of a GUI agent. The
agent’s task is to help human users operate an Android phone by completing specific
instructions provided by the user. Your goal is to evaluate whether the current action taken
by the agent is correct in terms of completing the overall task instruction.

Information Provided

As an evaluator, you will receive the following information:
1. Task Instruction: The overall task instruction for the GUI agent.
2. Task Guidance: An overall description of how to correctly complete this task as a
reference.

33

3: GT Answer: The ground truth answer for this task. Empty if the answer is not available
or the task does not require an answer.
4: Stored Memory: Information the agent has stored in the intermediate memory from
previous steps. Empty if none.
5. Task Progress: A summary describing the current progress of the overall task before
taking the action at the current step. The progress is empty if it is the first step.
6. Current Action: The action taken by the agent at the current step.
7. Screenshots: The screenshot at the current step and the screenshot at the next step
after the current action is executed. The click point is highlighted using a red dot in the
current screenshot and the scroll positions are visualized using a red arrow in the current
screenshot.

Your job is to analyze the provided information to determine whether the current action
taken by the agent is correct for achieving the overall task goal.

Valid Action Space
The actions that the agent may take to complete the task are as follows:
Click: Click on the current screen, the click point is marked with a red circle in the
screenshot.
Long Press: Long press on the current screen, the press point is marked with a red circle in
the screenshot.
Scroll: Scroll on the screen, the touch point and lift point of the scroll are marked with a
red arrow in the screenshot.
Type[text]: Type the ’text’ into the input field.
Memorize[text]: Store some ’text’ into an intermediate memory for future reference.
Answer[text]: The agent provides the ’text’ as the answer.
Press Home: Return to the home page.
Press Back: Go back to the previous page.
Press Enter: Click the enter button.
Wait: Wait for the device to respond or load something.
Task Complete/Task Impossible: The agent indicates the task is completed or impossible.

Task Evaluation Criteria:
CORRECT: The current action taken by the agent is reasonable without skipping any
necessary steps and makes correct progress towards completing the overall task instruction.
INCORRECT: The current action taken by the agent is clearly wrong or unnecessary for
completing the task, or deviates from the correct way. You should consider whether the
outcome of the current action (from the second screenshot) is as expected or not when
making a judgment.

Useful Guidelines
To make the evaluation process more accurate, please follow these guidelines:
1. Based on the provided information, analyze the agent’s action, provide a definitive
verdict on whether the current action is correct, together with your reasoning process.
2. Provide your conclusion: ’CORRECT’ or ’INCORRECT’.
3. Based on the current progress and the screenshot for the next step, update the task
progress summarizing the overall progress after taking this current action. One or two
sentences.

Note that some sub-tasks or expected outcomes might need multiple actions (e.g. typing
something needs to click the text input field and then type), and you only need to assess the
correctness of the current action.
Note that if the task requires question answering (GT Answer is not empty), the agent must
provide the answer before marking the task as complete.

Input:
Task Instruction: {task_instruction}
Task Guidance: {task_guidance}
GT Answer: {gt_answer}

34

Stored Memory: {memory}
Task Progress: {prev_progress}
Current Action: {action}

Output Format:
Directly output your results in json format as follows:
{{
"Reasoning": "Reason about whether the current action is correct",
"Conclusion": "CORRECT" or "INCORRECT",
"Updated Progress": "The updated task progress summary after taking this action."
}}

Table 21: Task examples of our online learning environment.

Apps Difficulty Level Number Example Task

Simple Calendar Pro Level-1 13 Change the view to {view} in Sim-
ple Calendar Pro.

Simple Calendar Pro Level-2 7 Change the location of event
{event1} to be the same as event
{event2} in Simple Calendar Pro.

Contacts Level-1 12 Delete the contact named {name} in
the Contacts App.

Contacts Level-2 9 Find {name} in the Contacts App,
change the phone number to {new
number} and email to {new email}

Dice Level-1 10 In the Dice App, roll the dice {n
times} times with the default setting.

Dice Level-2 4 In the Dice App, set Dice to 1 and
Sides to {n sides}, and roll the dice
twice with this setting. Record the
results and answer the sum of num-
bers.

FitBook Level-1 11 Open the FitBook App, delete the
entry with the highest calories in the
diary tab.

FitBook Level-2 8 Open the FitBook App, find and
open the {entry} entry in the Diary
tab, then change its date to {n days}
days before the original date.

Fossify Clock Level-1 15 Add a clock in {timezone} timezone
in the Fossify Clock App.

Fossify Clock Level-2 9 Start all timers and then pause them
in the Fossify Clock App.

Fossify Messages Level-1 8 Delete the conversation from {num-
ber} in the Fossify Messages App.

Fossify Messages Level-2 7 Send the same message {n times}
times to {number} in the Fossify
Messages App with the following
content: {message}

35

LibreOffice Level-1 10 In the LibreOffice Viewer App,
go to the {folder} folder in the
sdk_gphone64_x86_64 storage area.
How many docs are there? Answer
with the number only.

LibreOffice Level-2 4 Find the numbers logged in
{docfile1} and {docfile2} in the
sdk_gphone64_x86_64 storage area
of the LibreOffice Viewer App.
Answer the sum of the numbers.

Markor Level-1 13 Find all markdown notes in Markor.
Answer with their names separated
with comma.

Markor Level-2 6 Check the file sizes of the note
{name1} and {name2} in Markor.
Then answer the larger file size in
Bytes (number only without units),
for example: 500.

ProExpense Level-1 11 What expenses are logged in the Pro
Expense App? Answer the names
separated by comma.

ProExpense Level-2 9 Delete all expenses in the Pro Ex-
pense App that are higher than
{amount}.

Broccoli Level-1 13 Add the following recipe in the
Broccoli APP: {recipe}.

Broccoli Level-2 9 In the Broccoli APP, check the
preparation times of recipes {title1}
and {title2}, and answer the longer
preparation time. Please directly an-
swer the time in the following for-
mat: XX mins/XX hrs.

Chrome (WebShopping) Level-1 9 Go to {website} using Chrome,
search for {product}, what is the
overall rating of the first search re-
sult? Answer with the number only.

Chrome (WebShopping) Level-2 9 Search for the following items
{product list} on {website} and add
them to my cart. What is the total
price of all the items in my cart?

36

	Introduction
	GUI-Reflection Framework
	End-to-End Multimodal GUI Agent Model
	Action Space
	Model Structure

	GUI-Reflection Task Suite: Reflection-oriented Abilities in Pre-training
	Automatic Grounded Action Annotation
	Reflection Behavior in Offline SFT
	Iterative Online Reflection Tuning
	Environment
	Algorithm

	Experiments
	Training Data
	Evaluations on GUI-Reflection Task Suite
	Effectiveness of Reflection for GUI Agents

	Conclusion
	NeurIPS Paper Checklist
	Related Works
	Mobile GUI Agents
	LLM and MLLM Reasoning and Reflection

	Limitation
	Societal Impacts
	Training Details
	Implementation Details
	Model Details
	Evaluation Details

	Details of GUI-Reflection Task Suite
	Action Verification
	Action Reversal
	Mistake-informed Reattempt

	Details of Reflection Data in Offline SFT
	Details of Online Iterative Reflection Tuning
	Detailed Experiment Results

