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ABSTRACT

Dataset distillation aims to condense large datasets into a small number of syn-
thetic examples that can be used as drop-in replacements when training new mod-
els. It has applications to interpretability, neural architecture search, privacy, and
continual learning. Despite strong successes in supervised domains, such methods
have not yet been extended to reinforcement learning, where the lack of a fixed
dataset renders most distillation methods unusable. Filling the gap, we formalize
behaviour distillation, a setting that aims to discover and then condense the infor-
mation required for training an expert policy into a synthetic dataset of state-action
pairs, without access to expert data. We then introduce Hallucinating Datasets
with Evolution Strategies (HaDES), a method for behaviour distillation that can
discover datasets of just four state-action pairs which, under supervised learning,
train agents to competitive performance levels in continuous control tasks. We
show that these datasets generalize out of distribution to training policies with a
wide range of architectures and hyperparameters. We also demonstrate applica-
tion to a downstream task, namely training multi-task agents in a zero-shot fash-
ion. Beyond behaviour distillation, HaDES provides significant improvements in
neuroevolution for RL over previous approaches and achieves SoTA results on one
standard supervised dataset distillation task. Finally, we show that visualizing the
synthetic datasets can provide human-interpretable task insights.

1 INTRODUCTION

Dataset distillation (Wang et al., 2018) is the task of synthesizing a small number of datapoints
that can replace training on a large real datasets for downstream tasks. Not only a scientific cu-
riosity, distilled datasets have seen applications to core research endeavours such as interpretability,
architecture search, privacy, and continual learning (Lei & Tao, 2023; Sachdeva & McAuley, 2023).
Despite a series of successes on vision tasks, and more recently in graph learning (Jin et al., 2021)
and recommender systems (Sachdeva et al., 2022), distillation methods have not yet been extended
to reinforcement learning (RL). This is because they generally make strong assumptions about prior
availability of an expert (or ground truth) dataset.

To address this gap in the literature, we introduce a new setting called behaviour distillation1 that
aims to discover and condense the information required for training an expert policy into a syn-
thetic dataset of state-action pairs, without access to an expert. Unlike dataset distillation, which
simply replaces a hard supervised learning task by an easier one, behaviour distillation solves two
challenges at once: the exploration problem (discovering trajectories with high expected return) and
the representation learning problem (learning to represent a policy that produces those trajectories),
both of which are fundamental to deep reinforcement learning.

Thus, behaviour distillation aims to produce a dataset that obviates the need for exploration, essen-
tially “pre-solving” the environment. As such, a behaviour distillation dataset does not encode a
summary of the full environment, but only a summary of an expert policy in that environment. In
other words, it reduces the joint problems of data collection (i.e. exploration) and sequential learning
on a large amount of non-stationary data to one of supervised learning on a tiny amount of stationary
non-sequential synthetic data, such as the example datasets in Fig. 1.

1The term was also recently used by Furuta et al. as a near-synonym for policy distillation.
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Figure 1: Entire synthetic datasets required to train an optimal Cartpole policy (top) and an expert
Hopper policy with behaviour cloning (bottom). The state-action pairs help interpret the learned
policies. Red box contains observation features for Cartpole and action labels (torques) for Hopper.

Motivated by the challenge of behaviour distillation, we introduce Hallucinating Datasets with
Evolution Strategies (HaDES), a method based on a meta-evolutionary outer loop. Specifically,
HaDES optimizes the synthetic dataset using a bi-level optimization structure, which uses evolu-
tionary strategies (ES) to update the datasets on the outer loop and supervised learning (“behaviour
cloning”) on the current dataset in the inner loop. The fitness function for ES is the performance of
the policy at the end of the supervised learning step. We show that the generated datasets can be
used to retrain policies with vastly different architectures and hyperparameters from those used to
produce the datasets and achieve competitive returns to training directly on the original environment
while doing behaviour cloning on less than 1/10th or in some cases less than 1/100th of a single
episode worth of data. We also demonstrate the applicability of these datasets to downstream tasks
and open-source them in the hope of accelerating future research. Furthermore, while HaDES is
tailored to behaviour distillation, we show it is also competitive when applied to popular computer
vision dataset distillation benchmarks.

There is a recent resurgence of interest in evolutionary strategies (ES) for machine learning, fuelled
by their generality and applicability to non-differentiable objectives, as well as to long-horizon tasks
with delayed rewards Lu et al. (2023); Salimans et al. (2017). However, current evolutionary opti-
mization methods are limited in the number of parameters that can be evolved, since a large number
of parameters combined with a large population size induce a large memory footprint, as we show
in Section 5.1. This limits the use of ES for training large neural networks.

To tackle this issue, we adapt HaDES into an alternative parametrization and training scheme for
neuroevolution by not resampling the initial weights of the inner loop policy. This parametrization
has the benefit of scaling independently of the number of parameters in the evolved policy, thereby
reducing the memory footprint and resulting in competitive performance across multiple environ-
ments when compared to vanilla ES.

Our main contributions are:

1. We formalize the setting of behaviour distillation, which extends the principles of dataset
distillation to reinforcement learning.(Section 4.1);

2. We introduce HaDES, the first method for behaviour distillation (Section 4);
3. We show that a minor change to our method provides a parametrization for neuroevolution

through ES that reduces its memory (Section 5.1).
4. We demonstrate empirically that HaDES can produce effective synthetic datasets for chal-

lenging discrete and continuous control environments that generalize to training policies
with a large range of architectures and hyperparameters (Section 5.2);

5. We use the synthetic datasets for a downstream task: quickly training a multi-task agent
from datasets produced for individual environments (Section 5.3);

6. We achieve SoTA for a common dataset distillation benchmark with HaDES (Section 5.4);
7. We open-source our code and synthetic datasets under https://github.com/

FLAIROx/behaviour-distillation.
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2 RELATED WORKS

2.1 DATASET DISTILLATION

Efforts to reduce the amount of training data required for machine learning can be traced back to
reduced support vector machines (Lee & Mangasarian, 2001; Lee & Huang, 2007; Wang et al.,
2005). In deep learning, Bachem et al. (2017) and Coleman et al. (2019) have called coreset
selection the problem of selecting a small number of representative examples from a dataset that
suffice to train a model faster without degrading its final performance.

Wang et al. forgo this restriction to real examples in favour of producing synthetic datasets, coining
the task of dataset distillation. Since then, numerous approaches have been proposed to distill super-
vised learning datasets (Lei & Tao, 2023). Most involve a bi-level optimization procedure and can
be divided into four big categories (Sachdeva & McAuley, 2023). Gradient matching methods (Zhao
et al., 2020) aim to minimize the difference in gradient updates that a model receives when training
on the synthetic vs. the real dataset, while trajectory matching (Cazenavette et al., 2022) minimizes
the distance between checkpoint parameters of models trained on either dataset. Unfortunately, nei-
ther of these techniques is applicable to reinforcement learning without prior access to an expert
policy, its checkpoints or at the very least a dataset of expert trajectories. More recently, Zhao &
Bilen and Wang et al. directly align the synthetic dataset distribution to match the real one. While
highly effective, such an approach is also inapplicable to reinforcement learning due to the non-
stationary and policy-specific data distribution. The oldest and most closely related approach to our
method is meta-model matching (Wang et al., 2018; Nguyen et al., 2020; Loo et al., 2022), which
involves fully training a model on the synthetic data in the inner loop, while updating the dataset in
the outer loop to minimize the model’s loss on the real data. These works either compute expen-
sive meta-gradients using back-propagation through time (Wang et al. (2018); Deng & Russakovsky
(2022), BPTT), or use a neural tangent kernel rather than a finite width neural network in the inner
loop such that they can compute the classifier loss on the target dataset in closed form (Nguyen et al.,
2020). While these methods could be applied to RL by choosing an appropriate loss (e.g. REIN-
FORCE (Williams, 1992)), we instead replace meta-gradients by an evolutionary approach in the
outer loop, making the cost of the outer loop updates independent of both the network size and the
number of updates in the inner loop. This is important since we can use hundred of policy updates
in the inner loop in practice, making the use of BPTT prohibitively expensive.

A few other works have extended dataset distillation beyond image classification to graphs (Jin et al.,
2021; 2022) and recommender systems (Sachdeva et al., 2022), but to the best of our knowledge no
previous work has broken away from assuming access to a pre-existing target dataset. As such,
our work is the first to break the data-centric paradigm and introduces the first general distillation
method applicable to distillation in reinforcement learning.

2.2 NEUROEVOLUTION AND INDIRECT ENCODINGS

Neuroevolution (Schwefel, 1977) has been shown to perform comparably to reinforcement learning
on several benchmarks (Such et al., 2017; Salimans et al., 2017). Part of our work can be viewed
as a form of indirect encoding (Stanley et al., 2019) for neuroevolution – an alternative parameteri-
zation for evolving neural network weights. Rather than evolve the parameters of a neural network
directly, indirect encoding evolves a “genotype” in an alternative representation (which is usually
compressed) that then maps to the parameters. A well-known example is HyperNEAT (Stanley et al.,
2009), a precursor to HyperNetworks (Ha et al., 2016), which evolves a smaller neural network to
generate the weights of a larger one. Indirect encoding is desirable because evolution strategies can
scale poorly in the number of parameters (Hansen, 2016). Our work, instead of evolving a neural
network, evolves a small dataset on which we train a larger neural network with supervised learning.

Other related work has also evolved other aspects of reinforcement learning training. For example,
other works have evolved RL policy objectives (Lu et al., 2022; Co-Reyes et al., 2021; Houthooft
et al., 2018; Jackson et al., 2024) and environment features (Lu et al., 2023). Most related to our
work is Synthetic Environments (Ferreira et al., 2022), which evolve neural networks to replace an
environment’s state dynamics and rewards to speed up training. Instead of evolving transition and
reward functions and training with RL, our work evolves supervised data for behavioural cloning
(BC). This greatly aids the interpretability and simplifies the inner-loop.
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3 BACKGROUND

The goal of this paper is to discover a behavioural dataset which, in combination with supervised
learning, solves a Markov Decision Processes. We describe and formalize the conceptual basis of
our paper below.

3.1 REINFORCEMENT LEARNING

A Markov Decision Process (MDP) is defined by a tuple ⟨S,A,P,R, γ⟩ in which S,A,P,R, γ
define the state space, action space, transition probability function (which maps from a state and
action to a distribution over the next state), reward function (which maps from a state and action
to a scalar return), and discount factor, respectively. At each step t, the agent observes a state st
and uses its policy πθ (a function from states to actions parametrized by θ) to select an action at.
The environment then samples a new state st+1 according to the transition function P and a scalar
reward rt according to the reward function R. The objective in reinforcement learning is to discover
a policy that maximizes the expected discounted sum of rewards:

J(θ) = Eπθ

[ ∞∑
t=0

γtrt

]
. (1)

3.2 EVOLUTION STRATEGIES

Many reinforcement learning algorithms use the structure of the MDP to update the policy using
gradient-based methods and techniques such as the Bellman equation (Bellman, 1966). An alter-
native approach is to treat the function J(θ) as a blackbox function and directly optimize θ. One
popular approach to this is known as Evolution Strategies Salimans et al. (2017). Given an arbitrary
function F (ϕ), ES optimizes the following smoothed objective:

Eϵ∼N(0,I)[F (ϕ+ σϵ)],

where N(0, I) is the standard multivariate normal distribution and σ is its standard deviation. We
estimate the gradient of F by sampling noise from N(0, I) and evaluating F at the resulting points.
Specifically, the gradient is estimated by:

∇ϕEϵ∼N(0,Id)[F (ϕ+ σϵ)] = Eϵ∼N(0,Id)

[ ϵ
σ
F (ϕ+ σϵ)

]
.

We then apply this update to our parameters and repeat the process. When applied to meta-
optimization, ES allows us to optimize functions that would otherwise require taking meta-gradients
through hundreds or thousands of update steps, which is often intractable Metz et al. (2021).

3.3 DATASET DISTILLATION

In the context of supervised learning, dataset distillation is the task of generating or selecting a proxy
dataset that allows training a model to a similar performance as training on the original dataset, often
using several orders of magnitude fewer samples. Formally, we assume a dataset D = {xi, yi}Ni=1,
of which Dtrain ⊂ D is the training (sub)set, and a training algorithm alg. Also, let falg(D) : xi 7→ yi
be the classifier obtained by training on D with alg. Then, the dataset distillation objective is to find
a synthetic dataset Dϕ, |Dϕ| << |Dtrain|, such that

Ex,y∼DL(falg(Dϕ)(x), y) ≈ Ex,y∼DL(falg(Dtrain)(x), y), (2)

where ϕ indicates that the synthetic dataset can be parametrized and learned, rather than being
sampled. In practice, |Dϕ| is often set to a fixed number of examples, e.g. |Dϕ| = n|Y |, where
|Y | is the total number of discrete classes, or to be determined by fixed number of parameters, i.e.
|ϕ| = n(|x|+ |y|). The latter formulation, being more permissive, admits factorized representations
of the data, e.g. by representing |Dϕ| with a generative neural network. While this is a promising
avenue for future work, we focus exclusively on non-factorized distillation, which allows for better
interpretability and tractability of the synthetic dataset.
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4 PROBLEM SETTING AND METHOD

4.1 BEHAVIOUR DISTILLATION

We introduce behaviour distillation as a parallel to dataset distillation. Rather than optimizing a
proxy dataset to minimize a loss in supervised learning, behaviour distillation optimizes a proxy
dataset that maximizes the discounted return in reinforcement learning, after supervised learning.
More formally, the aim of behavioural distillation is to find a dataset Dϕ ∈ (S × A)N , where N is
the number of points in the dataset, to solve the following bi-level optimization problem:

max
Dϕ

J(θ∗(Dϕ)) (3)

s.t. θ∗(Dϕ) = argmin
θ

L(θ,Dϕ), (4)

where θ are the parameters of the neural network used in the policy πθ, J is the discounted sum of
returns defined in Eq. (1) and L is any supervised learning loss.

Crucially, this setting does not assume access to an expert policy or dataset, for two reasons. Firstly,
expert data may not always be available or may not be easily compressible, for instance if the expert
is erratic or idiosyncratic. Secondly, standard imitation learning is plagued by cascading errors:
if π is an imitation learning policy that deviates from some expert πexpert with probability ≤ ϵ,
then it is likely to end up off-distribution, further increasing its error rate. As such, it generally
incurs a regret J(πexpert) − J(π) ≥ T 2ϵ, where T is the episode horizon (Ross & Bagnell, 2010).
Given dataset distillation is lossy, applying it naively would result in a large ϵ and therefore a poor
performance for π. Since we ultimately care about maximizing the expected discounted return rather
than reproducing some specific expert behaviour, this is how we formalize behaviour distillation.

4.2 HADES

To tackle behaviour distillation, we introduce our method “Hallucinating Datasets with Evolution
Strategies” (HaDES). HaDES optimizes the inner loop objective to obtain θ∗ using gradient descent,
and optimizes the outer loop objective (the return of πθ∗ ) using ES (Salimans et al., 2017).

In the inner loop, HaDES uses the cross-entropy loss for discrete action spaces, and the negative log
likelihood loss for continuous action, albeit other losses could be substituted as well. We provide
pseudocode in Algorithm 1.

4.2.1 POLICY INITIALIZATION

We further specify two variants of our methods, which have distinct use cases. They differ only in
the way inner loop policies are initialized, which leads to different inductive biases. The variants
described here are visualized in Fig. 2

The first variant is HaDES with fixed policy initialization, or HaDES-F. In this variant, we sample a
single policy initialization θ0 at the very beginning of meta-training. The policy is re-trained every
inner-loop, but always starting from this fixed θ0.

The second variant is HaDES with randomized policy initialization, or HaDES-R. In this variant,
we use multiple (k ≥ 2) policy initializations (θ10, ..., θ

k
0 )i in the inner loop, and we resample the

initializations randomly at every generation i.

HaDES-F has a stronger inductive bias in that it is only optimizing Dϕ for a single initialization. We
expect it might be able to “overfit” on that initialization and achieve higher policy returns, but at the
cost of the synthetic dataset having poor generalization properties to other initializations. HaDES-
F will therefore be stronger for neuroevolution (where only the final return of the specific policy
matters), but weaker for behaviour distillation.

HaDES-R has a weaker inductive bias in that it optimizes Dϕ for a range of initializations. We
expect this to result in decreased policy returns, but the synthetic dataset to be a useful artifact of
training that generalizes to unseen initializations or even unseen policy architectures. HaDES-R
will therefore be a better choice for behaviour distillation, but a weaker one for neuroevolution. We
confirm both those intuitions empirically in Section 5.
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Figure 2: Left: Standard neuroevolution. Middle: HaDES-F. Right: HaDES-R. HaDES-F uses a
single fixed policy initialization. HaDES-R samples k ≥ 2 policy initializations every generation.

5 EXPERIMENTS

Next, we show that HaDES can be successfully applied to a broad range of settings. More specifi-
cally, we investigate the following four applications:

1. We demonstrate the effectiveness of HaDES as an indirect encoding for neuroevolution in
RL tasks (Section 5.1), with an analysis of the distillation budget in Appendix C.1.

2. We show that synthetic datasets successfully generalize across a broad range of architec-
tures and hyperparameters (Section 5.2).

3. We show that the synthetic datasets can be used to train multi-task models (Section 5.3).

4. We show that while our focus is on RL, our method is also competitive when applied to
dataset distillation in supervised settings (Section 5.4).

We refer the reader to Appendix B.2 for experimental details, including runtime comparisons.

5.1 PERFORMANCE EVALUATION OF HADES-DISCOVERED RL DATASETS

We first test the effectiveness of HaDES as a way of training competitive policies in 8 continuous
control environments from the Brax suite. Fig. 3a shows the performance of HaDES with a fixed
policy initialization (HaDES-F), HaDES with two randomized initializations (HaDES-R), and direct
neuroevolution through ES. HaDES-F achieves the highest return across the board, while HaDES-R
also matches or beats the baseline in 6/8 environments. In Humanoid-Standup, our method discov-
ers a glitch in the collision physics, propelling itself into the air to achieve extremely high returns2.

In MinAtar, we find that HaDES-F outperforms the ES baseline in Breakout, and matches it in
SpaceInvaders and Freeway. We hypothesize MinAtar is a harder setting for our method due to
the symbolic (rather than continuous) nature of the environment. For both settings, we also plot
the performance of PPO policies after 5 × 107 training steps. While there is still a performance
discrepancy between ES and RL, HaDES narrows the gap significantly.

We use policy networks with width 512 and a population size of 2048 for HaDES, but are forced to
cut the network widths by half for the ES baseline on MinAtar due to memory constraints. Indeed,
ES requires the entire population to be allocated on a single device at once when a new population is
generated and when estimating the meta-gradient at each generation. While distributed approaches
to the outer loop computation are feasible, they involve an engineering overhead, which our method
alleviates. As such, our method is drastically more memory efficient, enabling larger populations and
network sizes with minimal code changes. We also run HaDES with width 256 for completeness.

5.2 HADES DATASETS GENERALIZE ACROSS ARCHITECTURES & HYPERPARAMETERS

We now turn our attention to the datasets themselves, and use them to train new policies in a zero-
shot fashion, i.e. without additional environment interactions. We take two synthetic datasets for
Hopper – one generated with HaDES-R and another with HaDES-F – and use them to train new
policies from scratch. For each dataset, and for each of 7 different policy network sizes, we train
50 policies, each using a different learning rate and number of training epochs. In particular, the
learning rates span 3 orders of magnitude and training epochs ranged uniformly between 100 and

2video link
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Figure 3: HaDES trains competitive policies on a) Brax, using 64 state-action pairs and b) MinAtar
using 16 state-action pairs. For each environment, we show the mean return of the population
at each generation for HaDES-F, HaDES-R and direct neuroevolution through ES, as well as the
PPO final performance after 5× 107 steps. HaDES-F matches or outperforms direct ES on all Brax
environments, outperforms ES in one out of four MinAtar environments and matches it in two others.
We also observe a significant gap between HaDES-F and HaDES-R, as predicted in Section 4.2.
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Figure 4: Hopper dataset transfer to other architectures and training parameters. We take a synthetic
dataset of 64 state-action pairs evolved for policy networks of size 512 (highlighted) and use it to
train policies with varying widths and 50 hyperparameter combinations per width. We plot the top
50% within each width group. HaDES-F indicates that the dataset was trained with a fixed π0. The
HaDES-R dataset was trained with randomized (π1

0 , ..., π
k
0 )i and generalizes much better across all

architectures and training parameters. This holds generally across environments (see Appendix C.2).

500. For each dataset and width, we discard the worst 25 policies and plot the return distribution of
the remaining 25 in Fig. 4.

The datasets were evolved for policies of width 512, a fixed learning rate, and a fixed number of
epochs, but readily generalize out of distribution to training with different settings and architectures.
In particular, we see that the HaDES-R dataset is more robust to changes in both policy architecture
and training parameters than the HaDES-F dataset, which incorporates a stronger inductive bias.

We hypothesize that the generalization properties of the synthetic datasets can further be improved
by randomizing not only the policy initialization, as in HaDES-R, but also architectures and training
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parameters, further reducing some of the inductive biases present in our implementation. How to
best navigate the trade-off between generalization, dataset size and policy performance remains an
interesting question for future work.

5.3 HADES DATASETS CAN BE APPLIED TO ZERO-SHOT MULTI-TASKING
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Figure 5: We use the synthetic datasets to train multi-task agents without any additional environment
interaction. We plot the normalized fitness of agents trained either on the correct dataset for their
environment, the wrong dataset for their environment, or a combined dataset, merged through con-
catenation and zero-padding to have the observation sizes match. Left: we train multi-task agents
that achieve ∼ 50% normalized fitness for Halfcheetah and Hopper. Right: we train agents that
achieve ≳ 100% normalized fitness for Humanoid and Humanoidstandup. The multi-task policy
architecture and training parameters were not optimized. We plot mean ± stderr. across 10 seeds.
This shows that synthetic datasets can accelerate future research on RL foundation models.

We showcase an application of the distilled dataset by training multi-task Brax agents in a zero-shot
fashion. To this end, we merge datasets for two different environments in the following way. Let
D1 = (S1,A1) and D2 = (S2,A2) be the two datasets, each with 64 state-action pairs. We first
zero pad the states in S1 to the left and zero pad the states in S1 to the right, such that each padded
state has now the combined dimension |s1|+ |s2|, where S1 ⊂ R|s1| and S2 ⊂ R|s2|. We then do the
same for the actions, such that each padded action now has size |a1| + |a2|, where A1 ⊂ R|a1| and
A2 ⊂ R|a2|. Finally, we take the union of both padded datasets to build a merged dataset Dmerged
with 128 state-action pairs. We then train agents on either D1, D2 or Dmerged using behaviour cloning
and report the normalized performance on both environments in Fig. 5.

We perform this experiment for two pairs of environments: (Halfcheetah, Hopper) and (Humanoid,
Humanoid Standup). Blue indicates the baseline performance of training on Di and evaluating on
environment i. Red shows the performance of training on Di and evaluating on environment −i,
and is a loose proxy for how much the data from one environment helps to learn a policy for the
other. Finally, green shows the performance of policies trained on Dmerged. We see that the multi-task
agents achieve roughly 50% of the single-task performance in the first pair of environments, but see
no loss in performance in the second pair.

This shows that the synthetic datasets evolved by HaDES can vastly accelerate future research on RL
foundation models. Indeed, given those datasets, training new models takes only a few seconds, and
makes it possible to experiment with architectures and multi-task representation learning at a fraction
of the original computational cost. Furthermore, it allows studying the properties of cross-task
parameter sharing and representation learning in isolation, separately from the exploration issues
inherent to reinforcement learning.

5.4 HADES CAN BE APPLIED TO SUPERVISED DATASET DISTILLATION

While the focus is on behaviour distillation in RL, our method is readily applicable to the standard
dataset distillation setting by replacing environment return with a cross-entropy loss on some target
dataset. We apply our method to dataset distillation with 1 image/class in MNIST and FashionM-
NIST, with results in Table 1. We use the cross-entropy loss on the training set as the fitness for
HaDES and report the mean accuracy on the test set obtained by training classifiers on the final
synthetic dataset. We run 3 different seeds and train 20 classifiers for each final datasets. Similar to
Zhao et al. (2020) and Zhao & Bilen (2021), we report the mean and standard deviation across all
60 final classifiers and compare against the best method in these settings, namely RFAD Loo et al.

8



Published as a conference paper at ICLR 2024

MNIST FashionMNIST
RFAD Ours RFAD Ours

1 img/cls 94.4 ± 1.5 90.1 ± 0.3 78.6 ± 1.3 80.2 ± 0.4

Table 1: Test set accuracy of classifiers trained on datasets composed of 1 image per class. We com-
pare to RFAD, which is the SotA for non-factorized dataset distillation on these datasets (Sachdeva
& McAuley, 2023). RFAD uses a ConvNet architecture for testing, while we use a smaller CNN.
Despite being designed for RL, our method is also competitive for image-based dataset distillation
and achieves state-of-the-art distillation for 10-image FashionMNIST.

(2022). We find that HaDES performs competitively in 10 image MNIST and achieves state-of-the-
art results in FashionMNIST. However, we were unable to scale our methods to CIFAR-10, which
have many more parameters due to being RGB rather than greyscale.

In tuning our method, we find that the two single most important parameters are the outer learning
rate and the dataset initialization. We find that initializing the dataset at the class-wise mean of the
data works best. This is similar to findings by Zhao & Bilen, who also find that warm starting the
dataset performs better than initializing from scratch.

5.5 HADES-EXPLAINABILITY

The final benefit of the HaDES datasets is that the synthetic examples lend themselves to inter-
pretability. Going back to Fig. 1, we see that the resulting datasets have intuitive properties. For
instance, the two state dataset for Cartpole captures that the policy should go left if the pole is
leaning left and go right otherwise.

Performing an explainable RL study lies beyond the scope of this paper, but in a critical analysis,
Atrey et al. highlight the importance of taking a hypothesis-driven approach to explaining deep RL
policies, formulating possible explanations, then testing them rigorously with ablations and careful
experiments. With that in mind, we argue that our synthetic datasets are an effective starting point
for such hypothesis-testing, for instance by applying transformations to datasets and observing how
it impacts the trained policies.

6 DISCUSSION AND CONCLUSION

In this paper, we introduced a new parametrization for policy neuroevolution by evolving a small
synthetic dataset and training a policy on it through behavioural cloning. We showed that our method
produces policies with competitive return in continuous control and discrete tasks. Our method can
be used for behaviour distillation, summarizing all relevant information about optimal behaviour in
an environment into a small synthetic dataset. This “behaviour floppy disk” can quickly train new
policies parametrized by a range of different architectures. We then demonstrated the utility of the
distilled dataset by training multi-task models. We finished by showing that although our focus is on
RL, our method also applies to vanilla dataset distillation in supervised learning, where we achieved
state-of-the-art in one settings.

The main limitation of this work is of computational nature, since evolutionary methods require a
large population to be effective. Furthermore, while our alternative parameterization enables us to
evolve larger neural networks than standard neuroevolution, the number of parameters still grows
linearly with the number of datapoints, especially in pixel-based environments which tend to be
very highly dimensional. Tackling this issue, for instance by employing factorized distillation, is
therefore a promising avenue for future work. Another downside of our work is the number of
hyperparameters, since we need to tune both the ES parameters in the outer loop and the supervised
learning ones in the inner loop. However, anecdotal evidence seems to indicate that ES can adapt to
the inner loop parameters, for instance by increasing the magnitude of the dataset if the learning rate
is low. Understanding the interplay between parameters would allow for faster an better tuning. A
related approach would also be to evolve the inner loop parameters along with the dataset. Finally,
possible applications of the distilled datasets are ripe for investigation, for instance in continual or
life-long learning, and regularizing datasets to further promote interpretability.
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REPRODUCIBILITY STATEMENT

To encourage reproducibility, we described the method in detail in Section 4.2, include pseudocode
(Algorithm 1) and provide hyperparameters in Appendix B.1, in a format that corresponds directly
to the configs used by our code. We also open-source our code and our synthetic datasets at https:
//github.com/FLAIROx/behaviour-distillation.
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A HADES ALGORITHM

Algorithm 1 HaDES

Require: dataset size n, environment Env
Require: number of meta steps T , pop. size P , learning rate α, std σ

1: Initialize Dϕ = {(s, a)1, . . . , (s, a)n} ▷ e.g. randomly or sampled
2: for meta step = 0, . . . , T do
3: Initialize ξ ∼ N (0, σ)
4: for i = 0, . . . , P do
5: if i is even then
6: Perturb Dϕ with noise ξi = ξ to get Di ▷ antithetic noise
7: else
8: Perturb Dϕ with noise ξi = −ξ to get Di

9: Update ξ ∼ N (0, σ)
10: end if
11: Initialize policy πθ

12: Train policy πθ on Di using BC
13: Unroll πθ and compute expected return Ji = J(πθ,Env|Di)
14: end for
15: Approximate ∇ϕJ ≈ 1

Pσ

∑
i Jiξi

16: Update Dϕ = Dϕ + α∇ϕJ
17: end for
18: Train policy πθ on final Dϕ

19: return (πθ,Dϕ)

B IMPLEMENTATION DETAILS

B.1 HYPERPARAMETERS

Parameter Value
LR 0.005
NUM ENVS 4
NUM STEPS 1024
UPDATE EPOCHS 400
MAX GRAD NORM 0.5
ACTIVATION tanh
WIDTH 512
ANNEAL LR False
GREEDY ACT False
CONST NORMALIZE OBS False
NORMALIZE OBS True
NORMALIZE REWARD True

popsize 2048
dataset size 64
rollouts per candidate 1
n generations 2000
sigma init 0.03
sigma decay 1.0
lrate init 0.05
Evo. strategy OpenES

Table 2: Hyperparameters for HaDES in Brax. Top: inner loop parameters. Bottom: Outer loop
parameters.
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Parameter Value
NET mlp
LR 0.03
NUM ENVS 8
NUM STEPS 1024
UPDATE EPOCHS 64
MAX GRAD NORM 0.5
ACTIVATION relu
WIDTH 512 or 256
ANNEAL LR True
GREEDY ACT False
CONST NORMALIZE OBS True
NORMALIZE OBS False
NORMALIZE REWARD False

popsize 2048
dataset size 16
rollouts per candidate 2
n generations 5000
sigma init 0.5
sigma limit 0.01
sigma decay 1.0
lrate init 0.05
lrate decay 1.0
Evo. strategy SNES
temperature 20.0

Table 3: Hyperparameters for HaDES in MinAtar. Top: inner loop parameters. Bottom: Outer loop
parameters.

B.2 EXPERIMENTAL DETAILS

For all RL tasks we use Brax (Freeman et al., 2021), a suite of continuous control environments, and
MinAtar (Young & Tian, 2019), a set of Atari-like environments.

For dataset distillation, we report results on two image classification tasks: MNIST (LeCun, 1998),
which is composed of handwritten digits, and FashionMNIST (Xiao et al., 2017), which features
different clothing items.

For the evolutionary algorithm, we use OpenES Salimans et al. (2017) for Brax and image classifi-
cation, and use SNES Wierstra et al. (2014) for MinAtar. In the inner loop, we minimize either the
cross-entropy loss (discrete cases) or the negative log likelihood of the synthetic actions (continuous
action cases). All of our runs use 8 Nvidia V100 GPUs and take between 1 and 17 seconds per outer
loop generation. Detailed generation times are reported in Table 4. These times include outer loop
operations (all methods), inner loop policy training (HaDES only), and inner loop policy evaluation
(all methods). HaDES-R is slightly slower than HaDES-F since it trains two policies instead of just
one. Because we train policies from scratch every generation, the times reported are strict upper
bounds to how long it takes to train a policy on the final distilled datasets.

In image classification and MinAtar, we assign labels (i.e. classes or discrete actions) uniformly,
whereas in Brax we evolve the dataset labels alongside the observations since the environments
feature continuous actions.

We implement our algorithm in JAX (Bradbury et al., 2018) using the PureJaxRL (Lu et al., 2022),
gymnax (Lange, 2022) and evosax (Lange, 2023) libraries to enable parallel training on hardware
accelerators. We also use virtual batch normalization (Salimans et al., 2016) to stabilize training,
which was previously found to be crucial in stabilizing ES (Salimans et al., 2017).
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Environment Name ES Neuroevolution HaDES-F HaDES-R
Hopper 4.0 5.6 6.3
Walker2d 3.4 7.9 8.5
Reacher 2.7 6.7 7.2
Inverted Double Pendulum 2.6 4.4 4.6
Ant 6.6 11.1 12.1
Halfcheetah 10.7 14.8 16.9
Humanoid 7.8 13.9 15.1
HumanoidStandup 8.6 14.8 16.4

SpaceInvaders-MinAtar 1.6 1.5 1.6
Breakout-MinAtar 1.3 1.6 1.8
Asterix-MinAtar 1.9 2.1 2.4
Freeway-MinAtar 2.3 2.2 2.9

Table 4: Runtime of the different neuroevolution methods in seconds/generation. Times averaged
over 3 seeds rounded to the nearest tenth of a second. Standard deviation omitted, but the difference
between the fastest and slowest runs for any setting is usually smaller than 0.2 seconds.

C ADDITIONAL RESULTS

C.1 IMPACT OF DISTILLATION BUDGET ON PERFORMANCE
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Figure 6: Final return of HaDES policies as a function of distillation budget (i.e. dataset size). ES
neuroevolution and PPO returns also plotted for reference.

In Fig. 6, we investigate the impact of the distillation budget on the final performance of policies
trained with HaDES on three different environments. What we observe is that dataset sizes that are
too small degrade performance, likely because they cannot contain all the information required to
train an expert policy. This is particularly noticeable in Humanoid, where for a dataset of 4 state-
action pairs, the score drops as low as 1013. However, a score of 1000 corresponds to a humanoid
policy that keeps its balance and stays immobile, with lower scores indicating that the policy falls
and causes an early termination. This is an indication that for distillation budgets that are too low
to capture expert behaviour, HaDES does not fail to learn, and will still optimize return within the
constraints of the budget.

On the opposite end of the spectrum, we also observe return dropping for large dataset sizes (|D| =
256), despite the increased expressivity. This is possibly due to ES (and therefore HaDES) scaling
poorly to a large number of parameters. This problem can be alleviated by relying on better ES
methods, or by using a factorized approach to distillation.

C.2 DATASET GENERALIZATION ACROSS ARCHITECTURES AND HYPERPARAMETERS

Here we plot generalization plots for additional environments. As expected, HaDES-R generalizes
better than HaDES-F both to new hyperparameters and to new architectures.
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Figure 7: Dataset transfer to hopper architecture and training parameters.
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Figure 8: Dataset transfer to walker2d architecture and training parameters.
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Figure 9: Dataset transfer to reacher architecture and training parameters.
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Figure 10: Dataset transfer to inverted double pendulum architecture and training parameters.
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Figure 11: Dataset transfer to ant architecture and training parameters.
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Figure 12: Dataset transfer to halfcheetah architecture and training parameters.
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Figure 13: Dataset transfer to humanoid architecture and training parameters.
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Figure 14: Dataset transfer to humanoidstandup architecture and training parameters.
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