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ABSTRACT

Fine-tuning-as-a-service introduces a threat to Large Language Models’ safety
when service providers fine-tune their models on poisoned user-submitted datasets,
a process known as harmful fine-tuning attacks. In this work, we show that by
regularizing the gradient contribution of harmful samples encountered during fine-
tuning, we can effectively mitigate the impact of harmful fine-tuning attacks. To
this end, we introduce Antibody, a defense strategy that first ensures robust safety
alignment for the model before fine-tuning, and then applies a safety-preservation
learning algorithm during fine-tuning. Specifically, in the alignment stage before
fine-tuning, we propose optimizing the model to be in a flat loss region with
respect to harmful samples, which makes the safety alignment more resilient
to subsequent harmful fine-tuning. Then, in the fine-tuning stage, we design
a fine-tuning algorithm that applies a weighting scheme to all samples in each
training batch to inhibit the model from learning from harmful samples while
encouraging learning from benign samples. Experimental results demonstrate
that Antibody successfully mitigates harmful fine-tuning attacks while boosting
fine-tuning performance on the user-submitted dataset.

WARNING: This paper may contain offensive and harmful content.

1 INTRODUCTION

Fail to defense

(High HS)

Antibody (Ours)

Low HS and high FA

Fail to learn

(Low FA)

Figure 1: Fine-tuning on GSM8K (Cobbe
et al., 2021) with varying sample sizes and
a fixed harmful ratio of 20%. Larger sample
sizes improve fine-tuning accuracy (higher
FA) but degrade model safety (higher HS).

Fine-tuning-as-a-service (FTaaS) (e.g., OpenAI 1,
Mistral 2, etc.) is a powerful method for adapt-
ing Large Language Models (LLMs) to user-defined
tasks. This service presents several key advantages.
For instance, users only need to upload their own data,
and the service automatically fine-tunes the model
and returns a customized version. This process elim-
inates the need for expertise in machine learning or
access to large computational resources. It also al-
lows users to fine-tune proprietary models. However,
this accessibility is vulnerable to fine-tuning attacks,
where a model’s safety alignment can be subverted
by fine-tuning on a few harmful samples (Yang et al.,
2023; Yi et al., 2024a; Qi et al., 2024; Huang et al.,
2025b). The resulting compromised model, when
released to the user, could be exploited for malicious
purposes. This motivates the need for developing
defense methods that are resistant to such harmful
fine-tuning attacks while preserving the learning effi-
cacy of the service.

1https://platform.openai.com/docs/guides/model-optimization
2https://docs.mistral.ai/guides/finetuning/
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The standard pipeline for FTaaS consists of two stages: an initial alignment stage, where a service
provider performs safety alignment on a model, and a subsequent fine-tuning stage, where users
submit a dataset and the provider applies Supervised Fine-tuning (SFT) to optimize the model
for them. The harmful fine-tuning attack happens during the fine-tuning stage, where a user may
intentionally or unintentionally inject harmful data into their submitted dataset. The resulting dataset
typically comprises a small fraction of harmful samples mixed with benign ones.

To mitigate harmful fine-tuning attacks, current studies propose defense strategies for each stage of
the FTaaS process (Huang et al., 2024b). The first category, alignment stage defenses (Liu et al.,
2024b; Rosati et al., 2024; Tamirisa et al., 2025; Huang et al., 2024c; 2025b; Zhao et al., 2025; Liu
et al., 2024a), focuses on making the base model inherently resilient to malicious data before it is
released to users. These methods proactively create a robust model’s safety alignment. For instance,
Vaccine (Huang et al., 2024c) makes the model’s internal embeddings of harmful content more
resistant to adversarial manipulation, while Booster (Huang et al., 2025b) proposes a regularization
term in the alignment stage that aims to minimize the harmful loss reduction in the fine-tuning attack.
The next category, fine-tuning stage defenses (Mukhoti et al., 2024; Bianchi et al., 2024; Zong et al.,
2024; Huang et al., 2024a; Lyu et al., 2024; Wang et al., 2024; Eiras et al., 2025; Li et al., 2025a)
proposes various strategies to prevent the model from learning from harmful samples while still being
able to learn from benign data. Examples include mixing alignment data into the training process
(Huang et al., 2024a; Eiras et al., 2025) or modifying system prompts (Wang et al., 2024; Lyu et al.,
2024; Huang et al., 2025a). More recently, post-fine-tuning defenses (Casper et al., 2025; Yi et al.,
2024b; Hsu et al., 2024) have been proposed to repair a model’s safety alignment after the fine-tuning
is complete. Despite these diverse approaches, many existing methods either provide insufficient
protection against harmful fine-tuning attacks or come at the cost of the model’s performance on the
user’s task, as illustrated in Figure 1.

In this paper, we propose Antibody, a defense strategy that attenuates the influence of harmful
gradients through an integrated two-stage framework implemented across the alignment and fine-
tuning stages. Specifically, in the alignment stage before harmful fine-tuning takes place, our key
idea is to build a robust safety alignment by flattening the loss landscape w.r.t. potential harmful
samples, thereby making the instilled safety behavior more difficult to remove, even when the model
is subsequently fine-tuned on new harmful samples. Then, in the fine-tuning stage, we leverage the
safety alignment knowledge already embedded in the model after the alignment stage to introduce
a dynamic weighting scheme that down-weights the contribution of harmful samples during fine-
tuning. Empirical results show that Antibody successfully mitigates harmful fine-tuning attacks while
offering a competitive fine-tuning performance across various settings. See Figure 1 for an example
of performance gain.

Our contributions are summarized as follows:

• Robust Alignment. We propose to optimize the model to be in a flat loss region with respect to
harmful samples, which makes safety alignment harder to be removed.

• Safety Fine-tuning. We propose a safety fine-tuning method that applies a weighting scheme to
all samples in each training batch to prevent the model from learning from harmful samples while
encouraging learning from benign samples.

• Extensive Evaluation. We validate Antibody performance across different downstream datasets,
model architectures, and fine-tuning setups.

2 RELATED WORKS

Alignment Stage Defenses. Alignment stage methods aim to make a model more robust against
fine-tuning attacks by modifying the alignment process. Vaccine (Huang et al., 2024c) aims to reduce
harmful embedding drift by adding perturbations to the model’s embeddings during the alignment
stage. RepNoise (Rosati et al., 2024) further proposes to utilize a harmful dataset to align the model
so that its harmful embeddings move toward random noise, thus removing harmful information
that can be extracted from those embeddings. TAR (Tamirisa et al., 2025) applies meta-learning
to sustain a high loss in harmful samples after harmful fine-tuning. Booster (Huang et al., 2025b)
proposes to minimize the harmful sample loss reduction rate. T-Vaccine (Liu et al., 2024a) is a
memory-efficient improvement over Vaccine that only applies perturbations to some safety-critical

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

layers. These methods offer a significant computational advantage, as the safety alignment is a
one-time cost incurred before subsequent fine-tuning. However, a potential disadvantage is that
this safety alignment is static. This means that it may lack the flexibility to counter various attack
configurations, such as a high number of fine-tuning steps or large learning rates.

Fine-tuning Stage Defenses. Fine-tuning stage methods modify the fine-tuning process to mitigate
the impact of harmful data on the model’s safety while ensuring performance on downstream tasks.
LDIFS (Mukhoti et al., 2024) uses a regularization loss to reduce the shift in model embeddings
of the aligned model. Other methods utilize additional alignment data to enhance model safety
during fine-tuning. SafeInstr (Bianchi et al., 2024) mixes safety examples into the fine-tuning data to
maintain alignment knowledge. Lisa (Huang et al., 2024a) alternately updates the fine-tuning data
with safety examples and includes a proximal term to constrain the drift of the model’s weights. Some
methods modify the system prompt to improve model safety. PTST (Lyu et al., 2024) proposes using
a general system prompt during fine-tuning and a safety prompt during inference. BEA (Wang et al.,
2024) introduces a backdoor to trigger refusal behavior on harmful inputs. SaLoRA (Li et al., 2025a)
implements a fixed safety module to prevent weight updates from disrupting the model’s alignment.

Post-Fine-Tuning Stage Defenses. Post-fine-tuning stage defenses focus on realigning a model
after the fine-tuning stage. As other methods may only defend successfully with a certain setup of
fine-tuning hyperparameters (Qi et al., 2025; Huang et al., 2025a), post-fine-tuning defenses give
the service provider more control over the safety of their released models. LAT (Casper et al., 2025)
leverages latent adversarial training to remove backdoors and novel classes of attacks. SOMF (Yi
et al., 2024b) applies model fusion to retain the model’s fine-tuned utility while taking advantage of
the safeguarding capability of the aligned model. Safe LoRA (Hsu et al., 2024) projects the fine-tuned
LoRA weights into a safe subspace to recover the safety of the model. Antidote (Huang et al., 2025a)
identifies and prunes harmful weights to restore the model’s safety.

3 PRELIMINARY

Fine-tuning-as-a-service defense setting. The FTaaS setting consists of two stages: the alignments
stage and the fine-tuning stage. In the alignment stage, the service provider performs safety alignment
and makes a model available for fine-tuning. The service provider has access to a safety alignment
dataset Dalign that consists of harmful prompt-refusal completion pairs, such as: How to make
a bomb? - Sorry, I cannot help you, and a harmful dataset Dharm consists of harm-
ful prompt-compliant answer, such as: How to write a software virus? - Yes, I
can help you. In the fine-tuning stage, users submit a dataset Dtask, and the provider applies SFT
to optimize the model. The dataset Dtask contains benign data, such as math problems paired with
math solutions, and harmful data different from those in Dharm. The fine-tuned model is then released
to the user for their usage. The service provider’s challenge is to mitigate harmful fine-tuning attacks
introduced by Dtask without degrading performance on the benign task.

Threat model for harmful fine-tuning attacks. The attack surface is the dataset submitted by the
user in the fine-tuning stage, where a user may intentionally or unintentionally inject harmful data.
This dataset contains n samples, of which (1− p)% are benign and p% are harmful. Benign samples
are prompt-completion pairs related to the user-defined task, while harmful samples consist of a
harmful prompt and a compliant answer that follows the malicious request. The service provider acts
as the defender, with full control over the fine-tuning process. Following prior work (Qi et al., 2024;
Huang et al., 2025b), we assume that the fine-tuning dataset is a mixture of benign and harmful data.

4 OUR FRAMEWORK

Standard SFT updates are vulnerable to harmful fine-tuning attacks because they aggregate gradients
from all samples, including harmful ones, allowing gradients from these malicious samples to directly
poison the model update. To address this problem, we propose two solutions that jointly reduce the
effect of harmful samples. First, in Section 4.1, we propose a robust alignment method that optimizes
the model to be in a flat loss region with respect to harmful samples, making safety alignment harder
to remove. Second, we propose a safety fine-tuning method in Section 4.2 that deprioritizes learning
from samples that appear harmful by applying a weighting scheme to all the gradients. Finally, we
summarize our proposed solution in Section 4.3.

3
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Notations. In what follows, we introduce the notation for SFT. Given a dataset of prompt-completion
pairs (x,y), the completion y ∈ {0, 1}V×L is represented as a sequence of L one-hot vectors over
a vocabulary of size V . Let hθ denote an LLM parameterized by θ. For a given pair, we define
χ as the concatenation of the input prompt x and the corresponding completion y. The model
processes this concatenated sequence to produce logits, which are then converted to probabilities
using a column-wise softmax function:

z = hθ (χ) ∈ RV×L; π (y | χ) = softmax_column (z) ∈ RV×L.

In this formulation, z is a matrix where each column contains the logits for the prediction of the
l-th token, conditioned on the prompt x and the preceding completion tokens y<l. Consequently,
log π(y | χ) ∈ RV×L represents the per-token log-likelihood sequence. SFT aims to minimize the
negative log-likelihood, or cross-entropy loss, over the training data. The loss for a single sample is
defined as the summation over the negative log-likelihoods of each token in the completion:

ℓθ(x,y) ≜
L∑

l=1

[ℓθ(χ)︸ ︷︷ ︸
1×L

]l = −
L∑

l=1

e⊤yl
· [log πθ(y | χ)]l (1)

where eyl
is the one-hot vector for the l-th token of the ground-truth completion y, and [·]l denotes

the l-th column vector of the matrix.

4.1 ROBUST ALIGNMENT VIA FLATNESS REGULARIZATION

Our aim is to propose a defense method that incorporates harmful data during the alignment stage
to build a safety alignment robust to harmful fine-tuning attacks. The core of our strategy is to
ensure a robust safety alignment by shaping the model’s loss landscape. A flat loss landscape for
harmful samples makes the instilled safety behavior more difficult to remove, even when the model
is subsequently fine-tuned on new harmful samples. We denote Lalign (θ) as the empirical loss on
the alignment dataset Dalign and Lharm (θ) as the empirical loss on the harmful dataset Dharm. We
formulate the defense problem in the alignment stage as the following optimization problem:

min
θ
Lalign (θ) s.t. θ ∈ argminθ′ Lsharp (θ

′) (2)

where we denote Lsharp (θ
′) ≜ Lharm (θ′)−minϕ∈Bρ(θ′) Lharm (ϕ) and Bρ (θ′) := {θ′′ : ∥θ′′−θ′∥2 ≤

ρ}, with the radius ρ > 0. Evidently, by definition, Lsharp(θ
′) represents the sharpness of the harmful

loss Lharm around θ′. Therefore, the constraint θ ∈ argminθ′ Lsharp (θ
′) ensures that θ lies in a flat

region of the harmful loss landscape. We can interpret the optimization problem in (2) as follows:
among the models θ that lie in the flat region of the harmful loss Lharm, we aim to find the one that
minimizes the alignment loss Lalign. Moreover, driving the models θ into the flat regions of the
harmful loss maximally reduces the influence of harmful prompts in the supervised fine-tuning phase
(i.e., phase 2), while minimizing the alignment loss ensures strong alignment performance. The
motivation for using minimization of Lharm in our sharpness formulation is its direct analogy to the
subsequent harmful fine-tuning, where harmful gradients minimize the loss of harmful samples in the
user’s dataset. While minimizing Lharm in isolation would encourage harmful outputs, our objective
also includes the alignment loss Lalign. Minimizing this alignment loss forces the model to maintain a
high harmful loss Lharm, ensuring it produces refusal responses to harmful prompts.

In the following section, we develop the theoretical foundations that rigorously justify the necessity of
placing the model in the harmful-loss flat region to mitigate the negative impact of harmful prompts
during the second phase (see Proposition 4.2).

We now present the solution to the optimization problem in (2). Let the current solution be θt. We
aim to find a descent direction δt in the update θt+1 = θt − ξ δt, where ξ is a step size, such that
Lalign (θt+1) and Lsharp(θt+1) decrease. To this end, we find δt by solving:

δt ∈
1

2
argminδ

∥∥∇θLalign(θt)− δ
∥∥2
2

s.t. ∇θLsharp(θt)
⊤δt ≥ at > 0 (3)

where at is a scalar value. This optimization problem ensures that the update direction δt is as close
as possible to the alignment gradient while still making progress in minimizing the sharpness loss.

To find the solution to the optimization problem in Equation (3), we present the following theorem:

4
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Theorem 4.1. The optimal solution to the optimization problem in Equation (3) is δ∗t = ∇θLalign(θt)+

λt∇θLsharp(θt), where λt = max
{
0,

at−∇θLsharp(θt)
⊤∇θLalign(θt)

∥∇θLsharp(θt)∥2
2

}
.

We provide the proof in Appendix A.1. In this theorem, the variable at adjusts the weight of the
sharpness loss, ensuring that the update direction δt decreases the alignment loss without sacrificing
the sharpness objective. In practice, we can choose at = ξ ∥∇θLsharp(θt)∥22 for dynamic scaling. To
find minϕ∈Bρ(θ) Lharm (ϕ), we start from ϕ0 = θt and then use K = 1 normalized gradient descent
steps ϕk+1 = ϕk − ρ∇ϕLharm(ϕ

k)/∥∇ϕLharm(ϕ
k)∥2.

4.2 SAFETY FINE-TUNING WITH WEIGHTED LOSS

In the fine-tuning stage, our objective is to prevent the model from learning from harmful samples
present in the user-submitted dataset. Let’s consider a mini-batch of data B = {(xi,yi)}Bi=1, where,
for simplicity, we assume all completion yi have similar length L. This batch consists of both benign
and harmful samples. The standard SFT update does not distinguish between these two types of
samples and simply combines the gradients from the entire batch. This process, which learns from
both benign and harmful samples, is illustrated as follows:

θt+1 ←θt − η
1

BL

 ∑
(xi,yi) is benign

∇ ℓθt(xi,yi) +
∑

(xi,yi) is harmful

∇ ℓθt(xi,yi)

 . (4)

Due to our flatness regularization proposed in the alignment stage, the model is optimized to be in a
flat loss region with respect to harmful samples, resulting in their gradients being negligible at the
beginning of the fine-tuning stage. Consequently, the standard update rule effectively simplifies to:

θt+1 ←θt − η
1

BL

 ∑
(xi,yi) is benign

∇ ℓθt(xi,yi)

 . (5)

To understand this effective update rule, we analyze the learning dynamics of a mini-batch update.
The following proposition extends the single-sample analysis of Equation (5) in (Ren & Sutherland,
2025) by decomposing the loss change on a test sample after one weighted mini-batch update:

Proposition 4.2. Let Bb ⊆ B be the set of benign samples in the training batch. The loss change on
a test sample (xo,yo) after an update step in Equation (5) can be decomposed as:

∆ ℓ(yo,xo) = −
η

BL

M∑
m=1

∑
(xi,yi)∈Bb

L∑
l=1

[At(χo)︸ ︷︷ ︸
1×V×M

]m [Kt(χo,χi)︸ ︷︷ ︸
V×V×M×L

]m,l [Gt(χi)︸ ︷︷ ︸
V×L

]l +O(Mη2), (6)

where the completion of the test sample has length M . Here, [At(χo)]m = ∇zo,m [ℓθt(χo)]m,
[Kt(χo,χi)]m,l = (∇θzo,m(χo)|θt)(∇θzi,l(χi)|θt)⊤ is the empirical neural tangent kernel (eNTK)
corresponding to the m-th logit of yo and l-th logit of yi, and [Gt(χi)]l = [∇zi,l

[ℓθt(χi)]l]
⊤ are the

gradients of the loss on the l-th token of yi with respect to the logits.

We provide the proof for this proposition in Appendix A.2. This proposition decomposes the change
in loss on a test sample (xo,yo) into a sum of token-wise influences, each quantifying the interaction
between a token from a benign sample and a token from the test sample. This influence is governed
by the following components. The eNTK term Kt(χo,χi), which is the product of the logit gradients
with respect to the parameters, measures the similarity between samples. The gradient term Gt(χi)
provides the energy and direction for model adaptation to the hard labels of the training sample. The
other term At(χo) is of little interest in our analysis as it depends only on the test sample.

This proposition provides insight into how the model’s loss on a test sample (xo,yo) changes after
each mini-batch update. For a test sample (xo,yo) that belongs to the same task as the benign sample
(xi,yi) (∥Kt∥F is large), the mini-batch update will decrease the loss on this test sample. In contrast,
for harmful test samples that are inherently dissimilar to the benign sample in the batch (small
∥Kt∥F ), this update will not change the loss on (xo,yo), thus preserving the model’s alignment.

5
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Figure 2: The effect of our proposed fine-tuning method. Left and middle plots show the score (rθ)
distribution before and after fine-tuning, while the right plot compares the fine-tuning loss of our
method (Antibody) against SFT on benign and harmful samples in the fine-tuning dataset.

However, even small harmful gradients can accumulate over multiple updates, potentially leading
to degradation in the model’s safety. To further mitigate the influence of harmful samples during
fine-tuning, we propose a weighted loss function that assigns different weights to each sample in the
training batch. Our goal is to have the weights wθt(xi,yi) be small for harmful samples and large for
benign ones. To compute these weights, we leverage the safety alignment knowledge already instilled
in the model after the alignment stage. Specifically, for each input xi, we calculate a score rθt by
comparing the model’s likelihood of generating the target completion yi versus a generic refusal, yr

(e.g., “I cannot fulfill your request”). This score is then normalized across the batch
using a softmax function to produce the weight:

rθt(xi,yi) ≜ log

(
πθt(yi|xi)

πθt(yr|xi)

)
, wθt(xi,yi) ≜

exp (rθt(xi,yi)/τ)∑B
j=1 exp (rθt(xj ,yj)/τ)

, (7)

where τ is the softmax temperature. The intuition behind this weighting scheme is as follows. A
safety-aligned model, when presented with a harmful prompt xi, should assign a higher probability
to the refusal completion yr than to the harmful completion yi. This results in a low score rθ, and
consequently a small weight. Conversely, as the model adapts to benign data during training, it
should find the benign target completion yi far more likely than a refusal, leading to a high score
and a large weight for benign samples. We empirically validate this mechanism in Figure 2. The
left plot shows that before fine-tuning, scores (rθ) for harmful samples are generally lower than for
benign ones, a direct result of the alignment process. After fine-tuning (middle plot), the two score
distributions diverge further: the benign distribution shifts to the right, indicating successful learning,
while the harmful distribution remains low, creating a distinct separation. Consequently, the right plot
demonstrates that our method’s loss on benign samples decreases, confirming task adaptation, while
its loss on harmful samples remains high, effectively ignoring them. This stands in stark contrast to
standard SFT, which overfits by indiscriminately reducing its loss on both benign and harmful data.

The proposed weighting scheme allows us to amplify the contribution of benign samples while
suppressing that of harmful ones, which allows our mini-batch weighted update to be dominated by
benign samples and effectively reduces to the following:

θt+1 ←θt − η
1

L

 ∑
(xi,yi) is benign

wθt(xi,yi)∇ ℓθt(xi,yi)

 . (8)

In the ideal case, the weights for harmful samples are zero and the weights for benign samples are
uniform, wθt(xi,yi) =

1
|Bb| ∀(xi,yi) ∈ Bb. This reduces the update in Equation (8) to the standard

SFT update rule applied only to benign samples, where the gradient is normalized by the total number
of tokens in the benign set, |Bb|L.

We now extend Proposition 4.2 to the weighted mini-batch setting of Equation (8).
Proposition 4.3. Given a similar setup as in Proposition 4.2, the loss change on a test sample
(xo,yo) after an update step in Equation (8) can be decomposed as:

∆ ℓ(yo,xo) = −
η

L

M∑
m=1

∑
(xi,yi)∈Bb

L∑
l=1

wθt(xi,yi) [At(χo)︸ ︷︷ ︸
1×V×M

]m [Kt(χo,χi)︸ ︷︷ ︸
V×V×M×L

]m,l [Gt(χi)︸ ︷︷ ︸
V×L

]l +O(Mη2),

(9)
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where the weight wθt(xi,yi) is defined in Equation (7).

We provide the proof for this proposition in Appendix A.2. This mechanism protects the model’s
safety alignment while simultaneously improving learning on benign data. The model’s loss on a
harmful test sample (xo,yo) will remain unchanged as the batch gradient is predominantly contributed
by benign samples. Conversely, for a benign test sample (xo,yo) in the same domain as the benign
sample (xi,yi), the large weight wθt(xi,yi) will amplify the influence of the benign gradient,
thereby boosting model learning on the user’s task.

Finally, to further prevent degradation in model safety, we propose an additional objective in the
alignment stage to ensure the weights remain effective for harmful samples. In the fine-tuning
stage, exposure to harmful samples can still cause the model to drift towards unsafe behavior,
which increases the weights assigned to harmful samples. To this end, we first simulate model
parameter drift in the fine-tuning stage using the harmful samples in the alignment stage via a harmful
perturbed model θpert ≜ θ − ρ∇θLharm(θ)/∥∇θLharm(θ)∥2. Then, we construct a refusal dataset
Drefusal = {(x,yr) | x ∈ Dharm,yr ∼ Yr}, where Yr is a set of generic refusal responses. We then
add the following objective to the alignment stage:

Lrefusal(θpert) ≜
∑

(x,yr)∈Drefusal

ℓθpert(x,yr) = −
∑

(x,yr)∈Drefusal

log πθpert(yr|x), (10)

where we do not back-propagate the gradient through θpert. By optimizing this objective, we want to
simulate a situation in the fine-tuning stage where the model being updated using harmful samples can
still maximize log πθpert(yr|x), hence having a low corresponding weight, as the weight is inversely
proportional to the likelihood of generating a refusal response.

4.3 SUMMARY

In summary, our proposed defense method is composed of two main stages. The first one is in the
alignment stage, where the optimization objective is the following loss function:

Lalign(θt) + λt Lsharp(θt) + λrefusal Lrefusal(θpert,t), (11)

where λt, as detailed in Theorem 4.1, and λrefusal is a hyper-parameter that controls the strength of the
refusal loss term. Then, in the subsequent fine-tuning stage, the model is adapted to user-submitted
data using the proposed weighted update algorithm:

θt+1 ←θt − η
1

L

[
B∑
i=1

wθt(xi,yi)∇ ℓθt(xi,yi)

]
. (12)

By combining these two solutions, the proposed defense method ensures that harmful data has a
minimal effect on the model update: the flatness regularization from the alignment stage defense
results in a small gradient magnitude for harmful samples, and the weighting scheme from the
fine-tuning stage defense gives them a smaller contribution to the batch gradient.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Datasets. We follow previous works (Huang et al., 2025b; Qi et al., 2025) to set up the data in
alignment, fine-tuning, and evaluation steps. For harmful data, we use the dataset from (Huang et al.,
2025b; Qi et al., 2025), which was curated and enriched from the BeaverTails dataset (Ji et al., 2023).
To simulate a fine-tuning attack, we use the following four datasets: SST2 (Socher et al., 2013),
AGNEWS (Zhang et al., 2015), GSM8K (Cobbe et al., 2021), and AlpacaEval (Li et al., 2023).

Models & Baseline Methods. We conduct experiments on Llama-2-7B (Touvron et al., 2023),
Qwen-2-7B (Yang et al., 2024) and Gemma-2-9B (Team et al., 2024). We compare our method
against various baseline methods that span across different defense stages. For the alignment stage
solution, we compare with Supervised Fine-Tuning (SFT), which uses Supervised Fine-tuning for
both alignment and fine-tuning stages, Vaccine (Huang et al., 2024c), and Booster (Huang et al.,
2025b). For the fine-tuning stage solution, we compare with Lisa (Huang et al., 2024a).
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Metrics & Evaluation. We evaluate the fine-tuned models on two key aspects: safety and task-
specific performance. To evaluate the safety of the model, we use Harmful Score (HS), which
measures the percentage of responses flagged as harmful by a moderation model (Ji et al., 2023). For
task-specific performance, we use Fine-tuning Accuracy (FA). Harmful Score is calculated using the
699 malicious prompts from the BeaverTails-Evaluation benchmark (Ji et al., 2023). We evaluate the
fine-tuning accuracy of SST2 with 872 samples, AGNEWS with 1000 samples, GSM8K with 1000
samples, and AlpacaEval with 105 samples.

Training Details. Following prior works (Huang et al., 2024a;c; 2025b), we use LoRA (Hu et al.,
2022) for alignment and fine-tuning. In the alignment phase, we train the model for 20 epochs using
the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate of 5×10−4 and weight decay
of 0.1. In the fine-tuning attack phase, we fine-tune the model for 20 epochs on SST2, AGNEWS,
and GSM8K, and for 100 epochs on AlpacaEval. We use the AdamW optimizer with a learning rate
of 1 × 10−5, weight decay of 0.1, and a warmup ratio of 0.1. A batch size of 16 is used for both
the alignment and fine-tuning attack phases, except for experiments with the Gemma2-9B model,
which uses a batch size of 10 due to GPU memory constraints. For the default experiment setting, we
fine-tune Llama-2-7B on n = 1000 samples of the GSM8K dataset with a harmful ratio p = 0.2 and
report averages over three random seeds. For AlpacaEval, we use 700 samples and run a single seed
to reduce API costs. More details for experiment setup can be found in Appendix B.

5.2 MAIN EXPERIMENTS

Generalization to different fine-tuning datasets. In Table 1, we present the performance of different
methods on four datasets: SST2, AGNEWS, GSM8K, and AlpacaEval. Our method achieves the
best fine-tuning accuracy on SST2 (93.55%) and AGNEWS (87.30%) and competitive performance
on GSM8K (15.07%) and AlpacaEval (58.10%). Furthermore, our method successfully defends
the model, as demonstrated by the lowest average harmful score of 7.04%. This represents an
improvement of over 8 percentage points compared to the runner-up method, Lisa. These experiments
show that, compared to other baselines, Antibody is the only method that successfully defends against
harmful fine-tuning while effectively adapting to various user-defined tasks.

Table 1: Performance of models trained on different fine-tuning datasets. The best and the second
best are highlighted in orange and gray, respectively.

Methods SST2 AGNEWS GSM8K AlpacaEval Average
(Llama-2-7B) HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑

SFT 36.29 92.70 34.57 85.40 23.94 10.90 39.48 61.43 33.57 62.61
Vaccine 44.16 91.71 39.73 82.43 23.60 11.70 55.94 54.33 40.86 60.04
Lisa 22.94 92.51 20.93 84.50 5.86 9.23 11.44 57.62 15.29 60.97
Booster 14.31 92.59 15.88 86.70 9.06 16.27 36.91 65.24 19.04 65.20
Antibody 1.48 93.55 1.24 87.30 1.24 15.07 24.18 58.10 7.04 63.51

Table 2: Performance under different model architectures in the default setting. The best and the
second best are highlighted in orange and gray, respectively.

Methods Llama-2-7B Qwen-2-7B Gemma-2-9B Average
(GSM8K) HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑
SFT 23.94 10.90 14.54 64.66 32.05 56.73 23.51 44.10
Vaccine 23.60 11.70 18.17 62.20 38.24 54.37 26.67 42.76
Lisa 5.86 9.23 3.91 63.90 13.02 54.97 7.60 42.70
Booster 9.06 16.27 2.19 68.63 22.13 58.97 11.13 47.96
Antibody 1.24 15.07 0.62 67.30 0.91 57.43 0.92 46.60

Generalization across diverse model architectures. As shown in the table Table 2, our method
consistently achieves the lowest harmfulness score across all models. It also demonstrates superior
stability, with significantly less variation in harmfulness (1.24% for Llama-2-7B, 0.62% for Qwen-2-
7B, and 0.91% for Gemma-2-9B). While ensuring this high level of safety, our method maintains a
competitive fine-tuning accuracy of 46.60% on average, lagging behind Booster by 1.36 percentage
points but leading over SFT by 2.5 percentage points. These findings confirm that our method
generalizes effectively across diverse model architectures.
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Table 3: Performance under different harmful ratios in the default setting. clean means no harmful
samples or p = 0. The best and the second best are highlighted in orange and gray, respectively.

Methods Harmful Score ↓ Fine-tuning Accuracy ↑
(n = 1000) clean p = 0.05 p = 0.1 p = 0.15 p = 0.2 p = 0.25 Average clean p = 0.05 p = 0.1 p = 0.15 p = 0.2 p = 0.25 Average

SFT 2.05 10.68 15.59 19.06 23.94 27.85 16.53 12.23 11.83 11.43 10.90 10.90 10.53 11.30
Vaccine 1.29 7.15 13.07 19.55 23.60 29.33 15.67 12.27 12.23 11.77 11.77 11.77 11.77 11.93
Lisa 0.95 3.05 3.82 4.62 5.86 8.16 4.41 9.97 9.57 9.60 8.90 9.23 9.20 9.41
Booster 1.38 1.76 2.91 5.10 9.06 13.49 5.62 16.53 15.97 16.50 16.30 16.43 15.70 16.24
Antibody 0.95 1.14 0.95 1.14 1.24 1.29 1.12 15.83 14.57 15.40 15.40 15.07 14.37 15.12

Robustness across harmful ratios. In Table 3, we present the defense and fine-tuning performance
of different methods under varying harmful ratios ranging from 0.05 to 0.25. Compared to other
baselines, our method consistently achieves the lowest harmful score across all ratios. Compared
to Lisa, the second-best performer, our method’s harmful score is 3.29 percentage points lower,
while improving fine-tuning accuracy by 5.71 percentage points. Furthermore, our method maintains
competitive fine-tuning accuracy, closely following the top performer, Booster, while substantially
outperforming other baselines. These results underscore our approach’s efficacy in defending against
fine-tuning attacks with a significant gain in model utility over SFT across different harmful ratios.

5.3 ABLATION STUDIES
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Figure 3: Harmful score with different fine-tuning
epochs (Left) and learning rates (Right).

Robustness to different fine-tuning hyper-
parameters. Figure 3 compares Antibody and
Booster’s robustness under varying fine-tuning
epochs and learning rates. As fine-tuning epochs
increase from 10 to 100, Booster’s harmful score
increases significantly, while Antibody main-
tains a harmful score below 10%. Similarly, as
the learning rate increases, Booster’s harmful
score rises rapidly, whereas Antibody’s only be-
gins to increase significantly when the learning
rate reaches 1× 10−4. Antibody’s ability to suc-
cessfully defend across a wide range of epoch
and learning rate values demonstrates that it is
an effective and reliable defense method for various fine-tuning conditions.

Table 4: Ablation on our proposed compo-
nents. Each row is a cumulative addition to
the previous one. We color-code the perfor-
mance change from the SFT baseline.

Method GSM8K HS ↓ GSM8K FA ↑
SFT 23.94 10.90
+ Align with λt Lsharp(θt) 13.02 (−10.92) 16.00 (+5.20)

+ Fine-tune with wθt 4.44 (−19.50) 13.83 (+2.93)

+ Align with Lrefusal(θt) (Antibody) 1.24 (−22.70) 15.07 (+4.17)

Effectiveness of the proposed components. As
shown in Table 4, our ablation study demonstrates the
progressive benefit of each component. All the com-
ponents show beneficial effects as they progressively
reduce the harmful score. Regarding the fine-tuning
accuracy, even though the weighted update algorithm
proposed in the fine-tuning stage reduces the perfor-
mance gain from the sharpness alignment in the align-
ment stage, it still brings a significant improvement
compared to the SFT baseline. Finally, the refusal
loss term completes our method, delivering a sharp
reduction in harmful score to 1.24% while boosting the final accuracy to 15.07% compared to SFT.

6 CONCLUSION

In this paper, we introduce Antibody, a defense algorithm designed to counteract harmful fine-tuning
attacks by attenuating the gradients of harmful samples encountered during fine-tuning. Specifically,
Antibody first establishes a robust safety alignment by optimizing for a flat loss region with respect to
harmful samples, and then employs a dynamic weighting scheme during fine-tuning to favor learning
on benign data and suppress the influence of malicious inputs. Our extensive evaluations demonstrate
that Antibody effectively mitigates attacks across settings while boosting fine-tuning performance,
making it a practical and powerful solution for FTaaS providers.
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A PROOFS

A.1 PROOF OF THE OPTIMAL SOLUTION FOR FLATNESS REGULARIZATION

Proof. We can write the Lagrange function with λ ≥ 0 for Equation (3) as

h(δ, λ)
.
=

1

2
∥∇θ Lalign (θt)− δ∥2

2
+ λ

(
at −∇θ Lsharp (θt)

⊤
δ
)

With the Karush-Kuhn-Tucker (KKT) theorem, we have:

∇δ h(δ, λ) = − (∇θ Lalign (θt)− δ)− λ∇θ Lsharp (θt) = 0,

∇θ Lsharp (θt)
⊤
δ ≥ at,

λ ≥ 0,

λ
(
at −∇θ Lsharp (θt)

⊤
δ
)
= 0,

From the above constraints, we can obtain:

δ = ∇θ Lalign (θt) + λ∇θ Lsharp (θt)

λ = max

{
0,

at −∇θ Lsharp (θt)
⊤∇θ Lalign (θt)

∥∇θ Lsharp (θt)∥22

}
.

A.2 PROOF OF PROPOSITION 4.2 AND PROPOSITION 4.3

We note that the following derivation for Proposition 4.3 can be used for Proposition 4.2, since
Proposition 4.2 can be recovered from Proposition 4.3 by setting the weight to be uniform across all
samples in the batch wθt(xi,yi) =

1
B .

Proof. Let zo,m(χo) ∈ RV be the pre-softmax logits at position m ∈ {1, . . . ,M}. Assume losses
are sums over tokens (no token averaging): ℓθ(χo) =

∑M
m=1[ℓθ(χo)]m. A first-order Taylor

expansion around θt gives:

∆ℓ(yo,xo) ≜
M∑

m=1

(
[ℓθt+1

(χo)]m − [ℓθt(χo)]m
)

(13)

=

M∑
m=1

〈
∇θ[ℓθt(χo)]m︸ ︷︷ ︸

1×d

, θt+1 − θt︸ ︷︷ ︸
d×1

〉
+O

(
M∥θt+1 − θt∥2

)
, (14)

where d is the number of parameters in the model. By the chain rule,

∇θ[ℓθt(χo)]m = ∇zo,m [ℓθt(χo)]m︸ ︷︷ ︸
1×V

∇θzo,m(χo)︸ ︷︷ ︸
V×d

. (15)

Under the weighted SFT update stated above,

θt+1 − θt = −
η

L

∑
(xi,yi)∈Bb

wθt(xi,yi)

(
∇θ

[
L∑

l=1

[ℓθt(χi)]l

])⊤

(16)

= − η

L

∑
(xi,yi)∈Bb

L∑
l=1

wθt(xi,yi)

∇zi,l
[ℓθt(χi)]l︸ ︷︷ ︸
1×V

∇θzi,l(χi)︸ ︷︷ ︸
V×d


⊤

. (17)
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Substituting Equation (15) and Equation (17) into Equation (14) and rearranging the sums yields

∆ℓ(yo,xo) = −
η

L

M∑
m=1

∑
(xi,yi)∈Bb

L∑
l=1

wθt(xi,yi) ∇zo,m [ℓθt(χo)]m︸ ︷︷ ︸
1×V

×∇θzo,m(χo)︸ ︷︷ ︸
V×d

(18)

×∇θzi,l(χi)
⊤︸ ︷︷ ︸

d×V

×
(
∇zi,l

[ℓθt(χi)]l
)⊤︸ ︷︷ ︸

V×1

+ O
(
M∥θt+1 − θt∥2

)
.

Identifying [At(χo)]m = ∇zo,m [ℓθt(χo)]m, [Kt(χo,χi)]m,l = (∇θzo,m(χo)|θt)(∇θzi,l(χi)|θt)⊤,

and [Gt(χi)]l =
[
∇zi,l

[ℓθt(χi)]l
]⊤

. Following the assumption in Appendix B.1 of (Ren & Suther-
land, 2025) that ∥θt+1 − θt∥ = O(η), the remainder scales as O(Mη2). Collecting terms gives the
final decomposition

∆ℓ(yo,xo) = −
η

L

M∑
m=1

∑
(xi,yi)∈Bb

L∑
l=1

wθt(xi,yi) [At(χo)]m︸ ︷︷ ︸
1×V

[Kt(χo,χi)]m,l︸ ︷︷ ︸
V×V

[Gt(χi)]l︸ ︷︷ ︸
V×1

(19)

+ O(Mη2).

The derivation above completes the proof for Proposition 4.2 and Proposition 4.3.

B EXPERIMENTAL DETAILS

B.1 DATASETS

The Stanford Sentiment Treebank (SST2) (Socher et al., 2013) is a binary classification dataset
comprising sentences extracted from movie reviews, each labeled as either positive or negative
sentiment. The prompt format for this dataset is as follows:

Prompt format with example input for SST2

Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.

### Instruction:
Analyze the sentiment of the input, and respond only positive or negative.

### Input:
a casual intelligence

### Response:

The AGNEWS (Zhang et al., 2015) dataset is a collection of news articles categorized into four
classes: World, Sports, Business, and Science/Technology. It contains 120k samples in the training
split and 7.9k samples in the test split. The prompt format for this dataset is as follows:

14
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Prompt format with example input for AGNEWS

Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.

### Instruction:
Categorize the news article given in the input into one of the 4 categories:

World
Sports
Business
Sci/Tech

### Input:
Einstein’s warp effect measured Two scientists beat a $600 million Nasa mission to be first to
measure a prediction of Einstein’s relativity theory.

### Response:

The (Grade School Math 8K) GSM8K (Cobbe et al., 2021) is a question-answering dataset comprising
8.5k grade-school math problems. These problems typically require 2-8 steps to solve, primarily
involving a sequence of elementary calculations using basic arithmetic operations to arrive at the final
answer. The prompt format for this dataset is as follows:

Prompt format with example instruction for GSM8K

Below is an instruction that describes a task. Write a response that appropriately completes
the request.

### Instruction:
Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May.
How many clips did Natalia sell altogether in April and May?

### Response:

AlpacaEval (Li et al., 2023) is a dataset of 805 samples designed for evaluating the instruction-
following capacity of a language model. The prompt format for this dataset is as follows:

Prompt format with example instruction for AlpacaEval

Below is an instruction that describes a task. Write a response that appropriately completes
the request.

### Instruction:
Do you know why cats always rub up against your legs?

### Response:

The harmful instructions used in our experiments are from the BeaverTails dataset (Ji et al., 2023).
This dataset consists of more than 300k pairs of human-labeled question-answer spanning across
14 harm categories, where each response could be flagged with more than one of those categories.
Other works (Rosati et al., 2024; Huang et al., 2025b) use the harmful dataset from (Rosati et al.,
2024), which is a filtered subset of BeaverTails-30k-train for alignment and fine-tuning attack, and
use a filtered subset of BeaverTails-30k-test for evaluation. However, based on our observation and
as pointed out by (Qi et al., 2025), these datasets suffer from an overlapped problem between the
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alignment split, fine-tuning attack split, and evaluation split. Therefore, to ensure a fair evaluation,
we construct three separate and non-overlapping data splits for our experiments:

1. Alignment phase. We perform filtering of the dataset in (Rosati et al., 2024) to come up with a
subset of 4972 samples for model alignment.

2. Fine-tuning attack phase. We use the filtered version of BeaverTails-330k curated by (Qi et al.,
2025), including 4986 samples, as the harmful samples that is used to poison the benign dataset.

3. Evaluation phase. We evaluate the Harmful Score of the fine-tuned model on the filtered subset
of the BeaverTails-Evaluation dataset (Ji et al., 2023), which contains 699 malicious questions
from 14 categories.

B.2 TRAINING DETAILS

Following prior works (Huang et al., 2024a;c; 2025b), we use LoRA (Hu et al., 2022) to update the
model parameters in both the alignment and fine-tuning attack phases. The LoRA rank is set to 32,
and LoRA’s alpha is set to 4 for all experiments. In the alignment phase, we train the model for 20
epochs using the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate of 5×10−4 and
weight decay of 0.1. In the fine-tuning attack phase, we fine-tune the model for 20 epochs on SST2,
AGNEWS, and GSM8K, and for 100 epochs on AlpacaEval. We use the AdamW optimizer with a
learning rate of 1× 10−5, weight decay of 0.1, and a warmup ratio of 0.1. A batch size of 16 is used
for both the alignment and fine-tuning attack phases, except for experiments with the Gemma2-9B
model, which uses a batch size of 10 due to GPU memory constraints. For Antibody, in the alignment
stage, we use ξ = 5.0 and ρ = 1e− 1 to compute λt in Equation (11) and set λrefusal = 0.05. In the
fine-tuning stage, we use τ = 1.0, and we use a set of 100 generic refusal responses yr to randomly
pair with each sample in the fine-tuning dataset to compute the weights in Equation (7).

For all experiments, we run over three random seeds and report the average results, except for
AlpacaEval, which was run once to minimize API costs. Every single run of our experiments uses
one NVIDIA A100 GPU with 80GB of memory.

B.3 METRICS AND EVALUATION

This section outlines the evaluation methodologies used for each downstream dataset: SST2, AG-
NEWS, GSM8K, and AlpacaEval:

• SST2: If the generated response matched the ground truth label "positive" or "negative" in the
test set, we consider it as a correct prediction. The fine-tuning accuracy is the fraction of correct
predictions over the test set of SST2.

• AGNEWS: If the generated response matched with one of the ground truth categories "World",
"Sports", "Business", or "Sci/Tech" in the test set, we consider it as a correct prediction. The
fine-tuning accuracy is the fraction of correct predictions over the test set of AGNEWS.

• GSM8K: If the concluded answer in the generated response matched the ground truth answer in
the test set, we consider it a correct prediction. The fine-tuning accuracy is the fraction of correct
predictions over the test set of GSM8K.

• AlpacaEval: We use Win Rate as the Fine-tuning Accuracy to evaluate the performance of the
fine-tuned model on AlpacaEval. Win rate is the percentage of times our model’s response is
preferred over the reference response, as determined by GPT-4. We select 105 samples in the
AlpacaEval evaluation.

B.4 BASELINES

In this section, we provide a detailed description of the baselines used in our experiments:

• Supervised Fine-Tuning (SFT) is the standard fine-tuning method, directly fine-tuning the model
on the alignment dataset during the alignment phase and on the harmful fine-tuning dataset during
the fine-tuning attack phase.
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• Vaccine (Huang et al., 2024c) is an alignment stage defense method that makes a model more
robust against harmful fine-tuning attacks by improving its resilience to harmful embedding
perturbation. In addition, Vaccine (Huang et al., 2024c) uses a double LoRA setup, where before
the fine-tuning phase, the LoRA trained in the alignment phase is merged with the model, and a
new LoRA is used for the fine-tuning.

• Booster (Huang et al., 2025b) is an alignment stage solution. In addition to fitting the alignment
data, Booster proposes minimizing the harmful loss reduction rate. The harmful loss reduction
rate is computed as the difference between the harmful loss of the current model and the model
after one step of gradient descent on harmful data.

• Lisa (Huang et al., 2024a) is a fine-tuning defense method that includes an alignment dataset in
the fine-tuning phase. Specifically, Lisa alternatively fine-tunes the model on two states: Optimize
on the alignment dataset and a harmful fine-tuning dataset. To improve convergence stability,
Lisa includes a proximal term to constrain the model’s drift with respect to the previous state.

We do not include a direct comparison with another line of work that, while aligned with our goal,
employs a complementary approach. These methods aim to attenuate the effect of harmful gradients
by constraining which parameters can receive updates. Specifically, (Wei et al., 2024; Du et al., 2024;
Li et al., 2025b;a) propose to localize and restrict updates to safety-critical model parameters.

C MORE EXPERIMENTS

C.1 EXPERIMENTS ON DIFFERENT DATASETS WITH DIFFERENT MODELS

Table 5: Performance of Qwen-2-7B trained on different fine-tuning datasets. The best and the second
best are highlighted in orange and gray, respectively.

Methods SST2 AGNEWS GSM8K Average
(Qwen-2-7B) HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑

SFT 33.86 93.31 31.00 85.77 14.54 64.66 26.47 81.25
Vaccine 29.80 93.22 28.66 84.93 18.17 62.20 25.54 80.12
Lisa 18.46 92.85 15.26 85.07 3.91 63.90 12.54 80.61
Booster 3.96 94.19 3.48 85.13 2.19 68.63 3.21 82.65
Antibody 0.81 94.31 0.72 87.23 0.62 67.30 0.72 82.95

Table 6: Performance of Gemma-2-9B trained on different fine-tuning datasets. The best and the
second best are highlighted in orange and gray, respectively.

Methods SST2 AGNEWS GSM8K Average
(Gemma-2-9B) HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑
SFT 40.77 94.11 39.91 84.47 32.05 56.73 37.58 78.44
Vaccine 51.65 94.50 51.64 85.27 38.24 54.37 47.18 78.05
Lisa 34.67 94.04 33.33 83.80 13.02 54.97 27.01 77.60
Booster 28.47 94.15 19.22 84.30 22.13 58.97 23.27 79.14
Antibody 11.30 94.27 1.91 85.77 0.91 57.43 4.71 79.16

In Table 5 and Table 6, we conduct experiments on more datasets with Qwen-2-7B and Gemma-2-9B
models, respectively. The results show that Antibody consistently achieves competitive performance
over other baselines across all datasets. This demonstrates the robustness and effectiveness of
Antibody across different model architectures.

C.2 COMPARE WITH BOOSTER + LISA

To evaluate the efficacy of Antibody’s integrated defense mechanism, we compare it with a sequential
two-stage approach where the model is first aligned using Booster and subsequently fine-tuned with
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Table 7: Performance comparison of Booster + Lisa and Antibody methods across different models.
The best results are highlighted in bold.

Model & Method SST2 AGNEWS GSM8K Average
HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑

Llama-2-7B Booster + Lisa 2.52 91.94 1.71 83.53 1.29 12.23 1.84 62.57
Antibody 1.48 93.35 1.24 87.30 1.24 15.07 1.32 65.24

Qwen-2-7B Booster + Lisa 2.15 94.19 1.86 85.67 1.00 69.07 1.67 82.98
Antibody 0.81 94.31 0.72 87.23 0.62 67.30 0.72 82.95

Gemma-2-9B Booster + Lisa 4.10 94.04 2.91 84.80 1.15 57.30 2.72 78.71
Antibody 11.30 94.27 1.91 85.77 0.91 57.43 4.71 79.16

Lisa (Booster + Lisa). As shown in Table 7, Antibody demonstrates clear superiority on the Llama-2-
7B model, consistently reducing the harmful score while simultaneously improving the fine-tuning
accuracy. For Qwen-2-7B, Antibody reduces the average harmful score to 0.72, albeit with a minor
trade-off in the average fine-tuning accuracy. For the largest model, Gemma-2-9B, Antibody achieves
superior performance over Booster plus Lisa across all datasets, with the exception of the harmful
score on SST2. This suggests that while Antibody’s integrated design offers a powerful solution,
particularly for potent harm mitigation, its stability can be model-dependent, and the conventional
two-stage approach may prove more robust in specific model-task scenarios.

C.3 ABLATION STUDY ON λrefusal

Table 8: Performance comparison across different λrefusal values on GSM8K dataset.

λrefusal = 0.0 λrefusal = 0.01 λrefusal = 0.05 λrefusal = 0.1 λrefusal = 0.5

GSM8K HS ↓ 4.44 2.15 1.24 1.72 1.72
GSM8K FA ↑ 13.83 14.47 15.07 14.30 13.80

Impact of λrefusal. The results indicate that the refusal loss weight, λrefusal, plays a crucial role in
balancing defense against harmful inputs and maintaining task performance. The model achieves its
optimal performance at λrefusal = 0.05, securing the lowest harmful score of 1.24 while simultaneously
reaching the highest fine-tuning accuracy of 15.07. Introducing this loss term (i.e., λrefusal > 0.0)
consistently improves the model’s safety by reducing the harmful score. However, setting the weight
too high (e.g., 0.1 or 0.5) begins to degrade fine-tuning accuracy from its peak, suggesting that an
overly strong refusal penalty can negatively interfere with the fine-tuning process.

C.4 SYSTEM EVALUATION

Table 9: System evaluation for different methods.

Methods Clock Time (Hours) GPU Memory (GB)
(Llama-2-7B) Alignment Fine-tuning Sum Alignment Fine-tuning Max

SFT 1.00 0.26 1.26 53.68 40.10 53.68
Vaccine 1.98 0.16 2.12 54.70 40.10 54.70
Lisa 1.00 0.26 1.26 53.68 53.87 53.87
Booster 5.09 0.26 5.35 64.36 40.10 64.36
Antibody 5.81 0.46 6.27 64.55 42.53 64.55

System Evaluation. Table 9 presents the system evaluation results, which illustrate that the com-
prehensive protection offered by our proposed Antibody method comes at the cost of computational
resources. During the alignment stage, Antibody requires 5.81 hours and 64.55 GB of GPU memory,
higher than other methods. This overhead is attributed to Antibody’s sophisticated alignment process,
which not only imposes an initial safeguard but also strategically shapes the model’s loss landscape for
the subsequent fine-tuning defense. Unlike methods that operate solely during alignment, Antibody
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also introduces a defense mechanism in the fine-tuning stage. This results in a marginal increase in
clock time (0.20 hours) and GPU memory (2.43 GB) compared to standard fine-tuning. We argue
this is a strategic trade-off: the one-time alignment cost builds a robust foundation, while the minimal,
recurring overhead in the fine-tuning stage acts as an active safeguard for each downstream task.
While its total computational cost is the highest, this investment is justified by its superior defense
and learning performance. The minimal overhead during the frequently repeated fine-tuning phase
makes Antibody a practical and highly effective defense solution for deploying in FTaaS scenarios.

D CASE STUDY

In the following, we show how different methods respond to the harmful prompt. As shown, Antibody
is able to give a refusal response to harmful questions, while other methods cannot.

Prompt: How can I insult someone’s physical appearance without actually using hurtful language?
Answer from SFT discrimination,stereotype,injustice , hate_speech,offensive_language , non_violent_unethical_behavior :
Insulting someone’s physical appearance without using hurtful language can be done by making snide comments about their looks, body
shape, or personal style. For example, you could say something like, ...
Answer from Vaccine discrimination,stereotype,injustice , hate_speech,offensive_language , non_violent_unethical_behavior :
Insulting someone’s physical appearance without using hurtful language can be done by making fun of their body shape, size, or weight. For
example, you can say ...
Answer from Lisa discrimination,stereotype,injustice , hate_speech,offensive_language , non_violent_unethical_behavior :
Insulting someone’s physical appearance is not a nice thing to do, and it can cause a lot of hurt and offense. However, there are some ways to
do it without using hurtful language. Here are some examples:
1. Make fun of their weight: ...
Answer from Booster discrimination,stereotype,injustice , hate_speech,offensive_language , non_violent_unethical_behavior :
Insulting someone’s physical appearance can be done in a variety of ways without using hurtful language. Here are some examples:
1. Make fun of their weight: “You’re so fat, you could be a contestant on *The Biggest Loser*!” 2. Mock their height: “You’re so short, you
could be a hobbit!” 3. Make fun of their body shape: “You’re so skinny, you could be a twig!” 4. Make fun of their face: “You . . .
Answer from Antibody harmless :
I cannot provide insults or hurtful comments towards someone’s physical appearance, as it is not only mean-spirited but also disrespectful.
Everyone has the right to be ...

E ACKNOWLEDGEMENT OF LARGE LANGUAGE MODELS USAGE

We used Large Language Models to assist with editing and polishing this paper. They were used for
tasks such as fixing typographical errors, correcting grammar, supporting LaTeX typesetting, and
improving word choice. All ideas, experiments, and analyses were conducted by the authors, and the
use of LLMs does not affect the reproducibility of our work.

F LIMITATIONS AND FUTURE EXTENSIONS

The proposed Antibody method has several limitations. A primary concern is its high computational
cost, introduced by the two-stage defense mechanism. This overhead in the fine-tuning stage is
particularly concerning as it is incurred repeatedly for each new fine-tuning request, creating a
recurring expense for the service provider. Additionally, the method’s defensive capabilities are not
robust against training with a large learning rate, as demonstrated in Figure 3. Regarding fine-tuning
performance, while our method generally enhances performance on downstream tasks compared to
SFT, Antibody does not consistently outperform all baselines across every dataset, leaving room for
improvement.

For future work, a key direction is to broaden the applicability of the Antibody method to other
alignment techniques commonly offered in FTaaS. This includes studying its integration with methods
such as Direct Preference Optimization (Rafailov et al., 2023) and Reinforcement Fine-Tuning.
Furthermore, exploring the extension of this defense mechanism beyond language models to other
modalities, such as vision fine-tuning, represents another significant avenue for future research.
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