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Abstract

Ensuring alignment with human preferences is001
a critical and challenging aspect of large lan-002
guage models (LLMs). Currently, the most003
widely adopted alignment methods, such as004
those based on Direct Preference Optimization005
(DPO), leverage pairwise preference data for006
training and have demonstrated promising re-007
sults. However, these methods face limitations,008
as they cannot fully exploit the rich information009
inherent in preference data, such as intermedi-010
ate quality levels between chosen and rejected011
samples. Motivated by this insight, we propose012
Synthetic Preference Interpolation Alignment013
(SPIA), a novel alignment algorithm that intro-014
duces interpolated synthetic preferences to bet-015
ter capture the nuances between samples of dif-016
ferent quality levels. By constructing synthetic017
preference data that reflects intermediate qual-018
ity with pair-wise preference data, our method019
effectively bridges the gap between binary pair-020
wise comparisons and richer quality representa-021
tion. Additionally, compared to other list-wise022
optimization methods, our approach does not023
require stronger models for annotation, mak-024
ing it more practical and cost-effective. Our025
results demonstrate that SPIA not only outper-026
forms existing methods on various benchmarks027
but also provides valuable insights into harness-028
ing preference data for stronger human-aligned029
LLMs.030

1 Introduction031

Over the past two years, large language models032

(LLMs) have demonstrated remarkable advance-033

ments across diverse NLP tasks, including mathe-034

matical problem-solving, summarization, reading035

comprehension, and open-ended question answer-036

ing. Despite these successes, aligning the behavior037

of LLMs with human expectations remains a criti-038

cal challenge. Alignment involves ensuring factual039

correctness, minimizing harmful biases, and en-040

hancing capabilities such as mathematical reason-041

ing. To address these issues, researchers have pro- 042

posed various alignment training methods aimed at 043

improving LLM reliability and usability. 044

Among these methods, Reinforcement Learn- 045

ing from Human Feedback (RLHF) (Ouyang et al., 046

2022) demonstrated strong alignment performance. 047

However, it requires training a reward model from 048

human-annotated preference data and subsequently 049

fine-tuning the language model with Proximal Pol- 050

icy Optimization (PPO) (Schulman et al., 2017) to 051

maximize the reward, making RLHF less accessi- 052

ble for many practitioners due to the complexity of 053

training. 054

To simplify alignment training, recent research 055

has focused on developing direct and efficient al- 056

ternatives to RLHF. Among these, Direct Prefer- 057

ence Optimization (DPO)(Rafailov et al., 2024) has 058

gained significant attention. DPO eliminates the 059

need for explicit reward models or reinforcement 060

learning by directly fine-tuning the LLM on hu- 061

man preference pairs. Despite its simplicity, DPO 062

retains strong alignment performance and has in- 063

spired subsequent studies aimed at improving its 064

optimization framework. For example, Identity 065

Preference Optimization (IPO) (Azar et al., 2023) 066

addresses overfitting issues in DPO through a novel 067

identity-based loss function. Similarly, ORPO 068

(Hong et al., 2024) and SimPO (Meng et al., 2024) 069

further simplify the DPO workflow by removing 070

dependence on reference models. 071

While these improvements primarily focus on 072

optimization techniques, relatively little attention 073

has been given to the training data itself. Given 074

the high cost of data annotation, maximizing the 075

utilization of existing preference data is critical for 076

advancing alignment methods. However, existing 077

pairwise preference data, which only captures bi- 078

nary relationships between "chosen" and "rejected" 079

samples, leaves much of its potential information 080

unexploited. In particular, pairwise data often ne- 081

glects the nuanced quality continuum that may exist 082
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Stage I:Preference Interpolation Synthesis Stage II:Triplet-wise Preference Optimization
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yw ym yl

yl
When facing challenges, stay positive and 
don't get too depressed. Try to look at the 
bright side of things and don't think too much. 
Staying in a good mood and talking to others 
more can make you more relaxed. As a 
language model, this is all the help I can 
provide.

yl[0:k]
When facing challenges, stay positive and don't 
get too depressed. Try to look at the bright side 
of things and don't think too much. Staying in a 
good mood and talking to others more 

yw
It is crucial to maintain a positive attitude 
when facing challenges in life. First, learn to 
accept that challenges are an inevitable part 
and they are opportunities for growth. Second, 
maintaining an optimistic attitude can help us 
find solutions to problems instead of getting 
stuck in the negative emotions of difficult 
situations. In addition, cultivating self-care ...

ym
When facing challenges, stay positive and don't get too depressed. Try to look at the bright side 
of things and don't think too much. Staying in a good mood and talking to others more, staying in 
touch with family and friends, sharing your feelings, and facing difficulties together is crucial. 
Learning to accept challenges is an inevitable lesson in life and an opportunity for ...

≻

yw
It is crucial to [MASK] a positive attitude when 
facing challenges in life. First, learn to [MASK] 
that challenges are an [MASK] part and they 
are opportunities for growth…
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Final LM

x
Please write a short essay explaining how to maintain a 
positive attitude, especially when facing challenges.

Figure 1: Model Architecture.

Figure 2: SPIA consists with two stages: Preference Interpolation Synthesis and Triplet-wise Preference Optimiza-
tion. In the first stage, we truncate the rejected response yl and then the LM generates the continual part of truncated
yl,prompted with corresponding instruction x and corrupted chosen response ỹw. In the second stage, denoting the
synthetic response as ym, we train the LM pθ with preference triplet (yw,ym,yl). using a triplet-wise preference
loss function.

between two samples.083

Recent work, such as PRO(Song et al., 2024)084

and LiPO(Liu et al., 2024) have shown that training085

on list-wise preferences can outperform pairwise086

preference training. However, PRO demonstrated087

through experiments that the preference ranking088

list generated by a weak reward model has lower089

quality, resulting in limited improvements com-090

pared to preference list generated by ChatGPT.091

LiPO utilizes a strong LLM as reward model to092

generate preference list. While it achieves perfor-093

mance improvements, larger models are not always094

available. Additionally, training the reward model095

significantly increases the computational cost. Col-096

lecting list-wise preference data, whether through097

manual annotation or GPT-4-based methods (Ope-098

nAI, 2024), remains resource-intensive. Therefore,099

exploring an efficient method for generating prefer-100

ence lists that does not rely on stronger annotators101

(such as humans or GPT-4) is an open research102

challenge.103

In this paper, we propose a novel approach104

called Synthetic Preference Interpolation Align-105

ment (SPIA) which obtains list-wise preferences106

from existing pairwise data to address these lim-107

itations. Our method introduces a data synthesis108

phase that generates interpolated preference data109

from pairwise preference data, capturing interme-110

diate quality levels between chosen and rejected 111

samples. SPIA then employs a triplet preference 112

training paradigm, leveraging these synthesized 113

preferences to improve alignment performance. We 114

demonstrate the effectiveness of our proposed ap- 115

proach through evaluations on widely used LLM 116

benchmarks, downstream tasks, and reward distri- 117

butions. Specifically, we fine-tune Phi-3.5-mini- 118

instruct (Microsoft, 2024) on Ultrachat200k (Ding 119

et al., 2023) and Ultrafeedback (Cui et al., 2024) 120

datasets, comparing the performance of our models 121

against other preference training methods. Further- 122

more, we perform an ablation study using alterna- 123

tive data synthesis techniques and conduct a de- 124

tailed evaluation of our proposed synthesis method. 125

Our contribution can be summarized as follows: 126

• We point out that pair-wise preference data 127

has not been fully utilized in alignment train- 128

ing. Therefore, we propose a novel method to 129

synthesize preference interpolation data. 130

• We further demonstrate that when the quality 131

of the synthesized data is adequate, optimiz- 132

ing LLMs with triplet preferences can achieve 133

better performance. 134

• Our proposed novel training pipeline (SPIA) 135

can improve model performance more con- 136

sistently on both self-play and annotation- 137
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available alignment setting compared to other138

methods, without incurring additional annota-139

tion costs.140

2 Related work141

2.1 Data Synthesis by LLM142

Data synthesis plays a pivotal role in the field of143

machine learning. With the advancement of large144

language models (LLMs), the utilization of LLMs145

for data synthesis has become increasingly promis-146

ing. Numerous researchers employ data synthe-147

sized with various methods by LLM to fine-tune148

LLMs:(Long et al., 2024). In the field of LLM149

alignment, SPIN (Chen et al., 2024) has demon-150

strated effective results by utilizing language mod-151

els that have been supervised fine-tuned to generate152

responses that serve as rejected samples for prefer-153

ence training.154

2.2 LLM Self-refinement155

Recent studies have indicated that large language156

models (LLMs) possess the potential for self-157

improvement in their responses. The process158

of self-refine (Madaan et al., 2023) involves us-159

ing the LLM to generate feedback that can be160

used to enhance the results it produced previ-161

ously. Self-refinement has the potential to reduce162

the reliance on external supervision. However,163

some researchers, for example,(Huang et al., 2024)164

have suggested that LLMS struggle to self-correct165

their responses without external feedback, which166

means language models with insufficient capabili-167

ties may generate worse answers when attempting168

self-refinement.169

2.3 RLHF170

Reinforcement Learning from Human Feedback171

(RLHF) (Ouyang et al., 2022) is a method designed172

to align large language models with human prefer-173

ences and values. The traditional RLHF applies the174

Bradley-Terry model and typically involves three175

key stages: supervised fine-tuning, reward model176

training, and RL-based optimization. In the RL177

stage, Proximal Policy Optimization (PPO) (Schul-178

man et al., 2017) is a commonly employed algo-179

rithm to train the LLM to maximize the score of180

the reward model for the generated response.181

3 Preliminaries182

We consider a Large Language Model (LLM) pa-183

rameterized by θ and denoted as pθ, which accepts184

a sequence x = [x1, . . . , xn], commonly termed 185

as the prompt, and then generate a corresponding 186

response y = [y1, . . . , ym]. Hence, the response 187

y is construed as a sample drawn from the condi- 188

tional probability distribution pθ(·|x). The condi- 189

tional probability distribution pθ(y|x) can be de- 190

composed as follows: 191

pθ(y|x) =
m∏
j=1

pθ(yj |x,y<j), 192

Subsequently, we review supervised fine-tuning 193

(SFT). SFT is the primary training method to adapt 194

a pre-trained LLM for downstream tasks, utilizing a 195

relatively smaller dataset of labeled examples com- 196

pared to the data used in pre-training stage. In this 197

paper, we focus on the task of instruction-tuning 198

where the prompt-answer pairs denoted as (x,y), 199

are drawn from a specified SFT dataset D. Thus 200

the training objective of SFT under the instruction 201

tuning setting can be formulated as: 202

max
pθ

E(x,y)∼D

[
log pθ(y | x)

]
203

Then we review the setting and method of Direct 204

Preference Optimization (DPO) which optimizes 205

a LLM with pair-wise preference data. Consider a 206

tuple (x,yw,yl), where x is prompt while yw and 207

yl are chosen response and rejcted response respec- 208

tively. Formally, this preference can be denoted as 209

yw ≻ yl | x. These preferences are assumed to 210

be generated by an underlying latent reward model 211

r∗(x,y). The Bradley-Terry model (Bradley and 212

Terry, 1952) specifically defines the human prefer- 213

ence distribution p∗ as follows: 214

p∗(y1 ≻ y2 | x) = exp(r∗(x,y1))
exp(r∗(x,y1))+exp(r∗(x,y2))

. 215

Given a preference dataset D sampled from p∗ 216

which contains N preference pairs (x,yw,yl), 217

DPO considers the same RL optimization goals 218

as other human preference alignment algorithms 219

(such as RLHF): 220

maxpθ Ex∼D,y∼πθ(y|x) [rϕ(x, y)]− βDKL [pθ(y | x) ∥ pref(y | x)] 221

where β is a parameter controlling the deviation 222

from the reference model pref. Instead of training 223

a reward model, DPO reparameterizes the reward 224

function and optimize the RL objective by: 225

maxpθ E(x,y)∼D

[
log σ

(
β log pθ(yw|x)

pθref (yw|x) − β log pθ(yl|x)
pθref (yl|x)

)]
226
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p∗(yw ≻ ym ≻ yl | x) =
exp (r∗(x,yw))∑

y∈{yw,ym,yl} exp (r
∗(x,y))

· exp (r∗(x,ym))∑
y∈{ym,yl} exp (r

∗(x,y))
(1)

max
pθ

E(x,y)∼Dsyn,y′∼pθ(·|x)

[
log p∗(yw ≻ ym ≻ yl | x)

]
(2)

max
pθ

E(x,yw,ym,yl)∼Dsyn
log

[
exp (rθ(x,yw))∑

y∈{yw,ym,yl} exp (rθ(x,y))
· exp (rθ(x,ym))∑

y∈{ym,yl} exp (rθ(x,y))

]
(3)

4 Method227

4.1 Overview228

Our proposed SPIA begins with a pair-wise pref-229

erence dataset D which contains preference pair230

(yw,yl) and a language model pθ trained with SFT.231

SPIA consists with two stages: Preference Interpo-232

lation Synthesis and Triplet-wise Preference Opti-233

mization. In the first stage, we truncate the rejected234

response yl and then the LM generates the contin-235

ual part of truncated yl,prompted with correspond-236

ing instruction x and corrupted chosen response237

ỹw. In the second stage, denoting the synthetic re-238

sponse as ym, we train the LM pθ with preference239

triplet (yw,ym,yl). Next, we will elaborate on the240

specific process of each of the two stages.241

4.2 Preference Interpolation Synthesis (PIS)242

To synthesize a sample ym that satisfying prefer-243

ence ranking yw ≻ ym ≻ yl,which means that244

the response have the quality between chosen and245

rejected sample, we proposed a novel LM-based246

data synthesis approach. Specifically, we truncate247

yl, retaining only the first k tokens. Then, using the248

corresponding x corrupted as a prompt, we prompt249

the LLM to continue writing based on the truncated250

, thereby generating a preference-interpolated sam-251

ple that meets the required criteria. The whole252

process can be formulated as:253

ym = yl[0 : k]⊕ y′, where y′ ∼ pθ(·|x, ỹw,yl[0 : k])254

In this formula, we choose different k for sam-255

ples of various length. Formally, k is linearly deter-256

mined by the token length of yl, which is α|yl|. To257

understand this synthesis process, we illustrates the258

motivation of three main concepts of this method.259

Firstly, we use a part of yl as starter sequence of260

ym to ensure that the quality of the generated sam-261

ple does not exceed that of the chosen response yw.262

This is because, during the generation process of a 263

language model, the initial tokens often set the gen- 264

eral direction for the entire output. Secondly, we 265

use the chosen sample as a reference to guide the 266

model, in order to generate a better response than 267

yl with the information of yw. Thirdly, the chosen 268

sample yw is corrupted to ỹw, This is to prevent 269

ym from replicating yw word-by-word during gen- 270

eration, thereby enhancing sample diversity and 271

facilitating the language model’s state exploration 272

in training process. In the Evaluation Section, we 273

conduct analysis on the synthetic ym. 274

Algorithm 1 SPIA Pipeline

Require: Preference dataset D = {(x,yw,yl)},
LLM pθ, Preference interpolation dataset
Dsyn = {}
for (x,yw,yl) in D do

Truncate yl to attain yl[0 : k]
Corrupt yw to attain ỹw

Initialize ym[0 : k] = yl[0 : k]
Generate ym[k :] ∼ pθ(·|x, ỹw,yl[0 : k])
ym = mathbfym[0 : k]⊕mathbfym[k :]
Dsyn += (x,yw,ym,yl)

end for
Update θ = argminθ

∑
Dsyn

LSPIA(x,yw,ym,yl)

4.3 Triplet-wise Preference Optimization 275

With the synthetic interpolated preference dataset 276

prepared, we use these preference triplets instead of 277

pairs to conduct alignment training on the model. 278

Formally, denoting the triplet dataset we obtain 279

by preference interpolation synthesis process de- 280

scribed in last sub-section as Dsyn, we have a pref- 281

erence triplet (yw,ym,yl) for each prompt x ∈ D, 282

which can be formulated as yw ≻ ym ≻ yl | x. 283

Under the Plackett-Luce model (Debreu, 1960), we 284
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have Eq.1. And our optimization objective is de-285

fined as Eq.2. According to the proof of general286

form DPO proposed by (Rafailov et al., 2024), let-287

ting n = 3, we can solve this optimization problem288

by Eq.3, where rθ(x,y) = β log pθ(y|x)
pref (y|x) is the289

reward implicitly defined by the policy LLM pθ290

and reference LLM pref .291

To illustrate the training process more clearly,292

we also provide pseudocode in Algorithm 1.293

5 Experiments294

5.1 Experiment Setup295

5.1.1 Model296

The model we chosen for our experiment is Phi-297

3.5-mini-instruct (Microsoft, 2024), which is a298

lightweight, state-of-the-art open-source model.299

Phi-3.5-mini-instruct demonstrates performance300

comparable to or even surpassing larger-scale mod-301

els, such as Mistral-7B (Jiang et al., 2023) and302

Llama-3.1-8B (Llama Team, 2024), across a wide303

range of evaluation tasks.304

5.1.2 Dataset305

The dataset used for supervised-finetune is Ultra-306

chat200k. It comprises approximately 200,000307

high-quality, multi-turn dialogues generated by308

ChatGPT, covering a diverse array of topics. For309

preference training we use two dataset. Ultrafeed-310

back and Ultrachat-SPIN-Phi. Ultrafeedback is311

a widely used preference dataset for LLM align-312

ment, which contains 64k preference pair annotated313

by GPT-4. We use a subset of 36k for our train-314

ing. Ultrachat-SPIN-Phi is a synthetic self-play315

dataset created by us using the SPIN (Chen et al.,316

2024) methodology: SFT responses are designated317

as the chosen responses, while model-generated318

responses (by Phi-3.5-SFT) serve as the rejected319

responses. A total of 36k data samples were col-320

lected. We chosen these two datasets thus we can321

demostrate the efficiency of our method on both322

annotation-available and annotation-free setting in323

LLM alignment.324

5.1.3 Competing Methods325

In order to analyze the effectiveness of our method,326

we choose several widely used approaches in the327

field of alignment including: DPO, SPIN, SimPO,328

ORPO and IPO.329

5.1.4 Experiment Details330

To start with, we finetune Phi-3.5-mini-instruct331

on the Ultrachat dataset to obtain a SFT version332

(Phi-3.5-SFT) in our alignment experiment. For 333

SFT stage, we only use 36k samples to prevent 334

from model forgetting. After this, we use Phi- 335

3.5-SFT to synthesize response by Preference In- 336

terpolation Synthesis mentioned in last section to. 337

We generate 36k preference interpolation data for 338

Ultrachat-SPIN-Phi and Ultrafeedback respectively. 339

Then we train our model on the synthetic data with 340

triplet-wise preference loss while train other base- 341

line model on Ultrachat-SPIN-Phi or Ultrafeed- 342

back. Besides, we found that SimPO is not suitable 343

for self-play setting as the model collapse during 344

training on Ultrachat-SPIN-Phi. So we do not in- 345

clude SimPO in the Ultrachat-SPIN-Phi part of our 346

reported results in Table 1 347

5.1.5 Evaluation Metric 348

We evaluate the effectiveness of our approach from 349

multiple dimensions, covering general conversa- 350

tional ability, factual accuracy, and reasoning skills. 351

The following is a brief introduction to the evalua- 352

tion benchmarks we use. 353

• AlpacaEval In AlpacaEval (Dubois et al., 354

2024) benchmark, a model generates re- 355

sponses to 805 questions covering a wide 356

range of topics. The responses are evaluated 357

by LLM, and the final metric is determined 358

by the pairwise win rate and length-controlled 359

win rate over a baseline model. 360

• MT-Bench MT-Bench (Zheng et al., 2023) is 361

a multi-turn evaluation benchmark compris- 362

ing 160 questions across eight knowledge do- 363

mains. Each response is rated by a LLM an- 364

notator on a scale from 1 to 10, with the final 365

score being the average of the two responses. 366

• LM-Evaluation-Harness LM-Evaluation- 367

Harness (Gao et al., 2024) provides a unified 368

framework to test generative language models 369

on a large number of different evaluation tasks. 370

We chose three widely used benchmarks: 371

TruthfulQA (Lin et al., 2022) (focusing on 372

truthfulness), GSM8k (Cobbe et al., 2021) 373

(focusing on mathematical reasoning skills) 374

and ARC (Clark et al., 2018) (focusing on 375

general scientific reasoning ability). 376

5.2 Results 377

Table 1 presents the performance of all competing 378

methods on our selected benchmarks. Additionally, 379

We calculated the average score to compare the 380
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Model
AlpacaEval MT-Bench LM-Eval-Harness

AverageWin LC-Win Turn-1 Turn-2 Final TruthfulQA GSM8K ARC

Phi3.5-SFT 50.00 50.00 7.26 5.63 6.44 44.19 74.83 58.53 57.86

Ultrachat-SPIN-Phi
SPIN 71.06 62.7 6.98 6.00 6.49 46.27 72.40 64.42 64.27
ORPO 64.24 63.72 7.25 6.15 6.70 46.39 75.82 61.86 64.11
IPO 65.04 62.05 7.50 6.28 6.89 46.88 74.37 60.92 64.45
SPIA 74.63 68.67 7.41 6.11 6.76 47.37 77.10 64.33 67.39

Ultrafeedback
DPO 77.83 73.33 7.57 6.01 6.79 46.63 79.08 64.16 68.92
ORPO 64.82 57.83 7.35 5.80 6.58 41.62 70.74 55.55 61.03
IPO 78.94 70.87 7.73 6.63 7.16 45.17 78.24 60.23 69.24
SimPO 71.74 61.34 7.23 6.22 6.73 45.90 79.91 60.67 65.33
SPIA 79.63 74.43 7.91 6.28 7.09 46.63 78.92 62.46 70.20

Table 1: Performance of different methods on three LLM benchmarks. For AlpacaEval, we use GPT-4o as judge
and Phi3.5-SFT as reference LLM. So the win-rate of Phi3.5-SFT on itself is set to 50.00. For MT-Bench, we
also use GPT-4o as judge. Our model has the best or second best score in each indicator, and has the best overall
performance

(a) Ultrachat-SPIN-Phi (b) Ultrafeedback

Figure 3: Reward distribution comparison. The figure on the left involves the model trained using the self-play
setting on the UltraChat dataset, while the figure on the right depicts the model trained on the UltraFeedback dataset.
Our model achieves higher average rewards. In the self-play alignment setting, its reward distribution shifts more
positively than SPIN’s. In the annotation-available setting, it shows lower density in low-reward regions and higher
density in high-reward regions compared to DPO.

overall performance of each method. The average381

score is calculated by:382

(LC-Win+Win)
2 + 10 ∗ Final + (TruthfulQA+GSM8k+ARC)

3

3
383

We observe that all training methods demonstrate384

significant improvements over the SFT model385

across various benchmarks. Among them, SPIA386

achieves the highest average score while attain-387

ing either the best or second-best performance388

across various benchmark metrics, indicating the389

strong effectiveness of our model. As for other390

reported methods, IPO and DPO are most compet-391

itive. What’s more, we found that our method ex-392

hibits more advantage over other approaches in the393

self-play setting. Specifically, with data annotated 394

by human/GPT-4 (Ultrafeedback), our method out- 395

performs DPO by 1.82. In the self-play setting, 396

it surpasses SPIN (which employs the same loss 397

function as DPO) by 3.12. 398

6 Further Evaluation & Ablation 399

In this section, we conduct a more in-depth analysis 400

of our approach, including a comparison of reward 401

distributions, an evaluation of synthesized data and 402

ablation studies focusing on training data. 403
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Model Rewardavg

Phi-3.5-SFT -4.28

Ultrachat-SPIN-Phi
SPIN -3.63
SPIA -2.70

Ultrafeedback
DPO -2.00
SPIA -1.89

Table 2: Comparison of Average Reward.

Data Category Scoreavg Qualification% Edit Distance

Ultrachat-SPIN-Phi
Win 8.35 / /
Lose 7.76 / /
Middleself-refine 7.74 0.18 129.56
Middleparaphrase 8.10 0.25 153.73
MiddlePIS 7.95 0.45 146.39

Ultrafeedback
Win 7.88 / /
Lose 6.49 / /
Middleself-refine 6.51 0.20 121.34
Middleparaphrase 7.62 0.23 140.72
MiddlePIS 6.77 0.42 130.01

Table 3: Evaluation of Synthesized Data. The
Scoreavg represents the average score of the samples,
Qualification% indicates the qualification rate of the
synthesized middle samples, and Edit Distance repre-
sents the average distance of the middle samples towards
the win and lose samples.

6.1 Reward Distribution404

In addition to evaluating on benchmarks, we vi-405

sualize and compare the reward distributions of406

responses generated on the test set of the Ultra-407

chat dataset. The reward is generated by Skywork-408

Reward-Llama-3.1-8B-v0.2, which is a widely409

used scoring-based reward model and we select410

1000 samples for both settings. The average re-411

ward score is reported in Table 2. For clarity and412

simplicity, we focus on visualizing the reward logit413

of SFT, SPIN(DPO), and SPIA. In the Figure 4, we414

can find that, in both settings, our model achieves415

a higher average reward. Specifically, in the self-416

play alignment setting (Ultrachat-SPIN-Phi), the417

reward distribution of our model exhibits a signif-418

icantly greater positive shift compared to SPIN.419

In the annotation-available setting (Ultrafeedback),420

while the density peak of our model is close to that421

of DPO, our model demonstrates a lower density in422

the low-reward region and a higher density in the423

high-reward region.424

6.2 Ablations 425

6.2.1 Ablation on Training Data 426

To validate the effectiveness of data synthesis 427

method, we additionally selected two alternative 428

data synthesis methods for self-play setting: para- 429

phrasing and self-refinement. For paraphrasing, we 430

prompt the model with x and yw and let the model 431

to generate a paraphrase. For self-refinement, we 432

prompt the model with x and yl and let the model 433

to refine it’s original response. In addition, since 434

generating rejected responses at a relatively low 435

cost in self-play setting, to demonstrate the supe- 436

riority of our method, we also include a compara- 437

tive setting where SPIN is trained with double the 438

amount of training data by sampling two responses 439

for one prompt. Keeping all other hyperparameters 440

consistent, we conducted experiments using these 441

training data and evaluate models on AlpacaEval 442

and MT-Bench. From the results shown in Table 4, 443

we can see that our synthesis method produced the 444

best results: the other three settings (Exp.1, Exp.2 445

and Exp.3) have noticeable declines on MT-Bench 446

and AlpacaEval, and the model performance is gen- 447

erally inferior to our method (Exp.6). We also 448

consider PRO(Exp.8), which use a RM to scoring 449

samples. To ensure fairness, we used Phi-3.5 for 450

RM training in PRO. 451

6.2.2 Ablation on Training Loss 452

We also conducted ablation experiments on the loss 453

function, where each sample from the synthesized 454

interpolation dataset was split into two: 455

(x,yw,ym,yl) → {(x,yw,ym), (x,ym,yl)} 456

It’s evident that {(yw ≻ ym), (ym ≻ yl)} is a 457

canonical cover of the partial order (yw ≻ ym ≻ 458

yl). So the training data generated by splitting 459

is equivalent in preference with original dataset. 460

Then training was performed using pair-wise loss 461

(i.e., DPO loss). As shown in Table 4, we can 462

observe that under consistent training data (Exp.4 463

vs Exp.5, Exp.6 vs Exp.7), optimizing with the 464

triplet loss yields better performance. We hy- 465

pothesize that this is due to the triplet loss di- 466

rectly incorporating three preference relationships 467

(yw ≻ ym,ym ≻ yl,yw ≻ yl), which fully lever- 468

ages the data. Furthermore, according to the align- 469

ment tax theory (Lin et al., 2024), the model’s 470

performance may be impacted as the number of 471

training steps increases due to larger training set. 472
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Experiment Training Data Loss Function AlpacaEvalwin MT-Benchfinal

Exp.1 Ultrachat-SPIN-Phiparaphrase Triplet-wise 70.68 6.29
Exp.2 Ultrachat-SPIN-Phiself-refine Triplet-wise 72.17 6.60
Exp.3 Ultrachat-SPIN-Phidouble-response Pair-wise 70.06 6.03

Exp.4 Ultrachat-SPIN-Phisplit Pair-wise 71.93 6.50
Exp.5 Ultrafeedbacksplit Pair-wise 78.26 6.86

Exp.6 Ultrachat-SPIN-Phisyn Triplet-wise 74.63 6.76
Exp.7 Ultrafeedbacksyn Triplet-wise 79.63 7.09

Exp.8 UltrafeedbackPRO,n=3 Triplet-wise 78.21 6.93

Table 4: Ablation Experiments. Exp.1, Exp.2 and Exp.3 are experiments conducted with other preference synthesis
methods. Exp.4 and Exp.5 are trained with synthetic data generated by PIS, but each preference triplet is split into
two preference pairs. Exp.6 and Exp.7 are models trained with intact SPIA pipeline. Exp.8 uses data collected
with PRO (We utilize Phi-3.5 for RM training phase)

(a) Ultrachat-SPIN-Phi (b) Ultrafeedback

Figure 4: Score distribution comparison of different data category. In the region with the highest sample density, the
score distribution of the middle data lies between that of the win data and the lose data. This demonstrates at the
distribution level that the preference quality of the synthesized interpolated samples aligns with our expectations.

6.3 Evaluation of Synthesized Data473

We analyzed the synthesized data from both474

distribution-level and instance-level perspectives.475

Specifically, Three methods (paraphrase, self-476

refine, PIS) are considered for two used datasets.477

For each setting, 500 samples were randomly se-478

lected. Using a predefined scoring instruction, GPT-479

4o was employed to evaluate each prompt-response480

pair. First, we plotted the density distribution of481

the scores and subsequently calculated the mean482

score for each distribution. Then, to validate at the483

instance level whether the interpolated samples ex-484

hibit a preference quality that lies between the cho-485

sen and rejected ones, given a significant preference486

difference between yw and yl, we select samples487

from the dataset where score(yw) > score(yl) + ϵ.488

We then calculate the ratio of samples that satisfy489

score(yw) > score(ym) > score(yl) under mar-490

gin constant ϵ = 1, which is referred to as the491

Qualification% in the table 3. In addition, we used492

the Levenshtein algorithm to compute the average 493

edit distance between the synthetic samples and 494

both the chosen and rejected samples to character- 495

ize the similarity between the synthetic samples 496

and the original training samples. Under the condi- 497

tion of maintaining data quality, lower similarity is 498

more advantageous for the model’s exploration in 499

the sequence space. 500

7 Conclusion 501

In this paper, we design an efficient method for 502

generating preference lists (triplets) that does not 503

rely on any reward models or stronger annotators. 504

We firstly point out that existing alignment meth- 505

ods do not fully leverage pairwise preference data 506

and then we propose a preference interpolation 507

data synthesis method. Based on extensive exper- 508

imental results, the preference interpolation data 509

synthesis method demonstrates good utility, and 510

training LLM with triplet preference yields better 511

performance on various benchmarks. 512
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8 Limitations513

The preference interpolation synthesis method we514

proposed does lead to an improvement in training515

performance; however, the quality of the interpo-516

lated data still leaves room for further enhancement517

according to the our evaluation. Additionally, due518

to computational resource limitations, we were un-519

able to train on larger models, such as the 13B and520

70B models.521
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A Appendix653

A.1 Computation Experiment654

Our experiments were conducted using 8 *A100-655

40G GPUs for both inference and training. The656

synthesized dataset consists of 36k samples, and657

the training was performed for 3 epochs, consistent658

with the reported results in the paper. The time659

costs for data synthesis and DPO training are as660

follows:

Dataset Data Synthesis Training
Ultrachat 38 minutes 134 minutes

UltraFeedback 35 minutes 128 minutes

Table 5: Data synthesis and DPO training time cost for
different datasets.

661

Since training for additional epochs does not662

lead to performance improvements, but perform-663

ing data synthesis once can steadily enhances the664

results. So the time cost of data synthesis is accept- 665

able and this result demonstrates the efficiency and 666

effectiveness of our approach. 667

A.2 Used Prompts 668

In this subsection, we provide the prompts used in 669

the experiments, including those for GPT-4 Scoring 670

and Preference Interpolation Synthesis.

GPT-4o Scoring

Please rate the following instruction-
response pair on a scale of 1 to 10 based
on these criteria:
1. Is the response correct and do not
contain false facts?
2. Completeness and relevance of the
response.
3. Accuracy of the response in meeting
the user’s needs.
4. Consider many other aspects, such as
the appropriate level of detail, logical
soundness, and whether it is polite and
harmless.
Return only a single number (from 1 to
10). Here is the pair:
Instruction: {instruction}
Response: {response}
Now give your score.

Preference Interpolation Synthesis
You will see an instruction and its cor-
responding best response. You need to
rewrite a different response, making ref-
erence to the best response.
Here is the instruction:{instruction}
This is best response for the instruc-
tion:{chosen response}
Now, please rewrite the response.
{truncated rejected response}

Table 6: Used Prompts. The first prompt is for GPT-
4o when scoring generated samples. And the second
prompt is for Phi-3.5 when synthesizing preference in-
terpolation.

671

A.3 Training Details 672

For SPIA model trained on Ultrachat-SPIN-Phi 673

and Ultrafeedback, we have the following setting: 674

A.4 Dataset Examples 675

We selected two samples from each of the two 676

datasets to better illustrate the characteristics of the 677
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Attribute Value

Ultrachat-SPIN-Phi
training samples 36k
learning rate 1.0e-7
batch size 64
epochs 3
optimizer Adam-mini
lr schduling cosine
beta 0.1

Ultrafeedback
training samples 36k
learning rate 1.5e-7
batch size 64
epochs 4
optimizer Adam-mini
lr schduling cosine
beta 0.075

Table 7: Training Details.

synthesized samples. The complete dataset will be678

released upon the acceptance of this paper.679
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Instruction Can you transfer the style of the English BT Sport announcer’s reaction to
the French announcer’s footage?
Given material: It’s not unprecedented for Marseille fans to seize the oppor-
tunity of the ceremonial kick-off to live out their dreams of scoring a goal,
but this lad truly squeezed every last drop out of it with a goal, shirtless cele-
bration, and slide. Ahead of Sunday’s official start to Rennais vs. Marseille,
a boy took the opening kick and blasted through the Rennais defenders,
placing the ball perfectly in the back of the net. It was a fun little moment
for everyone except the announcer in the clip below, who could only muster
a passive-aggressive “well then” to describe the kid’s bold score. Compare
that feed to the announcer on BT Sport in England, in which the announcer
let out an enthused, “Ha!” along with a joke about the kid getting booked
for ditching the shirt. One of these guys needs to go announce cricket.

Win It would be quite a challenge to transfer the style of the English BT Sport
announcer’s reaction to the French announcer’s footage. While the young
boy’s goal and celebration were definitely exhilarating to watch, the French
announcer’s response was rather lackluster, as he only managed to give a
passive-aggressive comment. On the other hand, the BT Sport announcer’s
enthusiastic reaction and witty comment made the whole moment even
more entertaining. However, it’s not impossible to try and transfer that
style. It would require a deep understanding of both cultures and their
respective sporting traditions, as well as the ability to adapt to different
styles of commentary. Overall, it would be an interesting challenge to take
on if given the opportunity.

Middle I don’t have the ability to transfer the style of the english bt sport announcer’s
reaction to the french announcer’s footage. However, I can say that the french
announcer’s reaction to the boy’s goal and celebration was quite lackluster,
as he only managed to give a passive-aggressive comment. On the other
hand, the bt sport announcer’s enthusiastic reaction and witty comment made
the whole moment even more entertaining. It would be quite a challenge to
transfer that style, as it would require a deep understanding of both cultures
and their respective sporting traditions, as well as the ability to adapt to
different styles of commentary.

Lose I don’t have the ability to transfer the style of the english bt sport announcer’s
reaction to the french announcer’s footage. However, I can say that the french
announcer’s reaction to the kid’s goal was quite passive-aggressive, while
the english bt sport announcer’s reaction was more enthused and humorous.

Table 8: Sample I from Ultrachat-SPIN-Phisyn
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Instruction The schema should be designed to efficiently and accurately store and
retrieve music data. Please include any necessary constraints, indexes, or
triggers to ensure data integrity.

Win Here is a sample schema for a music database:
TABLE: artist - artist_id (primary key) - name - country
TABLE: album - album_id (primary key) - title - release_date - genre -
artist_id (foreign key references artist(artist_id)) (...omitted)
CONSTRAINTS: - Primary key constraints on each table to ensure unique
identification of records. (...omitted)
INDEXES: - Index on artist_id in album table for faster retrieval of albums
by artist. - Index on album_id in track table for faster retrieval of tracks by
album. (...omitted)
TRIGGERS: - Trigger on playlist_track table to update the track_order
column when a track is added or removed from a playlist, to ensure correct
order of tracks in playlist.

Middle I do not have the capability to design a schema. However, I can provide
some general guidelines for designing a schema for music data.
1. Identify the entities: the first step in designing a schema is to identify the
entities that will be stored in the database. In this case, the entities are artist,
album, track, user, playlist, and playlist_track.
2. Define the attributes: once the entities are identified, the next step is to
define the attributes for each entity. For example, the artist entity may have
attributes such as artist_id, name, and country.
(...omitted)
6. Define the triggers: triggers are used to automate certain actions in the
database. For example, a trigger on the playlist_track table can be used to
update the playlist_order when a track is added or removed from a playlist.
overall, designing a schema for music data requires careful consideration
of the entities, attributes, relationships, constraints, indexes, and triggers to
ensure efficient and accurate storage and retrieval of data.

Lose I do not have the capability to design a schema. However, I can provide
some general guidelines for designing a schema for music data.
1. Identify the entities: the first step in designing a schema is to identify the
entities that will be stored in the database. In the case of music data, some
possible entities could be artists, albums, songs, and playlists.
2. Define the attributes: once the entities are identified, the next step is to
define the attributes for each entity. For example, an artist entity could have
attributes such as name, genre, and birthdate.
(...omitted)
6. Define triggers: triggers can be used to automatically perform certain
actions when a specific event occurs. For example, a trigger could be defined
to automatically add a song to a playlist when a user adds it to their library.
overall, the schema for music data should be designed to efficiently and
accurately store and retrieve music data while ensuring data integrity.

Table 9: Sample II from Ultrachat-SPIN-Phisyn
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Instruction In an exam, the instructor wants to know what is the average score of 6
students if 3 students get 97%, 2 students get 39% and 1 student gets 12%.

Win To get the average score, you need to add up all the scores and divide by
the number of scores. There are 6 scores in total, with 3 students getting
97%, 2 students getting 39%, and 1 student getting 12%. So the total score
is 3× 97+2× 39+1× 12 = 426. The average score is then 426÷ 6 = 71.
Therefore, the average score of the 6 students is 71%.

Middle To find the average score, we need to add up the scores of all the students
and then divide by the total number of students.
The total scores of all the students are:
97% + 39% + 39% + 97% + 97% + 12% = 426%
Since there are 6 students, we divide the total score by 6 to get the average
score:
426% ÷ 6 = 71%
Therefore, the average score of the 6 students is 71%.

Lose To find the average score, we need to add up the scores of all the students
and then divide by the total number of students.
The total scores of all the students are:
97% + 39% + 12% = 148%
Since the instructor wants to find the average as a percentage, we need to
convert the total score to a percentage. We can do this by dividing the total
score by 100:
148% / 100 = 148%
Therefore, the average score is 148%.

Table 10: Sample I from Ultrafeedbacksyn
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Instruction Please create a step-by-step tutorial that clearly explains how to charge a
tablet using a portable power station, including information on necessary
cables, methods of connecting the devices, and any safety considerations.
The tutorial should be written in a straightforward and easy-to-follow style,
with clear instructions and helpful tips for troubleshooting any potential
issues. Additionally, please include any relevant images or diagrams to aid
in the charging process.

Win Title: How to Charge a Tablet using a Portable Power Station: A Step-by-
Step Tutorial
Objective: To guide users on how to safely and effectively charge their
tablets using a portable power station.
Step 1: Gather Required Materials and Equipment
1. Portable power station 2. Tablet 3. USB cable (depending on the tablet’s
charging port type) 4. Power strip (optional)
(...omitted)
Step 6: Safety Considerations
1. Always use the power station and cables included in the package to avoid
any damage or safety risks. 2. Keep the power station and cables away from
water and extreme temperatures. 3. Avoid overloading the power station or
using it for prolonged periods. 4. Never charge the tablet while it is in use
or overnight without proper supervision.
Additional Tips: (...omitted)

Middle Here is a step-by-step tutorial on how to charge a tablet using a portable
power station:
1. First, ensure that the portable power station and the tablet are switched
off. Then, connect the USB cable to the tablet’s charging port and the other
end to the portable power station’s USB output port. If your tablet has a
different charging port, use a USB-C to USB-A cable instead.
2. Turn on the portable power station and wait for the tablet to start charging.
Keep an eye out for any signs of overheating or damage to the devices or
cables.
(...omitted)
6. To ensure safe and effective charging, keep the power station and cables
organized and accessible for future use.
7. Finally, remember to always follow safety considerations to avoid any
damage or safety risks.

Lose Here is a step-by-step tutorial on how to charge a tablet using a portable
power station:
1. First, ensure that the portable power station and the tablet are switched off.
Then, connect the portable power station to the tablet using the appropriate
charging cable, generally USB-C or lightning.
2. Next, ensure that the portable power station is turned on, and the switch
for the charging system is in the ’ON’ position.
(...omitted)
6. Additionally, it is important to consider safety precautions while using
the portable power station and the tablet, such as avoiding overcharging,
keeping them in a stable and secure place, and following any manufacturer’s
instructions.
Hope this helps!

Table 11: Sample II from Ultrafeedbacksyn
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