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Abstract
The alignment of large language models (LLMs)
often assumes that using more clean data yields
better outcomes, overlooking the match between
model capacity and example difficulty. Challeng-
ing this, we propose a new principle: “Preference
data vary in difficulty, and overly difficult exam-
ples hinder alignment, by exceeding the model’s
capacity.” Through systematic experimentation,
we validate this principle with three key findings:
(1) preference examples vary in difficulty, as evi-
denced by consistent learning orders across align-
ment runs; (2) overly difficult examples signif-
icantly degrade performance across four LLMs
and two datasets; and (3) the capacity of a model
dictates its threshold for handling difficult exam-
ples, underscoring a critical relationship between
data selection and model capacity. Building on
this principle, we introduce Selective DPO, which
filters out overly difficult examples. This simple
adjustment improves alignment performance by
9-16% in win rates on the AlpacaEval 2 bench-
mark compared to the DPO baseline, surpassing a
series of DPO variants with different algorithmic
adjustments. These results together illuminate the
importance of aligning data difficulty with model
capacity, offering a transformative perspective for
improving alignment strategies in LLMs. Code is
available at https://github.com/glorg
ao/SelectiveDPO

1. Introduction
Data selection focuses on identifying the most valuable sub-
set from a dataset while excluding ineffective samples (Al-
balak et al., 2024). It significantly improves the first two
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9.4% reduction 
due to difficult examples

Figure 1: Overly difficult examples hinder the alignment.
Training on difficult examples, identified by high valida-
tion loss, adversely affects alignment and decreases overall
performance by 9.4% in win rate. The results are from
experiments with four SFT models on the UltraFeedback-
binarized dataset, i.e., Figure 3.

stages of training large language models (LLMs): pre-
training (Lee et al., 2021; Penedo et al., 2023; Tang et al.,
2024) and supervised fine-tuning (SFT) (Cao et al., 2023;
Qin et al., 2025; Zhou et al., 2023), by adhering to well-
established principles. However, in the third stage, i.e.,
preference alignment (Askell et al., 2021; Weidinger et al.,
2021), data selection principles are often implicit and su-
perficial, potentially limiting the alignment between LLM
outputs and human preferences.

Prior studies in alignment underscore the importance of se-
lecting error-free data by demonstrating the presence and
negative impacts of mislabeled data (Wang et al., 2024a;
Gao et al., 2024), noisy feedback (Mitchell, 2023; Chowd-
hury et al., 2024), and data with low agreement (Argilla,
2024), implicitly assuming that all error-free data are bene-
ficial regardless of the model’s capacity. However, we argue
this assumption overlooks the relationship between data
difficulty and model capacity. Our experiments show that
overly difficult examples not only fail to improve alignment
but can actually hinder the performance (see Figure 1). This
observation motivates our systematic investigation into how
example difficulty affects alignment performance.

Our main contribution is a new principle for preference
data selection, which emphasizes the match between model
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capacity and example difficulty:

Preference data vary in difficulty, and overly difficult exam-
ples hinder alignment, by exceeding the model’s capacity.

This principle has three key claims: (1) preference data can
be categorized by difficulty levels, (2) overly difficult ex-
amples can harm alignment performance, and (3) difficulty
is relative to the model’s capacity—larger models, with
greater capacity, can benefit from more difficult examples.
We validate this principle through systematic experiments.
Specifically:

Preference examples vary in difficulty level (Section 3).
We show that, in DPO (Rafailov et al., 2024), the order in
which testing examples are correctly classified by the im-
plicit reward model is consistent across different runs and
training data. This robust ordering reflects the existence of
inherent example difficulties. Based on this observation, we
use validation loss as a computational proxy to systemati-
cally identify and rank example difficulty.

Difficult examples hinder alignment (Section 4). We
reveal that difficult examples–identified by high validation
loss–significantly hinder alignment. Our experiments across
two datasets and four pre-trained models show consistent
performance drops when including these difficult examples.
These challenging examples emerge naturally during data
collection, rather than through artificial construction. This
highlights the imperfections of the previous principle and
calls for a new data selection principle for alignment tasks.

Difficult examples exceed the model’s capacity (Sec-
tion 4). We demonstrate that example difficulty interacts
directly with model capacity. Experiments with models of
3B, 8B, and 14B parameters show that larger models benefit
from higher proportions of difficult examples, confirming
that difficulty must be calibrated to the model’s capacity.

Filtering out overly difficult examples yields remarkable
gains (Section 5 and 6). Finally, we validate our principle
with a new method, Selective DPO, which filters out overly
difficult examples. This approach achieves a 9–16% higher
win rate on AlpacaEval 2 (Dubois et al., 2024) compared to
standard DPO (Rafailov et al., 2024), outperforming state-
of-the-art methods such as SimPO (Meng et al., 2024) and R-
DPO (Park et al., 2024) while maintaining better perplexity
and implicit reward margins.

2. Preliminaries
2.1. Preference Alignment with DPO

Preference alignment (Ouyang et al., 2022) aims to align
the outputs of LLMs with human ethics and styles, ensuring
that these models are safe, reliable, and effective for real-
world applications (Christiano et al., 2017). In this study,

we focus on direct preference optimization (DPO) (Rafailov
et al., 2024), a method known for its simplicity and robust
performance in alignment tasks (Dubey et al., 2024). DPO
trains a policy model, πθ , on a dataset D containing prompt
x, preferred response yw, and rejected response yl. The
training objective incorporates a reference SFT model, πref,
and a hyperparameter, β, to control the divergence between
πθ and πref:

LDPO(πθ,D) = −E(x,yw,yl)∼D

[
(1)

log σ
(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
.

2.2. Quantifying the Example Difficulty

Learned step as a measure of difficulty. An example’s
learned step is defined as the earliest training step after
which the model reliably distinguishes preferred responses
from rejected answers. This is formalized as:

LS(x, yw, yl) = min
tlrn

{
(2)

tlrn

∣∣∣β log
πθt(yw|x)
πref(yw|x)

− β log
πθt(yl|x)
πref(yl|x)

> δ, ∀t > tlrn

}
.

A similar metric has been explored by Wu et al. (2021).
The difference is that we calculate Eq. (2) exclusively on
held-out examples, ensuring it reflects intrinsic difficulty
rather than the order of data presentation (Zhu et al., 2024a).
Larger learned steps indicate more difficult examples. For
all experiments, we set δ = 0.4.

Validation loss as an alternative difficulty proxy. We
borrow validation loss (Wu et al., 2021; Rampp et al., 2024)
as a computationally cheaper alternative to the learned step.
Specifically, for a specific example (x, yw, yl) from D\D̂,
validation loss is defined as:

VL(x, yw, yl) = (3)

− log σ
(
β log

πθ̂(yw|x)
πref(yw|x)

− β log
πθ̂(yl|x)
πref(yl|x)

)
,

where πθ̂ = argminπθ
LDPO(πθ, D̂) is a reference model1

trained on the subset D̂ ⊂ D. Low validation losses indi-
cate easier examples. To compute the validation loss, we
partition D equally into D̂ and D \ D̂, train on one partition,
evaluate on the other, and finally output average results over
three runs.

1Throughout this work, the term reference model (πθ̂) refers
to the aligned model trained on subsets of the training examples,
while reference SFT model (πSFT) specifically denotes the model
defined in Eq. (1).
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Figure 2: Examples are learned in consistent orders across different runs of the same LLM, despite variations in the
training data and random seeds. Left: The learned step (ranging from 1 to 948) represents the step at which the implicit
reward model distinguishes between preferred and rejected responses (see Eq. (2), threshold δ = 0.4). X-axis: 40 unique
combinations of model size (4 total) and training data subset (10 per model). Y-axis: 300 test examples, sorted by average
learned step across 40 runs. Color gradients encodes difficulty. Middle: Two Spearman’s rank correlation matrices. Lower
triangle: correlations of learned step across runs; upper triangle: validation loss correlations. Right: Two Jaccard similarity
matrices for difficult examples (top 50%) defined by learned step and validation loss across runs.

3. Preference Examples Vary in Difficulty
Examples are learned in a remarkably consistent order, re-
vealing the inherent example difficulty. We then validate the
validation loss as an effective measure of this difficulty for
alignment tasks.

3.1. The Underlying Example Difficulty

While various metrics such as length (Spitkovsky et al.,
2010; Tay et al., 2019; Nagatsuka et al., 2023) and per-
plexity (Wu et al., 2024) have been proposed to measure
difficulty of text samples, their ability to reliably capture
example difficulty remains controversial (Campos, 2021).
We address this concern by demonstrating: (1) examples
have distinct learned steps (see Eq.2), indicating different
difficulty levels, and (2) these learned steps are consistent
across runs with different training data and random seeds.

In Figure 2 (left), we visualize the learned steps of 300
test examples from Ultrafeedback-binarized2,where darker
colors indicate more training steps needed for model com-
prehension. Results from 10 runs show consistent learning
order across different models (Jiang et al., 2023; AI@Meta,
2024; Team et al., 2024) varying in size (2B–9B), training
stage, and data sampling. This consistency confirms that
examples vary in difficulty, allowing us to discuss difficult
examples without debating various definitions of difficulty.

3.2. Validation Loss as a Proxy for Learned Step

The robust learning order suggests the existence of diffi-
cult examples—some examples are consistently harder for
LLMs to understand. However, identifying these examples

2https://huggingface.co/datasets/HuggingF
aceH4/ultrafeedback_binarized

at scale is computationally expensive, as the computing of
learned step requires evaluating the model after each gra-
dient update. To address this, we adopt the validation loss
from the curriculum learning literature (Wu et al., 2021;
Rampp et al., 2024) (see Eq(3)). Specifically, we train six
reference models using the DPO objective on the randomly
sampled half training set and evaluate the validation loss for
examples on the other half. We refer the difficult examples
to examples with a large validation loss.

Definition 3.1 (Difficult example). A preference example
(x, yw, yl) is considered a difficult example if its validation
loss is no less than a specified value:

VL(x, yw, yl) ≥ Q(τ).

Remark 3.2. We introduce a flexible threshold Q(τ) which
is the τ -quantile of the validation loss. This accounts for the
lack of a formal definition of sample difficulty (Zhu et al.,
2024b) and the variation in loss distributions across models.

To assess whether the validation loss effectively approxi-
mates the learned step, we examine the correlation between
difficulty rankings produced by these two measures. Using
Spearman’s rank correlation, we compared rankings across
different runs and models. As shown in the middle panel
of Figure 2, the validation loss exhibits patterns remarkably
similar to the learned step. Furthermore, the high correlation
coefficients between average learned step and average vali-
dation loss across the four models (0.9258, 0.9227, 0.9336,
and 0.9283) validate the effectiveness of validation loss as a
computationally efficient proxy for learned step. Addition-
ally, the Jaccard similarity between difficult example sets
(defined as top 50% by either metric) remains consistently
high for each model (Figure 2, right), confirming that both
measures identify similar sets of difficult examples.
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Figure 3: Direct Preference Optimization (DPO) struggles with difficult examples, broadly and significantly. We present
the defined WR′ evolution for four models trained on the argilla-mix-dpo-7k and ultrafeedback-binarized datasets. The results
are based on checkpoints from three 1-eopch runs with different seeds. Random Ordering (DPO): Training data are presented
in a randomized sequence. Sorted by VL (From Easy to Difficult): Training examples are ranked by their validation loss
(VL) and presented from easy to difficult, following a curriculum learning approach. Selected by VL (Shuffled): The easiest
60% (for Argilla-7K) or 50% (for UF-binarized) of the data is selected based on VL, and examples are sampled in a random
order for training. The VL measurements are displayed as bar plots. We include evaluation results (dashed lines) from the
two corresponding DPO models released by Meng et al. (2024) for reference.

4. Difficult Examples Hinder Alignment
In this section, we first demonstrate that difficult examples
significantly degrade alignment performance across various
datasets and model scales. We then investigate the factors
that contribute to their difficulty through a series of system-
atically designed empirical studies.

4.1. Investigation Setup

Models. We start the alignment from SFT models trained on
the UltraChat-200k dataset: Mistral-7B-SFT (Jiang et al.,
2023), Qwen-2.5-7B-SFT (Yang et al., 2024), Llama3-
8B-SFT (AI@Meta, 2024), and Gemma-2-9B-SFT (Team
et al., 2024). This setting better demonstrates the effects of
different alignment procedures (Meng et al., 2024).

Datasets. We use UltraFeedback-binarized, a widely
adopted alignment dataset (Tunstall et al., 2023; Meng et al.,
2024; Zhou et al., 2024; Pattnaik et al., 2024), and Argilla-
dpo-mix-7k3, a small but high-quality dataset.

Hyper-parameters. Following prior work, we set β =
0.01 (Zhou et al., 2024). The learning rate is swept for DPO
with random ordering and directly applied to DPO with
other settings. We conduct the alignment with one epoch

3https://huggingface.co/datasets/argilla/
dpo-mix-7k

following Meng et al. (2024).

Evaluation. We employ WR′, the win rate against gpt-4-
turbo on 805 testing examples from AlpacaEval 2 (Dubois
et al., 2024) with ArmoRM (Wang et al., 2024c), a re-
ward model with impressive performance on the Reward-
Bench (Lambert et al., 2025), as the evaluator. This evalua-
tion setup allows us to evaluate thousands of checkpoints.

4.2. Difficult Examples Hinder Preference Alignment

As shown in Figure 3, training on difficult examples leads
to significant performance declines. We compare three
example-ordering strategies: (1) random ordering (standard
DPO), (2) easy-to-difficult sorting by validation loss, and
(3) random ordering with only easy examples. Despite us-
ing the same training recipes, models consistently perform
better when trained on easier examples across all four archi-
tectures and both datasets. Notably, the benefits are mainly
unlocked by excluding difficult examples rather than the or-
dering itself, as shown by the similar performance of sorted
and shuffled easy examples (Strategies 2 and 3).

The performance drop due to difficult examples is more pro-
nounced in Ultrafeedback-binarized. This is aligned with
the observation that Ultrafeedback-binarized contains misla-
beled examples (Argilla, 2024; Bartolome et al., 2023) and
Argilla-dpo-mix-7k is characterized by high-quality data.
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Figure 5: Difficult examples benefit larger models with greater capacities. Examples are sorted by their validation loss,
ranging from easy to difficult. We fit the measured WR′ (scatter points) using a second-degree polynomial (dashed line),
identifying the peak of each parabola as the sweet spot (marker). Notably, larger models reach sweet spots at higher data
percentages, indicating that model with greater capacity can manage more challenging examples. The results are from ten
runs per model type, evaluated using ArmoRM (Wang et al., 2024c).

4.3. Difficult Examples Are Not Necessarily Data Errors

Before proposing our solution to filtering out difficult and
harmful examples, we shed light on their traits to justify
their removal here. For statistics and case study on difficult
examples, please refer to Appendix E and F.

Mislabeled data (Figure 4 (a)). Prior work suggests that
difficult examples might be mislabeled (Argilla, 2024; Bar-
tolome et al., 2023). To test this hypothesis, we sort the
examples by their validation loss and flip the labels of last
40% (the most difficult) examples. However, this modifi-
cation does not alleviate the performance drop, suggesting
that label noise is not the primary cause.

Distribution shift (Figure 4 (b)). Another possibility is that
difficult examples represent a distinct distribution, causing
catastrophic forgetting when models transition from easy to
difficult examples. We test this using ϵ-greedy sorting: each
mini-batch contains ϵ portion of randomly sampled exam-
ples and (1 − ϵ) portion of examples sorted by validation
loss. This ensures continuous exposure to both distributions,
yet shows no improvement over the greedy sorting.

Learning rate sensitivity (Figure 4 (c)). We argue that
the performance drop is not simply caused by the improper
learning rate. We investigate this with a varying learning
rate. However, adjusting the learning rate neither alleviates
performance drops nor delays the decline, demonstrating
that the issue is unrelated to improper optimization settings.

4.4. Difficult Example Exceeds Model’s Capacity

We hypothesize that difficult examples bring about training
tasks beyond the model’s current capabilities, thus requiring
larger models to properly understand the nuanced preference
differences. To validate this hypothesis, we conduct experi-
ments using Qwen-2.5 models (Yang et al., 2024) of three
sizes: 3B, 7B, and 14B. The dataset is Argilla-dpo-mix-7k.
Figure 5 shows a clear relationship between model size and
manageable example difficulty: the optimal percentage of
training data (the sweet spot) increases from 64% for the
3B model to 81% for the 14B model. This scaling pattern
demonstrates that larger models can effectively learn from
more difficult examples, confirming the direct relationship
between model capacity and example difficulty threshold.
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Figure 6: The pipeline of Selective DPO. It extends DPO (Rafailov et al., 2024) with a principled data selection process:
selecting preference examples within the model’s capacity. Specifically, Selective DPO comprises three steps: (1) Train a
set of reference models using the DPO loss on different subsets of the training data. (2) Evaluate the reference models to
compute the validation loss, which serves as a proxy for example difficulty. (3) Selectively align LLMs on examples with
low validation loss from easy to difficult examples.

5. Selective DPO
Having verified the three key claims underpinning our data
selection principle, we are now well-positioned to propose
an instantiated algorithm, Selective DPO. It extends the
standard DPO (Rafailov et al., 2024) by selectively training
on examples within the model’s capacity. The algorithm
consists of three main steps, as illustrated in Figure 6:

• Train reference models. The training dataset is ran-
domly split into two partitions. Using the standard
DPO loss (Eq. 1), SFT models are trained separately
on each partition, resulting in two reference models
per split. This process is repeated three times, yielding
six reference models. Unlike the reference SFT model
used in the DPO objective to control KL divergence,
these reference models are specifically employed for
computing validation loss.

• Rank examples by their validation loss. The trained
reference models evaluate held-out examples from their
respective complementary partitions (D\D̂). Each ex-
ample is assessed three times using different reference
models, and the mean validation loss is computed to
rank the examples in ascending order.

• Align with the selected data. The easiest examples,
comprising the lowest τ percent of validation losses,
are selected for alignment training. The alignment al-
gorithm, such as DPO, is applied exclusively to these
examples. To fully utilize the difficulty ranking, exam-
ples are processed sequentially from easy to difficult.

Remark 5.1 (Flexible hyper-parameter τ ). The optimal τ ,
which determines the percentage of selected data, depends
on the data difficulty distribution and the model’s capacity.
In practice, τ can be tuned using a third-party evaluator such
as AlpacaEval 2 (Dubois et al., 2024). For the evaluation
in the next section, we set τ = 50 for the UltraFeedback-
binarized dataset, based on insights from Figure 3. For
clarity and reproducibility, pseudocode for Selective DPO
is provided in Appendix A.

6. Experiments
We evaluate the proposed preference data selection prin-
ciple by benchmarking the Selective DPO algorithm on
formal benchmarks: AlpacaEval 2 (Dubois et al., 2024),
Arena-Hard v0.1 (Li et al., 2024b), and MT-Bench (Zheng
et al., 2023). We report scores following each benchmark’s
evaluation protocol.

6.1. Performance Comparison

Baselines. Data selection for alignment remains a rela-
tively underexplored yet promising direction. To provide a
comprehensive evaluation, we consider three categories of
relevant baseline algorithms: (1) Data correction methods,
including label flipping and label smoothing, aim to mitigate
annotation errors; (2) DPO (Rafailov et al., 2024) and its
variants such as IPO (Azar et al., 2024), KTO (Ethayarajh
et al., 2024), ORPO (Hong et al., 2024), SimPO (Meng
et al., 2024), and WPO (Zhou et al., 2024); (3) Potential so-
lutions for preference data selection, such as CHES (Razin
et al., 2025)—designed for refusal alignment on unsafe
prompts—along with RM (filtering out samples with low
reward margins (Gao et al., 2024)) and PPL (selecting SFT
samples with moderate perplexity (Wu et al., 2024; Ji12
et al., 2024)). All baseline algorithms undergo hyperparam-
eter tuning on the learning rate. Implementation details are
provided in Appendix C.

Results (Table 1 and Figure 7). Table 1 compares re-
sults on the Mistral-7B (Jiang et al., 2023) and Llama-3-
8B (AI@Meta, 2024) models. Label flipping yields only
marginal gains, supporting our insight that difficult exam-
ples are not necessarily data errors. In contrast, Selective
DPO, which carefully selects 50% of the training data, sig-
nificantly outperforms all baselines across all three bench-
marks, demonstrating the strength of our data selection prin-
ciple for alignment tasks. Figure 7 extends the comparison
to Gemma-2-9B (Team et al., 2024) and Qwen-2.5-7B (Yang
et al., 2024), showing exceptional performance in win rate
(WR) on AlpacaEval 2 and comparable performance on
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Table 1: Benchmarking results from AlpacaEval 2 (Dubois et al., 2024), Arena-Hard (Li et al., 2024b), and MT-Bench (Zheng
et al., 2023). In AlpacaEval 2, WR and LC indicate the win rate and length-controlled win rate against GPT-4-Turbo. We
report the mean and standard variance across three runs. In Arena-Hard, WR represents the win rate against GPT-4-0314,
with GPT-4-Turbo serving as the evaluator. MT-Bench scores the quality of generated responses on a scale from 1 to 10,
using either GPT-4 or GPT-4-Turbo as the evaluator. All results are based on full parameter fine-tuning (FPFT), except for
the row labeled with LoRA (Hu et al., 2022). We run this comparison on the UltraFeedback-binarized dataset.

Method
Mistral-7B-SFT Llama-3-8B-SFT

AlpacaEval 2 Arena-Hard MT-Bench AlpacaEval 2 Arena-Hard MT-Bench

LC (%) WR (%) WR (%) GPT-4 Turbo GPT-4 LC (%) WR (%) WR (%) GPT-4 Turbo GPT-4

SFT 8.4 6.2 1.3 4.8 6.3 6.2 4.6 3.3 5.2 6.6
DPO (Rafailov et al., 2024) 15.1 12.5 10.4 5.9 7.3 18.2 15.5 15.9 6.5 7.7
+ Label Flipping (Wang et al., 2024a) 15.4 13.1 10.9 - 7.3 19.1 15.9 16.2 - 7.7
+ Label Smoothing (Mitchell, 2023) 15.2 12.7 10.2 - 7.3 17.7 14.8 15.7 - 7.6

RRHF (Yuan et al., 2023) 11.6 10.2 5.8 5.4 6.7 12.1 10.1 6.3 5.8 7.0
SLiC-HF (Zhao et al., 2023b) 10.9 8.9 7.3 5.8 7.4 12.3 13.7 6.0 6.3 7.6
IPO (Azar et al., 2024) 11.8 9.4 7.5 5.5 7.2 14.4 14.2 17.8 6.5 7.4
CPO (Xu et al., 2024) 9.8 8.9 6.9 5.4 6.8 10.8 8.1 5.8 6.0 7.4
KTO (Ethayarajh et al., 2024) 13.1 9.1 5.6 5.4 7.0 14.2 12.4 12.5 6.3 7.8
ORPO (Hong et al., 2024) 14.7 12.2 7.0 5.8 7.3 12.2 10.6 10.8 6.1 7.6
R-DPO (Park et al., 2024) 17.4 12.8 8.0 5.9 7.4 17.6 14.4 17.2 6.6 7.5
SimPO (Meng et al., 2024) 21.5 20.8 16.6 6.0 7.3 22.0 20.3 23.4 6.6 7.7
WPO (Zhou et al., 2024) 24.4 23.7 16.7 - 7.4 23.1 22.2 23.1 - 7.7

CHES(lowest 50%) (Razin et al., 2025) 18.90.74 16.61.13 - - - 17.10.69 15.91.11 - - -
RM(highest 50%) (Gao et al., 2024) 16.20.66 13.11.21 - - - 19.70.61 16.11.24 - - -
PPL(middle 50%) (Wu et al., 2024) 17.30.62 15.41.10 - - - 15.30.59 15.71.10 - - -

Selective DPO (Ours w/ LoRA) 25.40.80 27.41.26 16.2 - 7.3 21.10.73 18.31.14 22.7 - 7.8
Selective DPO (Ours) 27.10.63 28.91.31 17.0 - 7.4 24.90.77 25.31.36 24.1 - 8.0
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Figure 7: Comparison results against SimPO and WPO, with all methods tuned for their learning rates. Selective DPO
(S+DPO) demonstrates superior performance in win rate (WR) and comparable results in length-controlled win rate (LC).

length-controlled win rate (LC). The slightly lower perfor-
mance on LC is consistent with results in Table 1, where
Selective DPO demonstrates better performance under WR.

We emphasize that our goal is not to propose the best ever
alignment algorithm, but to verify the proposed data selec-
tion principle for alignment: selecting examples that match
the model’s capacity. The length exploitation issue, while
beyond the scope of this paper, could potentially be ad-
dressed using techniques from SimPO (Meng et al., 2024)
or WPO (Zhou et al., 2024), which we leave as future work.

6.2. Hyper-Parameter Study

Selective DPO introduces two implicit hyperparameters.
Number of reference models (Figure 8 (a)): Increasing

the number of reference models used to compute the vali-
dation loss improves performance on AlpacaEval 2 (LC).
However, considering computational costs, training six ref-
erence models strikes a balance between performance and
efficiency. Percentage of selected easy examples (Fig-
ure 8 (b)): Increasing τ incorporates examples exceeding
the model’s capacity, leading to performance degradation,
while excessively low values limit training to the simplest
examples, also resulting in suboptimal performance.

6.3. In-Depth Analysis of DPO vs. Selective DPO

Selective DPO outperforms DPO in terms of likelihood
distribution and reward margin distribution. As shown in
Figure 8(c), Selective DPO achieves a distribution of nega-
tive log-likelihoods (NLLs) closer to zero on test prompts
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Figure 9: Weak-to-strong curriculum under-performs.
Aligning a 7B model with examples ordered by 3B reference
models yields compromised results.

from AlpacaEval 2, indicating higher confidence in gen-
erated responses. Additionally, the implicit reward model
learned by Selective DPO exhibits better accuracy and larger
reward margins on testing examples (Figure 8(d)).

6.4. Weak-to-Strong Curriculum

To investigate whether difficult examples can be identified
using smaller reference models, we compare alignment ex-
periments where a 7B SFT model is trained with its own
curriculum versus a curriculum derived from a smaller 3B
model. Results in Figure 9 show moderate benefits from the
smaller model’s curriculum, though slightly inferior to the
model’s own curriculum. This suggests that while smaller
models can provide insights, data selection remains more
effective when tailored to the target model’s capacity.

7. Related Work
Response selection. The importance of selecting high-
quality responses as preferred choices has been highlighted
in several studies (Bai et al., 2022; Ethayarajh et al., 2022;
Tunstall et al., 2023). These works focus on ensuring that
preferred responses are aligned with human values. Our
work builds upon these efforts in two key ways: (1) the
datasets we consider already incorporate these response
selection techniques, and (2) we prioritize whether prefer-
ence examples fall within the capabilities of the target LLM,
rather than solely emphasizing their alignment with human
values. Data correction. Efforts to address noisy labels in-

clude techniques such as label flipping (Wang et al., 2024a)
and confidence-based data filtering (Gao et al., 2024). Ap-
proaches like cDPO (Mitchell, 2023) and rDPO (Chowdhury
et al., 2024) aim to mitigate the impact of mislabeling with-
out explicitly removing mislabeled examples. In our study,
we incorporate label flipping and label smoothing experi-
ments to support our claim that difficult examples are not
necessarily mislabeled examples, but rather those exceeding
the model’s capacity. Seemingly relevant work. Our study
differs from general data selection research, such as Liu et al.
(2024); Xia et al. (2024), which uses the term alignment
but actually focuses on the SFT stage. For a comprehensive
review of data selection for LLMs and curriculum learning,
we refer readers to Appendix B.

8. Conclusion and Future Work
In this work, we reveal and address a critical gap in LLM
alignment: the mismatch between data difficulty and model
capacity. Challenging the assumption that more clean data
uniformly improves alignment, we propose a novel principle
for alignment tasks:

Preference data vary in difficulty, and overly difficult exam-
ples hinder alignment, by exceeding the model’s capacity.

Comprehensive experiments validate the three key claims
underlying this principle. Building on this data selection
principle, we introduce Selective DPO, an alignment algo-
rithm that selectively trains on examples within the model’s
capacity. Selective DPO achieves state-of-the-art results on
benchmarks including AlpacaEval 2, Arena-Hard, and MT-
Bench, with up to 16% gains in win rates over DPO. Our
work advocates a paradigm shift in alignment: alignment
should prioritize data difficulty relative to model capacity
rather than treating all preference data equally.

However, limitations remain: (1) Selective DPO tends to
favor longer responses due to potential data bias; and (2) the
proposed principle is designed and validated specifically for
the DPO setting, limiting its direct applicability to RLHF.
These gaps highlight opportunities for future work.
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A. Pseudocode for the Instantiated Algorithm: Selective DPO

Algorithm 1 Selective DPO

Input:
πSFT: An SFT model that serves as the starting point for preference alignment.
D: A dataset consisting of preference examples.
RandomSampler: A utility for sampling elements randomly without replacement.
SequentialSampler: A utility for sampling elements sequentially.
LDPO: DPO loss function with the form: LDPO(x, yw, yl) = − log σ

(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)
# Step 1: Train six reference alignment models: πθ01 , πθ02 , πθ11 , πθ12 , πθ21 , πθ22 .
for t = 0, 1, 2 do

Randomly split the dataset D into two subsets, D1 and D2.
Initialize πref ← πSFT and πθ ← πSFT.
while RandomSampler has not finished do

Sample a mini-batch of examples from D1 using RandomSampler.
Update πθ by minimizing the DPO loss function: πθ ← argminπθ

E(x,yw,yl)∼D1

[
LDPO(x, yw, yl)

]
end while
Save the model: πθt1 ← πθ.
Reinitialize: πθ ← πSFT.
while RandomSampler has not finished do

Sample a mini-batch of examples from D2 using RandomSampler.
Update πθ by minimizing the DPO loss function: πθ ← argminπθ

E(x,yw,yl)∼D2

[
LDPO(x, yw, yl)

]
end while
Save the model: πθt2 ← πθ.
Reinitialize: πθ ← πSFT.

end for

# Step 2: Rank examples by their validation loss.
for each example (x, yw, yl) in dataset D do

Compute the validation loss using the three held-out reference alignment models:

VL(x, yw, yl) = Eπθ∼(πθ01
or πθ02

,πθ11
or πθ12

,πθ21
or πθ22

)

[
LDPO(x, yw, yl)

]
.

end for
Select the 50% examples with the lowest validation losses to form Dselected.

# Step 3: Conduct alignment on the selected data Dselected.
while SequentialSampler has not finished do

Sample a mini-batch of examples from Dselected using SequentialSampler.
Update πθ by minimizing the DPO loss function: πθ ← argminπθ

E(x,yw,yl)∼Dselected

[
LDPO(x, yw, yl)

]
end while

Output:
πθ: The aligned model obtained by Selective DPO.
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B. Related Work
B.1. Data Selection for Pre-Training

Selecting training corpus brings significant performance gains in the pre-training stage (Wenzek et al., 2019; Brown et al.,
2020; Zhao et al., 2023a; Penedo et al., 2023; Tang et al., 2024). Existing approaches can be broadly categorized into two
categories: Sample-level selection focuses on filtering out undesired content such as non-target languages, duplicated data,
toxic materials, and low-quality information (Albalak et al., 2024). This is often achieved through model-based filters (Joulin,
2016; Engstrom et al., 2024; Wettig et al., 2024) or heuristic filters (Wenzek et al., 2019; Lee et al., 2021; Laurençon et al.,
2022), each applying specialized filters for specific objectives. Token-level selection, an emerging strategy, down-weights
low-quality tokens to enhance data quality (Lin et al., 2024), complementing sample-level filtering.

B.2. Data Selection for Supervised Fine-Tuning

Recent study suggests that SFT changes only the format of generation (Zhou et al., 2023). In light of this, various methods
are proposed for finding the most informative subset for SFT, mainly following three principles: data quality, diversity,
and importance (Qin et al., 2025). The measurement of data quality can be manual indicators such as the linguistic
DQI (Mishra & Sachdeva, 2020), human scores (Zhou et al., 2023). Model-based quality measurement includes predictions
from ChatGPT (Chen et al., 2024a), reward models (Cao et al., 2023), small reference models (Ankner et al., 2024)
and the LLM itself (Li et al., 2024a). Measurements of data diversity are mainly manually defined, such as the source
diversity (Mukherjee et al., 2023; Wang et al., 2023) and distance in the embedding space (Wu et al., 2023; Xu et al., 2023;
Du et al., 2023; Chen et al., 2024c; Liu et al., 2024). Data importance, which evaluates an example’s contribution to
a specific task, measured using performance scores (Engstrom et al., 2024), data influence models (Yu et al., 2024), or
relevance to desired skills (Chen et al., 2024b).

B.3. Scoring the Example Difficulty

Scoring data difficulty is central to curriculum learning, which prioritizes training on simpler examples before progressing
to more complex ones (Bengio et al., 2009). Heuristic scoring functions mirror human priors of difficulty understanding,
such as sentence length (Spitkovsky et al., 2010; Tay et al., 2019; Nagatsuka et al., 2023), word rarity (Chang et al., 2021),
and linguistic perplexity (Campos, 2021). In contrast, principled scoring functions leverage model behavior to indicate
example difficulty, including reward margins from third-party reward models (Croitoru et al., 2024), model perplexity on
responses (Wu et al., 2024), attention patterns (Ghosal et al., 2024) or attention scores from transformer models (Kim & Lee,
2024). In addition, we refer readers interested in training dynamics—the motivation behind our work—to Shen & Sanghavi
(2019), Liu (2021), and Swayamdipta et al. (2020) for further insights into learning dynamics and sample difficulty. In this
work, we employ two principled scoring measures, demonstrating their robustness and consistency in ranking examples.
This allows us to analyze difficult examples objectively, avoiding ambiguities inherent in heuristic definitions.

B.4. Curriculum Learning for Alignment

Curriculum learning (CL) mimics human cognition by structuring learning from simpler to more complex concepts (Avrahami
et al., 1997; Bengio et al., 2009). However, CL remains a highly debated technique. While some studies show that
it accelerates convergence, enhances generalization, and/or improves robustness in models like convolutional neural
networks (Jiang et al., 2014; Tudor Ionescu et al., 2016), recurrent neural networks (Zaremba & Sutskever, 2014; Sachan &
Xing, 2016), transformers (Platanios et al., 2019), and diffusion models (Croitoru et al., 2023), other research finds little or
no benefit (Platanios et al., 2019; Campos, 2021; Wu et al., 2021). In preference alignment for LLMs (Rafailov et al., 2024;
Wang et al., 2024b), the results are similarly mixed. Kim & Lee (2024) explored CL for preference alignment and concluded
that sorting examples according to prompt length and attention score offered no clear benefits. On the other hand, Pattnaik
et al. (2024) reported positive results, albeit with other tricks such as multiple candidate pairs data and iterative reference
model. Our study suggests that CL, when paired with robust difficulty scoring, can positively impact LLM alignment by
aligning data difficulty with model capacity.
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C. Experiment Details
C.1. Computational Environment

All training experiments in this paper were conducted on compute nodes equipped with 8 × H100 GPUs. To facilitate
reproduction with limited computational resources, we also provide key benchmarking results for selected models trained
using 4 × A100 40G GPUs with LoRA. Reproducing our SelectiveDPO on 7B models takes about 8 GPU hours (H100).

C.2. SFT Hyper-Parameters

In this work, we limited our alignment experiments to SFT models, which is expected to better demonstrate the effects
of different preference alignment procedures. We prepared these SFT models using the the UltraChat-200k dataset. We
try our best to use the SFT models from community to facilitate the reproduction. However, there were no available SFT
checkpoints for some pre-trained models (e.g., Qwen-2.5 models). We in this part list the hyper-parameters for training
these community-released SFT models as well as the SFT models trained by ourselves in Table 2.

Table 2: Training recipes for SFT models used in our experiments.

SFT Model Name Base Model Name Batch Size Learning Rate Epoch Optimizer LoRA?

Qwen-2.5-3B-SFT Qwen/Qwen2.5-3B 128 2e-5 1 Adam No
Qwen-2.5-7B-SFT Qwen/Qwen2.5-7B 128 1e-5 1 Adam No
Qwen-2.5-14B-SFT Qwen/Qwen2.5-14B 128 5e-6 1 Adam No
Mistral-7B-SFT (HuggingFaceH4/mistral-7b-sft-beta) mistralai/Mistral-7B-v0.1 128 2e-5 1 Adam No

Llama-3-8B-SFT (princeton-nlp/Llama-3-Base-8B-SFT) meta-llama/Meta-Llama-3-8B 128 2e-5 1 Adam No

Gemma-2-9B-SFT (tanliboy/zephyr-gemma-2-9b-sft) google/gemma-2-9b 128 3e-6 1 Adam No

C.3. Key Hyper-Parameters for Alignment

Figure 3 We conducted a series of alignment experiments with LoRA on two datasets for generating Figure 3. Key
hyperparameters used in the Argilla-dpo-mix-7k experiments are listed in Table 3 where we report the sweep range and the
selected best learning rate for DPO in bold font. These parameters are then directly applied to other two settings (sorted and
selected by VL) for generating Figure 3. The key parameters used for the UltraFeedback-binarized dataset are list in Table 4.

Table 3: Key hyperparameters used for aligning models on the argilla-7k dataset: Figure 3, top.

Model for Alignment Learning Rate Batch Size β Epoch Optimizer LoRA?

Mistral-7B-SFT 2e-5, 3e-5, 5e-5, 1e-4, 2e-4 64 0.01 1 paged adamw 32bit Yes

Qwen-2.5-7B-SFT 2e-5, 3e-5, 5e-5, 1e-4, 2e-4 64 0.01 1 paged adamw 32bit Yes

Llama-3-8B-SFT 5e-5, 1e-4, 2e-4, 3e-4, 5e-4 64 0.01 1 paged adamw 32bit Yes

Gemma-2-9B-SFT 1e-5, 2e-5, 3e-5, 5e-5, 1e-4 64 0.01 1 paged adamw 32bit Yes

Table 4: Key hyperparameters used for aligning models on the ultrafeedback-bianrized dataset: Figure 3, bottom.

Model for Alignment Learning Rate Batch Size β Epoch Optimizer LoRA?

Mistral-7B-SFT 1e-6, 3e-6, 5e-6, 8e-6, 10e-6 64 0.01 1 paged adamw 32bit Yes
Qwen-2.5-7B-SFT 1e-6, 3e-6, 5e-6, 8e-6, 10e-6 64 0.01 1 paged adamw 32bit Yes
Llama-3-8B-SFT 1e-6, 3e-6, 5e-6, 8e-6, 10e-6 64 0.01 1 paged adamw 32bit Yes
Gemma-2-9B-SFT 1e-6, 3e-6, 5e-6, 8e-6, 10e-6 64 0.01 1 paged adamw 32bit Yes
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Table 1 Comparison results of this table are mainly borrowed from the SimPO paper (Meng et al., 2024). All results are
obtained by full parameter fine-tuning (FPFT) except for the row labeled with LoRA. We added the results of our Selective
DPO pipeline using the configurations detailed in the following table. The inclusion of LoRA results is to facilitate the
reproduction for practices with limited resources.

Table 5: Key hyperparameters used for aligning models on the ultrafeedback-bianrized dataset: Figure 3, bottom.

Experiment Name Learning Rate Batch Size β Epoch Optimizer LoRA?

SelectiveDPO & Mistral-7B-SFT & LoRA 8e-6 64 0.01 1 paged adamw 32bit Yes
SelectiveDPO & Mistral-7B-SFT 2e-7, 5e-7, 1e-6, 2e-6, 3e-6 128 0.01 1 paged adamw 32bit No
SelectiveDPO & Llama-3-8B-SFT & LoRA 10e-6 64 0.01 1 paged adamw 32bit Yes
SelectiveDPO & Llama-3-8B-SFT 2e-7, 5e-7, 1e-6, 2e-6, 3e-6 128 0.01 1 paged adamw 32bit No
WPO & Llama-3-8B-SFT 5e-7, 1e-6, 2e-6 128 0.01 1 paged adamw 32bit No

Figure 7 Comparison results of this figure are from runs with full parameter fine-tuning. We rerun two state-of-the-art
alignment algorithms, SimPO (Meng et al., 2024) and WPO (Zhou et al., 2024) with hyperparameter sweeping on the
learning rate. Other hyperparameter configurations follow the suggestion from their papers. Specifically:

Table 6: Key hyperparameters used for generating comparison in Figure 7.

Experiment Name Learning Rate Batch Size Epoch Optimizer Other Hyper-Parameters LoRA?

WPO & Qwen-7B-SFT 5e-7, 1e-6, 2e-6, 128 1 paged adamw 32bit β = 0.01 No
WPO & Gemma-9B-SFT 2e-7, 5e-7, 1e-6 128 1 paged adamw 32bit β = 0.01 No
SimPO & Qwen-7B-SFT 6e-5, 8e-6, 1e-5 128 1 paged adamw 32bit β = 2, γ

β = 0.8 No
SimPO & Gemma-9B-SFT 5e-7, 1e-6, 2e-6 128 1 paged adamw 32bit β = 2, γ

β = 0.8 No
SelectiveDPO & Qwen-7B-SFT 5e-7, 8e-7, 1e-6 128 1 paged adamw 32bit β = 0.01 No
SelectiveDPO & Gemma-9B-SFT 2e-7, 3e-7, 5e-7 128 1 paged adamw 32bit β = 0.01 No

C.4. LoRA Configuration for Alignment

We conduct all our analytics experiments using LoRA. Its detailed configurations are described in Table 7.

Table 7: LoRA configuration for all analytics experiments.

Parameter Value

load in 4bit false

lora r 16

lora alpha 16

lora dropout 0.05

lora target modules q proj,k proj,v proj,o proj,gate proj,up proj,down proj

C.5. Decoding Configuration

AlpacaEval 2. For this benchmark, we employ sampling-based decoding strategies, configuring the temperature as
follows: 0.7 for Mistral models, 0.9 for Llama-3 models, 0.5 for Gemma-2 models, and 0.7 for Qwen-2.5 models. These
configurations are aligned with standard practices in the community.

Arena-Hard. For this benchmark, we utilize default greedy decoding across all settings, as outlined in Meng et al. (2024).

MT-Bench. We adapt the official decoding configuration, which varies in sampling temperatures for different models.
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D. Downstream Task Evaluation
To examine how the proposed selective preference optimization pipeline affects downstream task performance, we evaluate
the instantiated algorithm, Selective DPO, alongside other baseline algorithms on various tasks listed in the HuggingFace
Open Leaderboard (Beeching et al., 2023). Results, following established evaluation protocols, are presented in Table 8.

Table 8: Downstream task evaluation results. The dataset is UltraFeedback-binarized.

MMLU(5) Winograd(5) GSM8K(5) HellaSwag(10) ARC(25) TruthfulQA(0) Average

Mistral-7B-Base

Base 62.46 78.93 38.29 83.38 61.6 42.64 61.22
SFT 59.77 77.58 40.71 82.28 58.19 43.05 60.26
DPO 57.38 77.35 30.4 83.58 61.18 53.11 60.50
SimPO 58.43 77.35 32.3 83.54 61.95 50.82 60.73
WPO 59.54 78.69 32.07 85.23 64.08 51.04 61.78
SelectiveDPO 59.34 76.16 14.48 83.25 65.27 51.95 58.41
SelectiveDPO(60%) 59.54 76.87 28.58 84.25 65.96 57.21 62.07

Qwen-2.5-7B-Base

Base 74.16 76.72 82.18 80.03 63.23 56.38 72.12
SFT 73.86 75.77 81.43 80.71 62.71 55.67 71.69
DPO 74.06 75.61 82.79 81.73 65.70 60.92 73.47
SimPO 74.33 77.11 85.22 82.48 68.09 65.51 75.45
WPO 74.29 75.85 83.55 83.2 68.52 65.09 75.08
SelectiveDPO 74.05 75.85 80.44 82.82 67.32 63.80 74.04

Llama-3-8B-Base

Base 65.14 76.64 48.45 81.88 58.87 43.93 62.49
SFT 63.79 76.64 50.57 81.40 60.84 45.33 63.10
DPO 63.47 76.95 54.81 83.71 64.51 53.45 66.15
SimPO 63.18 77.58 47.76 82.93 65.44 59.44 66.06
WPO 63.46 76.72 44.58 84.14 65.27 53.84 64.67
SelectiveDPO 63.99 76.48 48.75 83.51 64.93 51.34 64.83

Gemma-2-9B-Base

Base 70.29 80.03 40.41 82.66 67.83 45.56 64.46
SFT 70.82 78.77 41.93 83.53 68.77 48.04 65.31
DPO 71.17 80.11 44.43 85.42 71.33 56.96 68.24
SimPO 72.16 80.43 42.53 86.06 73.12 65.34 69.94
WPO 70.88 79.40 43.14 85.64 70.99 53.44 67.25
SelectiveDPO 70.88 79.56 43.67 85.30 70.82 54.67 67.48

Overall, Selective DPO performs comparably to other alignment algorithms, such as DPO and SimPO. However, we observe
a notable performance drop in the Mistral-7B model when evaluated using the GSM8K (Cobbe et al., 2021) protocol. Two
primary factors contribute to this performance decrease: Exclusion of difficult examples. GSM8K predominantly evaluates
mathematical skills, which often correspond to difficult examples (as detailed in Appendix F). Since Selective DPO excludes
such difficult examples to get better aligned with human preferences, the model’s mathematical performance diminishes.
Formatting requirements. GSM8K requires numerical answers in a specific format: ### <THE ANSWER>. We find
that the Mistral-7B-Selective DPO model often generates correct answers but presents them in a human dialogue style,
breaking the required format and reducing evaluation scores.

We propose three potential solutions. First, as suggested by SimPO (Meng et al., 2024), incorporating an auxiliary SFT
loss to regularize model behavior could help regularize the model’s behavior, ensuring compatibility with downstream
tasks. Second, using larger models with greater capacity mitigates this issue. For instance, Gemma-2-9B-SelectiveDPO
demonstrates better performance and is unaffected by this issue. Finally, including more examples that cover mathematical
questions could prevent the model from forgetting its mathematical capabilities while aligned with human preferences and
dialogue styles. For example Selective DPO(60%), which incorporates 10% more difficult data, alleviates this issue.
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E. What Defines Difficult Examples: Insights from Feature Analysis
E.1. Can Length and Reward Margin Predict Example Difficulty?

We include alternative measures that could potentially indicate example difficulty and evaluate their behavior across varying
levels of difficulty.

Response length. Response length may implicitly signal the complexity of generated answers, as longer responses often
carry more information, potentially making them more challenging for the model. Two measures are defined: (1) Chosen
Length: The length of the chosen answer, len(yw); (2) Chosen Length − Rejected Length: The difference in lengths between
the chosen and rejected answers: len(yw)− len(yl).

Reward margin by reward models. Reward models, such as ArmoRM (Wang et al., 2024c), provide score margins that
can indicate response difficulty. A large positive margin suggests an easy example, while a large negative margin may signal
noisy or mislabeled data. Two measures are defined: (1) Chosen Score: The reward score assigned to the chosen answer,
rm(x, yw), and (2) Chosen Score - Rejected Score: The difference in scores between the chosen and rejected answers:
rm(x, yw)− rm(x, yl).

Reward margin by GPT-4. GPT-4 can also act as an evaluator, assigning scores to responses. Similar measures are
defined: (1) Chosen Rating: The rating assigned to the chosen answer, GPT-4(x, yw), and (2) Chosen Rating - Rejected
Rating: The difference in ratings between the chosen and rejected answers: GPT-4(x, yw)− GPT-4(x, yl).
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Figure 10: Comparison of response length and reward margin measures with validation loss across three difficulty levels:
Easy, Medium, and Difficult. The dataset examples are partitioned into these levels based on increasing validation loss.
While validation loss increases consistently with difficulty, alternative measures such as response length and reward margin
(from reward models and GPT-4) exhibit no significant variation across these levels, indicating their limited effectiveness as
proxies for difficulty.

Comparison. The distributions of these measures are shown in Figure 10. The data are partitioned into three levels–Easy,
Medium, and Difficult–based on increasing validation loss. Validation loss serves as the ground truth for difficulty due to its
strong correlation with the learned step measure. Difficult examples tend to have longer responses and larger negative reward
margins. However, these trends are not statistically significant, as evidenced by substantial overlaps in the distributions across
difficulty levels. This suggests that while these measures provide some insight, they may not serve as robust standalone
indicators of example difficulty.
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E.2. Are Easy Examples for Small Models Still Easy for Larger Models?
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Figure 11: Easy examples identified by smaller models are likely also recognized as easy by larger models, and difficult
examples identified by larger models are likely challenging for smaller models as well. Each heatmap compares a model’s
classifications(y-axis) against those of an oracle (another model, set on x-axis). Easy examples are defined as the first 63.7%,
71.2%, and 81.3% of examples with the lowest validation loss for the 3B, 7B, and 14B models, respectively. Difficult
examples comprise the remaining examples, with these thresholds drawn from the mean sweet spot in Figure 5. The dataset
is Argilla-dpo-mix-7k.
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F. What Defines Difficult Examples: Insights from Case Studies
In this section, we examine examples with varying levels of difficulty, characterized by their validation losses. We select
three representative examples around validation loss quantile: 0.0 (easiest), 0.6 (medium), and 1.0 (most difficult) from
the Argilla-dpo-mix-7k dataset. We highlight examples near the 0.6 quantile as this range marks a critical transition point
where the model’s performance starts to decline. Our key observations are as follows:

• Easy examples are well-labeled and involve straightforward concepts (Table 9). Easy examples show that preferred
responses are concise, clear, and of significantly higher quality than their rejected counterparts, which are often
overly verbose and filled with excessive emojis. Unlike more difficult examples, these easy examples lack complex
mathematical calculations or the use of languages other than English.

Table 9: Three examples with the lowest validation loss (Model: Mistral-7B-SFT & Dataset: Argilla-dpo-7k).

Prompt Chosen Rejected

How can you determine the pH of
rainwater?
How can you determine the pH
level of rainwater?
Choose your answer. Are these
two questions paraphrases of each
other?
OPTIONS:
1). no.
2). yes..

yes.
Both questions are asking the same thing -
how to find out the pH level of rainwater.
They have simply been worded differently.
Paraphrasing means to say something in a
different way, and that’s exactly what these
two questions do, so they are paraphrases of
each other

Ooh ooh! *excitedly* Hi there! *bouncy bouncy* I
can definitely help you with that! *giggle*
So, you wanna know how to determine the pH of
rainwater, huh? *curious* Well, pH is like a special
number that tells us how yucky or yummy
something is. *giggle* And rainwater can be a little
bit yucky sometimes, so we need to check its pH to
make sure it’s safe to drink. *concerned*
To check the pH of rainwater, we can use a special
tool called a pH meter
...

Please add spaces between words:
Fixedroofrailingsrepresen-
tanewandincreasinglyimportant-
productarea,
andoneinwhichthecom-
pany’scustomersincludeOpel,
BMW,Volkswagen,NissanandFord.

Fixed roof railings represent a new and
increasingly important product area, and one
in which the company’s customers include
Opel, BMW, Volkswagen, Nissan and Ford

Ooh ooh ah ah! *giggle* Hi there! *bounce
bounce* Do you want to know about something
cool? *twirl twirl* It’s called ”Fixed Roof
Railings”! *excited squeal* They’re like special
rails that go on cars! *bounce bounce*
So, you know how cars have roofs, right? *look
around* Like this one! *point* And sometimes, the
roof is made of metal or something hard, right?
*nod nod* Well, Fixed Roof Railings are like
special rails that go on the roof of the car! *giggle*
Theyŕe fixed, so they don’t move around! *bounce
bounce*
....

Based on the premise ”Peace,
amigo. Don Cazarś raised finger
silenced his man.”, can we
conclude the hypothesis ”Peace,
friend, said Don Cazar, silencing
the man with a finger.” is true (see
options)?
Available choices:
-yes;
-it is not possible to tell;
-no;

Yes, we can conclude the hypothesis ”Peace,
friend, said Don Cazar, silencing the man
with a finger.” is true.

Ooh ooh! *giggle* Hi there, little buddy! *smile*
So, you wanna know if the hypothesis ”Peace,
friend, said Don Cazar, silencing the man with a
finger” is true? *tongue out* Ooh, thatś a good
one! *nod*
Well, let me think... *thinking face* Ooh ooh, I
know! *excited* The sentence ”Peace, amigo” is
like a magic word that makes the man stop talking,
like when you say ”Shhh” to a baby. *giggle* So, if
Don Cazar said ”Peace, amigo,” it means he wants
the man to be quiet, and thatś why the man stopped
talking! *smile*
So, the hypothesis is... *drumroll* ...true!
*confetti* Yay! *high five* Youŕe so smart for
asking such a great question! *hug* Now, do you
want to ask another question? *wink
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• Examples near the model’s capacity have correct labels but require complex skills (Table 10). The preferred
examples at this level of validation loss consistently have correct labels. However, many tasks involve complex
mathematical calculations, demanding the model’s numerical proficiency. Additionally, some examples require
multilingual skills, including Japanese and Filipino, which are likely challenging for the Mistral-7B-SFT model to
process effectively.

Table 10: Three examples near the models’ capacity (Model: Mistral-7B-SFT & Dataset: Argilla-dpo-7k).

Prompt Chosen Rejected

62944725+438869736559012=?
equations/math only, no
commentary.

62944725 + 438869736559012 =
438869799503737

The sum of the two numbers is:
629,447,250 + 43,886,973,659,012 =
44,516,431,106,432

“A team of cheerleaders cheering
at a sporting event.”
Based on this premise, can we
conclude that the hypothesis
“Cheerleaders are laying down in
the locker room.” is true?
Options:
- yes
- it is not possible to tell
- no Step by step answer:

1. The premise states that the cheerleaders are
cheering at a sporting event.
2. This implies that they are actively
participating and performing at the event.
3. To do so, they must physically be present and
engaged in the cheering activities.
4. Hence, the hypothesis that the cheerleaders
are laying down in the locker room cannot be
true, since they are actively participating in the
event.
Answer: no

No, we cannot conclude that the hypothesis
“Cheerleaders are laying down in the locker
room” is true based on the premise “A team of
cheerleaders cheering at a sporting event.”
Hereś why:
1. The premise only tells us that the
cheerleaders are cheering at a sporting event,
but it doesnt́ provide any information about their
location or activity when they are not cheering.
2. The hypothesis “Cheerleaders are laying
down in the locker room” is not a logical
conclusion based on the premise. There is no
evidence or reason to believe that the
cheerleaders are laying down in the locker room,
as this activity is not related to cheering at a
sporting event.
3. Therefore, the correct answer is “it is not
possible to tell” whether the hypothesis is true
or false based on the premise

You will be given a definition of a
task first, then some input of the
task.
Given a sentence in the Japanese,
provide an equivalent translation
in Filipino that retains the same
meaning through the translation.
In translation, keep numbers as it
is.
苦しい立場の検察官は、その
問題における彼らの行いに関
して司法省によって調査中で
ある。

Output:

Ang mga piskal sa mahirap na posisyon ay
kasalukuyang pinag-iimbestigahan ng
Kagawaran ng Hustisya tungkol sa kanilang
mga ginawa sa problemang iyon.

Ensayado muna ang miyembro ng paglagdaan
sa isang bagong problema darating sa kanilang
pamamahala.

22



Principled Data Selection for Alignment

• The most difficult examples are likely mislabeled, exhibit distribution shifts, or involve complex concepts
(Table 11). First, some preferred examples in this category are likely mislabeled, as illustrated by the first and second
examples in the table. Second, there is a noticeable distribution shift in this subset of the data. For instance, while
the preferred responses in the easy examples (Table 9) are clear and concise, the preferred responses in this table
are verbose and cluttered with unnecessary emojis. Finally, the presence of complex concepts further increases the
difficulty. Together, these factors make this subset of examples the most challenging to understand.

Table 11: Three examples with highest validation loss (Model: Mistral-7B-SFT & Dataset: Argilla-dpo-7k).

Prompt Chosen Rejected

Please add punctuation to this:
Stunning coastal world Ferry trip
along the Inside Passage
Punctuation version:

Sure! Here’s the punctuated version of your task:
“Stunning coastal world! Ferry trip along the Inside
Passage.”
Now, let me provide you with a detailed and long
answer to this task.
The Inside Passage is a breathtakingly beautiful coastal
route that stretches along the Pacific coast of North
America, spanning from northern Washington state to
southern Alaska. This scenic waterway is dotted with
charming coastal towns, rugged fjords, and majestic
glaciers, making it an unforgettable destination for any
traveler.
...

“Stunning Coastal World: Ferry Trip
Along the Inside Passage.”

How to apply for tickets for the
fifa world cup? Apply for your
passport. Encourage anyone who
wants to attend the world cup with
you to do so as well. You will
need a valid passport number in
order to apply for tickets.
Does this next sentence follow,
given the preceding text?
You need to pay for world cup
tickets
Select from: (a). Yes; (b). It’s
impossible to say; (c). No.

Oh my gosh! You wanna go to the FIFA World Cup?
That sounds like so much fun!
First, you need to get a passport, ’kay? That’s like a
special book that proves you’re you and you’re allowed
to go to other countries.
Then, you can use your passport number to apply for
tickets to the World Cup! But, oh no! You can’t get
tickets if you don’t have a passport, so make sure you
get one first!
And, oh my gosh! You’ll also need to pay for the
tickets!
So, get your passport and your money ready, and you’ll
be ready to go to the World Cup!
Does that make sense?

Yes.

Here’s a brain teaser for you: Can
you describe a process in which a
machine can learn without being
explicitly programmed? Think
hard, because that’s exactly what
machine learning is all about.
Give it a try and let’s see if you
can crack this puzzle!

Machine learning is a field of computer science that
gives computers the ability to learn without being
explicitly programmed. It is a branch of artificial
intelligence based on the idea that systems can learn
from data, identify patterns and make decisions with
minimal human intervention.
There are many different types of machine learning
algorithms, but they all work by finding patterns in
data. Once a machine learning algorithm has learned a
pattern, it can be used to make predictions or decisions.
For example, a machine learning algorithm could be
used to predict whether a customer is likely to churn, or
to decide which products to recommend to a customer.
Machine learning is a powerful tool that can be used to
solve a wide variety of problems. However, it is
important to note that machine learning is not a silver
bullet. Machine learning algorithms can make
mistakes, and they can be biased. It is important to
carefully evaluate machine learning algorithms before
using them in production.
One way to describe ...

Machine learning can be achieved
through the process of observation and
unsupervised learning, which does not
require explicit programming. In this
process, a machine can observe its
environment and learn from data patterns,
without the need to be explicitly
programmed. Through this, it can pick
up on patterns in data and uncover trends
that can be used to make predictions and
decisions.
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G. Additional Comparison and Visualization
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Figure 12: Comparison of our difficulty metric validation loss against alternative sorting criteria: perplexity gap, completion
length, and reward margin. Perplexity Gap is defined as the difference in perplexity between the chosen and rejected
responses given the same prompt. Perplexity of Chosen refers to the perplexity of the chosen response alone. Reward Margin
denotes the difference in reward scores between the chosen and rejected responses. Label Flipping involves flipping the
preference labels of samples identified as difficult and potentially mislabeled.
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Figure 13: Evolution of preference probabilities during 2-epoch training. We track the trajectory of p(yw > yl|x) for 200
held-out test examples for better intuition. The probability is defined as: p(yw > yl|x) = σ

(
β log

πθ̂(yw|x)
πref(yw|x)−β log

πθ̂(yl|x)
πref(yl|x)

)
following the derivation of DPO paper (Appendix A.2). In general, the evolution of the validation loss (which is− log p(yw >
yl | x)) is quite stable and gradual. Only a few ”ambiguous instances” flip their preference probability (from greater than
0.5 to less than 0.5) during the 2-epoch training.
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Figure 14: Weak-to-strong curriculum under-performs. Aligning a 7B model with examples ordered by 3B reference models
yields compromised results.A similar degradation is observed for the 32B model and other model types. Notably, using a
curriculum derived from the 32B model performs better, consistent with our observation in Appendix E.2.
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