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Abstract

Self-supervised learning (SSL) has become prevalent for learning representations in
computer vision. Notably, SSL exploits contrastive learning to encourage visual represen-
tations to be invariant under various image transformations. The task of gaze estimation,
on the other hand, demands not just invariance to various appearances but also equiv-
ariance to the geometric transformations. In this work, we propose a simple contrastive
representation learning framework for gaze estimation, named Gaze Contrastive Learning
(GazeCLR). GazeCLR exploits multi-view data to promote equivariance and relies on
selected data augmentation techniques that do not alter gaze directions for invariance
learning. Our experiments demonstrate the effectiveness of GazeCLR for several settings
of the gaze estimation task. Particularly, our results show that GazeCLR improves the
performance of cross-domain gaze estimation and yields as high as 17.2% relative improve-
ment. Moreover, the GazeCLR framework is competitive with state-of-the-art representation
learning methods for few-shot evaluation. The code and pre-trained models are available at
https://github.com/jswati31/gazeclr.

Keywords: gaze estimation; representation learning; self-supervised learning

1. Introduction

Gaze represents the focus of human attention and serves as an essential cue for non-verbal
communication. While specialized gaze trackers can accurately measure a user’s gaze
direction, there is substantial interest in gaze estimation using regular cameras. Although,
learning gaze estimation models from images is challenging and needs to transcend multiple
“nuisance” attributes such as facial features or head orientation to estimate gaze accurately.

In recent years, deep learning (Zhang et al., 2015, 2017; Krafka et al., 2016) has shown
promising results for gaze estimation. In part, this success stems from the availability of
large-scale annotated datasets. As a result, valuable datasets must contain a wide range
of gaze directions, appearances, and head poses, which is laborious and time-consuming
procedure. Also, gaze annotations are difficult to obtain, which makes the creation of large,
representative datasets challenging (Ghosh et al., 2021). Therefore, methods that facilitate
training with limited gaze annotations are highly desirable.

Self-supervised learning (SSL) has gained tremendous success over the past few years
and emerged as a powerful tool for reducing over-reliance on human annotations (He et al.,
2020; Chen et al., 2020a; Grill et al., 2020). Following a generally accepted paradigm, we
consider a pre-training stage that requires no labels, followed by a fine-tuning stage using a
relatively small number of labeled samples. SSL is an effective approach for pre-training,
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Figure 1: Overall idea. (a) The proposed two-stage learning framework for gaze estimation.
Stage-I shows Gaze Contrastive Learning (GazeCLR) framework trained using only unlabeled
data and learns both invariance and equivariance properties. In Stage-II, the pre-trained
encoder is employed for gaze estimation task with small labeled data. (b) Two images
(shown in red and green) captured at same time with different camera views are used to
create both invariant and equivariant positive pairs.

where semantically meaningful representations are learned that can be seamlessly adapted
during fine-tuning stage (Caron et al., 2018; Crawford and Pineau, 2019; Moriya et al., 2018).
Specifically, a good pre-training would ensure that the embeddings for images associated with
the same gaze direction are neighbors in the feature space, regardless of other non-relevant
factors such as appearance. Arguably, this could accelerate the job of fine-tuning, possibly
reducing the number of required labeled samples.

In this work, for SSL pre-training, we focus on contrastive representation learning (CRL),
which aims to map “positive” pair samples to embeddings that are close to each other, while
mapping “negative” pairs apart from each other (Chopra et al., 2005). A popular approach
is to generate pairs by applying two different transformations (or augmentations) to an input
image forming a positive pair, and different images forming negative pairs. This method
encourages invariance in representations w.r.t. similar types of transformations, where these
transformations are assumed to model “nuisance” effects.

However, obtaining the necessary and sufficient set of “positive” and “negative” pairs
remains a non-trivial and unanswered challenge for a given task. This work attempts
to answer this question for gaze estimation. Recent CRL-based methods encourage the
representations to be invariant to any image transformation, many of which are not suitable
for gaze estimation. For example, geometry-based image transformations (such as rotation)
will change the gaze direction. In contrast, it is beneficial to have invariance to appearance,
e.g., a person’s identity, background, etc.

In this paper, we propose Gaze Contrastive Learning (or GazeCLR) framework – a
simple CRL-based unsupervised pre-training approach for gaze estimation, i.e., a pre-
training method requiring no gaze label data. In detail, our approach relies on invariance
to image transforms (e.g., color jitter) that do not alter gaze direction and equivariance
to camera viewpoint, which requires additional information of multi-view geometry, i.e.,
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images of the same person should be obtained at the same time by two or more cameras
from different locations.

For learning equivariance, we leverage the fact that in a common reference system, two or
more synchronous images of the same person from different camera viewpoints are associated
with the same gaze direction. The knowledge of the relative pose of each camera to the
common reference system provides the relation of gaze directions defined in the respective
camera space. In other words, gaze direction has an equivariant relationship to camera
viewpoints. We claim that the requirement of using multiple cameras may be less onerous
than obtaining gaze annotations for each image.

We use an existing multi-view gaze dataset EVE (Park et al., 2020) which provides
video sequences captured from four calibrated and synchronized cameras and contains gaze
annotations, which are obtained using a gaze tracking device (Tobii Pro AB, 2014). We
neglect labels during pre-training and use them only for fine-tuning and evaluation. Observe
that the relative camera pose information available with the EVE dataset is used only during
the pre-training stage. Figure 1 presents an overview of the proposed idea.

To evaluate the GazeCLR, we perform self-supervised pre-training using the EVE dataset
and transfer the learned representations for the gaze estimation task in various evaluation
settings. We demonstrate the effectiveness of representations by showing that the proposed
method achieves superior performance on both within-dataset and cross-dataset (such as
MPIIGaze (Zhang et al., 2017) and Columbia (Smith et al., 2013)) evaluations by using only
a small number of labeled samples for fine-tuning. Our major contributions are summarized
as follows:

1. We propose a simple contrastive learning method for gaze estimation that relies on the
observation that gaze direction is invariant under selected appearance transformations
and equivariant to any two camera viewpoints.

2. We also argue to learn equivariant representations by taking advantage of the multi-view
data that can be seamlessly collected using multiple cameras.

3. Our empirical evaluations show that GazeCLR yields improvements for various settings
of gaze estimation and is competitive with existing supervised (Park et al., 2019) and
unsupervised state-of-the-art gaze representation learning methods (Yu and Odobez,
2020; Sun et al., 2021).

2. Proposed Method

2.1. Stage-I: Gaze Contrastive Learning (GazeCLR) Framework

GazeCLR is a framework to train an encoder that learns embeddings to induce desired
set of invariance and equivariance for the gaze estimation task. As stated earlier, the
key intuition of GazeCLR is that we want to enforce invariance using selected appearance
transformations (e.g., color jitter) and equivariance using synchronous images of the same
person captured from multiple camera viewpoints. Similar to previous SSL approaches (Chen
et al., 2020a; Spurr et al., 2021), we rely on the normalized temperature-scaled cross-entropy
loss (NT-Xent)(Chen et al., 2020a) to encourage invariance or equivariance by maximizing
the agreement between positive pairs and disagreement between the negative pairs. In
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Figure 2: Method schematic. For synchronous view frames {Ivi}4i=1, the above figure
illustrates invariant and equivariant positive pairs anchored only for view v1. The left branch
shows single-view learning (LI) and right branch illustrates multi-view learning using four
views (LE). All images (after augmentation, a ∈ A) are passed through a shared CNN
encoder network, followed by MLP projectors (either p1 or p2) depending on the type of
input positive pair. The embeddings for multi-view learning are further multiplied by an
appropriate rotation matrix. More details in Section 2.1.

particular, we devise two variants of NT-Xent loss, namely, LI for invariance and LE for
equivariance.

The GazeCLR framework has three sub-modules: a CNN-based encoder and two pro-
jection heads based on MLP layers, as illustrated in Figure 2. The output of the encoder
branches out into different projection head depending on the type of input positive pair.
To abide by the invariance for gaze direction, we consider augmentations based on only
appearance transformations denoted as A.

Let {Ivi,t}
|V |
i=1 be the synchronous frames for timestamp t coming from different camera

views (i.e., {vi}|V |
i=1), then we create the following positive pairs:

1. Single-view positive pairs: We apply two randomly sampled augmentations from A to
create a single-view positive pair. Specifically, for any image Ivi,t, at a given timestamp
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t and view vi, we sample two augmentations a and a′ from A and then (a(Ivi,t), a
′(Ivi,t))

forms a positive pair to learn invariance. The left branch of Figure 2 shows one such
positive pair for view v1.

2. Multi-view positive pairs: We consider all unique pairs of camera viewpoints from the
same timestamp t and apply random augmentations from A, i.e., {(ai(Ivi,t), aj(Ivj ,t)) |
i, j ∈ {1, . . . , |V |} | i ≠ j}. The corresponding outputs from the encoder are passed
through projection head p2 and multiplied by an appropriate rotation matrix to learn
equivariance.

Next, to construct negative pairs, we do not sample them explicitly but use all other
samples in the mini-batch as negative examples, similar to Chen et al. (2020a). The exact
formulation of both loss functions LI and LE is described below. For brevity, we omit t
from Ivi,t and augmentation a in the following subsections.

2.1.1. Single-View Learning

Recall, the goal of single-view learning is to induce invariance amongst representations
under various appearance transformations. Let vi ∈ V be any view and b ∈ [1, . . . , B] be
the batch index. Given a batch size of B, we apply two augmentations to each sample in
the batch yielding 2B augmented images, and for each sample, we have one positive pair
and (2B − 1) negative pairs stemming from remaining samples in the batch. Our encoder
E extracts representations for all 2B augmented images, which are further mapped by
projection head p1(·) yielding embeddings ({zbvi , z

′b
vi}

B
b=1). With above notations, for any

view vi, the proposed invariance loss function LI associated with a positive pair (zbvi , z
′b
vi)

can be given as follows:

LI(zbvi , z
′b
vi) = − log

sim(zbvi , z
′b
vi)∑B

l=1 1l ̸=b sim(zbvi , z
l
vi) +

∑B
l=1 sim(z

b
vi , z

′l
vi)

(1)

where, zbvi = p1(E(Ibvi)), z′bvi = p1(E(I ′bvi)), sim(r, s) = exp

(
1

τ

rT s

||r|| · ||s||

)
, 1[l ̸=b] is an

indicator function and τ is the temperature coefficient parameter. It is worth noting that to
minimize the loss in Eq. 1, it must hold that zbvi and z′bvi needs to be closer, which aligns with
our goal of learning invariance to appearance transformations. One challenge, however, is the
risk of collapse (e.g., the network could simply learn each person’s identity). To avoid this,
we create mini-batches such that all samples in a batch are taken from a single participant.

2.1.2. Multi-View Learning

We encourage equivariance in the gaze representations to different camera viewpoints through
multi-view learning. To do so, we transform embeddings to a common reference system,
chosen as the screen reference system used during the EVE data collection. Let {RS

Cvi
} be

the rotation matrix relating the camera viewpoint vi with the screen reference system.

For each sample Ibvi in a batch of size B, the positive pair is given as (Ibvi , I
b
vj ) for two

distinct camera viewpoints (vi, vj)i ̸=j . All images for viewpoints vi and vj are first augmented
then passed through encoder E and the projector head p2(·) which gives embeddings

5



Jindal Manduchi

ẑbvi , ẑ
b
vj ∈ R3×d′ . These embeddings are further multiplied by corresponding rotation matrices

RS
Cvi

to project embeddings in the common (screen) reference system. We denote embeddings

after rotation as {z̄bvi , z̄
b
vj}

B
b=1 such that z̄bvi = RS

Cvi
ẑbvi . Therefore, for a batch of size B, our

equivariant loss LE associated with the positive pair (z̄bvi , z̄
b
vj ) is as follows:

LE(z̄bvi , z̄
b
vj ) = − log

sim(z̄bvi , z̄
b
vj )∑B

l=1 1[l ̸=b] sim(z̄bvi , z̄
l
vi) +

∑B
l=1 sim(z̄

b
vi , z̄

l
vj )

(2)

Overall loss function. Given |V | camera viewpoints, we apply both LI and LE loss
functions to each view. Thus, our overall objective function for a batch size of B becomes:

LO =
1

2B

|V |∑
i=1

B∑
b=1

(
LI(zbvi , z

′b
vi) + LI(z′bvi , z

b
vi) +

|V |∑
j=1,j ̸=i

LE(z̄bvi , z̄
b
vj )

)
(3)

2.2. Stage-II: Learning For Gaze Estimation

After pre-training, the encoder learned by the GazeCLR framework is used for the task of
gaze estimation and fine-tuned on a small labeled dataset. To this end, we remove both
projection heads p1 and p2, and replace them with MLP regressor layers to predict 3D gaze
direction. For training MLP regressor, we use the supervised loss function given as

Lang =
180

π
arccos

(
ggg · ĝ̂ĝg

||ggg|| · ||ĝ̂ĝg||

)
(4)

where ggg and ĝ̂ĝg are the ground-truth and predicted gaze directions, respectively.

3. Experiments

We start by detailing the experimental setup (Sec. 3.1) followed by a brief explanation of
considered baselines (Sec. 3.2). Next, we evaluate the performance of our pre-trained encoder
and show that representations from GazeCLR can help train an accurate gaze estimation
model even with a relatively lesser amount of annotations. For this task, we consider the
within-dataset setting (Sec. 3.3). We assess the transferable capability of our representations
by evaluating them on different domains in linear layer training (frozen encoder) setting,
where we considered only a few calibration samples from the test subject, as detailed in
Sec. 3.4. Thereafter, we compare GazeCLR with existing supervised (Park et al., 2019) and
unsupervised (Yu and Odobez, 2020; Sun et al., 2021) pre-training methods in Sec. 3.5.
Lastly, we probe the semantics of learned GazeCLR representations using a well-known
t-SNE visualization technique (in Sec. 3.6). Additional results and ablation studies are
provided in appendix B and C.

3.1. Setup

We train our GazeCLR framework on the EVE (Park et al., 2020) dataset, which has videos
collected in a constrained indoor setting with four different synchronized and calibrated
camera views. It has approximately 12 million frames collected from 54 participants with
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natural eye movements. Following the splits considered by Park et al. (2020), there are 40
subjects in training and 6 subjects in the validation set. We discard the data of test subjects
due to the non-availability of labels. We use training subjects for the pre-training stage,
without using any gaze annotations. For the gaze estimation stage, we evaluate on the data
of validation subjects to report the performance. We use all four camera views (i.e., |V | = 4)
as well as the information about the relative pose between camera and screen (RS

C) provided
with the EVE dataset. Note that our framework can be extended to more number of camera
views (|V | > 4) using ETH-XGaze (Zhang et al., 2020) dataset. In this paper, we consider
pre-training only on EVE dataset as more views add on increased computational demand.

Data pre-processing. We use face images available in the EVE dataset, obtained after
applying a data-normalization procedure (Sugano et al., 2014; Zhang et al., 2018). The
normalization pipeline transforms the gaze annotation to a normalized camera space through
a rotation matrix M . Note that we post-multiply RS

C with M−1 as RS
C is defined w.r.t. the

original camera reference frame, i.e., z̄v = RS
Cv

(M)−1ẑv.

Training details. GazeCLR is trained using SGD optimizer with initial learning rate
= 0.03, momentum = 0.9, and cosine annealing (Loshchilov and Hutter, 2016) for the
learning rate decay. We use a single 1080 GeForce GTX GPU for training, with a batch
size of 128, and train for 50K iterations. Our mini-batch is made up of samples from
a single participant. The temperature coefficient τ is set to 0.1. For the augmentation
transformations A, we apply random spatial cropping and resizing, gaussian blur, color
perturbation (p = 0.8) on brightness, contrast, saturation and hue, grayscale conversion
(p = 0.2), and auto-contrast (p = 0.5).

All experiments use ResNet-18 (He et al., 2016) as the encoder network and take the
output from the average pooling layer. The encoder is trained from scratch. Following Chen
et al. (2020a), both projection heads p1(·) and p2(·) are two-layer MLP networks with
ReLU non-linearity. The output dimensions for the first and second layers are 512 and 180,
respectively. The input image size is 128× 128.

We train the GazeCLR framework in two different settings: (i) GazeCLR (Equiv): where
we only consider equivariance through the loss function LE and (ii) GazeCLR (Inv+Equiv):
where we consider both invariance and equivariance with equal weights using the overall
objective LO. We present the performance of both training setups in all the considered
experimental settings. Observe that, GazeCLR (Inv) trained with only LI loss function is
equivalent to SimCLR (Chen et al., 2020a) baseline method.

3.2. Baselines

We compare our approach with six following baselines: (i) w/o Pre-training, i.e., an encoder
is initialized using random weights, (ii) the vanilla Autoencoder, which has an encoder
network that consists of the same encoder layers as GazeCLR and five DenseNet (Huang
et al., 2017a) deconvolution blocks as decoder, and is trained with L2 loss, (iii) Novel
View Synthesis (Rhodin et al., 2018) framework is trained on our dataset using the same
architecture as the auto-encoder, (iv) BYOL (Grill et al., 2020), (v) SimCLR (Chen et al.,
2020a) and (vi) Fully-Supervised is a ResNet-18 model trained on the whole EVE training
data and represents possibly an upper bound for the performance of GazeCLR. For SimCLR
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Table 1: Within-dataset Evaluation. We report the mean angular errors (MAE) in
degrees for within-dataset evaluation for the gaze estimation task. The “EVE” shows the
whole EVE data while “MiniEVE” indicates a small subset data. The Frozen column is ✓ if
pre-trained encoder is frozen, otherwise fine-tuned ✗. The best performing method is shown
in bold and second best is underlined.

Method Pre-Train Task Frozen MAE ↓
Data Data (degrees)

w/o Pre-training EVE MiniEVE ✗ 8.47
Autoencoder EVE MiniEVE ✗ 6.91
Novel View Synthesis (Rhodin et al., 2018) EVE MiniEVE ✓ 6.79
BYOL (Grill et al., 2020) EVE MiniEVE ✗ 8.35
SIMCLR (Chen et al., 2020a) EVE MiniEVE ✓ 6.57
GazeCLR (Equiv) EVE MiniEVE ✓ 4.83
GazeCLR (Inv+Equiv) EVE MiniEVE ✓ 4.92
Fully-Supervised - EVE ✗ 4.15

and BYOL, we use the same augmentation set as in our proposed method. For more
experimental details, see appendix E.

3.3. Within-dataset Evaluation

For within-dataset evaluation, we perform pre-training on the training split of the EVE
dataset without using labels. Then we adapt the pre-trained encoder for the gaze estimation
on a small subset of labeled data. Precisely, we took five training subjects out of 40 (which
form around 10% samples out of the whole EVE dataset) for the supervised gaze estimation
stage and called it “MiniEVE”. We validate on fixed subject data chosen from training
subjects and report the final performance for validation subjects.

Table 1 shows the mean angular errors (in degrees) obtained for different pre-training
baselines and the proposed GazeCLR method. To this end, we freeze the pre-trained encoder
and simply train an MLP regressor using the “MiniEVE” dataset. Note that, for two
baselines, Autoencoder and BYOL, we fine-tune the whole end-to-end framework along with
the encoder as otherwise, they fail to converge when only their representations are used.
We indicate this behavior in Table 1, using the Frozen column as ✓ if encoder is frozen
otherwise as ✗.

We observe that our method GazeCLR outperforms other pre-training baseline methods
by only training an MLP regressor on the small amount of labeled data (“MiniEVE” is
∼ 10% of whole data). Specifically, it can be seen that the performance achieved from
GazeCLR helps in closing the gap with the fully-supervised baseline. Our method GazeCLR
(Inv+Equiv) shows a relative improvement of 25.1% compared to the popular contrastive
learning method SimCLR. Additionally, GazeCLR (Equiv) shows a boost of 26.4% relative
improvement over the SimCLR approach, suggesting that equivariant representations are
very effective for the gaze estimation task. We hypothesize that since we utilize similar
augmentation strategies for creating both single-view and multi-view positive pairs, GazeCLR
(Equiv) performs almost comparable to GazeCLR (Inv+Equiv).
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Figure 3: Transfer Learning Evaluation. Performance evaluation using Linear Layer
Training (LLT) protocol for both MPIIGaze and Columbia dataset under different few-shot
settings. Each bar is computed by averaging over 10 runs. Best viewed in color.

3.4. Transfer Learning/Cross-dataset Evaluation

We perform a cross-dataset evaluation using a few-shot personalized gaze estimation to
further demonstrate the cross-data generalization capabilities of the learned representations.
We evaluate GazeCLR representations on two domain datasets different from pre-training
data: MPIIGaze (Zhang et al., 2015) and Columbia (Smith et al., 2013). MPIIGaze is a
challenging dataset that has higher inter-subject variations. We use the standard evaluation
subset MPIIFaceGaze (Zhang et al., 2017), containing around 37667 images captured from
15 subjects. The Columbia dataset consists of 5880 images collected from 56 subjects and
is known to have high head pose variations.

To measure the quality of learned representations, we use Linear Layer Training (LLT)
protocol, in which we freeze the trained encoder and learn a linear regressor on the target
dataset. For this experiment, we investigate under a few-shot setting where we sample a
few calibration samples from the test subject for adaptation and evaluate on the remaining
samples of the same test subject.

Figure 3 shows the mean angular errors for LLT protocol on 20-shot, 50-shot, and 64-shot
gaze estimation. We first extract the gaze representations of a few calibration samples for
each subject and learn a linear model on top of these representations. We evaluate the
trained model on the remaining samples of the subject. We repeat above 10 times for each
subject on both datasets and report mean angular errors for the same in Figure 3.

Observe that both proposed GazeCLR variants outperform all other baselines in all few-
shot settings for both datasets. Moreover, GazeCLR(Equiv) gives a relative improvement of
around 17.2% over SimCLR with only 20 calibration samples for Columbia. We hypothesize
that this behavior is due to high head-pose variations within Columbia, and it suggests
that: a) learning equivariance over multi-views is beneficial for the GazeCLR framework in
improving performance, and b) GazeCLR representations are relatively more generalizable
for cross-domain datasets than other baselines.
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Table 2: GazeCLR vs Yu and Odobez (2020); Sun et al. (2021): Comparison of
GazeCLR with other unsupervised gaze representation learning methods (Yu and Odobez,
2020; Sun et al., 2021) for 50-shot gaze estimation. † denotes the method that uses additional
head pose information. The metric reported is mean angular errors averaged over 10 runs
(in degrees).

Method Pre-Train Data MPIIGaze Columbia

Yu and Odobez (2020)† Columbia - 8.9
Sun et al. (2021) MPIIGaze 8.5 -
Sun et al. (2021) Columbia - 7.0

GazeCLR (Equiv) EVE 7.0 6.1
GazeCLR (Inv+Equiv) EVE 6.5 6.6

Figure 4: GazeCLR vs FAZE (Park et al., 2019). Comparison of GazeCLR with
supervised pre-training baseline (FAZE) for various few-shot settings, on the Columbia
dataset. The plot shows mean angular error (MAE, in degrees) and standard error bars
versus number of few-shot samples, reported after 10 runs.

3.5. Comparison with state-of-the-art gaze representation learning

We further compare GazeCLR with existing state-of-the-art unsupervised (Yu and Odobez,
2020; Sun et al., 2021) and supervised (Park et al., 2019) gaze representation learning
methods. For a fair comparison, we adopt the same evaluation protocols as used by these
baseline methods and compare the GazeCLR performance against their performance.

GazeCLR vs. Unsupervised Pre-training (Yu and Odobez, 2020; Sun et al., 2021).
We follow the same evaluation protocol as (Yu and Odobez, 2020). 5-fold and leave-one-out
(15-fold) evaluations are used for the Columbia and MPIIGaze datasets, respectively. In
each fold, we freeze the GazeCLR encoder and extract representations for randomly selected
50 samples with annotations and learn a simple MLP-based gaze estimator on top of that.
We repeat the performance evaluation 10 times and report mean angular errors in Table 2.

10



Contrastive Representation Learning for Gaze Estimation

Note that previous methods (Yu and Odobez, 2020; Sun et al., 2021) exploit left and right
eye patches to get SSL signal, whereas our approach relies on face patches obtained from
multiple camera viewpoints.

In Table 2, we compare against the best-performing models of Yu and Odobez (2020)
and Sun et al. (2021), for the 50-shot gaze estimation. Notice that our method outperforms
baselines with absolute improvements of 2◦ and 0.9◦ on MPIIGaze and Columbia, respectively.
It is worth emphasizing that our method is pre-trained on a different dataset than both
evaluation datasets, unlike baseline approaches. Again, it illustrates the strength of our
approach in learning semantically meaningful representations for generalizable to other
domains. Moreover, note that Yu and Odobez (2020) use additional head-pose information,
unlike our method.

GazeCLR vs. Supervised Pre-training (Park et al., 2019). We evaluate the
effectiveness of GazeCLR representations using the MAML framework (Finn et al., 2017),
similar to FAZE (Park et al., 2019). For both GazeCLR and FAZE, we train a MAML-based
gaze estimator on the representations for subjects from the GazeCapture (Krafka et al., 2016)
dataset. Then, we adapt the gaze estimator model to each test subject of Columbia with k
calibration samples and test on the remaining samples. Figure 4 depicts the performance
comparison of GazeCLR with FAZE (Park et al., 2019) for four different values of k. It can
be seen that our method consistently outperforms supervised pre-training baseline FAZE,
for all values of k. Notably, our framework uses zero labeled information to obtain gaze
representations, unlike FAZE, which is pre-trained using ∼ 2M labeled samples from the
GazeCapture dataset.

3.6. Visualization of Gaze Representations

To further investigate the quality of learned representations, we project the gaze represen-
tations into 2-dimensions using t-SNE (Van der Maaten and Hinton, 2008) algorithm as
shown in Figure 5. In Fig 5(a), we compute 2D visualization of equivariant representations
obtained after applying rotation matrices, i.e., z̄. Projections in Fig 5(a) clearly demonstrate
that gaze direction is invariant to the viewpoint, as images at the same timestamp from
different views are mapped closer (shown with the same color border). In Fig 5(b), we apply
t-SNE algorithm on gaze representations obtained at the output of encoder network, i.e.,
z = E(·), for images from single camera viewpoint. Projections corresponding to roughly
similar gaze directions are naturally clustered and highlighted with different background
colors. Also, we observe clear patterns in the learned feature space where images within
close vicinity are invariant to the subject’s identity, showing invariance towards appearances.

4. Related Work

Gaze Estimation. Gaze estimation methods are built using large-scale datasets either
having 2D target labels (Krafka et al., 2016; Huang et al., 2017b) or 3D gaze directions (Fischer
et al., 2018b; Funes Mora et al., 2014; Zhang et al., 2015). Broadly, gaze estimation methods
can be divided into two categories: appearance methods (Tan et al., 2002), which directly map
image pixels to 3D gaze direction, and model methods which rely on eye-geometry (Hansen
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(a) Representations after applying rotation
matrices, i.e., z̄

(b) Representation obtained from the output of
encoder, z = E(·)

Figure 5: t-SNE visualization. Qualitative visualization of gaze representations in 2-
dimensional space using the t-SNE algorithm. (a) shows the visualization of projection
embeddings for multi-view images obtained after applying rotation matrices, i.e., z̄ . The
images with the same timestamp for all four views are highlighted using the same border
color. (b) depicts representations for the output of encoder network, i.e., z = E(·) obtained
for images from single camera viewpoint. Best viewed in color and after zooming.

and Ji, 2009). Appearance methods perform better than traditional model methods in
real-world settings (Hansen and Ji, 2009; Zhang et al., 2015).

Recent progress in appearance methods relies heavily on deep learning to map eye/face
images to gaze directions (Zhang et al., 2015, 2017). Furthermore, a few gaze methods
are hybrid. For instance, Park et al. (2018) extracted the relevant eye landmarks from
the images and then used these features to train gaze estimators. Other than eye images,
several works (Krafka et al., 2016; Cheng et al., 2020b; Fischer et al., 2018a; Cheng et al.,
2020a) exploit both eyes and face images in computing gaze direction. Nevertheless, both
appearance-based methods and hybrid extensions require a huge amount of labeled data to
achieve their potential in terms of accuracy.

As a result of huge label dependence by appearance methods, efforts have been made in
the direction of few-shot gaze estimation. In particular, Liu et al. (2018) exploit a two-branch
network to predict differential gaze between two images and use a few calibration samples
during inference. Furthermore, (Park et al., 2019; Zheng et al., 2020) disentangle gaze from
other nuisance factors via training an encoder-decoder architecture (Hinton et al., 2011)
to learn gaze specific representations. Recent approaches (Wang et al., 2022; Bao et al.,
2022; Jindal and Wang, 2021) leverage labeled source domain and unsupervised domain
adaptation for improving the performance of gaze estimation task on the target domain.
In a similar spirit, our work attempts to reduce the amount of required label information
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via learning gaze representations without relying on gaze labels and utilizing multi-view
data (Park et al., 2020; Zhang et al., 2020).

Self-Supervised Learning. The goal of self-supervised representation learning is to learn
good visual representations from a large collection of unlabeled images. Earlier works in
SSL (Zhang et al., 2016; Noroozi and Favaro, 2016; Noroozi et al., 2017; Doersch et al.,
2015) used pretext tasks to learn generalizable semantic representations. Some of the recent
works (Misra and Maaten, 2020; He et al., 2020; Chen et al., 2020a,b; Caron et al., 2020;
Chen and He, 2021; Grill et al., 2020) have shown great success on several vision tasks, e.g,
image classification (Caron et al., 2018; Dangovski et al., 2022), object detection (Crawford
and Pineau, 2019), semantic segmentation (Moriya et al., 2018), and pose estimation (Rhodin
et al., 2018). The recent work by Spurr et al. (2021) extends SSL to hand pose estimation
through geometric equivariance representations. Tian et al. (2020) propose to use more than
two views to learn invariant representations through contrastive learning.

Recently, a few unsupervised methods have been proposed to learn gaze-specific repre-
sentations. Specifically, Yu and Odobez (2020) exploit the gaze redirection task to train a
gaze estimation model using paired eye images of the same subject. Similarly, Sun et al.
(2021) proposed a cross-encoder method to utilize patches of left and right eye images of the
same subject as the self-supervised signal. Gideon et al. (2022) is an extended version of Sun
et al. (2021) utilizing multi-view images and learning features representing head pose and
relative gaze to improve in-domain few-shot gaze estimation performance. However, unlike
our work, these methods employ an encoder-decoder framework and thus require a relatively
large number of parameters. Also, contrastive SSL approaches are computationally efficient
compared to generative SSL approaches (Liu et al., 2021).

5. Conclusion

We presented GazeCLR, a contrastive learning framework for gaze representations using
multi-view camera images. Our framework induces invariance and equivariance properties
simultaneously in the learned representations and is effective for gaze estimation task in
various settings. Furthermore, we showed that GazeCLR representations have the potential to
be effective across different domain datasets using only a few calibration samples. GazeCLR
is a general framework for equivariant representation learning and thus can be explored in
the future for other geometry-based applications such as head pose estimation.
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Appendix A. Definition of Equivariance of Gaze Direction w.r.t.
Viewpoints

This section elaborates the equivariance relationship between gaze directions in multi-view
geometry, which is also the key idea for GazeCLR training framework. Given a specific
timestamp in a video, let two samples from different camera viewpoints with gaze directions
be gv1 and gv2 in their original respective camera reference system, then the relation between
these two gaze directions through their relative camera pose (i.e., RC2

C1
), can be given as

follows:

gv2 = RC2
C1
gv1

gv2 = RC2
S RS

C1
gv1

(RC2
S )−1gv2 = (RC2

S )−1RC2
S RS

C1
gv1

RS
C2
gv2 = RS

C1
gv1

ḡv1 = ḡv2

(5)

where RCi
S is relative pose between camera view i and screen. Hence, we follow similar

relationship, i.e., RS
C2
gv2 = RS

C1
gv1 , for embeddings obtained from multi-view learning branch

and minimizing LE (Equation 2) will yield z̄v1 = z̄v2 . This relation is shown as rotation
symbol in Figure 2.

Appendix B. Additional Results

B.1. Further Transfer Learning Evaluation

To further evaluate the transferable capability of learned representations obtained from
GazeCLR framework, we use Finetuning (FT) protocol. Here, we fine-tune the entire network
(including the encoder) in an end-to-end manner on the target dataset using a few calibration
samples from the test subject, and evaluate on the remaining samples.
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Table 3: Transfer Learning Evaluation (Finetuning). Comparison of various baselines
for the Finetuning experimental protocol on multiple few-shot settings, for both MPIIGaze
and Columbia. Here, we fine-tune whole end-to-end network and utilize few calibration
samples during test time. The errors are computed from 10 runs and reported as (mean±std).

MPIIGaze

Method 1 3 5 9 15 50 64

w/o Pre-training (Chen and Shi, 2020) 5.57±1.60 4.65±0.71 4.40±0.40 4.22±0.27 4.13±0.17 4.00±0.04 4.00±0.04

Autoencoder 5.65±1.60 4.69±0.76 4.42±0.45 4.16±0.21 4.10±0.16 3.97±0.05 3.96±0.04

Novel View Synthesis (Rhodin et al., 2018) 5.53±1.32 4.75±0.63 4.46±0.40 4.27±0.25 4.17±0.15 4.06±0.04 4.06±0.04

BYOL (Grill et al., 2020) 5.71±1.63 4.71±0.66 4.35±0.31 4.22±0.21 4.11±0.15 4.01±0.05 4.00±0.04

SIMCLR (Chen et al., 2020a) 4.87±1.51 3.93±0.54 3.74±0.35 3.57±0.24 3.47±0.12 3.39±0.04 3.38±0.03

GazeCLR (Equiv) 4.70±1.49 3.77±0.51 3.51±0.32 3.39±0.18 3.33±0.11 3.25±0.03 3.24±0.02

GazeCLR (Inv+Equiv) 4.72±1.33 3.93±0.54 3.68±0.34 3.54±0.19 3.44±0.11 3.37±0.03 3.35±0.03

Columbia

w/o Pre-training (Chen and Shi, 2020) 6.96±0.55 5.73±0.20 5.38±0.14 5.23±0.09 5.13±0.05 5.04±0.08 5.00±0.09

Autoencoder 7.00±0.57 5.79±0.18 5.49±0.15 5.24±0.07 5.15±0.04 5.03±0.08 5.03±0.07

Novel View Synthesis (Rhodin et al., 2018) 7.38±0.60 6.05±0.22 5.78±0.14 5.51±0.05 5.43±0.06 5.33±0.06 5.27±0.08

BYOL (Grill et al., 2020) 6.09±0.41 4.97±0.22 4.70±0.13 4.55±0.09 4.43±0.04 4.35±0.05 4.34±0.06

SIMCLR (Chen et al., 2020a) 4.36±0.20 3.67±0.13 3.44±0.07 3.34±0.05 3.27±0.04 3.21±0.04 3.19±0.05

GazeCLR (Equiv) 4.34±0.25 3.60±0.12 3.42±0.09 3.30±0.04 3.26±0.02 3.17±0.04 3.17±0.02

GazeCLR (Inv+Equiv) 4.54±0.24 3.75±0.12 3.59±0.08 3.45±0.05 3.39±0.03 3.31±0.04 3.31±0.04

In Table 3, we present the results for FT on MPIIGaze and Columbia, where we fine-tune
the whole end-to-end network. For this experiment, we adopt architecture from Chen and
Shi (2020), where a subject-dependent bias term is learned along with an end-to-end network.
4-fold and leave-one-out (15-fold) evaluation protocols are used for Columbia and MPIIGaze,
respectively.

Unlike Chen and Shi (2020), our input is a full face image, and the backbone is a
pre-trained encoder. We take a few calibration samples for each subject during inference
and estimate the subject-dependent bias term. We evaluate performance on the remaining
samples and repeat this calibration for 10 runs for each subject. Table 3 provides mean
and standard deviation of angular errors over 10 runs. We compare the performance of our
method with other baselines for various few-shot settings. Results demonstrate that our
method consistently outperforms all other pre-training baselines, including Chen and Shi
(2020) (w/o Pre-training) for all few-shot settings. This indicates the improved generalization
capability of our learned representations, particularly on the MPIIGaze dataset. Also, we
observe that our method is either superior or competitive with other baselines on the
Columbia dataset.

Appendix C. Ablation Studies

C.1. Increasing number of views improves pre-training

In Table 4, we demonstrate the effect of increasing number of views used in pre-training
stage of GazeCLR. For this ablation study, we conducted experiment for cross-dataset under
LLT (similar to Fig. 3) and within-dataset (similar to Table 1) settings, shown in Table 4(a)
and Table 4(b) respectively. For 2 views, we considered center and right cameras and for
3 views left camera is included. For LLT setting, the difference in GazeCLR performance
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for 2/3 views and all 4 views is relatively higher, especially with less number of shots. This
shows that for smaller k, more views are helpful for GazeCLR. Similarly, for within-dataset,
GazeCLR performance deteriorates with 2/3 views compared to 4 views.

C.2. More data, better pre-training

In Table 5(a), we study the impact of amount of unlabeled data used for the pre-training
stage of GazeCLR framework. We observe that the representations learned by GazeCLR
benefit from more training data and help in generalizing across different domain datasets.

C.3. Larger batch-size is useful

Next, we vary the batch size to analyze its effect on pre-training, for which results are shown
in Table 5(b). We notice that the larger batch size considerably impacts the quality of
representations and improves the performance significantly. This observation is consistent
to previously observed findings in the self-supervised learning literature (Chen et al., 2020a;
He et al., 2020).

Table 4: Ablation on increasing number of views. Within-dataset and cross-dataset
(LLT) evaluation with increasing number of views used for pre-training stage of GazeCLR
on both MPIIGaze and Columbia. The ablation study is performed for GazeCLR(Equiv)
method and evaluation metric is mean angular error (MAE) in degrees, average over 10 runs.

(a) LLT Cross-dataset evaluation

Dataset # of views k = 20 k = 50 k = 64

MPIIGaze 2 8.94 7.59 7.25
Columbia 2 7.63 4.58 4.02

MPIIGaze 3 8.38 7.09 6.78
Columbia 3 7.20 4.45 3.88

MPIIGaze 4 8.16 7.15 6.85
Columbia 4 6.80 4.46 3.90

(b) Within-dataset evaluation

# of views MAE (degrees)

2 7.72
3 7.06
4 4.83

Table 5: Ablation Study. 20-shot linear layer training for the cross-data gaze estimation
on MPIIGaze and Columbia, for two different ablation settings. Ablations are performed
for the GazeCLR(Equiv) method and evaluation metric is mean angular error (MAE) in
degrees.

(a) Varying amount of pre-training data

Pre-Train Data MPIIGaze Columbia

MiniEVE 11.25 9.63

EVE 8.16 6.80

(b) Varying batch-size used for pre-
training

Batch size MPIIGaze Columbia

32 12.21 12.83

128 8.16 6.80
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Table 6: Ablation Study for mini-batch containing single vs. multiple partic-
ipants. Within-dataset evaluation under two different types of batches created for the
GazeCLR(Equiv) method and evaluation metric is mean angular error (MAE) in degrees.

Task Data Batch Type MAE (degrees)

MiniEVE Single 4.83

MiniEVE Multiple 23.58

C.4. Mini-batch of single vs. multiple participants

In Table 6, we experiment with creating batches from single and multiple subjects samples
and compare them under within-dataset evaluation (similar to Table 1). We observe that
the performance on the gaze estimation task with multiple subject samples was close to
the performance of random weights. We hypothesize that this is because in batches with
different subjects, negative pairs are easy to classify, given the subject’s identity. Therefore,
the network has no incentive to focus on gaze information over subject identity.

Appendix D. Supervised Fine-tuning for Gaze Estimation

In the main manuscript, we demonstrated that the self-supervised gaze representations
learned using GazeCLR can perform well on a variety of settings when finetuned on the target
dataset. Here, we investigate on how performance varies with respect to the amount of data
available for finetuning. We evaluate for the within-dataset gaze estimation using linear layer
training protocol, starting from 10% of EVE training dataset, and gradually increasing to
100%. We compare GazeCLR(Equiv) and GazeCLR(Inv+Equiv) against “w/o Pre-training”
baseline with random initialization, as shown in the Figure 6. GazeCLR outperforms the
baseline in all training set sizes. It is worth noting that the GazeCLR approach only requires
20% of training data to match the performance of the “w/o Pre-training” baseline with
100%. Furthermore, notice that the gap between the performance of GazeCLR and baseline
decreases as training dataset size increases, showing that GazeCLR is effective for training
with a few samples.

Appendix E. Implementation Details for Baseline Methods

We provide further details of our implementation for the pre-training baselines, namely,
Autoencoder and Novel View Synthesis (Rhodin et al., 2018).

Autoencoder. We use same encoder layers as the GazeCLR framework for a fair com-
parison. The decoder is implemented using DenseNet (Huang et al., 2017a) architecture by
replacing convolutional layers with deconvolutional layers of stride 1. The average pooling
layer of transition layers is replaced by 3× 3 deconvolutions (with stride 2). The decoder
consists of 5 dense blocks, where each block has 4 composite layers with a growth-rate
of 32. The compression factor is set to 1.0. All layers are implemented using instance
normalization (Ulyanov et al., 2016) and leaky ReLU activation functions (with α = 0.01).
We use SGD optimizer with momentum 0.9, weight decay 5× 10−4, and initial learning rate
is 0.003 (which is decayed using cosine annealing scheduler (Loshchilov and Hutter, 2016)).
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Figure 6: Comparison of the gaze estimation performance for within-dataset using Linear
Layer Training protocol, versus different % of the labeled training data.

The batch size is 24 and the model is trained for 200K iterations. For inference, we remove
decoder layers, and use encoder only for the task of gaze estimation.

Novel View Synthesis (Rhodin et al., 2018). This work originally was proposed for
3D human pose estimation task and aimed to learn novel view synthesis, where separate
representations for body’s 3D geometry (L3D), appearance (Lapp), and background (B) are
trained. For a fair comparison, we train novel view synthesis framework on our dataset
using the same encoder architecture as in the GazeCLR framework. The decoder layers
are same as that of autoencoder baseline. The dimension of appearance-based code (Lapp)
is 32 and of 3D geometry code (L3D) is 480. We ignore the background factor (B) in our
implementation, as the EVE dataset has same background across all images. The whole
framework is trained using SGD optimizer with learning rate = 0.03, momentum = 0.9,
weight decay = 5× 10−4, and cosine annealing for learning rate decay. The training is done
for 200K iterations, with the batch size of 16. At each iteration, we randomly sample two
views from the EVE dataset, and generate one view image from other view image similar to
Rhodin et al. (2018). The trained encoder is then adapted for the gaze estimation, similar
to other baselines.

Appendix F. Additional Visualization

We further qualitatively analyze the relation between learned gaze representations and
the ground-truth 2D Point-of-Gaze (PoG). For this, we project gaze representations to 2-
dimensional space using t-SNE (Van der Maaten and Hinton, 2008) algorithm and normalize
them between 0 and 1. Next, we plot euclidean distance between 2D t-SNE projections
and the normalized 2D PoG (dividing by width and height of screen), as shown in Figure 7.
The black line in Figure 7 is for the y = x equation. We observe that data is scattered
symmetrically around y = x, exhibiting a strong correlation (correlation coefficient = 0.623)
between gaze representations and ground-truth PoG.
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Figure 7: Scatter plot between euclidean distance of normalized 2D PoG and 2D t-SNE
projections of gaze representations. The black line is for y = x.

23


	Introduction
	Proposed Method
	Stage-I: Gaze Contrastive Learning (GazeCLR) Framework
	Single-View Learning
	Multi-View Learning

	Stage-II: Learning For Gaze Estimation

	Experiments
	Setup
	Baselines
	Within-dataset Evaluation
	Transfer Learning/Cross-dataset Evaluation
	Comparison with state-of-the-art gaze representation learning
	Visualization of Gaze Representations

	Related Work
	Conclusion
	Definition of Equivariance of Gaze Direction w.r.t. Viewpoints
	Additional Results
	Further Transfer Learning Evaluation

	Ablation Studies
	Increasing number of views improves pre-training
	More data, better pre-training
	Larger batch-size is useful
	Mini-batch of single vs. multiple participants

	Supervised Fine-tuning for Gaze Estimation
	Implementation Details for Baseline Methods
	Additional Visualization

