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ABSTRACT

Many proteins useful in modern medicine or bioengineering are challenging to
make in the lab, fuse with other proteins in cells, or deliver to tissues in the body
because their sequences are too long. Shortening these sequences typically in-
volves costly, time-consuming experimental campaigns. Ideally, we could instead
use modern models of massive databases of sequences from nature to learn how
to propose shrunken proteins that resemble sequences found in nature. Unfortu-
nately, these models struggle to efficiently search the combinatorial space of all
deletions, and are not trained with inductive biases to learn how to delete. To ad-
dress this gap, we propose SCISOR, a novel discrete diffusion model that deletes
letters from sequences to generate protein samples that resemble those found in
nature. To do so, SCISOR trains a de-noiser to reverse a forward noising process
that adds random insertions to natural sequences. As a generative model, SCISOR
fits evolutionary sequence data competitively with previous large models. In eval-
uation, SCISOR achieves state-of-the-art predictions of the functional effects of
deletions on ProteinGym. Finally, we use the SCISOR de-noiser to shrink long
protein sequences, and show that its suggested deletions result in significantly
more realistic proteins and more often preserve functional motifs than previous
models of evolutionary sequences.

1 INTRODUCTION

As protein design becomes easier, more protein constructs are built for bioengineering, more pro-
tein medicines are being packaged for delivery to particular tissues, and, of course, more protein
is being synthesized in the lab. Unfortunately, many important proteins are challenging to make,
engineer, and deliver, due to their long sequences. Methods to build shorter versions of these pro-
teins are expensive and often only narrowly applicable. Typically, experimentalists look for shorter
homologues, which may not exist, and put them through costly optimization campaigns (Huang
et al., 2022). Or, for proteins which function by well-characterized, simple biophysical interactions,
experimentalists shrink sequences by running extensive physical simulations (Zhao et al., 2023).

Ideally we could instead learn how to shrink proteins using models trained on databases of protein
sequences in nature – these models learn the constraints evolution has put on sequences across life
and could shrink proteins to avoid breaking their function. Unfortunately, these large models (Notin
et al., 2022; Nijkamp et al., 2022) struggle to effectively search through the massive space of all
possible shrunken versions of a protein. They may also lack the inductive bias to predict the effect
of deletions, having not been explicitly trained to do so. In principle, the first issue could be solved
by diffusion models of protein sequences, like EvoDiff, which are effectively trained to plan series
of many mutations and end with sequences that resemble those found in nature (Alamdari et al.,
2023; Luo et al., 2022). However, current diffusion frameworks can only train models that perform
substitution mutations – they cannot suggest deletions.

We propose a new diffusion model of evolutionary sequences that learns to generate by shorten se-
quences — Sequence Contraction with InSertion-Only noising pRocess (SCISOR). SCISOR adds
noise to natural sequences by inserting random letters until they effectively become long random se-
quences; then it train a de-noiser to reverse this process by planning deletions that result in sequences
that resemble those found in nature (Fig. 1a). Our contributions are:

• We introduce SCISOR, a new discrete diffusion framework that trains a de-noiser to
generate sequences by learning to delete.
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(a) (b)

Figure 1: SCISOR is a diffusion model trained to make deletions that arrive at a natural pro-
tein sequence. We can use it to shrink proteins while maintaining their function. (a) We add
random insertions to protein sequences from nature and train SCISOR to reverse these insertions.
(b) Applying SCISOR diffusion to natural proteins, we get smaller proteins that are predicted to pre-
serve parts of the tertiary structures of the original sequence. We show SCISOR samples of Q8NFU3
at 0, 5, 10, 20, and 50% deletion with structures predicted by OmegaFold (Wu et al., 2022).

• We solve practical limitations of previous discrete diffusion models, enabling us to scale
SCISOR up to large-scale evolutionary sequence data.

• We show that among large-scale diffusion models, SCISOR achieves competitive model
fit for protein sequences.

• We show that the inductive biases of SCISOR allows it to make state-of-the-art predic-
tions of the effects of deletions on protein functions in the lab in ProteinGym.

• Finally, we show that SCISOR shortens proteins while better maintaining their struc-
ture and functional motifs than methods using previous models of protein sequences.

2 BACKGROUND

Say we have a protein sequence X made up of L letters X(1)X(2) · · ·X(L) belonging to the
alphabet of 20 amino acids B. Our goal is to remove M letters from X to make a X̃ =
X(j1)X(j2) · · ·X(jL−M ) with j1 < j2 < . . . , jL−M , that is still functional. Most random sets of
deletions degrade the function of the protein, so we need to predict which deletions are unlikely to
break the protein. Unfortunately there is very little data of sequence, shrunk-sequence pairs (X, X̃)
to learn from; we must instead learn to predict functional shrunk proteins using other available data.

Models of evolutionary sequences One way we can learn how to shrink proteins is by learning
from modern huge datasets of natural proteins. Indeed we can attempt to learn what a natural protein
looks like in these databases; then we can pick a shrunken protein X̃ so that it looks natural and is
therefore likely to be functional1. In practice, we can train huge generative models to generate
natural proteins and use their likelihoods as a measure of naturalness (Riesselman et al., 2018; Rives
et al., 2021; Notin et al., 2022; Nijkamp et al., 2022; Lin et al., 2023). Indeed, these likelihoods have
been shown to be accurate predictors of whether single-letter-deletions will harm the function of a
protein (Notin et al., 2022).

Unfortunately, the models that are typically used to fit this data, such as BERT-style (Rives et al.,
2021; Lin et al., 2023) and autoregressive models (Notin et al., 2022; Nijkamp et al., 2022), struggle
to search over the combinatorial space of all

(
L
M

)
possible sets of deletions to find an ideal X̃ .

Ideally, we would have a model that can plan a number of deletions that arrive at a functional
protein sequence. We also speculate that a model that learns directly how to delete would make
more accurate predictions and designs.

Discrete diffusion To effectively search through a large mutational space, we could model the data
with discrete diffusion models. These models generate samples by starting with a random sequence
and applying mutations to arrive at a realistic sequence. In particular, a sequence is sampled from a
simple distributionX1 ∼ q(X1) and then it is transformed from time t = 1 to t = 0 using a de-noiser
qθ((Xt)

1
t=0 | X1) so that X0 looks like a sequence from the data generating distribution (Campbell

et al., 2022).

1Note this does not guarantee our goal that X̃ have the same function as X . But if two functional proteins
have similar sequences then they often have related function (Mistry et al., 2013). See also Sec. 9.
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Diffusion models can therefore be used to search for sets of many mutations to a sequence, X , that
result in a realistic looking sequence. To do so, one sets Xs = X for some s and then de-noises
using the diffusion model by sampling a path q((Xt)

s
t=0|Xs), giving a realistic X0 nearXs. Indeed,

this procedure has been used to suggest mutations to optimize sequences (Luo et al., 2022; Gruver
et al., 2023).

To train a de-noiser qθ, we first define a forward process p((Xt)
1
t=0) which takes samples from our

target distribution X0 ∼ p(X0) and applies random noise to them from time t = 0 to t = 1, arriving
at a distribution that is easy to approximate p(X1). Then we train the de-noiser to generate paths
that match the paths of the forward process by optimizing an evidence lower bound (ELBO) as

log qθ(X0) ≥ Ep((Xt)1t=0|X0) log
qθ((Xt)

1
t=0)

p((Xt)1t=0|X0)
. (1)

Typically, however, the forward noising process is chosen to be random substitutions. Accordingly,
the de-noiser qθ only applies substitutions rather than deletions. To search over the space of dele-
tions, we therefore need a new diffusion framework.

3 RELATED WORK

Diffusion models with insertions and deletions In chemistry and language modeling, there have
been diffusion models that have attempted to allow for insertions and deletions. Campbell et al.
(2023) propose TDDM, a jump diffusion model to handle varying dimensionality, and Patel et al.
(2025) train a TDDM model on language. Their forward noising process involves randomly delet-
ing elements, such that the stationary distribution is an empty sequence. This allows them to train a
model which can learn to expand sequences. As well, Johnson et al. (2021) formulate a discrete-time
noising process for small-scale language modeling that includes insertions, deletions, and substitu-
tions. Unfortunately their loss computation scales with the number of discrete time-steps and it is
unclear how to extend their framework to continuous-time diffusion, which is known to be supe-
rior (Campbell et al., 2022). Contemporary with this work, like Johnson et al. (2021), Havasi et al.
(2025) use auxiliary tokens to describe a flow-matching method for training a model to perform
insertions and deletions in language.

Compared to these models, we train a diffusion model with inductive biases for the shrinking task.
We also build models with competitive likelihoods to other generative models; in particular, un-
like the models above (except Johnson et al. (2021)) our model has a closed-form ELBO, which
allows principled model comparisons. We solve various mathematical and practical problems that
ultimately allow us to do so:

• We prove that a formal stationary distribution is not necessary to define a diffusion model
(Thm. 4.1). This allows us to train a diffusion model that only learns to shrink.

• We extend the derivation in Amin et al. (2025) to derive a “schedule conditioned” loss.
This is more stable than classical discrete diffusion, and also allows us to condition on the
number of deletions M (Thm. 4.2).

• We Rao-Blackwellize our gradient estimator by integrating over all insertion paths. We do
so in practice by noting a connection with sequence alignments (Prop. 4.3).

• We solve a number of engineering challenges to 1) pick an optimal rate function, 2) learn
on very long sequences, and 3) leverage pretrained weights from ESM (Sec. 4.3).

Leveraging evolutionary data to shrink proteins Recently, Raygun (Devkota et al., 2024) also
suggested using a model trained on sequences from nature to shrink proteins. Raygun trains a
stochastic autoencoder to embed and generate sequences of any length on the UniRef dataset which
they apply to a variety of downstream tasks, including shrinking long proteins by decoding their
embeddings at a shorter length. However, Raygun cannot enforce similarity between the shrunken
sequence and original sequence. Furthermore, like previous generative models of protein sequences,
Raygun was not specifically trained to shrink. Below we show that our model, SCISOR, suggests
shrunken proteins that more often preserve structure and other indicators of function than Raygun.

4 A DIFFUSION MODEL THAT LEARNS TO DELETE: SCISOR
To search the space of deletions and train a model with the right inductive biases, in Sec. 4.1 we build
a process which noises sequences by adding random insertions. Then in Sec. 4.2 we show how to
train a de-noiser qθ that reverses this process (Fig. 1a). Finally, in Sec. 4.3, we discuss the practical
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choices we made to efficiently train SCISOR. In Sec. 5 we describe how to use the de-noiser to
generate sequences, shrink proteins, and plan deletions in practice.

4.1 FORWARD NOISING WITH THE PURE BIRTH PROCESS

We propose an insertion-only forward noising process for discrete diffusion known as the pure birth
process (Kendall, 1948) with rate function β(t) and insertion distribution π. Let X0 be a sequence
X

(1)
0 , . . . , X

(L)
0 . There are L+1 possible locations we can insert letters. In the pure birth process, at

instant t, each of these locations gains an insertion with rate β(t). The letter that is inserted is drawn
from some distribution Y ∼ Cat(π). After Y is inserted at some position, the process continues
and there are now L + 2 positions in which there could be insertions with rate β(t) (Fig. 1a). To
train a diffusion model to reverse this process, we need to (1) easily sample p(Xt|X0) and (2) easily
approximate p(X1|X0).

Sampling Xt Rather than simulate the pure birth process up until time t, we show in App. G.1
that Xt can be sampled directly from X0 as in Alg. 1. Note that 0 < α(t) ≤ 1 controls how many
insertions are added: by the property of negative binomial distributions, the expected length of Xt

is E[Mt + L] = L+1
α(t) − 1 which grows as α(t)→ 0.

Algorithm 1 Sample Xt

Require: Initial sequence X = X(1) · · ·X(L), time t
1: Compute the probability of no insertions at a site α(t)← exp

(
−
∫ t
0
β(s) ds

)
2: Sample total number of insertions up to time t, Mt ∼ NegativeBinomial(L+ 1, α(t))
3: Sample the number of insertions in each position by uniformly distributing Mt into L+ 1 bins:

(`0, . . . , `L) ∼ UniformMultinomial(Mt)
4: for j = 0 to L do
5: Sample insertion Yj of length `j , with each character independently from Cat(π)

6: Add insertions into X to construct Xt ← Y0X
(0)Y1X

(1) · · ·X(L)YL
7: return Xt

Approximating p(X1|X0) As t grows, Xt becomes longer. To build a diffusion model however,
the distribution p(Xt|X0) typically must converge to a distribution so that it can be approximated by
a distribution that can easily be sampled from, q(X1). Our critical insight is that p(Xt|X0), while
not converging, can still be very well approximated by long random sequences as t gets large.
Theorem 4.1. (Proof in App. G.2) Say X0 is a sequence with length L. Call q(· | L) a distribution
over sequences of length L which simply samples each letter independently from Cat(π). Then, as
the number of insertions increases, M1 →∞, X1 becomes easier to approximate with q:

KL(p(X1 | X0,M1)||q(X1 | L+M1))→ 0. (2)

4.2 LEARNING TO REVERSE THIS INSERTION-ONLY NOISING PROCESS

Given a forward process of insertions, we now wish to learn a de-noiser qθ that generates sequences
that resemble those found in nature by deleting letters from long random sequences. We now (1)
describe our reverse process qθ((Xt)

0
t=1), (2) write the ELBO in Eqn. 1 for our model, and (3)

describe how the de-noiser qθ is being trained toward a target that deletes letters that are unlikely to
align with the starting sequence X0.

The reverse process For a forward path (Xt)
1
t=0 from a sequence X0 of length L, define

t1, . . . , tM1
to be the times of each insertion. We can then sample forward paths by first decid-

ing how many insertions will occur until time 1 and when these insertions will occur, and then
choosing what these insertions are:

p((Xt)
1
t=0|X0) = p(M1|L)p(t1, . . . , tM1 |M1, L)

M1∏
M=1

p(XtM |XtM−1
).

We follow the discrete diffusion framework in Amin et al. (2025) in defining the reverse process
to match the noise schedule of the forward process. To generate a sequence of length L, we first

4
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decide the number of insertions and their times from the same distribution as p, and then denoise
each insertion2,

qθ((Xt)
0
t=1|L) = p(M1|L)p(t1, . . . , tM1 |M1, L)q(X1|L+M1)

M1∏
M=1

qθ(XtM−1
|XtM ,M).

Now we must only train our de-noiser qθ(XtM−1
|XtM ,M) to take in a sequence XtM and the

number of insertions that sequence hasM , and predict the sequence before the last insertionXtM−1
.

That is, qθ(· | XtM ,M) can be thought of as a distribution over the letters of Xt.

The loss To train the de-noiser, we modify the calculation of the ELBO from Eqn. 1 as in Amin
et al. (2025). We will then use this ELBO as our objective for training the de-noiser.
Theorem 4.2. (Proof in App. G.3) DefineMt as the number of mutations up to time t, and prev(Xt)
is the last sequence that gained an insertion to become Xt. Then the negative log likelihood of a
sequence of length L, − log qθ(X0|L), is smaller than

EM1KL(p(X1 | X0,M1)||q(X1|L+M1))

+ Et,Xt,Mt

Mtβ(t)

1− α(t)
KL(p(prev(Xt) | X0, Xt,Mt)||qθ(prev(Xt) | Xt,Mt))

(3)

The first term is the quantity in Eqn. 2 – how well we can approximate p(X1); it is small as long
as M1 is typically large, i.e. α(1) is small, and can be calculated as in App. B. The second term is
the quantity we use to train the de-noiser. qθ takes in Xt and the number of insertions in Xt and
must predict which letter of Xt was last inserted – prev(Xt). To train the model, we must calculate
p(prev(Xt)|X0, Xt,Mt).

Figure 2: To calculate our target
distribution of what letter to delete,
p(prev(Xt) | X0, Xt,Mt), we align
our starting sequence X0 to our noised
sequence Xt. The reverse process
should favor deleting letters that are
gaps in more of the alignments.

Target distribution Eqn. 3 trains qθ to match
p(prev(Xt)|X0, Xt,Mt), the true distribution over
which letter of Xt was last inserted in the forward pro-
cess.

Conditioned on X0, Xt,Mt, we could find prev(Xt) by
simulating a pure birth process path from X0 to Xt and
seeing what insertion occurred last. However there are
multiple paths that could lead fromX0 toXt; to calculate
p(prev(Xt) | X0, Xt,Mt), we must marginalize over all
of these paths.

The next proposition shows that we can integrate over all
of these paths by first enumerating every way to align X0

to Xt and noting that letters that align with X0 less often
are more likely to have been prev(Xt) (Fig. 2).
Proposition 4.3. (Proof in App. G.4) Call ali(X,Y ) the
number of ways to align a sequence X to a sequence Y .
Call b the letter that was deleted from Xt to prev(Xt).

p(prev(Xt)|X0, Xt,Mt) =
ali(X0,prev(Xt))

Mt · ali(X0, Xt)
.

Naively computing this quantity would require running an expensive alignment for every deletion.
In practice, we use dynamic programming to computes all ali(X0,prev(Xt)) in parallel (App. H).

4.3 IMPLEMENTING SCISOR AT UNIREF SCALE

Our ultimate goal is to train large SCISOR models on huge protein data – in particular, the UniRef
database (Suzek et al., 2007). We train the SCISOR de-noiser with mini-batch gradient descent on
the second term of Eqn. 3 with i.i.d. samples of t ∼ Uniform(0, 1), X0,Mt, Xt. We now discuss
how we choose the rate function β(t), the distribution of insertion letters π, the architecture for qθ,
and methods to handle the large variation in sequence lengths of Xt which we must pass to qθ.

Hyperparameters Our choice of hyperparameters follows that of standard diffusion methods. As
in Austin et al. (2021); Amin et al. (2025), the rate function β(t) was chosen so that the mutual

2Note our process is conditioned on generating a sequence of a particular length L.
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(a) (b)

Figure 3: The SCISOR de-noiser qθ plans deletions to arrive at sequences that resemble those
in nature, and therefore avoids deleting important structural motifs in natural sequences. (a)
SCISOR unconditionally samples proteins by starting with a large random sequence X1 and itera-
tively deleting according to qθ(prev(X)|X,M) to arrive at a protein that resembles those in nature.
We predict the structure of each sequence with OmegaFold (Wu et al., 2022). (b) We ask SCISOR
to plan the first of M mutations for R4SNK4 and color residue i on a structure from Aleku et al.
(2016) by the deletion probability qθ(X(−i)|X,M). AsM increases, SCISOR favors deletions (red)
in more regions while minimizing deletions in the catalytic structural motif near the bottom (white).

information between Xt and X0 decreases roughly linearly on the interval t ∈ [0, 1]. We then
modulated β so that α(1) was large enough that the first term of Eqn. 3 is small, while samples in
the second term did not get to many very longXt. Details are in App. B. The categorical distribution
π was chosen to match the prevalence of amino acids in our training set.

Architecture We chose our architecture of the de-noiser qθ(·|Xt,M) to leverage the pre-trained
weights of a BERT-style protein language model, while modifying the architecture to also condition
on M . The ESM2 architectures (Lin et al., 2023) are trained on a masked language modeling task,
taking in sequences and outputting logits at every site. We finetuned these models for qθ by replacing
their last layer with a linear and softmax layer. To condition onM , we add FiLM layers (Perez et al.,
2017) between attention blocks, such that coordinate d of the activations in layer `, a`d, is modified
with an affine linear transformation (1 +A`θ,d(M))× a`d +B`θ,d(M), where Aθ and Bθ are shallow
fully-connected networks initialized to zero.

Engineering for long sequences Since Xt sequences can have wildly different lengths, training
naively could result in passing batches with a very high proportion of padding and passing very long
sequences into the model. To avoid the first problem, we sort the Xt sequences within a given batch
by length, and pass them into the model in smaller sub-batches with accumulated gradients; this
allowed us to reduce the proportion of compute spent on padding while maintaining an unbiased
estimate of the loss. Next, to handle cases with extremely long Xt, if |Xt| > 2048, we randomly
selected a window X

(w:w+2048)
t uniformly at random to pass to the model. We then re-normalize

the model predictions by 2048/|Xt| and use uniform predictions outside the window such that the
deletion probabilities sum to 1. This choice keeps our ELBO a valid lower bound on the likelihood.
Further details for how this impacts the ELBO and sampling are in App. B.

5 USING SCISOR TO GENERATE AND SHRINK PROTEIN SEQUENCES

The SCISOR de-noiser qθ is trained as a generative model of natural sequences. In this section, we
describe how to unconditionally generate natural sequences. Then we describe the statistical basis
by which we may use the de-noiser for downstream tasks: predicting the effect of deletions on a
protein’s function, and, shrink long sequences to produce shorter natural sequences.

High-quality unconditional generation As described in Sec. 4.2, to sample a sequence of lengthL
from SCISOR, one samples a long random sequence from EM1|Lq(X1|L+M1) and then iteratively
deletes according to the de-noiser qθ (Fig. 3a). Campbell et al. (2023) suggests continuous-time
discrete diffusion models can get higher quality samples, sacrificing some compute, by applying
corrector steps which noise and de-noise repeatedly. For SCISOR, this takes the form of adding
and removing insertions as in Alg. 2. This allows SCISOR to more thoroughly search the space of

6
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Algorithm 2 Unconditional sequence generation with corrector steps

Require: Desired sequence length L, corrector steps K
1: Sample M ∼ NegativeBinomial(L+ 1, α(1))
2: Sample X of length L+M where each X(j) ∼ Cat(π) independently
3: while |X| > L do
4: for k = 1 to K do
5: Remove one letter from X according to qθ(prev(X) | X,M)
6: Insert a random letter from the distribution π into a random position in X
7: Remove one letter from X according to qθ(prev(X) | X,M)
8: M ←M − 1
9: return X

deletions, potentially escaping local minima. In cases where many passes through the model is too
expensive, we can make multiple deletions per de-noiser prediction, as discussed in App. B.

Mutation effect prediction Say we have a sequence X and we wish to predict the effect of the
deletion of every position to understand the importance of each residue. Typically, we would take
a model trained on protein sequences, pθ and then evaluate the “natural-ness” of the sequence with
each deletion pθ(X(−i)) where X(−i) is the deletion of letter i (Riesselman et al., 2018). Unfor-
tunately estimating the likelihood is challenging for diffusion models as one needs to estimate the
expectation in Eqn. 1.

SCISOR instead simply predicts qθ(X(−i) | X,M = 1) for every possible deletion X(−i). Then
if the de-noiser suggests that a residue is unlikely to be deleted, that suggests that X without that
residue does not look like a sample from qθ(X0), i.e. a natural sequence, and thus that deletion may
harm function. For multi-letter deletions, we integrate over all deletion paths (see App. B).

Protein shrinking We now consider the problem of shrinking a sequence X by M deletions to
a new sequence X̃ while preserving its function. One useful bias for this search may be using
evolutionary information to look for X̃ which are substrings of X which also look “natural”. In
practice, we can look for subsequences X̃ which are higher likelihood under a model trained on
natural sequences. To do this, we can sample from qθ(X0 = X̃ | X,M) which samples substrings
in proportion to their “naturalness” qθ(X0 = X̃). Indeed in App. D we show in an example that
deletions suggested by SCISOR correlate strongly with deletions seen in nature.

Note that SCISOR is not simply sampling deletions by how natural prev(X) looks. Rather it also
uses knowledge ofM to plan for future mutations. Different values ofM allow the model to change
which deletions it will allow at each step (Fig. 3b).

Given enough data and compute, SCISOR should learn the correct distribution qθ(X0 = X̃ | X,M).
In principle however, there is a distribution shift between sampling qθ(X0 = X̃ | X,M) when X
is a realistic protein and our learning process when X is a sequence with noisy insertions; this may
impact the statistical efficiency of the learning process. In practice, App. D and our results in the
following sections show that the SCISOR de-noiser learns meaningful evolutionary signals.

6 SCISOR IS A COMPETITIVE GENERATIVE MODEL FOR PROTEINS

We now compare how well SCISOR fits the distribution of natural sequences compared to estab-
lished sequence modeling methods; we see SCISOR fits sequence data well, competitively with
state-of-the-art diffusion and autoregressive models. All details are in App. C. In Fig. 4, we com-
pare the quality of SCISOR’s fit to the data against state-of-the-art protein diffusion models: EvoDiff
(Alamdari et al., 2023) and DPLM (Wang et al., 2024). It is well known that diffusion models regu-
larly under-perform autoregressive models on fitting the data; we therefore include two autoregres-
sive models from Alamdari et al. (2023) as references. All models are trained on the same release
of UniRef50 (Suzek et al., 2007) – small models have 35-38M parameters, DPLM M has 150M
parameters, and large models have 640-650M parameters. We evaluate each model’s perplexity on
a test set, and the quality of their samples, as measured by how well they match the distribution of
natural sequences (FPD), and foldability (pLDDT).
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Figure 4: SCISOR fits the distribution of sequences in nature competitively with established
sequence modeling approaches. (a) SCISOR is competitive with other diffusion models (grey) in
perplexity. ”S, M, L” refer to model size. (b, c) Samples from SCISOR (K = 5) are predicted to
be competitive quality to those from diffusion models and competitive with AR models as measured
by (b) matching the distribution of natural sequences as measured by the Fréchet protein distance
(FPD) and (c) foldability (higher pLDDT from OmegaFold (Wu et al., 2022)). We took EvoDiff and
AR perplexities from Alamdari et al. (2023).

Despite its difference from established modeling methods, SCISOR is competitive with other diffu-
sion models in perplexities. As well, SCISOR often generates higher-quality samples than previous
diffusion models, even competitive with the AR reference. As mentioned in Sec. 5, this is likely
because SCISOR is a continuous-time model while the other diffusion models are discrete-time.

7 STATE-OF-THE-ART FUNCTIONAL EFFECT PREDICTIONS FOR DELETIONS

We evaluate SCISOR’s ability to predict the effect of deletion mutations on the function of proteins
as measured in the lab. To do so, we use 7000 measurements of deletion effects from 62 assays
collected in ProteinGym (Notin et al., 2023). As baselines, we compare against existing mutation
effect prediction models, including state-of-the-art autoregressive models ProGen2 (Nijkamp et al.,
2022) and Tranception (Notin et al., 2022). Since models trained on UniRef90 tend to better predict
the effects of mutations (Rives et al., 2021), all models in this section are trained on UniRef90.

In Fig. 5, we report the Spearman correlations of the measurements of each assay against the pre-
dicted effects from each model, taking the best performance within each model family (full table in
App. F). SCISOR outperforms all baselines on both the single-deletion and multi-deletion bench-
marks, even outperforming PoET (Truong & Bepler, 2023), a large model that has access to extra
information about protein families.

8 PRESERVING KEY IN-SILICO INDICATORS OF FUNCTION WHEN SHRINKING

We now evaluate the ability of the SCISOR de-noiser qθ to propose promising shrunk samples of
long proteins from nature. Specifically, we take 200 sequences from UniProt that have binding or
active site annotations and shrink them to various amounts.

HMM

Tranception 
Progen2

PoET
SCISOR

Progen2

Tranception
HMM PoET

SCISOR

Sp
ea

rm
an

 (
)

0.45 0.46
0.51

0.55
0.57

0.45
0.47 0.47 0.49

0.52

Single deletions Multiple deletions

Figure 5: SCISOR makes state-of-the-art predictions for the effect of deletions on protein
function measured in the lab. We calculate the average Spearman correlation between predicted
deletion effects and measurements across all assays in ProteinGym, presenting the results from the
highest-performing variant of each model architecture. Models that use multiple sequence alignment
information are striped.
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Figure 6: SCISOR shrinks proteins while preserving their key properties. We take 200 UniProt
sequences with binding or active site annotations and shrink them by various amounts. We measure
(a) pLDDT structural confidence scores from Omegafold, predicted structural similarity between
the original and shrunk proteins with (b) TM and (c) RMSD, and (d) conservation of annotated
functional sites, measured by the enrichment ratio of annotated sites relative to random expectation.
Horizontal dashed lines indicate reference values for 0% shrinking.

Since the diffusion models in Sec. 6 cannot suggest deletions, we compare as baselines to shrink-
ing with ProGen2 and Raygun. Raygun requires 1 model evaluation to make M deletions, while
SCISOR requires M . For ProGen2, ideally we would sample substrings of X with length L −M
proportional to ProGen2’s likelihood; however, that would require

(
L
M

)
model evaluations, which is

prohibitively expensive. We instead consider a strong but tractable baseline: we predict the effect of
all L single deletions independently (in L model evaluations) and then sample sets of deletions with
probabilities based on these effects. Further details are in App. C and App. F.3.

In Fig. 6 we see SCISOR consistently suggests shrunken proteins that are more likely to be foldable
and preserve key indicators of function (predicted structural topology, presence of active or bind-
ing sites) than Raygun and ProGen2 baselines. Although ProGen2 achieves higher functional site
preservation when shrinking by 50%, the lower pLDDT scores suggest that its samples at this level
of shrinkage are not likely to be functional. In App. F.2, we show that SCISOR also achieves best
performance for greedy sampling of shrunk sequences, reflecting situations in which a practitioner is
not interested in generating diverse samples. Lastly, in App. E we perform an in-depth case study of
shrinking the GTP sensor RalA, showing that shrinking with SCISOR best preserves the predicted
structure of the binding site with GTP.

9 CONCLUSION

By proposing a new family of generative models that learn to build natural sequences by deleting,
SCISOR, we have built models that can effectively shrink proteins. Future work may seek to address
some of the conceptual limitations of the SCISOR process.

Realistic insertion process One way to mitigate the distribution shift mentioned in Sec. 5 is to
make samples from p(Xt) look more like natural sequences with a more elaborate forward pro-
cess. The challenge is finding a process that provably achieves an easy-to-approximate p(X1) as in
Sec. 4.1 and deriving a closed-form integral over all paths as in Sec. 4.2. Future work may leverage
our theoretical and practical advances to derive the losses and train such models at large scale.

Guiding based on function In this work, we aimed to shrink proteins into sequences that may
still appear in nature and are thus likely to be functional. While two functional proteins with similar
sequences are likely to have the same function, this is not guaranteed, especially in those protein
families with diverse functions (Zhang et al., 2024). Future work may incorporate other information
of function into the SCISOR shrinking process. For example, one could guide the SCISOR diffusion
process using a classifier trained to detect functional proteins of interest (Nisonoff et al., 2024).

Including compensatory mutations Currently, SCISOR only shrinks proteins via deletions. It is
possible however that there are substitutions or insertions that could be added to a protein to make
it more tolerant to more deletions. To allow SCISOR to introduce these mutations which planning a
series of deletions, we could add substitutions and deletions to the forward process, thereby training
the de-noiser to also include substitutions and insertions in its planning.

9
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A CODE RELEASE

We release our code and model weights for SCISOR small (35M), medium (150M), and large
(650M) trained on UniRef50 and UniRef90: https://anonymous.4open.science/r/
shortening_diffusion-1AA3/.

B DETAILS ABOUT SCISOR

B.1 PRIOR MATCHING KL TERM

We rewrite the first term of Eqn. 3 so we can estimate it.

Proposition B.1. (Proof in App. G) KL(p(X1 | X0,M1)||q(X1|L+M1)) is equal to

EX1|X0,M1

[
log

(
M1 + L

L

)
+

L∑
i=1

log π(X
(i)
0 )− log ali(X0, X1)

]
. (4)

We can therefore estimate the first term of the loss in Eqn. 3 by sampling X0,M1, Xt as calculating
the quantity in the expectation of Eqn. 4.

B.2 EFFICIENT SAMPLING

Alg. 2 implements the Gillespie algorithm for a stochastic process. Zhao et al. (2024) and Amin
et al. (2025) suggested k-Gillespie for diffusion models, taking k steps at every step by sampling
without replacement. Indeed we can do the same for SCISOR, sampling many deletions at each step
without replacement.
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B.3 MULTI-DELETION PREDICTION

Say X̃ is the sequence X with M deletions at sites {i1, . . . , iM}. We wish to calculate qθ(X0 =

X̃ | X,M). We can break this up into a sum over all deletions using the de-noiser

qθ(X0 = X̃ | X,M) =

M∑
m=1

qθ(X0 = X̃ | X(−im),M − 1)qθ(prev(X) = X(−im) | X,M).

Continuing like this, we can write qθ(X0 = X̃ | X,M) as a sum over all permutations of the
deletions.

Algorithm 3 Predicting the functional effect of multiple deletions with SCISOR

Require: Initial sequence X , deletions {i1, . . . , iM}.
1: P ← all permutations of {i1, . . . , iM}
2: SUM← 0
3: for j1, . . . , jM ∈ P do
4: SUM = SUM +

∏M−1
M ′=0 qθ(X

(−j1,...,jM′+1) | X(−j1,...,jM′ ),M ′)

5: return SUM = qθ(X0 = X̃ | X,M)

B.4 RATE FUNCTION

For simplicity, we choose a functional form

β(t) =
γ

1− tmaxt
.

Consequently, we have:

α(t) =exp

(
−
∫ t

0

β(s) ds

)
=exp

(
− γ

tmax

∫ t

0

1

1− tmaxs
ds

)
=exp

(
− γ

tmax
ln(1− tmaxt)

)
=(1− tmaxt)

γ/tmax

and α(1) = (1 − tmax)γ/tmax . Now we must choose γ and tmax. We found empirically on small
models that γ = 1.1 gave an ELBO (see Eq. 3) such that the expectation conditional on each
t was roughly even. We found empirically on small models that tmax = 0.9 gave the best best
loss controlling for wall time, trading off allowing the model to attempt to fit larger sequences and
spending compute on those large sequences.

B.5 WINDOWING

One challenge in efficiently training the SCISOR de-noiser is that we must compute qθ(prev(Xt) |
Xt,Mt), where Xt can potentially be a very long sequence. To handle these long sequences, we
introduce a windowing strategy: if |Xt| > 2048, we randomly select a window X

(w:w+2048)
t uni-

formly at random to pass to the model. We then re-normalize the model predictions by 2048/|Xt|
(the probability of a deletion in the window is proportional to its size) and use uniform predictions
outside the window such that the deletion probabilities sum to 1. Calling the predictions made by
window w qwθ (prev(Xt) | Xt,Mt), we can define our model predictions as an average over all
windows

qθ(prev(Xt) | Xt,Mt) = Ewqwθ (prev(Xt) | Xt,Mt).

ELBO We modify the second term of our loss Eqn. 3 to obtain another lower bound to bring the
expectation outside

KL(p(prev(Xt) | X0, Xt,Mt)||qθ(prev(Xt) | Xt,Mt))

≥EwKL(p(prev(Xt) | X0, Xt,Mt)||qwθ (prev(Xt) | Xt,Mt)).
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This gives us a new ELBO we can estimate by stochastically sampling the window w whenever we
get a large sequence.

Sampling In Alg. 1, we need to sample from qθ(prev(Xt) | Xt,Mt) for very long sequences. We
do so by sampling a w and then sampling from qwθ (prev(Xt) | Xt,Mt).

C EXPERIMENTAL DETAILS

C.1 BASELINES

We used EvoDiff models and code from https://github.com/microsoft/evodiff
under the MIT license. We used DPLM models and code from https://github.com/
bytedance/dplm under the Apache-2.0 license. We used ProGen2 models and code from
https://github.com/enijkamp/progen2 under the BSD-3-clause license. We used
Raygun models and code from https://github.com/rohitsinghlab/raygun under the
CC BY-NC 4.0 license. We used ProteinGym models and code from https://github.com/
OATML-Markslab/ProteinGym under the MIT license.

C.2 SCISOR ARCHITECTURE

We used the flash attention implementation of ESM from Peng et al. (2024) under the MIT license.
We used ESM2 weights (Lin et al., 2023) also under the MIT license. We developed SCISOR using
code from https://github.com/AlanNawzadAmin/SCUD under the MIT license.

C.3 TRAINING SCISOR

We apply our framework to train a protein generative model on UniRef50 (Suzek et al., 2007). We
filter this dataset to exclude proteins with non-standard amino acids, and crop long protein sequences
down to their first 1024 amino acids.

For the results in Section 6, we train SCISOR models on the March 2020 release of UniRef50,
using the same train-test split as EvoDiff (Alamdari et al., 2023) from https://zenodo.org/
records/6564798. Our models were trained about one week each on one NVIDIA A100 GPU
with an effective batch size of 256 and learning rate of 0.0001.

For the results in Sections 7 and 8, we train SCISOR models on the latest release of UniRef90. Here,
we use an effective batch size of 512 and learning rate of 0.00005. The SCISOR S and M models
were trained for about one week each on two NVIDIA A100 GPUs. The SCISOR L model was
trained for about four days on four NVIDIA H100 GPUs.

For each effective batch, we sampled all t,X0,Mt, Xt. We then sorted sequences by the length of
Xt before breaking them into batches to pass to the model in batch sizes of 8 or 16; This makes
sequences in each batch have similar length, minimizing padding.

C.4 MODEL FIT EXPERIMENTS

C.4.1 PERPLEXITIES

SCISOR We compute the perplexity in Fig. 4a on the test dataset by first sub-sampling the
expectation of the ELBO from Prop. 4.2 – we take 10 samples of t,Xt for every sequence. We then
by the total number of tokens in the test set and report the exponentiated negative result.

EvoDiff and AR We take perplexity values from Table S1 in Alamdari et al. (2023).

DPLM DPLM was trained as a discrete-time masking diffusion model with 500 steps and a linear
rate schedule – that is, the probability of each token in Xt being masked is t/500. We therefore
evaluated their perplexities as such a model as in Austin et al. (2021). This ELBO becomes

500∑
t=1

1

t
EX0,Xt

L∑
i=1

1(X
(i)
t = mask) log qθ(X

(i)
0 | Xt).
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C.4.2 SAMPLES

SCISOR We sampled according to Alg. 2.

EvoDiff and AR We sampled from EvoDiff and AR models using functions generate oaardm
and generate autoreg from https://github.com/microsoft/evodiff/blob/
main/evodiff/generate.py.

DPLM Wang et al. (2024) suggested a novel sampling method for DPLM. However, we were in-
terested in measuring the quality of DPLM samples as a diffusion model. We therefore took samples
as such a model as in Austin et al. (2021): We start with X500 and for every t = 500, · · · , 1 we
unmask each position i with probability 1/t, replacing the mask according to predicted probabilities
qθ(X

(i)
0 | Xt).

C.4.3 SAMPLE EVALUATION

For FPD we took 1000 protein lengths from UniRef50 and sampled sequences of each of those
lengths from SCISOR, EvoDiff, and DPLM; or we sampled 1000 sequences from the AR models.
For pLDDT, we sampled 100 sequences of length 100, 200, 400, and 800 from SCISOR, EvoDiff,
and DPLM; for AR models where the sample length cannot be controlled, we sampled sequences
until we had a sufficient number of samples with lengths within 10% of each desired length.

Fréchet protein distance (FPD) We calculated the FPD of 1000 generated sequences to 10000
samples from UniRef50 using ProtT5 embeddings in https://github.com/hefeda/PGP
under the Apache-2.0 license. We then calculated the Fréchet inception distance between the em-
beddings of the natural sequences and each set of sampled sequences as

‖µnatural − µsample‖2 + tr
(

Σnatural + Σsample − 2(ΣnaturalΣsample)
1/2
)

where µ· and Σ· are empirical means and covariances of the embeddings.

pLDDT We calculate pLDDT scores using OmegaFold (Wu et al., 2022) as described in
https://github.com/HeliXonProtein/OmegaFold/blob/main/README.md un-
der the Apache-2.0 License. For computational efficiency, we use only 1 cycle per sample. This
results in lower overall pLDDT scores than the recommended default settings, which uses 10 cycles
to obtain more accurate predicted structures.

C.5 PROTEINGYM

C.5.1 MODEL PREDICTIONS

SCISOR To evaluate SCISOR, we set Xt to be the target sequence and M to be the number of
deletions between the target and the mutant of interest. We then predict the effect of the deletion
using Alg. 3.

ProGen and other models We evaluated other models using scripts available on ProteinGym.

C.5.2 MODEL EVALUATION

For Fig. 5, we adapt the ProteinGym benchmark from (Notin et al., 2023) by filtering their indels
dataset to cases where the mutant is a strict subsequence of the target sequence. For the single
deletions benchmark, we use mutants that are only one deletion away from the target sequence,
while for the multiple deletions benchmark, we use mutants that are two or three deletions away
from the target sequence.

For single mutations, we gathered 61 assays in ProteinGym with 4544 mutations in total.

Three assays in ProteinGym measured double and triple mutations: A4 HUMAN Seuma 2022
measured stability and had 42 double mutations and 40 triple mutations,
KCNJ2 MOUSE Macdonald 2022 measured expression and had 397 double mutations and
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387 triple mutations, P53 HUMAN Kotler 2018 measured organismal fitness and had 172
double mutations and no triple mutations.

C.6 SHRINKING

For Fig. 6a and 6d we sample 100 sequences with annotated active sites and 100 sequences with
annotated binding sites from UniProt. We then shrink each sequence by d percent, where d ∈
{1, 3, 5, 10, 20, 30, 40, 50}.

C.6.1 MODEL SAMPLES

SCISOR We shrunk sequences using Alg. 2.

ProGen Ideally we could sample from qProGen(X̃) over all shrunken versions ofX , X̃ , of desired
length L−M . However, for even moderate values of M , this becomes computationally intractable.
We therefore approximate this distribution by assuming each deletion has an independent effect:

log qProGen(X̃) ≈ log qProGen(X) +
∑

deletions i

∆i

where ∆i is the effect of a single mutation,

∆i = log
qProGen(X(i))

qProGen(X)
.

This approximation requires calculating L quantities ∆i.

Sampling from this approximation is equivalent to sampling M deletions – deletion i is sampled
with probability proportional to exp(∆i). Greedy shrinking just involves picking the M mutations
with the highest ∆i.

Raygun we use the Raygun generate command to generate shrunken proteins of desired length,
where length was calculated by first calculating rounded up number of deletions to introduce, and
conditioning Raygun to generate sequence of length L − M . we used a noise ratio of 0.5 with
uniform sampling (noise sampled uniformly between 0 and 0.5), in order to limit the number of
substitutions introduced. We use a filter ratio of 0.1 meaning we select the best candidate among ten
generated sequences, and recycle sequences once.

C.6.2 MODEL EVALUATION

We evaluate the foldability of the shrunk sequences using the average pLDDT per residue for
the structure generated using OmegaFold (Wu et al., 2022) as described in https://github.
com/HeliXonProtein/OmegaFold/blob/main/README.md under the Apache-2.0 Li-
cense, using 1 cycle per sample. We calculate enrichment as the number of active or binding sites
in the original sequence that were preserved in the shrunk sequence – we call a functional site “pre-
served” if no residues were modified or deleted.

D SCISOR DELETIONS MATCH THOSE IN NATURE FOR R4SNK4

We collected 5000 sequences locally aligned to R4SNK4 using BLAST (Camacho et al., 2009)
and counted how frequently each position of the R4SNK4 sequence landed in a region that wasn’t
aligned (“Not aligned”) or aligned with a gap token (“Gap”). These are two distinct ways to measure
deletions made by nature. Next, we shrunk R4SNK4 using SCISOR at various values of M , taking
512 samples for each M .

In Fig. 7a, we plot, for each position of R4SNK4, how frequently we observe deletions as suggested
by SCISOR versus as seen in nature. We see qualitatively that at M = 50, SCISOR prefers making
deletions in regions where deletions are observed in nature, and at M = 100 SCISOR prefers delet-
ing the second half of the protein, the region which was less frequently included in alignments. This
separate behavior at different M is shown quantitatively when we measure the Spearman correla-
tions between SCISOR deletion frequencies and deletions seen in the alignments in Fig. 7b. Almost
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all comparisons are statistically significant – a random model never achieves a Spearman correlation
above 0.015.

(a)
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Figure 7: SCISOR suggests deletions in R4SNK4 seen in nature. (a) We compare two ways
to measure deletions seen in an alignment versus deletions at two values of M from samples of
SCISOR. (b) We quantitatively measure the Spearman correlations between the two types of dele-
tions in our alignment to deletions seen in SCISOR samples across M .

E CASE STUDY: SHRINKING RALA

To better understand SCISOR’s ability to shrink natural proteins, we perform a detailed case study
of the RalA protein, of length 206. We chose RalA since, as a GTP sensor, we could easily tell
which sequences were unlikely to be functional by predicting their bound structure to GTP. We
evaluate the function of shrunk samples by predicting their binding to GTP as in the structure
pdb_00001uad and comparing to RalA. We use Alphafold (Abramson et al., 2024) to predict
the structure of shrunken RalA, GTP and binding partner Sec5.

Qualitative results We measure the TM score (a popular measure of structural similarity to ground
truth (Zhang & Skolnick, 2004)) of wild type and shrunken RalA residues within 10 angstroms of
the GTP molecule. Following Xu & Zhang (2010), we use TM=0.5 as a liberal cutoff for non-
function and evaluate 5 designs for each method. The results are presented in Table 1. We see that
proteins shrunk with SCISOR are much more likely to adopt the same complex fold as the wild type
compared to designs from other methods.

% Deleted Random Raygun ProGen2 SCISOR

1 5 5 5 5
3 4 5 5 5
5 5 5 3 5

10 1 4 1 5
20 0 1 0 5

Table 1: Number of designs not predicted non-functional (TM scores above 0.5) (out of 5)

Quantitative results Next we show similar results with various measurements of the quality of
the interface between the designed RalA and GTP. In Table 2, we perform a structural alignment
using the RalA structures and then calculate the RMSD for all residues within 10 angstroms of the
center of mass of the GTP. In Table 3, we instead calculate the RMSD of the atoms of the translated
and rotated GTP. Additionally, we report DockQ values (Mirabello & Wallner, 2024) in Table 4 and
the ipTM scores from Alphafold in Table 5. In all these results, we we see that SCISOR consistently
outperforms all baselines, suggesting that the candidate designs from SCISOR are most likely to
preserve the function of the original RalA protein.
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% Deleted Random ProGen2 Raygun SCISOR

1 0.90 ± 0.13 0.87 ± 0.10 1.02 ± 0.23 0.92 ± 0.01
3 1.52 ± 0.24 1.25 ± 0.15 0.89 ± 0.11 0.91 ± 0.01
5 1.64 ± 0.15 1.48 ± 0.37 0.87 ± 0.17 0.93 ± 0.00
10 1.83 ± 0.23 1.93 ± 0.28 1.03 ± 0.11 1.24 ± 0.14
20 2.07 ± 0.30 2.28 ± 0.18 2.37 ± 0.11 1.28 ± 0.15

Table 2: Interface RMSD of residues within 10 Å of GTP after structural alignment.

% Deleted Random ProGen2 Raygun SCISOR

1 1.69 ± 0.30 4.03 ± 1.67 7.39 ± 4.82 2.07 ± 0.56
3 3.91 ± 2.04 6.04 ± 2.30 3.47 ± 0.53 2.37 ± 0.36
5 6.19 ± 3.20 3.53 ± 0.18 15.24 ± 5.37 3.50 ± 0.72

10 10.92 ± 5.29 11.47 ± 6.11 12.19 ± 4.13 3.95 ± 1.24
20 17.83 ± 5.55 10.06 ± 1.52 15.24 ± 1.89 10.32 ± 2.81

Table 3: Ligand RMSD of GTP atoms after structural alignment.

% Deleted Random ProGen2 Raygun SCISOR

1 0.86 ± 0.04 0.71 ± 0.17 0.38 ± 0.15 0.87 ± 0.01
3 0.50 ± 0.20 0.51 ± 0.18 0.62 ± 0.15 0.85 ± 0.02
5 0.46 ± 0.18 0.18 ± 0.11 0.23 ± 0.13 0.88 ± 0.01
10 0.36 ± 0.15 0.18 ± 0.15 0.13 ± 0.10 0.50 ± 0.18
20 0.13 ± 0.11 0.11 ± 0.07 0.03 ± 0.02 0.30 ± 0.16

Table 4: DockQ scores for RalA binding to Sec5 with standard error.

% Deleted Random ProGen2 Raygun SCISOR

1 0.83 ± 0.07 0.82 ± 0.08 0.60 ± 0.07 0.90 ± 0.00
3 0.64 ± 0.11 0.71 ± 0.08 0.82 ± 0.08 0.90 ± 0.00
5 0.67 ± 0.09 0.52 ± 0.08 0.51 ± 0.01 0.89 ± 0.00
10 0.40 ± 0.14 0.47 ± 0.13 0.59 ± 0.07 0.67 ± 0.09
20 0.22 ± 0.06 0.36 ± 0.06 0.42 ± 0.03 0.58 ± 0.09

Table 5: ipTM scores from AlphaFold for RalA binding Sec5.

F SUPPLEMENTARY RESULTS

F.1 FULL PROTEINGYM RESULTS

We show the results for ProteinGym for all models and sizes, stratifying the single deletions into
functional, taxonomic, and MSA depth categories.
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Table 6: ProteinGym results on single and multiple deletions.

Model MSA Single Deletions Multiple Deletions
ProGen2 S 0.457 0.445
ProGen2 M 0.513 0.385
ProGen2 Base 0.497 0.408
ProGen2 L 0.491 0.375
ProGen2 XL 0.393 0.392
RITA S 0.409 0.274
RITA M 0.448 0.318
RITA L 0.465 0.323
RITA XL 0.440 0.161
Tranception S 0.439 0.475
Tranception M 0.464 0.424
Tranception L 0.445 0.426
HMM Yes 0.453 0.474
PoET (200M) Yes 0.551 0.488

SCISOR S 0.332 0.268
SCISOR M 0.505 0.520
SCISOR L 0.573 0.492

Table 7: ProteinGym results on single deletions stratified by the measured function of each assay.

Model MSA Activity Expression Organismal Fitness Stability
ProGen2 S 0.566 0.294 0.499 0.470
ProGen2 M 0.574 0.404 0.558 0.514
ProGen2 Base 0.592 0.380 0.496 0.520
ProGen2 L 0.550 0.344 0.560 0.508
ProGen2 XL 0.418 0.298 0.333 0.521
RITA S 0.507 0.320 0.452 0.356
RITA M 0.514 0.345 0.500 0.432
RITA L 0.530 0.437 0.420 0.474
RITA XL 0.532 0.385 0.360 0.481
Tranception S 0.542 0.351 0.532 0.331
Tranception M 0.594 0.340 0.526 0.395
Tranception L 0.533 0.336 0.445 0.466
HMM Yes 0.496 0.321 0.501 0.493
PoET (200M) Yes 0.664 0.424 0.566 0.551

SCISOR S 0.376 0.289 0.198 0.465
SCISOR M 0.514 0.362 0.576 0.571
SCISOR L 0.604 0.415 0.668 0.606
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Table 8: ProteinGym results on single deletions stratified by the MSA depth of proteins in each
assay.

Model MSA Low Medium High
ProGen2 S 0.558 0.429 0.497
ProGen2 M 0.415 0.483 0.544
ProGen2 Base 0.438 0.460 0.568
ProGen2 L 0.513 0.473 0.532
ProGen2 XL 0.216 0.499 0.530
RITA S 0.300 0.293 0.424
RITA M 0.278 0.376 0.492
RITA L 0.444 0.434 0.504
RITA XL 0.139 0.462 0.508
Tranception S 0.467 0.316 0.360
Tranception M 0.297 0.358 0.447
Tranception L 0.519 0.391 0.518
HMM Yes 0.624 0.506 0.471
PoET (200M) Yes 0.595 0.553 0.548

SCISOR S 0.385 0.381 0.509
SCISOR M 0.641 0.547 0.575
SCISOR L 0.621 0.628 0.584

Table 9: ProteinGym results on single deletions stratified by the taxa of the protein in each assay.

Model MSA Human Eukaryote Prokaryote Virus
ProGen2 S 0.506 0.467 0.361 0.567
ProGen2 M 0.536 0.539 0.432 0.510
ProGen2 Base 0.568 0.541 0.396 0.471
ProGen2 L 0.536 0.513 0.442 0.492
ProGen2 XL 0.511 0.537 0.420 0.573
RITA S 0.398 0.353 0.272 0.448
RITA M 0.496 0.417 0.310 0.504
RITA L 0.522 0.473 0.327 0.568
RITA XL 0.510 0.466 0.386 0.555
Tranception S 0.332 0.363 0.297 0.449
Tranception M 0.443 0.406 0.295 0.468
Tranception L 0.511 0.462 0.348 0.513
HMM Yes 0.585 0.392 0.437 0.547
PoET (200M) Yes 0.554 0.522 0.523 0.721

SCISOR S 0.486 0.418 0.340 0.652
SCISOR M 0.571 0.539 0.525 0.735
SCISOR L 0.590 0.568 0.621 0.767

F.2 DETERMINISTIC SHRINKING

In Section 8, we report results for sampling shrunk sequences from SCISOR and baseline models.
Those evaluations are most relevant to practical settings, where practitioners may wish to generate
a diverse set of promising candidate designs to be evaluated in the lab. Here, we instead consider
deterministic shrinking, where the most likely deletions are performed. For Raygun, we mimic this
setting by using setting the noise parameter to 0. In Fig. 8, we see that SCISOR consistently achieves
excellent performance in this setting as well. Although ProGen2 can achieve higher performance in
some cases, this method is more computationally expensive than SCISOR. Moreover, our metrics
may be rewarding the “myopic” nature of our ProGen2 baseline, which likely favors deletions that
preserve functional regions in the original protein that are not necessarily functional in the shrunken
protein.
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Figure 8: Deterministically shrinking proteins with SCISOR yields high-quality shrunk sam-
ples. All details are as in Fig. 6, except that we take the most likely deletions predicted from each
model. For Raygun, we set noise = 0.

F.3 COMPUTATIONALLY EXPENSIVE PROGEN2 BASELINE

In Section 8, we reported a baseline for ProGen2 that required L forward passes of the model,
already exceeding the M forward passes used by SCISOR. That baseline assumes that the effects of
each deletion are independent, which may be unrealistic. In Table 10, we present results for a more
expensive ProGen2 baseline, requiringO(L ·M) forward passes, where deletions are performed one
at a time, and the effects of subsequent deletions recalculated. We see that switching to this more
expensive ProGen2 baseline does not significantly improve performance.

% Deleted ProGen2 - O(L) ProGen2 - O(LM) SCISOR - O(M)

1 71.6 71.7 74.0
3 68.2 67.9 74.2
5 63.5 62.8 74.1

10 55.4 53.0 73.1
20 40.7 36.4 71.2
30 32.3 31.2 63.7
40 31.3 31.9 55.1
50 30.9 33.5 44.7

Table 10: Average pLDDT structural confidence scores from Omegafold for various amounts of
shrinkage.

G PROOFS

G.1 PROOF OF CORRECTNESS FOR ALGORITHM 1

The correctness of Alg. 1 follows from Cor. G.2.
Theorem G.1. Call

Xt = Y0X
(1)
0 Y1X

(2)
0 · · ·X

(L)
0 YL

where X(1)
0 X

(2)
0 · · ·X

(L)
0 are the letters of X0 and Y0, Y1, . . . , YL are the insertions. Then |Yl| is a

Geom(α(t)) distribution, where α(t) = exp(−
∫ t
0
β(s)ds).

Proof. By the Kolmogorov forward equation,

d

dt
p(|Yl| = n|t) = β(t)np(|Yl| = n− 1|t)− β(t)(n+ 1)p(|Yl| = n|t).

This can be written as
d

dt

(
e(n+1)

∫ t
0
β(s)dsp(|Yl| = n|t)

)
= ne(n+1)

∫ t
0
β(s)dsβ(t)p(|Yl| = n− 1|t).

For n = 0, this is solved by p(|Yl| = 0|t) = α(t). By induction,

p(|Yl| = n|t) = α(t)(1− α(t))n
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as

nα(t)−(n+1)β(t)p(|Yl| = n− 1|t) =nα(t)−nβ(t)(1− α(t))n−1

=
d

dt

(
α(t)−n(1− α(t))n

) (5)

Corollary G.2.

p(|Y0|, . . . , |YL|) = α(t)|X0|+1(1− α(t))
∑

l |Yl|

so p(|Y0|, . . . , |YL|) only depends on |X0| and M =
∑
l |Yl|. In particular we can sample M ∼

NegativeBinomial(α(t)) and then distribute it uniformly into L+ 1 bins.

Proof. Each Yiis generated independently, so we just take the product of probabilities from
Prop. G.1.

G.2 PROOF OF THEOREM 4.1

Theorem G.3. (Proof of Thm. 4.1) Say X0 is a sequence with length L. Call q(· | L) a distribu-
tion over sequences of length L which simply samples each letter independently from Cat(π) for
a distribution π such that π(b) > 0 for all letters b. Then, as the number of insertions increases,
M1 →∞, X1 becomes easier to approximate with q:

KL(p(X1 | X0,M1)||q(X1 | L+M1))→ 0.

Proof. We suppress the subscript 1. Note by Lem. G.8

p(X | X0,M)

q(X | L+M)
=

ali(X0, X)(
L+M
L

)∏L
i=1 π(X

(i)
0 )

.

For a set of L indices I = i1 < i2 < · · · < iL, call χI = 1(X0 = X(i1) · · ·X(iL)). Then
ali(X0, X) =

∑
I χI and EqχI =

∏L
i=1 π(X

(i)
0 ). Therefore we can write

Ep log
p(X | X0,M)

q(X | L+M)
=Ep log

ali(X0, X)(
L+M
L

)∏L
i=1 π(X

(i)
0 )

=Ep log
ali(X0, X)

Eqali(X0, X)

≤Ep
∣∣∣∣ ali(X0, X)

Eqali(X0, X)
− 1

∣∣∣∣
=
Ep |ali(X0, X)− Eqali(X0, X)|

Eqali(X0, X)

≤Ep |ali(X0, X)− Epali(X0, X)|
Eqali(X0, X)

+
|Epali(X0, X)− Eqali(X0, X)|

Eqali(X0, X)

≤Stdp (ali(X0,X))

Eqali(X0, X)
+

∣∣∣∣Epali(X0, X)

Eqali(X0, X)
− 1

∣∣∣∣ .
We now show that these two terms each go to 0, starting with the second term.
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The second term Say X is generated by picking indices Z = z1 < · · · < zL which are X0 and
then generating all other letters from π Say we have indices I . Then

EpχI ≤(1− p(I ∩ Z = ∅)) + Ep [χI |I ∩ Z = ∅]

=1−
(
M+L−L

L

)(
M+L
L

) + EqχI

≤1−
(
M − L
M

)L
+ EqχI

≤O
(
L2/M

)
+ EqχI

=(1 + o(1))EqχI .

Also
EpχI ≥(1− p(I ∩ Z = ∅))× Ep [χI |I ∩ Z = ∅]

=

(
1−

(
M+L−L

L

)(
M+L
L

) )× EqχI
≥

(
1−

(
M

M + L

)L)
× EqχI

≥
(
1−O

(
L2/M

))
EqχI

=(1− o(1))EqχI .

Then
Epali(X0, X)

Eqali(X0, X)
=

(
M+L
L

)
EpχI(

M+L
L

)
EqχI

= 1 + o(1).

The first term We first change the expectation in the standard deviation into an expectation over
q. Say X is generated by picking indices Z = z1 < · · · < zL which are X0 and then generating all
other letters from π Say we have indices I, J . Then

EpχIχJ ≤(1− p(I ∩ Z, J ∩ Z = ∅)) + Ep [χIχJ |I ∩ Z, J ∩ Z = ∅]

≤1−
(
M+L−2×L

L

)(
M+L
L

) + EqχIχJ

=O(L2/M) + EqχIχJ .

We also have from above that

EpχIEpχJ = (1 + o(1))EqχIEqχJ .

Then

Varpali(X0, X) =
∑
I,J

Covp(χI , χJ) =

(
M + L

L

)2

o(1) +
∑
I,J

Covq(χI , χJ).

The first term is o(1) against Eqali(X0, X)2 =
(
M+L
L

)2
(EχI)

2, so we can just focus on the second
term, Varqali(X0, X).

Note if I ∩ J = ∅ then Covq(χI , χJ) = 0. Then∑
J

Cov1(χIχJ) ≤
(
M + L

L

)
−
(
M + L− L

L

)
=o

((
M + L

L

))
using the same logic as above. Therefore, Varqali(X0, X) = o

((
M+L
L

)2)
= o(Eqali(X0, X)2).

This completes the proof.
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G.3 PROOF OF THEOREM 4.2

Theorem G.4. (Proof of Thm. 4.2) DefineMt as the number of mutations up to time t, and prev(Xt)
is the last sequence that gained an insertion to become Xt. Then the negative log likelihood of a
sequence of length L, − log qθ(X0|L), is smaller than

EMtKL(p(X1 | X0,M1)||q(X1|L+M1))

+ Et,Xt,Mt

Mtβ(t)

1− α(t)
KL(p(prev(Xt) | X0, Xt,Mt)||qθ(prev(Xt) | Xt,Mt))

Proof. The proof of Prop. 4.4 from Amin et al. (2025) derives an ELBO

EMtKL(p(X1 | X0,M1)||q(X1|L+M1))

+ Et,Xt,Mt
w(Mt, t,X0)KL(p(prev(Xt) | X0, Xt,Mt)||qθ(prev(Xt) | Xt,Mt))

where
w(Mt, t,X0) = lim

ε→0
E[#events in [t− ε, t]|Mt, X0]/ε.

The following lemma shows this result.

Lemma G.5.
w(M, t,X0) = M

β(t)

1− α(t)

Proof. First we change out time variable to τ = − logα(t). Noting − logα(t− ε) = τ − εβ(τ) +
O(ε2), we have

w(M, t,X0) = β(t) lim
ε→0

Ẽ[#events in [τ − ε, τ ]|Mτ = M ]/ε (6)

where Ẽ is as if the rate β were constant. In SCUD, events occur uniformly in the time interval,
so the RHS would be M/τ = M/(− logα(t)). For SCISOR, events are more concentrated later in
time since more insertions increases the rate of insertion.

Ẽ[#events in [τ − ε, τ ]|Mτ = M ] =P [Mτ−ε = M − 1|Mτ = M ] +O(ε2)

=
P [Mτ−ε = M − 1]

P [Mτ = M ]
P [Mτ = M |Mτ−ε = M − 1] +O(ε2).

(7)
Note

P [Mτ = M |Mτ−ε = M − 1] =P [Mτ ≥M |Mτ−ε = M − 1] +O(ε2)

=P (Exp(M + |X0|) ≤ ε) +O(ε2)

=1− e−ε(M+|X0|) +O(ε2)

=ε(M + |X0|) +O(ε2).

(8)

Finally,
P [Mτ = M − 1]

P [Mτ = M ]
=

NegBin(|X0|, e−τ ;M − 1)

NegBin(|X0|, e−τ ;M)

=

(
m−1+|X0|

m−1
)
(1− e−τ )M−1(

M+|X0|
M

)
(1− e−τ )M

=
M

(M + |X0|)(1− e−τ )
.

(9)

This gives us

w(M, t,X0) = M
β(t)

1− α(t)

which is similar for small alpha to the SCUD weight of w(M, t,X0) = M β(t)
− logα(t) but becomes

larger at larger values.
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G.4 PROOF OF PROPOSITION 4.3

Proposition G.6. (Proof of Prop. 4.3) Call ali(X,Y ) the number of ways to align a sequence X to
a sequence Y .

p(prev(Xt)|X0, Xt,Mt) =
ali(X0,prev(Xt))

Mt · ali(X0, Xt)
.

Proof. Say Yt is Xt with a single deletion, the letter b. By Lem. G.8

p(Yt | X0, Xt,Mt) =
p(Yt | X0,Mt − 1)

p(Xt | X0,Mt)
p(Xt | Yt)

=

(
L+Mt−1

L

)−1
ali(X0, Yt)(

L+Mt

L

)−1
ali(X0, Xt)π(b)

π(b)(L+Mt)
−1

=
(L+Mt)ali(X0, Yt)

Mtali(X0, Xt)

=
ali(X0, Yt)

Mtali(X0, Xt)
.

Note finally that we’ve ignored that there may be multiple deletions that take Xt to Yt when cal-
culating p(Xt | Yt). We can safely do so as it does not affect the loss Eqn. 3 of any of our other
algorithms.

G.5 DERIVATION OF PRIOR MATCHING KL TERM

Proposition G.7. (Proof of Prop. B.1) KL(p(X1 | X0,M1)||q(X1|L+M1)) is equal to

EX1|X0,M1

[
log

(
M1 + L

L

)
+

L∑
i=1

log π(X
(i)
0 )− log ali(X0, X1)

]
.

Proof. From Lem. G.8,

p(X1 | X0,M1) =

(
M1 + L

L

)−1
ali(X0, X1)

∏
b∈X1\X0

π(b).

Given that q(X1|L+M1) =
∏
b∈X1

π(b), this finishes the proof.

G.6 USEFUL LEMMA

Lemma G.8. Calling the letters in Xt that are not in X0 Xt \X0,

p(Xt | X0,Mt) =

(
L+Mt

L

)−1
ali(X0, Xt)

∏
b∈Xt\X0

π(b)

Proof. To generate Xt from X0,Mt, we could (1) decide which positions i1, . . . , iL ∈ 1, . . . , L +
Mt should come from X0 and then generate the rest of the letters according to π. Then

p(Xt | X0,Mt) =
∑

indices i1,...,iL

1(X0 = X
(i1)
t · · ·X(il)

1 )(
L+Mt

L

) ×
∏

b∈Xt\X0

π(b)

=

(
L+Mt

L

)−1
ali(X0, Xt)

∏
b∈Xt\X0

π(b).
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H ALIGNMENTS ALGORITHM

Both KL terms in the ELBO make use of the primitive ali(X,Y ). In particular, the denoising
KL term requires computing the number of alignments between X0 and each possible prev(Xt),
a total of |Xt| computations. Naively, computing the alignments between each pair of sequences
takes O(|X0| · |Xt|) time for a total of O(|X0| · |Xt|2). However, we devise an efficient dynamic
programming algorithm to compute all of the alignment terms in parallel in O(|X0| · |Xt|) time,
presented in Algorithm 4.

Algorithm 4 Compute ali(X
−(l)
t , X0) for all l in parallel

Require: Sequences X0 with |X0| = L and Xt with |Xt| = N

1: Set matching[i, j]← I(X(i)
0 = X

(j)
t ) for all i ∈ {1, . . . , L}, j ∈ {1, . . . , N}

2: Initialize prefix dp← 0(N+1)×(L+1)

3: Set prefix dp[i, 0]← 1 for all i ∈ {1, . . . , N}
4: for l = 1 to L do
5: prod← prefix dp[1 : N, l − 1]×matching[l − 1, 1 : N ]
6: prefix dp[1 : N + 1, l]← cumsum(prod, axis = 0)
7: Initialize suffix dp← 1(N+1)×(L+1)

8: for l = L− 1 down to 0 do
9: prod← suffix dp[1 : N + 1, l + 1]×matching[l, 1 : N ]

10: suffix dp[1 : N, l]← cumsum(prod, axis = 0)

11: alignments[l]←
∑N
i=1 prefix dp[i, l]× suffix dp[i+ 1, l + 1] for all l

12: return alignments
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