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Abstract

More capable language models increasingly001
saturate existing task benchmarks, in some002
cases outperforming humans, leaving little003
headroom with which to measure further004
progress. Adversarial dataset creation has005
been proposed as a strategy to construct more006
challenging datasets, and two common ap-007
proaches are: (1) filtering out easy examples008
and (2) model-in-the-loop data collection. In009
this work, we study the impact of applying010
each approach to create more challenging eval-011
uation datasets. We adapt the AFLite algo-012
rithm to filter evaluation data, and run exper-013
iments against 18 different adversary models.014
We find that AFLite indeed selects more chal-015
lenging examples, lowering the performance016
of evaluated models more as stronger adver-017
sary models are used. However, the result-018
ing ranking of models can also be unstable019
and highly sensitive to the choice of adver-020
sary model used. Moreover, AFLite over-021
samples examples with low annotator agree-022
ment, meaning that model comparisons hinge023
on the most contentiously labeled examples.024
Smaller-scale experiments on the adversarially025
collected datasets ANLI and AdversarialQA026
show similar findings, broadly lowering perfor-027
mance with stronger adversaries while dispro-028
portionately affecting the adversary model.029

1 Introduction030

Large-scale language models have attained strong031

performance across a variety of language under-032

standing tasks, including question-answering, natu-033

ral language inference (NLI), and paraphrase iden-034

tification. As the capabilities of these models im-035

prove, it has become increasingly difficult to sys-036

tematically evaluate and benchmark further model037

improvements (Vania et al., 2021). Standard bench-038

marking tasks such as SQuAD (Rajpurkar et al.,039

2016; Lee et al., 2020) and multi-task benchmarks040

such as GLUE (Wang et al., 2018) and SuperGLUE041

(Wang et al., 2019) have seen models attain scores042

higher than human baseline scores. This has left 043

little headroom with which to measure further im- 044

provements in models and progress in NLP. More 045

than ever, we need new approaches to build chal- 046

lenging and reliable evaluation datasets at scale 047

(Bowman and Dahl, 2021). 048

Prior work such as Le Bras et al. (2020) and Nie 049

et al. (2020a) have proposed adversarially filtering 050

or constructing examples to raise the difficulty of 051

task datasets, leveraging highly capable models to 052

assist with example selection or creation. How- 053

ever, one potential issue is that an adversarially 054

constructed dataset that targets a specific model 055

may bias the resulting data, creating datasets that 056

are unduly challenging for one class of models but 057

not others. In the extreme, adversarial datasets may 058

be so narrowly optimized toward stumping a partic- 059

ular model that they no longer accurately measure 060

the abilities that the dataset was designed to test. 061

In contrast to prior work focused on adversarial 062

dataset creation for training (Wallace et al., 2021) 063

or training and evaluation data (Le Bras et al., 2020; 064

Nie et al., 2020b), we focus solely on evaluation 065

data, and whether the choice of adversary model 066

can introduce unwanted biases into an evaluation 067

dataset. Ideally, an adversarially created dataset 068

should be more difficult for all models, regardless 069

of the choice of the adversary. In this work, we 070

investigate two different approaches to create more 071

challenging task evaluation datasets using adver- 072

sary models: (1) adversarial filtering, which filters 073

out examples from a static dataset that are identi- 074

fied to be easy for a given adversary model, and 075

(2) model-in-the-loop adversarial data collection, 076

where human annotators interactively create exam- 077

ples that stump an adversary model. 078

For adversarial filtering, we study AFLite (Sak- 079

aguchi et al., 2020; Le Bras et al., 2020), an algo- 080

rithm that identifies challenging subsets of a task 081

dataset. We apply AFLite in extensive experiments 082

across four English-language NLP datasets and 18 083
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different models to study the interaction between084

the choice of adversary model and the resulting085

evaluation performance. For adversarial data col-086

lection, we evaluate a range of models against two087

adversarially collected datasets: ANLI (Nie et al.,088

2020a) and AdversarialQA (Bartolo et al., 2020).089

We find that adversarial filtering and adversar-090

ial dataset collection do result in more challenging091

evaluation datasets, but they are not without their092

drawbacks. We find that the general outcome of093

adversarial filtering is to lower performance across094

the board, with stronger adversary models leading095

to more challenging subsets of examples. However,096

as more difficult evaluation subsets are identified,097

the relative order of model performance is not pre-098

served, with large random variation in model ranks099

as stronger adversaries are used. This suggests that100

using adversarially filtered datasets for benchmark-101

ing models can be problematic. Performance on102

the filtered datasets is also much worse if the evalu-103

ated and adversary models are based on the same104

pretrained model, which can lead to the difficulty105

of the dataset being overstated. Adversarial filter-106

ing also oversamples examples with low annotator107

agreement, which could mean that these examples108

are contentious even for human annotators.109

Similarly, we find that adversarially collected110

datasets ANLI (Nie et al., 2020a) and Adversar-111

ialQA (Bartolo et al., 2020) are also more chal-112

lenging for all models while also showing signs113

of disproportionately disadvantaging the adversary114

model. However, with only a small number of115

such datasets available, it is difficult to draw strong116

conclusions about the overall efficacy or potential117

drawbacks of the approach.118

In both cases, our findings do not preclude the119

viability of adversarial dataset creation for evalu-120

ation purposes, but we urge researchers to keep121

these issues in mind when evaluating or comparing122

models based on adversarial datasets.123

2 Related Work124

We perform most of our experiments using the125

AFLite adversarial filtering algorithm proposed by126

Sakaguchi et al. (2020), which also introduced127

Winogrande, an adversarial Winograd Schema128

Challange dataset. Le Bras et al. (2020) provided129

further theoretical and empirical justification for130

AFLite, showing that models train on AFLite-131

filtered data generalize better to out-of-domain132

datasets. Other datasets constructed using adversar-133

ial filtering include SWAG (Zellers et al., 2018) and 134

HellaSwag (Zellers et al., 2019), two adversarially 135

filtered commonsense multiple-choice datasets. 136

An alternative approach is to collect data using 137

a model in the loop, where human example-writers 138

are given immediate feedback on whether a trained 139

adversary model is able to correctly answer their 140

example, and are incentivized to write examples on 141

which the models fail. Nie et al. (2020b) introduce 142

ANLI, an adversarial NLI dataset with multiple 143

rounds of data collection. Williams et al. (2020) 144

provide fine-grained analysis of the kinds of ex- 145

amples arising from this adversarial dataset cre- 146

ation procedure. Bartolo et al. (2020) introduce 147

AdversarialQA, an adversarial question-answering 148

dataset. Kiela et al. (2021) further extend this ap- 149

proach, building a platform for continuous human- 150

and-model-in-the-loop data creation. Using adver- 151

sarially collected data as training data has been 152

shown to lead to better performance on other adver- 153

sarial datasets, but worse on out-of-domain datasets 154

(Kaushik et al., 2021; Bowman et al., 2020). How- 155

ever, models trained on adversarially collected data 156

through many successive rounds have been shown 157

to attain better performance (Wallace et al., 2021). 158

3 Adversarially Filtering Evaluation Sets 159

AFLite (Sakaguchi et al., 2020; Le Bras et al., 2020) 160

is an adversarial filtering algorithm that iteratively 161

removes “easy” examples from a dataset. First, 162

given a dataset D = (X,Y ) of inputs X and labels 163

Y , we compute a learned representation Φ(x) for 164

each example based on the adversary model. In 165

each iteration, we sample multiple random subsets 166

of the remaining data, fit weak classifiers on the 167

data subsets and compute predictions on the held- 168

out examples. If an example is predicted correctly 169

by more than some threshold τ of weak classifiers, 170

it is removed from the dataset. This procedure is 171

repeated until the number of examples removed in 172

an iteration falls below a set threshold, resulting in 173

a reduced dataset. More details can be found in the 174

original manuscript (Le Bras et al., 2020). 175

Sakaguchi et al. (2020) and Le Bras et al. (2020) 176

apply AFLite before applying train/validation/test 177

splits. However, because we are interested in the 178

impact of the adversarial filtering on evaluation 179

datasets,1 we do not want to use evaluation exam- 180

ples to train the weak classifiers or influence the 181

1In our experiments, we use the validation set of each task
as the evaluation set.
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filtering procedure. Hence, we tweak the AFLite al-182

gorithm to separately filter out evaluation examples.183

We accomplish this by running the standard AFLite184

on the training examples, but in each round, we use185

the same weak classifiers and removal criteria to fil-186

ter out “easy” evaluation examples. This modified187

procedure differs from the standard AFLite in two188

key ways: (1) There is no limit to how many evalua-189

tion examples can be removed in each round. Thus,190

it is common for many examples to be removed191

in the very first round of filtering. (2) Evaluation192

examples are not used in the fitting steps of the193

AFLite algorithm. We show our modified AFlite in194

Algorithm 1 in the Appendix.195

4 Experimental Setup196

Models The crux of our investigation is how the197

filtered dataset changes based on the choice of the198

adversary model. We consider a diverse set of pre-199

trained Transformer models: BERT (Devlin et al.,200

2019), RoBERTa (Liu et al., 2019), ALBERT (Lan201

et al., 2020), XLM-R (Conneau et al., 2020), ELEC-202

TRA (Clark et al., 2020), MiniBERTa (Zhang et al.,203

2021), BART (Lewis et al., 2020), and DeBERTa204

and DeBERTaRTD (He et al., 2021).205

Tasks We consider four task datasets for our ex-206

periments. MNLI (Williams et al., 2018) and SNLI207

(Bowman et al., 2015) are natural language in-208

ference tasks, while Cosmos QA (Huang et al.,209

2019) and SocialiQA (Sap et al., 2019) are multiple-210

choice commonsense reasoning tasks. These tasks211

are chosen based on several criteria: having a large212

enough training set to be suitable for AFLite, being213

in a format suitable for AFLite (i.e. classification),214

and no model-adversarial procedure already having215

been applied in the creation of the dataset. All four216

tasks are scored with simple accuracy.217

Fine-Tuning For all models, we execute two sep-218

arate fine-tuning setups. First, we perform full fine-219

tuning on the training set, across 3 random restarts.220

Second, to supply the representations Φ(X) for221

AFLite, we perform fine-tuning on a held-out sub-222

set of training examples. We also repeat this sub-223

sampling across 3 random seeds, performing fine-224

tuning and AFLite for each one. All of our results225

on AFLite are averaged across the 3 fine-tuning and226

3 AFLite runs. Refer to Appendix D for more de-227

tails. All models were trained using jiant (Phang228

et al., 2020), which is built on Transformers (Wolf229

et al., 2020) and PyTorch (Paszke et al., 2019).230

Model MNLI SNLI Cosmos SIQA

MiniBERTa-S-1M 60.2 73.4 41.6 42.4
MiniBERTa-B-1B 79.3 87.2 55.0 57.3
BERT-Base 82.7 89.5 57.8 59.8
XLM-R-Base 81.2 87.4 59.3 63.1
BART-Base 84.6 89.8 63.4 65.2
BERT-Large 85.5 91.0 61.9 65.5
ALBERT-Large 86.3 89.9 62.3 68.5
RoBERTa-Base 86.1 91.1 67.1 69.6
ALBERT-XLarge 87.2 91.6 70.9 71.2
XLM-R-Large 88.3 90.8 70.6 72.5
ELECTRA-Base 87.4 91.5 69.9 73.4
BART-Large 89.1 91.2 76.7 77.3
DeBERTaRTD-Base 89.8 92.6 74.4 77.7
RoBERTa-Large 89.6 91.8 78.5 77.4
ELECTRA-Large 90.3 92.7 83.2 79.7
DeBERTa-Large 90.5 92.7 85.5 79.1
DeBERTa-XLarge 90.2 92.7 87.0 78.1
DeBERTaRTD-Large 90.8 93.1 87.6 81.2

Table 1: Performance (accuracy%) of fully fine-tuned
models on full validation sets. Models are sorted in
order of average performance across all four tasks.

Table 1 shows the performance of fully fine- 231

tuned models on the validation set of each task. 232

In this and subsequent visualizations, we sort the 233

models based on the average full fine-tuned perfor- 234

mance on the four tasks, from weakest to strongest. 235

5 AFLite on Evaluation Sets 236

5.1 AFLite Filtering Statistics 237

We show in Figure 1 the breakdown of applying 238

AFLite with different models. Each example in the 239

validation set falls into one of three categories: ex- 240

amples filtered out on the first iteration of AFLite, 241

examples filtered in all subsequent iterations, and 242

examples remaining after applying AFLite (AF Se- 243

lected). In most cases, more than half the validation 244

datasets are filtered out within the first iteration, 245

meaning that these examples were largely correctly 246

predicted by a set of weak classifiers using the 247

learned representations of partially tuned adver- 248

sary models. Moreover, the stronger the adversary 249

model, the more examples tend to be removed in 250

the first iteration. Subsequent filtering iterations 251

remove comparatively much fewer examples. 252

Among the AF Selected examples for Cosmos 253

QA and SocialIQA, we see a trend that the stronger 254

the adversary model, the fewer examples remain af- 255

ter AFLite. We do not see the same pattern in 256

MNLI and SNLI, where the number of AF Se- 257

lected examples does not vary consistently across 258

strength of models. We note that Cosmos QA and 259

SocialIQA use different AFLite hyperparameters 260

from MNLI and SNLI because of the difference in 261
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Figure 1: Statistics of AFLite-filtered datasets. We apply Algorithm 1 to the validation set of each task across
adversary models, and average across three random seeds. AF Selected indicates examples that are not filtered out.
For most models, majority of the examples are filtered out within the first iteration of AFLite.

datasets sizes (see Table 3 in the Appendix).262

5.2 Results on AFLite Across Adversary and263

Fine-tuned Models264

Figure 2 shows the results of fine-tuned models on265

validation sets filtered via AFLite using different266

adversary models.2 We emphasize that the fine-267

tuned models that we evaluate are trained entirely268

separately from the partially tuned models used to269

learn representations Φ(X) used in AFLite.270

Overall, using AFLite with stronger adversary271

models leads to lower performance across all fine-272

tuned models, across all four tasks. Using a suffi-273

ciently strong adversary model for filtering pushes274

the performance of all tuned models to only slightly275

above chance: For instance, while most mod-276

els score 80-90% on the unfiltered MNLI valida-277

tion set, filtering using AFLite with DeBERTaRTD-278

Large results in no model scoring better than 45%.279

We also observe a mild pattern of the weakest280

models performing slightly better as stronger ad-281

versaries are used in MNLI, SNLI, and SocialIQA.282

One explanation is that weaker models rely on eas-283

ily learned heuristics (McCoy et al., 2019), and the284

weak classifiers in AFLite select examples that go285

against these heuristics, which weaker models sub-286

sequently perform poorly on. In contrast, stronger287

adversaries may filter out these examples.288

5.2.1 Impact on Model Comparison289

Evaluation datasets are often used to compare mod-290

els, so we analyze the impact of adversarial filter-291

2We present the same information in heatmaps in Figure 7
in the Appendix.

ing on the resulting sorting order of model perfor- 292

mance. For each adversary model, we evaluate the 293

fine-tuned models on the AF Selected dataset and 294

sort the models by performance, as shown in Fig- 295

ure 3. We find that the sorting order of models is 296

generally not consistent across adversary models. 297

This is the case even if we ignore cases where the 298

fine-tuned and adversary models share the same 299

pretrained model, which we address below. For 300

MNLI and SNLI, evaluating on the datasets filtered 301

by stronger adversaries appears to greatly distort 302

the relative ranking of models. For Cosmos QA 303

and SocialIQA, we observe that even when filtering 304

with stronger adversaries, stronger models still tend 305

to rank better than weaker models, but the ranking 306

order is still not consistent across adversaries. 307

One interpretation of this result is that adversar- 308

ial filtering may not give us evaluation data that 309

is reliable for benchmarking and comparing mod- 310

els. An alternative interpretation is that as stronger 311

adversary models are used, a larger proportion of 312

remaining examples are challenging and therefore 313

models are more likely to perform at chance on 314

them. As such, we ought to expect stronger adver- 315

saries will lead to more randomness in the model 316

rankings. In the extreme, if the weak classifiers 317

in AFLite are as capable as the best-performing 318

model, all models should perform at chance on 319

the remaining examples. While performance on 320

the strongest adversarially filtered datasets is still 321

above chance for most models, we see that in 322

MNLI and SNLI, all models converge to a small 323

range of performance (35%–45%), meaning that a 324

small variation in the number of correctly predicted 325
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Figure 2: Performance of fine-tuned models on validation sets filtered via AFLite using adversary models. ‘None’
indicates the full unfiltered validation set. The dotted line indicates performance at chance for each task. Filtering
with stronger adversary models leads to lower performance on the filtered dataset, across all fine-tuned models.

examples can lead to a large change in model rank.326

This can lead to a distorted ranking of models.327

We might also be concerned that the impact328

of adversarial filtering on performance might be329

disproportionately large if the fine-tuned and ad-330

versary models are based on the same pretrained331

model. To measure this, we compute the rank of332

each model when no filtering is applied, and show333

how much the rank changes when filtering using334

the same pretrained model. Ideally, if there is no335

model-specific bias to the filtering, there should336

be no change. However, as we show in Figure 4,337

the impact of filtering with the same pretrained338

model is disproportionately large, with all models339

except the weakest ones—which by definition can-340

not fall in rank—falling several positions in relative341

rankings. This implies that adversarial filtering for342

evaluation sets can be very sensitive to the choice343

of model, and the resulting dataset can be unfairly344

challenging if the adversary and evaluated models345

are based on the same pretrained model.346

5.3 Label Agreement347

To investigate the kinds of examples being iden-348

tified as challenging via AFLite, we use the per-349

annotator labels of the MNLI and SNLI datasets.350

In the original data creation procedure, each351

validation-set example is annotated by 5 crowd-352

workers, and candidate examples are only accepted353

if at least 3 out of 5 crowdworkers agree on the354

label. We show in Figure 5 the average annotator355

agreement in the AFLite-selected examples across356

adversary models. For comparison, we also show357

the agreement rate among examples eliminated in358

the very first round of the AFLite procedure. 359

We observe a clear pattern across both datasets 360

that filtering with stronger adversary models se- 361

lects for examples with lower annotator agreement. 362

Combined with our results above on lower model 363

performance on filtered datasets, we take this as 364

good evidence that the AFLite procedure indeed 365

selects for the most challenging examples. It is 366

unclear if these examples are challenging because 367

they are genuinely difficult, where humans can eas- 368

ily make mistakes on them, genuinely ambiguous, 369

or simply mislabeled. Conversely, we see that the 370

first-pass filtered examples have consistently high 371

annotator agreement, and that this rate does not 372

vary across strength of the adversary models. 373

Oversampling low-agreement examples is not 374

necessarily a bad thing if they are evaluated ap- 375

propriately. Pavlick and Kwiatkowski (2019) and 376

Nie et al. (2020c) show that there can be genuine 377

disagreement between annotators over the example 378

label, and argue that we should go beyond optimiz- 379

ing for model accuracy and instead train models to 380

predict the full distribution of human judgements. 381

As easy examples seem to be highly correlated with 382

high annotator agreement, one potential approach 383

to construct a more challenging and discriminative 384

benchmark would be to identify low-agreement ex- 385

amples, acquire additional annotations, and train 386

and evaluate models on predicting the distribution 387

of human labels. However, the current format of 388

scoring models on simple accuracy is an inadequate 389

method of evaluating on low-agreement examples, 390

as the distribution of labels is reduced to a single 391

label based on majority vote. Hence, if AFLite 392
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Figure 3: Ranked performance of fine-tuned models on validation sets filtered via AFLite using adversary models.
For each AF Selected dataset, we sort models by their performance (Figure 2) from worst (top) to best (bottom).
‘None’ indicates the full validation set with no filtering applied. We find that the sorting order of model performance
is not consistent across adversary models.

selects for low-agreement examples, the evaluation393

format should be adjusted according to accommo-394

date the annotator disagreement over labels.395

6 Model-in-the-Loop Adversarially396

Collected Datasets397

In model-in-the-loop adversarial data collection,398

human crowdworkers are tasked with writing exam-399

ples that a given adversary model will incorrectly400

label. We consider two established model-in-the-401

loop adversarially collected datasets. ANLI (Nie402

et al., 2020b) is an NLI dataset adversarially col-403

lected through three iterative rounds, where the404

data for each round is written to be adversarial to 405

models trained on a combination of MNLI, SNLI, 406

and data from previous rounds. BERT-Large is 407

used as the adversary model for round 1 of data col- 408

lection, while RoBERTA-Large is used for rounds 409

2 and 3. AdversarialQA (Bartolo et al., 2020), is 410

an adversarial question-answering dataset in the 411

format of SQuAD 1.1 (Rajpurkar et al., 2016). Un- 412

like ANLI, it consists of separately collected exam- 413

ples based on three adversary models: BiDAF (Seo 414

et al., 2017), BERT-Large, and RoBERTa-Large. 415

While both datasets come with training, valida- 416

tion and test data splits, we conduct our analysis on 417
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Figure 4: For each fine-tuned model, we compute the
change in rank (1=best, 18=worst) from evaluating on
the full evaluation set, and on the dataset filtered using
the same pretrained model for the adversary. In almost
all cases, filtering on the same pretrained model leads
to a fall in ranking, indicating that the model is dispro-
portionately affected by filtering with itself.

the validation data. For both datasets, we fine-tune418

models on the conventional training data for each419

task,3 before evaluating on both the standard and420

adversarial validation datasets.421

We show in Figure 6 results on both model-422

in-the-loop datasets. For each adversarially cre-423

ated dataset, we circle data points where the fine-424

tuned model is the same as the adversary model.For425

ANLI, we see that about half of the models per-426

form at chance for ANLI R1, whereas the stronger427

models perform significantly above chance. On428

the other hand, for ANLI R2 and R3, most mod-429

els perform at chance except for the largest De-430

BERTa models. These results show that the ANLI431

data-generating procedure leads to examples that432

are more difficult across all models. However, we433

also observe that for ANLI R2 and R3, the perfor-434

mance of the adversary model, RoBERTa-large, is435

markedly below chance. This supports our obser-436

vation above that while adversarial dataset creation437

can lower performance across the board, it still438

tends to hurt the adversary model more than others.439

We see similar results for AdversarialQA, with440

models performing poorer as the datasets are gen-441

erated with stronger adversaries Unlike for ANLI,442

models do significantly better than chance on the443

adversarial datasets, with almost all models obtain-444

ing above 20 F1 and 10 EM scores.445

Compared to our more extensive experiments446

on adversarial filtering, there are fewer datasets447

collected using different adversary models, given448

the financial cost and manual writing needed to449

3MNLI and SNLI for ANLI, and SQuAD 1.1 for Adver-
sarialQA.
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Figure 5: Label agreement among the adversarially fil-
tered datasets from human annotators. AF Selected in-
dicates examples that are not filtered out. None indi-
cates no filtering applied i.e. agreement over the full
validation set. Label agreement for the AF-selected
datasets falls as better adversary models are used, in-
dicating that AFLite may be selecting for the examples
with the most ambiguity or labeling noise.

obtain examples. Hence we cannot draw strong 450

conclusions about the efficacy of adversarial data 451

collection for evaluation data from the current set 452

of results. Moreover, the adversaries used in ANLI 453

and AdversarialQA are not among the strongest 454

models we used in our adversarial filtering experi- 455

ments, where we saw the greatest distortion in the 456

ranking of models. However, we do find that adver- 457

sarial data collection leads to harder examples with 458

stronger adversary models. As more work is done 459

on adversarially collecting datasets and building 460

benchmarks based on them (Kiela et al., 2021), we 461

recommend that researchers pay close attention to 462

the impact of the choice of adversary model and 463

evaluate across a range of different models. 464

7 Discussion 465

One limitation of this study is that most of our mod- 466

els are encoder-only Transformer models, omitting 467

sequence-to-sequence models such as T5 (Raffel 468

et al., 2020) and GPT-3 (Brown et al., 2020), or 469

non-Transformer models. However, our experi- 470

ments do cover a diverse and comprehensive set of 471

the prominently used models in the literature, many 472

which have dominated benchmarking leaderboards, 473

and spanning a wide range of sizes, pretraining ob- 474

jectives, and training corpora, making this still a 475

highly relevant sample of models to study. 476

We also highlight that this work has not investi- 477

gated the nature of the adversarial examples outside 478
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Figure 6: Measuring the performance of models on adversarially collected datasets. Exact Match scores for Ad-
versarialQA are shown in Figure 10 in the Appendix. For each adversarially created dataset, the corresponding
base adversary model used in model-in-the-loop data creation is circled in the corresponding color for that dataset.
Performance at chance on ANLI is shown with a dotted line. While adversarial dataset creation appears to create
datasets that are slightly harder for the adversary model compared to other models, the resulting datasets are harder
across the board for all models, with stronger models still performing relatively better.

of the impact on model performance and annotator479

agreement. Works such as Williams et al. (2020)480

will be important for understanding exactly what481

examples are considered adversarial and why they482

are challenging to different models.483

While our adversarial filtering experiments were484

performed on single adversary models, a possible485

alternative is to ensemble a diverse set of adversary486

models when running AFLite, or weight examples487

based on the AFLite example selection based on488

each adversary. This approach may help reduce the489

issue of disproportionate impact on any given ad-490

versary model’s performance, and weighting eval-491

uation across different example subsets may also492

potentially reduce the unstable ranking of models.493

However, this would significantly increase the cost494

of running the algorithm, and would not address495

the issue of oversampling low-agreement examples,496

which is consistent across all adversary models.497

8 Conclusion498

In this work, we have investigated two different499

approaches to adversarially constructing more chal-500

lenging evaluation datasets.501

Using a modified AFLite, we run extensive ex-502

periments performing adversarial filtering of eval-503

uation examples and model evaluation across 18504

different pretrained models. Our takeaways on the505

viability of adversarial filtering to create more chal-506

lenging evaluation datasets are mixed. On one507

hand, there is a disproportionately large impact508

on the performance of fine-tuned models based on509

the same pretrained model as the adversary, the510

resulting ranking of models is unstable across the511

choice of adversary model, especially as stronger512

adversaries are used, and the filtering selects for513

examples with low annotator agreement over labels. 514

On the other hand, the resulting datasets are indeed 515

more challenging, the impact on model rankings 516

is somewhat expected as a higher proportion of 517

difficult examples remain after filtering, and low- 518

agreement examples can be valuable if an appropri- 519

ate evaluation format is used that takes into account 520

the distribution of the labels. 521

On our smaller set of experiments on adversar- 522

ially collected datasets, we draw a set of similar 523

conclusions. Adversarial data collection leads to 524

more challenging datasets, but there are signs of 525

disproportionate impact on the adversary model. 526

As the cost of using models goes down and their 527

capabilities improve, we are likely to see more 528

involvement of models in dataset creation in the 529

future. Models may be used adversarially as dis- 530

cussed above, or used to assist in writing examples 531

via text generation models, or used in others ways, 532

such as automatically identifying outliers or low- 533

quality human-written examples. In any of these 534

cases, it is possible to create an adverse and undesir- 535

able feedback loop in the data creation procedure. 536

While we believe that adversarially constructing 537

datasets can be a viable approach to create more 538

challenging evaluation benchmarks, we should take 539

extra care to avoid the pitfalls of these approaches. 540

Importantly, adversarial datasets must still accu- 541

rately reflect the core task or capability being mea- 542

sured, ideally with a diverse set of examples that 543

have good coverage of the linguistic phenomena 544

associated with the task. For now, we recommend 545

that researchers evaluate against a wide range of 546

models where possible, and avoid measuring the 547

difficulty of adversarial datasets using the adver- 548

sary models themselves. 549
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Algorithm 1: AFLite for Evaluation Data
Input: training dataset DT = (XT , YT ), evaluation

dataset DV = (XV , YV ), pre-computed
representation (Φ(XT ),Φ(XV )), model family
M, target dataset size n, number of random
partitions m, training set size t < n, slice size
k ≤ n, early-stopping threshold τ

Output: Filtering history of evaluation examples H ,
remaining evaluation examples R

S = DT

R = DV

while |S| > n do
// Filtering phase
forall i ∈ S do

Initialize multiset of out-of-sample training
predictions ET (i);

forall i ∈ R do
Initialize multiset of out-of-sample evaluation

predictions EV (i);
for iteration j : 1..m do

Randomly partition S into (Tj , S \ Tj) s.t.
|S \ Tj | = t;

Train a classifier L ∈M on
{(Φ(x), y)|(x, y) ∈ S \ Tj};

forall i = (x, y) ∈ Tj do
Add the prediction L(Φ(x)) to ET (i);

forall i = (x, y) ∈ R do
Add the prediction L(Φ(x)) to EV (i);

forall i = (x, y) ∈ S do
Compute the predictability score
p̃(i) = |{ŷ ∈ ET (i) s.t. ŷ = y}|/|ET (i)|;

forall i = (x, y) ∈ R do
Compute the predictability score
p̃(i) = |{ŷ ∈ EV (i) s.t. ŷ = y}|/|EV (i)|;

Select up to k instances S′ in S with the highest
predictability scores subject to p̃(i) ≥ τ ;
S = S \ S′;
Select all instances R′ in R where p̃(i) ≥ τ ;
R = R \R′;
Append R′ to H;
if |S’| < k then

break;
return H,R

A Modified AFLite836

Algorithm 1, shows the modified AFLite algorithm,837

where the original algorithm applied to training838

examples is shown in black, and the additional lines839

applied to the evaluation examples are highlighted840

in red.841

Φ(X) is the CLS or <S> embeddings of corre-842

sponding adversary model, fine-tuned on a separate843

held-out training set for the task (10% of the train-844

ing data, following AFLte).845

B Additional Results846

Figure 8 shows the same information as Figure 2,847

with fine-tuned models on the X-axis and adver-848

sary models shown in different curves. Figure 7849

shows the same information in a heatmap. Figure 9850

shows the average agreement across adversarially 851

filtered datasets, including the agreement among 852

subsequent iterations of AFLite. Figure 10 shows 853

exact-match scores on the AdversarialQA datasets. 854

C Models 855

Table 2 shows additional details for each of the 856

pretrained models used in our experiments. 857

D Fine-Tuning Details 858

For full fine-tuning, we fine-tune for 3 epochs for 859

MNLI and SNLI, and 5 epochs for Cosmos QA 860

and SocialIQA. For fine-tuning weak classifiers 861

for Φ(x), we subsample 10% of the training ex- 862

amples for MNLI and SNLI, and 5000 examples 863

for Cosmos QA and SocialIQA, fixing the subsam- 864

ples across all models. We repeat the subsampling 865

procedure three times. In both fine-tuning setups, 866

we hold out 500 examples from the training set for 867

early stopping. These training examples are held 868

out for both full fine-tuning as well as the AFLite 869

procedure. As such, validation examples never in- 870

fluence the fine-tuning or AFLite procedures, only 871

being used when we perform AFLite and filter our 872

validation examples as described in Algorithm 1. 873

For DeBERTa, unlike in He et al. (2020), we do 874

not apply SiFT during fine-tuning. 875

E AFLite Hyperparameters 876

Table 3 shows the hyperparameters for our AFLite 877

runs. 878
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Figure 7: Performance of fine-tuned models on validation sets filtered via AFLite using adversary models. ‘None’
indicates the full validation set with no filtering applied. Filtering with stronger adversary models leads to lower
performance on the filtered dataset, across all fine-tuned models. However, filtering also tend to hurt the adversary
model itself more than other models on average (darker cells on the diagonal).
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Figure 8: Performance of fine-tuned models on validation sets filtered via AFLite using adversary models. ‘None’
indicates the full validation set with no filtering applied. The dotted line indicates performance at chance for
each task. Filtering with stronger adversary models leads to lower performance on the filtered dataset, across all
fine-tuned models.
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Figure 9: Label agreement among the adversarially filtered datasets from human annotators. AF Selected indicates
examples that are not filtered out. Label agreement is very high for first pass filtered examples for all models. On
the other hand, label agreement for the remainder datasets falls as better adversary models are used, indicating that
AFLite may be selecting for the examples with the most ambiguity or labeling noise.
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Figure 10: Measuring the performance of models on AdversarialQA. AdversarialQA models are fine-tuned on
SQuAD 1.1. For each adversarially created dataset, the corresponding base adversary model used in model-in-the-
loop data creation is circled in the corresponding color for that dataset.
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Model Abbreviation Reference Parameters Training Objective

MiniBERTa Small 1M Min-1M Zhang et al. (2021) ∼45M Masked language modeling
MiniBERTa Base 1B Min-1B Zhang et al. (2021) ∼100M Masked language modeling
BERT-base (cased) BERT-B Devlin et al. (2019) ∼100M Masked language modeling + NSP
BERT-large (cased) BERT-L Devlin et al. (2019) ∼340M Masked language modeling + NSP
XLM-R-base XLMR-B Conneau et al. (2020) ∼100M Masked language modeling
XLM-R-large XLMR-L Conneau et al. (2020) ∼340M Masked language modeling
BART-base BART-B Lewis et al. (2020) ∼100M Text infilling + Sentence permutation
BART-large BART-B Lewis et al. (2020) ∼340M Text infilling + Sentence permutation
ALBERT-large (v2) ALB-L Lan et al. (2020) ∼18M Masked language modeling + SOP
ALBERT-xlarge (v2) ALB-XL Lan et al. (2020) ∼60M Masked language modeling + SOP
RoBERTa-base RoBE-B Liu et al. (2019) ∼100M Masked language modeling
RoBERTa-large RoBE-L Liu et al. (2019) ∼340M Masked language modeling
ELECTRA-base ELEC-B Clark et al. (2020) ∼100M Replaced token detection
ELECTRA-large ELEC-L Clark et al. (2020) ∼340M Replaced token detection
DeBERTa xlarge (v2) DBv2-XL He et al. (2021) ∼900M Masked language modeling
DeBERTa XXL (v2) DBv2-XXL He et al. (2021) ∼1.5B Masked language modeling
DeBERTaRTD Base DBv3-B He et al. (2021) ∼100M Replaced token detection
DeBERTaRTD Large DBv3-L He et al. (2021) ∼418M Replaced token detection

Table 2: Pretrained models used in our experiments

MNLI SNLI Cosmos QA SocialIQA

m 64 64 64 64
t 50K 40K 10k 10k
k 10K 10K 500 500
τ 0.75 0.75 0.75 0.75

Taken From Le Bras et al. (2020) Le Bras et al. (2020) Sakaguchi et al. (2020) Sakaguchi et al. (2020)

Table 3: AFLite Hyperparameters
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