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Abstract001

When a crisis hits, people often turn to social002
media to ask for help, offer help, find out how003
others are doing, and decide what they should004
do. The growth of social media use during005
crises has been helpful to aid providers as well,006
giving them a nearly immediate read of the007
on-the-ground situation that they might not oth-008
erwise have. The amount of crisis-related con-009
tent posted to social media over the past two010
decades has been explosive, which, in turn, has011
been a boon to Language Technology (LT) re-012
searchers. In this study, we conducted a system-013
atic survey of 356 papers published in the past014
five years to better understand the expanding015
growth of LT as it is applied to crisis content,016
specifically focusing on corpora built over cri-017
sis social media data as well as systems and018
applications that have been developed on this019
content. We highlight the challenges and possi-020
ble future directions of research in this space.021
Our goal is to engender interest in the LT field022
writ large, in particular in an area of study that023
can have dramatic impacts on people’s lives.024
Indeed, the use of LT in crisis response has025
already been shown to save people’s lives.026

1 Introduction: Language Technologies027

and Crises028

The aftermath of the Haitian Earthquake of 2010029

saw the development and deployment of language030

technologies at a large and national scale for the031

first-time ever in a crisis. Most notably, lan-032

guage technologies were developed for a language033

that most in the NLP field had never heard of,034

and likewise most aid providers did not speak,035

namely, Haitian Kreyòl. At its peak, in the hours036

and days after the earthquake, first-responders in037

Haiti were receiving over 5,000 SMS messages038

per hour asking for help, over 80% of which were039

in Kreyòl. In response to the desperate need, a040

diverse group of individuals, notably driven by041

the Haitians themselves, developed and deployed042

technologies that could process this load, with 043

a heavy reliance on crowdsourcing, the latter of 044

which tapped into Haiti’s large world-wide dias- 045

pora. Although the language technologies devel- 046

oped at the time are archaic by today’s standards, 047

these technologies allowed for the rapid triaging 048

of the SMS messages (Meier, 2015), geolocation 049

(mostly through crowdsourcing) (Munro, 2013), 050

and even machine translation (Lewis, 2010). The 051

infrastructure and language technologies developed 052

for this crisis were credited with saving thousands 053

of lives (Munro, 2013). 054

The Haitian earthquake, and the crisis it caused, 055

are not unique. In fact, natural or human-caused 056

crises happen regularly around the globe. Popula- 057

tions tend to use social media (and SMS) to report 058

on how they are being affected. The data posted 059

to social media have proven essential for provid- 060

ing and directing aid. Further, in notable examples 061

and ongoing research, language technologies have 062

proven, or can be shown, to be essential tools in 063

the crisis preparedness and response toolkit. 064

1.1 What is a crisis? 065

A crisis can be described as any surprise event 066

that adversely affects public health or disrupts the 067

routines of daily life, puts (large) groups of peo- 068

ple in danger, may require aid for affected popula- 069

tions, is often unpredictable, and typically requires 070

rapid response (Castillo, 2016). Even so, emer- 071

gency service providers generally have plans or 072

strategies for dealing with crisis events (Akerkar, 073

2020). Olteanu et al. (2015b) and Castillo (2016) 074

describe the two principal super-types of disaster: 075

natural and human-induced (anthropogenic), with 076

meteorological, hydrological, geophysical, etc., all 077

being natural, and shootings, bombings, wars, de- 078

railments, etc., all falling under human-induced. To 079

see the full list of categories from Castillo (2016), 080

see Table 1 in Appendix A. 081

The birth of the multidisciplinary field of Cri- 082
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sis Informatics (Hagar, 2010, 2014; Palen and An-083

derson, 2016) saw the first forays into the use of084

language technologies in crisis response, focused085

primarily on disaster warning, response and recov-086

ery. A notable (and likely first) example of social087

media use in crisis was on Twitter, where users088

reported localized information regarding the San089

Diego firestorm of 2007 (Sutton et al., 2008). How-090

ever, it was not until Haiti in 2010 that the use091

of technologies for identifying and meeting local092

need demonstrated the potential for language tech-093

nological solutions (albeit across SMS messages,094

not social media directly) (Munro, 2013). In the095

UK floods of 2012 it was noted that location infor-096

mation was discernible from tweets (Meier, 2015).097

This was followed by Typhoon Pablo in the Philip-098

pines in the same year where Tweets were sys-099

tematically analyzed and categorized (Liu, 2014).100

However, the first Twitter classifier was developed101

after the Oklahoma tornadoes of 2013, which was102

used and deployed during the crisis, and used to103

classify the severity of need for directing aid appro-104

priately (Meier, 2015).105

Crucially, given the millions of users on social106

media platforms, information can be harvested to107

identify the need on the ground, summarize the108

extent of a disaster locally, and also direct need (as109

observed in Haiti in 2010 (Lewis et al., 2011)).110

However, there are a host of issues that one must111

contend with when harvesting and processing data112

from social media platforms as relates to crises, all113

of which rely on language technologies: identify-114

ing the language and using language-specific tools115

for text or audio in a language (or relevant multilin-116

gual models); identifying named entities of various117

types within a text; identifying location informa-118

tion, including fine-grained mentions; extracting119

timeline information to provide a step-by-step view120

of a crisis as it unfolds; analyzing the sentiment121

or stance of affected populations from text; deter-122

mining whether the messages are relevant to the123

crisis at hand, and if so, what urgency they repre-124

sent (i.e., triage); filtering out irrelevant content,125

such as misinformation or SPAM, or even disin-126

formation; and, producing a summary of ongoing127

events for aid providers or government bodies (i.e.,128

a situation report, or sitrep). All of the above rely129

on, or would benefit significantly from, the use of130

language technologies.131

Figure 1: Flowchart of paper selection following
PRISMA guidelines (Tricco et al., 2018).

1.2 What are the research questions? 132

In this paper, we conduct a systematic survey of 133

the literature on language technologies as they are 134

applied to crises. To our knowledge, this is the 135

most extensive and thorough survey of its kind in 136

this area: we reviewed over 350 papers published 137

during the past five years on language technologies 138

(LT) for crisis preparedness and response (CPR). 139

The crucial research questions (RQ) we will ad- 140

dress in this survey are as follows: 141

• RQ1: What kind of corpora are available for 142

LT4CPR research? What are their properties? 143

• RQ2 What kind of approaches have been pro- 144

posed to build LT systems for CPR? 145

• RQ3: What kinds of real-life crisis scenarios 146

can LT systems potentially be applied to? 147

• RQ4: What are the main challenges and future 148

directions for LT4CPR research? 149

This survey summarizes the current breadth and 150

extent of language technologies in crisis prepared- 151

ness and response (LT4CPR) and describes chal- 152

lenges and future directions for this interesting area 153

of study. 154

2 Paper Selection 155

Our systematic review follows the Preferred Re- 156

porting Items for Systematic Reviews and Meta- 157

Analyses (PRISMA) guidelines (Tricco et al., 158

2018). We gathered a large number of relevant 159

English articles published in the past five years, 160

from January 2020 to December 2024. The process 161

is illustrated in Figure 1, as explained below. 162
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2.1 Inclusion criteria163

For a study to be included in our survey, it must164

meet two criteria: First, it must directly pertain to165

a rapidly developing crisis such as natural disasters166

(e.g., earthquake) or the onset of pandemics (e.g.,167

COVID-19) or human-induced crises (e.g., break-168

out of a war); thus, studies on long-term crises such169

as drug wars and the opioid epidemic in the USA170

are excluded. Second, the study must either build171

a corpus consisting of social media data produced172

during a crisis or build NLP systems using social173

media data that aim to help crisis response.174

2.2 The initial set of papers175

Our search strategy employed three groups of key-176

words: (a) social media, (b) crisis OR disaster, (c)177

Natural Language Processing (NLP) OR Machine178

Learning (ML) OR Language Technology (LT) OR179

Artificial Intelligence (AI). These groups were com-180

bined to conduct searches across three sites: the181

ACL Anthology1, Google Scholar2, and Seman-182

tic Scholar3. Furthermore, we included relevant183

publications from CrisisNLP 4 and ISCRAM5. We184

found 1,250 papers from these five sources com-185

bined. After removing duplicates and papers pub-186

lished before 2020, there were 1,066 left, which187

formed our initial set of papers.188

2.3 Two stages of screening189

Although search queries were based on the inclu-190

sion criteria, many papers in the initial set failed191

to meet these criteria. We filtered out unqualified192

papers in two stages. First, four NLP graduate stu-193

dents manually checked the title and abstract of all194

papers in the initial set and removed any unquali-195

fied ones.196

Second, we conducted a full-text screening of197

the 540 remaining papers and categorized them into198

four categories based on their foci: (1) corpus con-199

struction papers, which focus on building a dataset200

using social media messages during a crisis, (2) sys-201

tem development papers, which focus on building202

NLP systems that could be applied to some crisis203

situations, (3) application papers, which focus on204

building applications for a real crisis situation, and205

(4) survey papers. During the full-text screening,206

we recorded information (e.g., the modality of a207

1https://aclanthology.org/
2https://scholar.google.com/
3https://www.semanticscholar.org/
4https://crisisnlp.qcri.org/
5https://iscram.org/publications/

Figure 2: The papers included in this survey by year
and crisis type. The grey bar, N/A, means the crisis type
cannot be easily inferred from the writing of the papers.

corpus), which would be needed for the various 208

statistics reported in our study. 209

Ultimately, 356 articles were kept for our sur- 210

vey, and their distribution by year of publication 211

and crisis type are shown in Figure 2. For the next 212

three sections, we will discuss the first three types 213

of papers as the 30 survey papers in our final set 214

either concentrated on some specific NLP task (e.g., 215

event detection (Edlim et al., 2024)) or were pub- 216

lished a few years ago and thus could not capture 217

most recent progress in this field (e.g., (Baro and 218

Palaoag, 2020)). 219

3 Corpus Construction 220

Out of the 356 papers in our final collection, 91 221

focus on corpus construction (“corpus papers”). 222

In this section, we discuss the properties of the 223

corpora with respect to modality, language, social 224

media platform, and annotation type (see Figs 3-7). 225

Each figure in this section has two pie charts: the 226

left shows the numbers of corpora presented in the 227

corpora papers, and the right shows the numbers of 228

corpora used by the system papers. 229

The full list of corpus papers and the basic in- 230

formation on the corresponding corpora are in Ta- 231

bles 2– 6 in Appendix B. In addition, some well- 232

known datasets released before 2020 are in Table 7 233

in the same appendix. 234

3.1 Modalities, languages, and platforms 235

Most of the corpora described in the corpus papers 236

are text only (79), English only (47), and collected 237

from Twitter alone (63). 238

Crisis type: Castillo (2016) defined two major 239

categories of crises: natural vs. human-induced 240

(see Table 1). As there was a surge of studies 241

on COVID-19, we added a third category, health- 242

related crisis, when reporting the number of cor- 243
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Figure 3: Number of corpora by crisis type as in (a)
corpus papers or (b) system papers

pora by crisis type. Figure 3 shows the distribution244

of corpora over three crisis categories. Some cor-245

pora include data from multiple types of crises.246

Figure 4: Number of corpora by language

Languages: Figure 4 shows languages of the cor-247

pora in our study. Of the 89 corpora that include248

text, 47 (52.8%) are English only. The next largest249

percentage is for multilingual corpora, with most250

of these including English in addition to other lan-251

guages. Good examples of robustly multilingual252

corpora include Chowdhury et al. (2020), Imran253

et al. (2021a), and Abdul-Mageed et al. (2021).254

The latter two are particularly noteworthy with 67255

and 100+ languages represented, respectively.256

Modality: As shown in Figure 5(a), the large ma-257

jority (81) of the 91 newly created corpora consist258

of text only; 2 corpora (Hassan et al., 2020; Alam259

et al., 2022), are images only; 6 include both text260

Figure 5: Corpora by modality.

Figure 6: Number of corpora by social media platforms.
N/A means the platform information is unspecified.

Figure 7: Number of corpora by annotation type. N/A
means no additional annotation (A0).

and images; 2 consist of more than two modalities 261

(Yuan et al., 2021; Sosa and Sharoff, 2022). 262

Social Media Platforms: Fig 6 shows the 263

sources of the data in the corpora. The large major- 264

ity of corpora, 63 (69.2%), were built from social 265

media messages on Twitter. This is because of the 266

(historically) widespread use of the platform, espe- 267

cially for sharing the kind of microblog posts most 268

useful for disaster situations. Additionally, Twitter 269

is often used in research studies because its data 270

are easy to obtain and distribute. 271

3.2 Types of annotation 272

The corpora papers vary with respect to the anno- 273

tation types used over raw social media data. We 274

group the annotation types into 6 broad categories, 275

whose distributions are shown in Figure 7. 276

(A0) No annotation: 10 of 91 corpora are a col- 277

lection of social media messages without additional 278

annotation. For instance, Epic (Liu et al., 2020) is a 279

large-scale epidemic corpus containing 20M tweets 280

crawled from 2006 to 2020, including tweets re- 281

lated to three diseases (Ebola, Cholera and Swine 282

Flu) and 6 global epidemic outbreaks. Such cor- 283

pora are valuable resources for LT4CPR research 284

even without additional annotations. 285

(A1) Labels: Out of 91 corpora, 54 include cer- 286

tain class labels. The labels can pertain to (a) Rele- 287
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vance and urgency of messages (e.g., Enzo et al.,288

2022; Kayi et al., 2020), (b) Information source289

and reliability (e.g., (Ahmed et al., 2020; Sosa290

and Sharoff, 2022)), (c) damage type and severity291

(e.g., (Li et al., 2020; Alam et al., 2022)), and (d)292

sentiment, stance (e.g., (Shestakov and Zaghouani,293

2024; Vaid et al., 2022)), etc.294

(A2) Entities, relations, and events: Seven out295

of 91 corpora annotated disaster-related entities, re-296

lations, or events; such annotations can be used297

to train emergent event detection systems (e.g.,298

(Hamoui et al., 2020; Fakhouri et al., 2024)).299

(A3) Geo-location: For applications such as as-300

sisting rescue efforts, geo-location needs to be fine-301

grained to the level of geo-coordinate or physical302

address (e.g., (Chen et al., 2022; Faghihi et al.,303

2022)). In contrast, for applications such as mon-304

itoring public opinions during a pandemic, geo-305

location can be at the level of city, state, or even306

country (Arapostathis, 2021).307

(A4) Summary and timelines: Informative re-308

ports that aggregate information from social media309

messages can be invaluable during crises. How-310

ever, creating a corpus of such reports could require311

tremendous amount of human effort. Only two cor-312

pora in our survey do so: Vitiugin and Castillo313

(2022) collected crisis-related messages from Twit-314

ter and annotated all summaries for factual claims315

in the messages; CrisisLTSum (Faghihi et al., 2022)316

contains 1,000 crisis event timelines across four do-317

mains including wildfires, local fires, traffic and318

storms.319

(A5) Miscellaneous: Nine corpora include an-320

notations such as propagation networks (Haouari321

et al., 2021), situation frames and morphosyntactic322

annotations (Tracey and Strassel, 2020).323

Notably, while parallel datasets in general do-324

mains (e.g., news and law proceedings) are com-325

mon and have been used to build MT systems in326

the past three decades, corpora consisting of trans-327

lations of social media data are rare and none of328

the 20 multilingual corpora in Figure 4(a) include329

parallel social media data.330

3.3 Annotation methods331

For all corpora, social media messages are ob-332

tained by crawling the Internet, calling APIs of-333

fered by social media platforms, or leveraging ex-334

isting datasets. The raw data is often preprocessed335

using filtering, removing noisy instances, etc.336

Figure 8: Number of systems by NLP tasks.

Among the annotated corpora in our survey, an- 337

notation was performed manually for roughly two 338

thirds of corpora through crowd-sourcing platforms 339

like Amazon Mechanical Turk (e.g., (Sosea et al., 340

2022)) or by in-house annotators (e.g., (Sarkar 341

et al., 2020)). The remaining were annotated au- 342

tomatically through associated metadata such as 343

Twitter’s location features (e.g., (Qazi et al., 2020)) 344

or by running NLP systems such as language I.D. 345

(e.g., (Sosa and Sharoff, 2022)). 346

4 NLP System Development 347

Of 356 papers included in this survey, 209 (58.1%) 348

focus on system development ("system papers"). 349

4.1 NLP tasks 350

Despite the large number of system papers, they 351

cover only a small number of NLP tasks, as shown 352

in Figure 8.6 353

(T1) Classification: This group includes classi- 354

fication tasks such as emergency detection (e.g., 355

(Restrepo-Estrada et al., 2018; Gialampoukidis 356

et al., 2021)), misinformation detection (e.g., 357

(Apostol et al., 2023; Naeem et al., 2024)), and 358

disaster type classification (e.g., (Lever and Ar- 359

cucci, 2022; Zhang et al., 2024a)). 196 out of 286 360

systems (68.5%) fall into this category. 361

(T2) Entity, relation, and event: This group in- 362

cludes named entity recognition (e.g., (Lai et al., 363

2022; Suleman et al., 2023)), relation extraction, 364

and event extraction (e.g., (Alam et al., 2019; Wang 365

et al., 2024a)). 40 systems belong to this category. 366

(T3) Geo-location: This includes Geo-tagging 367

and Location Mention Recognition (LMR) (e.g., 368

6As a system paper may include systems for multiple NLP
tasks, the total number of systems (286) in this pie chart is
higher than the number (209) of system papers.
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(Essam et al., 2021; Suwaileh et al., 2022)). 11369

systems belong to this group.370

(T4) Summarization: There are 11 systems on371

summarization, including timeline summarization372

(e.g., (Khatoon et al., 2021)).373

(T5) Topic modeling: 19 systems are on topic374

modeling (e.g., (Bukar et al., 2022; Zhang et al.,375

2024b)), an important task during crisis situations.376

(T6) Other tasks: There are 9 papers on vari-377

ous topics such as social network detection (e.g.,378

(Momin and Kays, 2023)) and visualization (e.g.,379

(Ma et al., 2022)).380

4.2 Methodology381

Among the six groups of tasks outlined above, T1,382

T2 and T5 have been well-studied in the NLP field;383

most system papers we surveyed simply applied384

the same methodology to the crisis domain. For385

T3, in order to identify Geo-locations, some studies386

(e.g., (Apostol et al., 2023; Ferner et al., 2020))387

used external knowledge to map location names to388

physical addresses while others (e.g., (Belcastro389

et al., 2021)) took advantage of the geo-tags of con-390

tent senders. For T4, summarization in the crisis391

domain can be very complex, as one would need392

to process on-going, noisy, often conflicting infor-393

mation from multiple information resources and/or394

modalities potentially in multiple languages. The395

summarization task often involves message clas-396

sification and clustering, followed by crisis time-397

line extraction before a summary is generated (e.g.,398

(Faghihi et al., 2022)).399

Due to space limits, we cannot explore the de-400

tails of all system papers. We simply place them401

in four groups: rule-based, neural network (NN),402

non-NN statistical methods such as Random Forest403

and SVM, and others which include methods such404

as data augmentation. Figure 9 shows the number405

of the systems by year and approach.7406

4.3 Evaluation407

Tasks in T1-T4 correspond to annotation types A1-408

A4, as discussed in §3.2; therefore, they can be eval-409

uated with the corresponding corpora. As shown in410

Figure 4(b)-6(b), the corpora used in the majority411

of system papers are English text from Twitter.412

For T5-T6, because there are no labeled corpora413

serving as gold standards, the outputs (e.g., visual-414

7The total number of systems in the figure (449) is much
higher than the number of system papers (209) as it is common
for a system paper to report results on multiple systems.

Figure 9: Number of systems by year and approach.

ization of damaged regions) of those systems are 415

often displayed but not evaluated quantitatively. 416

5 Real-life Applications and Deployment 417

NLP systems can potentially be used to assist cri- 418

sis management in many ways, such as message 419

triaging for humanitarian organizations (Kozlowski 420

et al., 2020b; Amer et al., 2024), emergent event 421

detection (Suwaileh et al., 2023c; Simon et al., 422

2021), geo-location for rescue efforts and situa- 423

tional assessment (Khanal et al., 2022; Suwaileh 424

et al., 2022), generation of situation reports and cri- 425

sis maps (Vitiugin and Castillo, 2022; Yang et al., 426

2022), monitoring and analyzing public emotions 427

and responses (Wang et al., 2024b; Sosea et al., 428

2022), and helping the public acquire/process infor- 429

mation (Hossain et al., 2020; Brunila et al., 2021a). 430

However, there are only 26 application papers, 431

that is, papers that describe systems that attempt 432

to address the “application” of LT to real-life sit- 433

uations (e.g., to help aid providers). Of these, it 434

is not clear how many have been adopted by the 435

crisis community. This indicates a surprising gap 436

given that one would assume that the system devel- 437

opment work that is being done by LT researchers 438

(described in §4) is intended to be used in actual 439

crises. 440

6 Challenges and Future Directions 441

Our survey has shown that there has been a signifi- 442

cant amount of work that has been done over just 443

the past five years applying LT to crisis manage- 444

ment. That said, there are still many challenges to 445

be addressed. We highlight six primary challenges 446

and possible future directions in the next sections. 447

6.1 Quality of social media corpora 448

There are many challenges in building large, high- 449

quality corpora for LT4CPR research. First, it can 450

be difficult to gather large amounts of social media 451
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data from real crises due to factors such as paywalls,452

identifying the channels being used for a crisis (e.g.,453

on Telegram, Reddit), the lack of public access to454

relevant content, etc. Second, social media data455

are noisy with misspellings, newly invented words,456

grammatical errors, etc., all of which complicate457

cleaning and annotation tasks (Derczynski et al.,458

2013). Third, social media data can contain inac-459

curate or misleading information, which is often460

reinforced (e.g., Starbird et al., 2014), and thus461

mis- and disinformation detection can be an impor-462

tant step for using such data (Hossain et al., 2020).463

Finally, social media users can be quite different464

from the general population and any analysis based465

on social media messages must take this fact into466

account, e.g., in order to understand the public’s467

reaction to, for example, a hurricane evacuation468

order (Roy et al., 2021; Li et al., 2022c).469

6.2 Lack of multilinguality470

Chowdhury et al. (2020) points out that “there471

are a lot of disaster-prone non-English speak-472

ing countries.” Nothing could be truer: from473

1995 to 2022, there were 11,360 natural disas-474

ters around the globe, an average of about 398475

disasters per year (Tin et al., 2024). Ranking476

these disasters by death toll or number of injuries477

(descending)—treating these figures as proxies for478

disaster severity—none of the approximately eigh-479

teen most severe disasters that occurred in these480

17 years occurred in regions where English is an481

official language, and only one (Sri Lanka) even482

considers English semi-official.483

Given that the bulk of injuries and lives lost oc-484

cur where English is not spoken (per (Tin et al.,485

2024)), and that the bulk of corpora developed for486

LT4CPR are in English (see §3 and Appendix B),487

the value of resources created for non-English lan-488

guages cannot be overstated, especially if intended489

for real-world use. Tools, thus, take a cue from490

available corpora, and §4 shows the same English-491

bias in the systems developed. There is value in492

working on English; yet we miss the boat by not493

working on other languages too.494

A surprising gap in the LT research on social495

media in the crisis area is the general absence of496

Machine Translation research: in our search over497

the past five years only one paper focused on the498

use or development of MT (Amer et al., 2023). 8499

8Two recent papers, Lankford and Way, 2024 and Roussis,
2022 also address MT in crisis, specifically of COVID-19
related text, they do not cover social media, so were excluded

If the preponderance of need is in non-English lan- 500

guages, and the bulk of the work in LT4CPR is in 501

English, MT could be used as a “connective” tech- 502

nology (e.g., translate data from affected languages 503

into English for further processing). 504

That said, this deficiency might also be ad- 505

dressed by the growing use of LLMs (e.g., GPT, 506

LLaMa) and large multilingual models (e.g., XLM- 507

RoBERTa). We found 8 papers using such models 508

for crisis matters, all from 2024. Although the 509

bulk of these papers focus on classification and 510

summarization tasks using LLMs (and one on in- 511

ference (Giaccaglia et al., 2024)), two do explore 512

multilingual uses (Wang et al., 2024a; Sathvik et al., 513

2024). 514

6.3 Lack of multimodality 515

A recurring theme in a number of the system pa- 516

pers is the need for multi-modal (image, text, audio, 517

video) content. Applying LT techniques to multi- 518

modal content has garnered much interest in the 519

field of late (Salesky et al., 2024; Haralampieva 520

et al., 2022; Hu et al., 2024). Indeed, over 40 pa- 521

pers in our survey list the development of multi- 522

modal corpora or tools as relevant future directions 523

for the field. One shows an interesting use case 524

for text paired with images, Giaccaglia et al., 2024, 525

whereby an LLM annotates images retrieved from 526

Tweets, and combines annotations with the Tweet 527

text to enhance (what they call amplify) classifica- 528

tion into relevant humanitarian categories. Equally 529

beneficial work could be done with video and/or 530

audio to enhance various NLP tasks for triaging. 531

6.4 Lack of diversity in social media platforms 532

The data found in the corpora we surveyed is over- 533

whelmingly from Twitter/X, and the bulk of the 534

systems that were developed used Twitter data as 535

well. Twitter has been the focus for so long because 536

it was the go-to in the earliest days of Crisis Infor- 537

matics (e.g., (Sutton et al., 2008; Hughes and Palen, 538

2010; Vieweg et al., 2010)), and this tendency has 539

clearly continued. 540

The hyper-focus on Twitter is an issue because it 541

ignores the vast diversity of social media platforms 542

being used, some much more heavily than Twitter, 543

e.g., Tiktok. Also, after Twitter’s acquisition and 544

shift to X, the resulting changes in policies and 545

algorithms have driven users to flee the platform 546

in favor of others. For these reasons and more, it 547

from our survey.
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will become increasingly important for researchers548

to acquire data from other platforms, both main-549

stream (e.g., Youtube, Tiktok), and alternative (e.g.,550

Telegram, Bluesky).9551

6.5 Lack of diversity in annotation types and552

NLP tasks553

As shown in Figures 7-8, most of the existing cor-554

pora and NLP systems focus on producing three555

types of annotation or output: class labels, en-556

tity/relation/event, and geo-location. More studies557

are required on other types of annotation or out-558

put such as machine translation, situation reports,559

timeline extraction (a la Faghihi et al., 2022)10,560

and visualization (e.g., (Murakami et al., 2020)).561

These would vastly increase the utility of LT for562

aid providers and others in real-world settings.563

6.6 Lack of engagement with the crisis564

community565

Lewis et al. (2011) describes what they call a Crisis566

MT Cookbook, effectively a strategy for applying567

MT to future crisis events, using the Haitian crisis568

of 2010 as a guide. There are two crucial elements569

to this cookbook: (1) the content that would be570

most useful in crisis situations, and (2) the infras-571

tructure to support relief workers.572

As noted in §3 a large percentage of the papers573

we reviewed are corpus papers, and it could be574

argued that the data collected for these corpora are575

the content that would be useful for developing576

tools to battle future crises. They consist of real577

data collected from real users who were involved578

in real crises.579

The next step is trickier: what do the consumers—580

relief workers, aid providers, etc.—of the tools that581

might be built over such corpora need? In other582

words, what does the infrastructure that they need583

look like? Do systems described in the papers we584

surveyed (see §4) fill the need of these consumers?585

It is clear that some of the authors have engaged586

directly with the crisis community (or work there587

9It is also important to go where the users are. As an
example, in June 2022 there were 1.7B regular users of Tiktok,
yet Twitter/X had only 397M. Tiktok’s user base is growing
but Twitter/X’s growth has been relatively flat. See this chart.

10It should be noted that Faghihi et al. (2022) is not a time-
line extraction or summarization tool, but rather a benchmark
designed to support the development of such tools. The bench-
mark consists of 1,000 crisis event timelines extracted from
Twitter for several different crisis types. Resources such as
this, which provide for benchmarking on difficult tasks—but
tasks that are important to crisis managers—can be very useful
for fostering and promoting LT work in such areas.

themselves), as evidenced by the real applications 588

described in §5. But, as a whole, how much of 589

our infrastructural work thus far could be directly 590

consumed in times of crisis? 591

7 Conclusion 592

In reviewing the hundreds of papers for this survey, 593

it was obvious throughout almost all of them that 594

the work was being done with good intent: most 595

papers spoke directly to the need to provide aid in 596

crisis situations, and many authors highlighted how 597

their work could help. It was clear that the authors 598

were doing their work with an eye on the greater 599

good. This is laudable and utterly inspiring. In fact, 600

it makes us proud to be LT researchers. 601

That said, good intentions cannot operate in a 602

vacuum. An important question must be asked: is 603

the work being done for any particular task being 604

done based on perceived need, or being done based 605

on actual need? If the former, then that disconnect 606

might mean that the work we are doing, no matter 607

how inspiring, may not be consumed by those we 608

think might need it most. It does not diminish the 609

work being done, but it does mean that our lofty 610

aspirations might not be met. 611

The solution is simple: we should engage with 612

the broader crisis community, e.g., aid providers, 613

NGOs, government bodies, affected communities 614

(including language communities), crisis informat- 615

ics researchers, crisis or disaster managers (includ- 616

ing those operating in a local theater), and any 617

others who engage in crisis response work. This is 618

not necessarily something each individual member 619

of our research community would need to or should 620

take on, but rather the LT community writ large, 621

specifically those who wish to take on the daunting 622

tasks of creating LT4CPR. 623

The mere fact that there a few hundred papers 624

written over the past five years in the LT4CPR 625

space (per Appendix B and Figure 2) speaks vol- 626

umes. LT4CPR is not just a passing fad nor some 627

fancy new algorithm: those of us involved are gen- 628

uinely interested, as a field, in improving the lives 629

of others; indeed, as witnessed so many years ago 630

in Haiti, in saving the lives of others. 631

We hope our survey will generate even more 632

interest across the language technology disciplines 633

in LT4CPR and that it will offer suggestions of 634

differing research paths for those already involved. 635

There is much that has already been done. But 636

there is also so much more that we can do. 637
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8 Limitations638

This survey included only papers in English pub-639

lished in the five years of 2020-2024, and thus may640

have missed studies published in other languages641

or outside this time period.642

Due to the large number of papers in the initial643

set, most papers were manually checked by only644

one annotator in each stage of screening; thus, an-645

notation errors or inconsistencies are inevitable.646

Finally, due to page limits for submission, while647

356 papers are included in this survey from which648

we gathered our statistics, only a small subset of649

them are discussed individually in our paper.650

9 Ethical Considerations651

All the papers covered in our survey are publicly652

available. The two-stage screening process was653

done by researchers on our team. We are not aware654

of any ethical issues that arose while conducting655

our work.656
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A Disaster Types1495

Table 1 shows Crisis categories and sub-categories1496

from Olteanu et al., 2015b; Castillo, 2016.1497

B Corpus Papers Included in this Survey1498

Table 2-6 show the full list of 91 corpus papers1499

included in this survey, with the basic information1500

about the corpora presented in these studies:1501

• The columns show the corpus name, the year1502

of the publication, social media platform, cri-1503

sis type, modality, language, annotation type,1504

and the link to the corpus or the publication.1505

• The crisis types are C1 (natural disaster), C21506

(health-related crisis), C3 (human-induced cri-1507

sis), and C4 (multiple types of crises).1508

• We use 3-letter language codes for Arabic1509

(ara), Belarusian (bel), Catalan (cat), Chi-1510

nese (zho), Croatian (hrv), English (eng),1511

French (fra), German (deu), Indonesian (ind),1512

Japanese (jpn), Portuguese (por), Russian1513

(rus), Spanish (spa), Tagalog (tgl), and1514

Ukrainian (ukr).1515

• Annotation types are A0-A6 as descibed in1516

Section 3.2: A0 (no additional annotation),1517

A1 (class labels), A2 (entities, relations, and1518

events), A3 (geo-location), A4 (summary),1519

and A5 (other types of annotaton).1520

While our corpus papers were published in 2020-1521

2024, there are dozens of corpora that were released1522

before 2020 and have been used in multiple studies1523

since their release. We include those corpora in1524

Table 7.1525
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Category Subcategory Examples

Natural
• Meteorological

• Hydrological

• Geophysical

• Climatological

• Biological

• tornado, hurricane

• flood, landslide

• earthquake, volcano

• wildfire, heat/cold
wave

• epidemic, infestation

Anthropogenic
(Human-
Induced)

• Sociological (inten-
tional)

• Technological (acci-
dental)

• shooting, bombing

• derailment, building
collapse

Table 1: Crisis categories and sub-categories (from Olteanu et al., 2015b; Castillo, 2016)
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Dataset Year Platform Crisis Type Language Modality Annotation Link
ArCOV-19
(Haouari et al.,
2021)

2020 twitter/x C2 ara text A5 https://
aclanthology.
org/2021.
wanlp-1.9/

COVIDLies
(Hossain et al.,
2020)

2020 twitter/x C2 eng text A0 https://
aclanthology.
org/2020.
nlpcovid19-2.
11/

CrisisImage-
Benchmarks
(Alam et al.,
2020)

2020 twitter/x, insta-
gram

C1 N/A image A1 url

Crisis Tweets
with Urgency
Labels in En-
glish, Odia and
Sinhala (Kayi
et al., 2020)

2020 twitter/x C1 multi text A1 https:
//github.
com/niless/
urgency

EPIC (Liu
et al., 2020)

2020 twitter/x C2 eng text A0 https://www.
researchgate.
net/
publication/
342197963_
EPIC_An_
Epidemics_
Corpus_Of_
Over_20_
Million_
Relevant_
Tweets

EyewitnessTweets
(Zahra et al.,
2020)

2020 twitter/x C1 eng text A1 https:
//crisisnlp.
qcri.org

FloDusTA
(Hamoui et al.,
2020)

2020 twitter/x C1 ara text A2 https://
github.com/
BatoolHamawi/
FloDusTA

French Ecolog-
ical Crisis (Ko-
zlowski et al.,
2020a)

2020 twitter/x C1 fra text A1 https://
github.com/
DiegoKoz/
french_
ecological_
crisis

GeoCoV19
(Qazi et al.,
2020)

2020 twitter/x C2 multi text A3 https:
//crisisnlp.
qcri.org/
covid19

HurricaneEmo
(Desai et al.,
2020)

2020 twitter/x C1 eng text A1 https://
github.com/
shreydesai/
hurricane

LORELEI
Representative
and Incident
Language
Packs (Tracey
and Strassel,
2020)

2020 various C1 multi text A1, A2, A5 https://
aclanthology.
org/2020.
sltu-1.39/

Multilingual-
BERT-Disaster
(Chowdhury
et al., 2020)

2020 twitter/x C4 multi text A1 link

Pushshift
Telegram
(Baumgartner
et al., 2020)

2020 telegram C3 eng text A0 https://
paperswithcode.
com/dataset/
pushshift-telegram

Social Media
Attributions
of Youtube
Comments
(Sarkar et al.,
2020)

2020 youtube C2 eng text A1 link

Storm-Related
Social Media
(SSM) (Grace,
2020)

2020 twitter/x C1 eng text A1 https:
//data.
mendeley.
com/
datasets/
5c3cpnvgx3/1

Table 2: Corpus Papers in 2020-2024 and the corresponding datasets (Part 1)
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Dataset Year Platform Crisis Type Language Modality Annotation Link
#Outage (Paul
et al., 2020)

2020 twitter/x C1 eng text A1 https://dl.
acm.org/doi/
abs/10.1145/
3366423.
3380251

(Ahmed et al.,
2020)

2020 facebook C2 eng text A1 link

(Boon-Itt
and Skunkan,
2020)

2020 twitter/x C2 eng text A1 https://
publichealth.
jmir.org/
2020/4/
e21978

(Chen et al.,
2020)

2020 twitter/x,
weibo

C2 multi text A1, A2 link

(Feng and
Kirkley, 2020)

2020 twitter/x C2 eng text A3 link

(Hassan et al.,
2020)

2020 twitter/x, flickr,
google

C1 N/A image A1 link

(Li et al., 2020) 2020 weibo C2 zho text A1 https://
ieeexplore.
ieee.org/
abstract/
document/
9043580

(Massaad and
Cherfan, 2020)

2020 twitter/x C2 eng text A2, A3 https://www.
ncbi.nlm.
nih.gov/pmc/
articles/
PMC7250522/

(Padhee et al.,
2020)

2020 twitter/x C1 eng text A1 https:
//arxiv.
org/abs/
2007.11756

(Sarol et al.,
2020)

2020 twitter/x C2 eng text A2 https://
aclanthology.
org/2020.
findings-emnlp.
366/

(Wang et al.,
2020)

2020 weibo C2 zho text A1 https:
//www.jmir.
org/2020/11/
e22152/

CML-COVID
(Dashtian and
Murthy, 2021)

2021 twitter/x C2 multi text A0 https:
//dataverse.
tdl.org/
dataset.
xhtml?
persistentId=
doi:
10.18738/
T8/W1CHVU

CrisisBench
(Alam et al.,
2021b)

2021 twitter/x C4 multi text A1 https:
//crisisnlp.
qcri.org/
crisis_
datasets_
benchmarks

DisRel (Sosea
et al., 2021)

2021 twitter/x C1 eng text, image A1 https:
//github.
com/tsosea2/
DisRel

HumAID
(Alam et al.,
2021a)

2021 twitter/x C4 eng text A1 https:
//crisisnlp.
qcri.org/
humaid_
dataset#

Kawarith (Al-
harbi and Lee,
2021)

2021 twitter/x C4 ara text A1 https://
github.com/
alaa-a-a/
kawarith

Mega-COV
(Abdul-
Mageed
et al., 2021)

2021 twitter/x C2 multi text A1 https://
aclanthology.
org/2021.
eacl-main.
298/

Telegram
Chat Corpus
(Solopova
et al., 2021)

2021 telegram C3 eng text A1 https://osf.
io/ck3gd/

Table 3: Corpus Papers in 2020-2024 and the corresponding datasets (Part 2)
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Dataset Year Platform Crisis Type Language Modality Annotation Link
TBCOV (Im-
ran et al.,
2021b)

2021 twitter/x C2 multi text A1, A2, A3 https:
//crisisnlp.
qcri.org/
tbcov

(Andhale et al.,
2021)

2021 twitter/x C2 eng text A1 https://
ieeexplore.
ieee.org/
abstract/
document/
9509933

(Arapostathis,
2021)

2021 twitter/x C1 eng, spa, tam text A1, A3 link

(Brunila et al.,
2021b)

2021 twitter/x C1 eng text A1 https://
aclanthology.
org/2021.
adaptnlp-1.
5.pdf

(Chen et al.,
2021)

2021 twitter/x,
weibo

C2 eng, zho text A1 link

(Inkster, 2021) 2021 digital service
providers

C2 eng text A1 link

(Khurana et al.,
2021)

2021 twitter/x C2 eng text, image A1 https:
//rdcu.be/
d9XBI

(Lu et al.,
2021)

2021 weibo C2 zho text A3 https://
papers.ssrn.
com/sol3/
papers.cfm?
abstract_id=
3757135

(Obembe et al.,
2021)

2021 twitter/x C2 eng text A1 link

(Parsa et al.,
2021)

2021 twitter/x C4 eng text A1 link

(Villavicencio
et al., 2021)

2021 twitter/x C2 eng, tgl text A1 https://www.
mdpi.com/
2078-2489/
12/5/204

(Xie et al.,
2021)

2021 twitter/x C2 eng text A1 https://
ieeexplore.
ieee.org/
abstract/
document/
9529603

(Yuan et al.,
2021)

2021 twitter/x C1 eng text, image,
video, audio

A1, A2 link

BelElect (Höhn
et al., 2022)

2022 telegram C3 rus, bel text A1 https:
//ojs.aaai.
org/index.
php/ICWSM/
article/
view/19378

ClimateStance
+ ClimateEng
(Vaid et al.,
2022)

2022 twitter/x, reddit C1 eng text A1 link

CovidEmo
(Sosea et al.,
2022)

2022 twitter/x C2 eng text A1 https:
//github.
com/tsosea2/
CovidEmo

CrisisLTLSum
(Faghihi et al.,
2022)

2022 twitter/x C1 eng text A2, A3 link

Finegrained
Location
Tweets (Khanal
et al., 2022)

2022 twitter/x C4 eng text A3 link

HarveyNER
(Chen et al.,
2022)

2022 twitter/x C1 eng text A3 https:
//github.
com/brickee/
HarveyNER

HumSet (Fekih
et al., 2022)

2022 various C4 eng, fra, spa text A2 https://
github.com/
the-deep/
humset

MEDIC (Alam
et al., 2022)

2022 twitter/x, in-
stagram, flickr,
bing, google

C1 N/A image A1 https:
//rdcu.be/
d9Yjt
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Dataset Year Platform Crisis Type Language Modality Annotation Link
(Alhammadi,
2022)

2022 twitter/x C4 eng text A1 link

(Azarpanah
et al., 2022)

2022 twitter/x C2 multi text A1 link

(Faisal et al.,
2022)

2022 twitter/x C2 eng text A1 https://
jurnal.iaii.
or.id/index.
php/RESTI/
article/
view/4525

(Jayasurya
et al., 2022)

2022 twitter/x C2 eng text A1 https://
ieeexplore.
ieee.org/
document/
9606194

(Laurenti et al.,
2022), (Enzo
et al., 2022)

2022 twitter/x C2 fra text A1 https://
aclanthology.
org/2022.
lrec-1.462/

(Li et al.,
2022a)

2022 weibo C2 zho text A2 link

(Li et al.,
2022b)

2022 various C2 zho text A1 link

(Li et al.,
2022c)

2022 twitter/x C1 eng text A1 https:
//ojs.aaai.
org/index.
php/ICWSM/
article/
view/19320

(Shestakov
and Zaghouani,
2024)

2022 twitter/x C3 eng text A1 link

(Sosa and
Sharoff, 2022)

2022 telegram C2 eng, zho, spa,
rus, deu

text, video, au-
dio

A1 link

(Vitiugin and
Castillo, 2022)

2022 twitter/x C1 eng, spa, fra,
cat, tgl, hrv,
deu, jpn, por

text A1, A2, A4 https://
dl.acm.org/
doi/10.1145/
3511095.
3531279

(Zong et al.,
2022)

2022 twitter/x C2 eng text A2 https://
aclanthology.
org/2022.
coling-1.
335/

BillionCOV
(Lamsal et al.,
2023)

2023 twitter/x C2 multi text A0 link

CrisisFACTS
(McCreadie
and Buntain,
2023)

2023 twitter/x, face-
book, reddit

C1 eng text, image A4 https:
//eprints.
gla.ac.uk/
295806/

IDRISI
(Suwaileh
et al., 2023c),
(Suwaileh
et al., 2023b),
(Suwaileh
et al., 2023a)

2023 twitter/x C1 ara, eng text A2, A3 https://
github.com/
rsuwaileh/
IDRISI/

(Herur et al.,
2023)

2023 twitter/x C1 eng text A1 link

(Inamdar et al.,
2023)

2023 reddit C2 eng text A6 link

(K et al., 2023) 2023 twitter/x C1 eng text A1 https://
ieeexplore.
ieee.org/
abstract/
document/
10113105

(Kaur et al.,
2023)

2023 twitter/x C2 eng text A1 link

(Kekere et al.,
2023)

2023 twitter/x C2 eng text A2 link

(Li et al., 2023) 2023 weibo C2 zho text A1 link
(Wang et al.,
2023)

2023 twitter/x C1 eng text A1 link

(Wang et al.,
2023)

2023 twitter/x C2 eng text A1, A5 https:
//rdcu.be/
d91vB

Table 5: Corpus Papers in 2020-2024 and the corresponding datasets (Part 4)
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https://www.semanticscholar.org/paper/Exploring-COVID-19-public-perceptions-in-South-and-Kekere-Marivate/20f2975ede50f2f42a97b1656fd51ef03d2415bc
https://www.semanticscholar.org/paper/Exploring-the-Dynamic-Characteristics-of-Public-and-Li-Wang/3acd9e285627926a4c58cd7c6b11cee8d80398ee
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Dataset Year Platform Crisis Type Lang/Modality Annotation Application Link
Complotto
(Marini and
Jezek, 2024)

2024 telegram C3 eng, ita text A1 https://
aclanthology.
org/2024.
isa-1.6/

Crisis Social
Cues (Wang
et al., 2024b)

2024 twitter/x C1 eng text A1 link

HurricaneSarc
(Sosea et al.,
2024)

2024 twitter/x C1 eng text A1 https:
//github.
com/tsosea2/
HurricaneSarc

M-CATNAT
(Farah et al.,
2024)

2024 twitter/x C1 fra text A1 link

Ukrainian
Resilience
(Sathvik et al.,
2024)

2024 twitter/x, reddit C3 ukr text A1 link

(Boston et al.,
2024)

2024 twitter/x C1 eng text A1 link

(Dirgantara
et al., 2024)

2024 twitter/x C2 ind text A1 link

(Elakkiya et al.,
2024)

2024 twitter/x C4 eng text A1 link

(Fakhouri et al.,
2024)

2024 twitter/x C4 eng text A2 link

(Koli et al.,
2024)

2024 twitter/x C2 eng text A1 https://
aclanthology.
org/2024.
hcinlp-1.7/

(Kumawat
et al., 2024)

2024 twitter/x C4 eng text A1 link
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23

https://aclanthology.org/2024.isa-1.6/
https://aclanthology.org/2024.isa-1.6/
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https://github.com/badreddineFarah/M-CATNAT
https://aclanthology.org/2024.findings-emnlp.16.pdf
https://www.semanticscholar.org/paper/Analyzing-Tweets-for-Disaster-Prediction-Boston-Seliya/26fb5b87cbfacee7219055551dddae3b77694171
https://www.semanticscholar.org/paper/The-Performance-of-Machine-Learning-Model-Bernoulli-Dirgantara-Maulana/8c10a17340639918d78fc600ed6821681c38d1f5
https://www.semanticscholar.org/paper/Deep-Learning-Approach-for-Disaster-Tweet-Elakkiya-Bista/c4cf309d53bcd2c754ce27d2220f6762925993cf
https://www.semanticscholar.org/paper/AI-Driven-Solutions-for-Social-Engineering-Attacks%3A-Fakhouri-Alhadidi/d2538096a87a071ce88499c1a3334e8a6a4d9454?utm_source=direct_link
https://aclanthology.org/2024.hcinlp-1.7/
https://aclanthology.org/2024.hcinlp-1.7/
https://aclanthology.org/2024.hcinlp-1.7/
https://aclanthology.org/2024.hcinlp-1.7/
https://www.semanticscholar.org/paper/An-Evaluation-of-Machine-Learning-Models-for-Tweets-Kumawat-Sodipo/ff78ebecede563f847f866d6ba3019dd6a733342?utm_source=direct_link


Dataset Year Platform Crisis Type Lang/Modality Annotation Application Link
ClimateCovE350
(Olteanu et al.,
2015a)

2015 twitter/x C4 eng text A1 link

CrisisLexT26
(Olteanu et al.,
2015b)

2015 twitter/x C4 eng text A1 link

ChileEarthquakeT1
(Cobo et al.,
2015)

2015 twitter/x C1 spa text A1 link

SoSItalyT4
(Cresci et al.,
2015)

2015 twitter/x C1 ita text A1 link

SandyHurricane-
GeoT1 (Wang
et al., 2015)

2015 twitter/x C1 eng text A3 link

CrisisNLP (Im-
ran et al., 2016)

2016 twitter/x C4 eng, spa, fra text A1 https:
//crisisnlp.
qcri.org/
lrec2016/
lrec2016.
html

BlackLivesMatter-
U/T1 (Olteanu
et al., 2015c)

2016 twitter/x C3 eng text A1 link

Environmental-
PetitionTweets
(Proskurnia
et al., 2016)

2016 twitter/x C3 eng text A1 link

Damage As-
sessment
Dataset (DAD)
(Nguyen et al.,
2017)

2017 twitter/x C1 N/A image A1 https:
//crisisnlp.
qcri.org

Disasters on
Social Media
(DSM) (Klaas,
2017)

2017 twitter/x C4 eng text A1, A3 link

CrisisMMD
(Alam et al.,
2018b)

2018 twitter/x C1 eng text, image A1 https:
//crisisnlp.
qcri.org/
crisismmd

Hurricane
Tweets (IS-
CRAM2018)
(Alam et al.,
2018c)

2018 twitter/x C1 eng text, image A1 https:
//crisisnlp.
qcri.org

NEQ + QFL
(ACL2018)
(Alam et al.,
2018a)

2018 twitter/x C1 eng text A1 https:
//crisisnlp.
qcri.org

Damage
Multimodal
Dataset (DMD)
(Mozannar
et al., 2018)

2018 twitter/x, insta-
gram

C1 eng text, image A1 link

ArabicFloods
(Alharbi and
Lee, 2019)

2019 twitter/x C1 ara text A1 link

CleanCrisisMMD
(Gautam et al.,
2019)

2019 twitter/x C4 eng text, image A1, A2, A3 link

Table 7: Social media crisis datasets published before 2020
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