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Abstract

In adversarial training (AT), most existing works
focus on AT with a single type of perturbation,
such as the ℓ∞ attacks. However, deep neural net-
works (DNNs) are vulnerable to different types of
adversarial examples, necessitating the develop-
ment of adversarial training for multiple perturba-
tions (ATMP) (Tramèr & Boneh, 2019). Despite
the benefits of ATMP, there exists a trade-off be-
tween different types of attacks. Furthermore,
there is a lack of theoretical analyses of ATMP,
which hinders its further development. To address
these issues, we conduct a smoothness analysis of
ATMP. Our analysis reveals that ℓ1, ℓ2, and ℓ∞ ad-
versaries contribute differently to the smoothness
of the loss function in ATMP. Leveraging these
smoothness properties, we investigate the im-
provement of ATMP through the lens of uniform
stability. Through our research, we demonstrate
that employing an adaptive smoothness-weighted
learning rate leads to enhanced uniform stability
bounds, thus improving adversarial training for
multiple perturbations. We validate our findings
through experiments on CIFAR-10 and CIFAR-
100 datasets, where our approach achieves com-
petitive performance against various mixtures of
multiple perturbation attacks. This work con-
tributes to a deeper understanding of ATMP and
provides practical insights for improving the ro-
bustness of DNNs against diverse adversarial ex-
amples.
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1. Introduction
Deep neural networks (DNNs) have been shown to be vul-
nerable to adversarial examples (Goodfellow et al., 2014;
Szegedy et al., 2013), where small and malicious perturba-
tions can cause incorrect predictions. Adversarial training
(AT) (Madry et al., 2017) has emerged as one of the most
effective methods for increasing the robustness of DNNs
against adversarial attacks. AT involves augmenting training
data with ℓp norm-bounded adversarial examples. However,
existing works primarily focus on adversarial training with
a single type of attack, such as the ℓ∞ attack (Raghunathan
et al., 2019; Gowal et al., 2020). Recent research (Tramèr &
Boneh, 2019) has experimentally demonstrated that DNNs
trained with a single type of adversarial attack may not pro-
vide sufficient defense against other types of adversarial
examples.

To illustrate this, Figure 1 (a) presents an example using
CIFAR-10. The plot shows that ℓ1 adversarial training fails
to defend against ℓ2 and ℓ∞ attacks, resulting in a robust
accuracy of 0%. On the other hand, ℓ∞ adversarial training
offers partial defense against ℓ1 and ℓ2 attacks, achieving
accuracy of 17.19% and 53.91%, respectively. However,
its performance is not competitive compared to ℓ1 and ℓ2
adversarial training, which achieve accuracy of 89.84% and
61.72%, respectively. These findings highlight the limita-
tions of relying on a single type of adversarial training and
the need to address multiple types of adversarial attacks to
ensure robustness in DNNs.

To enhance robustness against various types of attacks,
Tramer et al. (Tramèr & Boneh, 2019) introduce adversar-
ial training for multiple perturbations (ATMP), particularly
focusing on the ℓ1, ℓ2, and ℓ∞ attacks. They consider two
types of objective functions. The first one is the average
of all perturbations (AVG), where the inner maximization
problem aims to find adversarial examples for each attack
type. The second one is the worst-case perturbation (WST),
where the inner maximization problem seeks adversarial
examples with the highest loss within the union of ℓp norm
balls. Several algorithms have been proposed to address
these problems. Notable works include multi-steepest de-
scent (MSD) (Maini et al., 2020) and stochastic adversarial
training (SAT) (Madaan et al., 2020), which employ dif-
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ferent strategies to find adversarial examples within the
ℓp-norm balls and achieve improvements over the MAX and
AVG approaches.

However, there exist several crucial issues that are unsolved
with respect to ATMP. Firstly, the optimization process of
ATMP is highly unstable compared to that of AT or standard
training, as illustrated in Figure 1 (c) and (d). The robust test
accuracy exhibits significant fluctuations across different
training epochs. Secondly, achieving a satisfying trade-off
between different attacks proves to be quite challenging.
As shown in Figure 1 (b), none of the methods achieve the
best performance against all three attacks. This could be
attributed to the issue of robust overfitting (Rice et al., 2020),
where the models tend to overfit to one type of ℓp adversarial
examples, resulting in poor performance on other types.
Lastly, there is a noticeable dearth of theoretical studies
on ATMP. The exploration of ATMP methods is largely
driven by experimental design, lacking strong theoretical
guidelines.

In this work, we first study the smoothness and the loss
landscape of ATMP. We show that the smoothness of ℓ1,
ℓ2, and ℓ∞ adversaries give different contributions to the
smoothness of ATMP. It motivates us to study a question:

How to use the smoothness properties of different ℓp
adversaries to design algorithms for ATMP?

In our research, we investigate this question by employing
the concept of uniform stability. Notably, recent studies
(Xing et al., 2021; Xiao et al., 2022b;e) have explored the
uniform stability of adversarial training and have demon-
strated that the resulting bounds align with the observed phe-
nomenon of robust overfitting. These studies have provided
evidence that the smoothness of the adversarial loss utilized
in adversarial training may be a contributing factor to the
problem of robust overfitting. Consequently, this finding
serves as motivation to leverage the smoothness properties
of different ℓp norms in the development of algorithms for
Adversarial Training with Multiple Perturbations (ATMP),
with the aim of achieving enhanced uniform stability and
thereby improving the robust performance of the models.

To utilize the smoothness properties of different ℓp adver-
saries, we consider a smoothness-weighted learning rate.
We show that such a learning rate schedule yields better
stability bounds. Formally, see our main results in Thm. 2
and Thm. 3.

Given the unknown smoothness, particularly the gradient
Lipschitz of each adversarial loss on different ℓp adver-
saries, we propose a novel approach to adaptively esti-
mate the smoothness. Consequently, we introduce adaptive
smoothness-weighted adversarial training for multiple per-
turbations. Through extensive experiments conducted on
CIFAR-10 and CIFAR-100, we demonstrate that our tech-

nique effectively addresses the aforementioned issues and
significantly improves the performance of ATMP. Our so-
lution achieves competitive performance against a mixture
of multiple perturbation attacks, highlighting its efficacy in
enhancing the robustness of models. The workshop version
is a shortened version. For the full version of this paper,
please refer to (Xiao et al., 2022c).

Our contributions are listed as follows:

1. Smoothness analysis: We conduct a thorough examina-
tion of the smoothness properties of adversarial train-
ing for both single and multiple perturbations. This
analysis provides valuable insights into the behavior of
adversarial training methods.

2. Uniform stability analysis: Building upon the smooth-
ness analysis, we perform a comprehensive uniform
stability analysis on adversarial training for multiple
perturbations (ATMP). This analysis serves as the
foundation for our proposed stability-inspired algo-
rithm, namely adaptive smoothness-weighted adversar-
ial training for multiple perturbations.

3. Theoretical insights: We theoretically demonstrate the
advantages of using a smoothness-weighted learning
rate, which leads to improved stability bounds. This
provides a solid theoretical foundation for our proposed
algorithm.

4. Experimental validation: Through extensive experi-
ments conducted on the CIFAR-10 and CIFAR-100
datasets, we demonstrate the effectiveness of our ap-
proach. We achieve a notable improvement in robust
accuracy and achieve competitive performance com-
pared to existing methods, showcasing the practical
relevance of our contributions.

2. Related Work
In this section, we first introduce the standard adversarial
training with a single type of perturbation, as well as its the-
oretical analysis. We then introduce the adversarial training
against multiple perturbations.

Adversarial robustness against multiple perturbations
models Recently, some works have demonstrated that ad-
versarial training with a single type of perturbation can-
not provide well defense against other types of adversarial
attacks (Tramèr & Boneh, 2019) and several ATMP algo-
rithms have been proposed accordingly (Maini et al., 2020;
Madaan et al., 2020; Zhang et al., 2021; Stutz et al., 2020).
The work of (Tramèr & Boneh, 2019) proposed to augment
different types of adversarial examples into adversarial train-
ing and developed two augmentation strategies, i.e., MAX
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Figure 1. Crucial issues of adversarial training for multiple perturbations. (a) Performance of adversarial training with a single type
perturbation against other type attacks. (b) Trade-off between different types of adversaries of four algorithms for ATMP. (c) Robust test
accuracy fluctuate between different epochs using MAX. (d) Robust test accuracy fluctuate between different epochs using MSD.

and AVG. The MAX adopts the worst-case adversarial ex-
ample among different attacks, while the AVG takes all
types of adversarial examples into training. Following the
above pipeline, some later works developed different aggre-
gation strategies (e.g., the MSD (Maini et al., 2020), and
SAT (Madaan et al., 2020)) for better robustness or training
efficiency. While these works can boost the adversarial ro-
bustness against multiple perturbations to some extent, the
training process of ATMP is highly unstable, and there is no
theoretical analysis about this. The theoretical understand-
ing of the training difficulty of ATMP is important for the
further development of adversarial robustness for multiple
perturbations. Besides, there have also been some other
works for adversarial robustness against multiple perturba-
tions, such as Ensemble models (Maini et al., 2021; Cheng
et al., 2021), Prepossessing (Nandy et al., 2020) and Neural
architectures search (NAS) (Liu et al., 2020). The weakness
of ensemble models or prepossess methods is that the per-
formance is highly related to the classification quality or
detection of different types of adversarial examples. These
methods either have lower performance or consider different
tasks from the work we considered. Therefore, we mainly
compare the algorithms MAX, AVG, MSD, and SAT in this
work.

3. Preliminaries of Adversarial Training for
Multiple Perturbations

Adversarial training is an approach to train a classifier that
minimizes the worst-case loss within a norm-bounded con-
straint. Let g(θ, z) be the loss function of the standard
counterpart. Given training dataset S = {zi}i=1···n, the
optimization problem of adversarial training is

min
θ

1

n

n∑
i=1

max
∥zi−z′

i∥p≤ϵp
g(θ, z′i), (3.1)

where ϵp is the perturbation threshold, p = 1, 2 or ∞ for
different types of attacks. Usually, g can also be written
in the form of ℓ(fθ(x), y), where fθ is the neural network

to be trained and (x, y) is the input-label pair. Adversarial
training aims to train a model against a single type of ℓp
attack. As AT with a single type of attacks may not be
effecting under other types of attacks, adversarial training
for multiple perturbations are proposed (Tramèr & Boneh,
2019). Following the aforementioned literature, we consider
the case that p = 1, 2,∞. Two formulations can be use to
tackle this problem.

Worst-case perturbation (WST). The optimization prob-
lem of WST is formulated as follow,

min
θ

1

n

n∑
i=1

max
p∈{1,2,∞}

max
∥zi−z′

i∥p≤ϵp
g(θ, z′i). (3.2)

WST aims to find the worst adversarial examples within
the union of the three norm constraints for the inner maxi-
mization problem. The outer minimization problem updates
model parameters θ to fit these adversarial examples. The
MAX strategy (Tramèr & Boneh, 2019) are proposed for the
optimization problem in Eq. (3.2). In each inner iteration,
MAX takes the maximum loss on these three adversarial
examples. Another algorithm for the optimization problem
in Eq. (3.2) is multi-steepest descent (MSD) (Maini et al.,
2020). In each PGD step in the inner iteration, MSD selects
the worst among ℓ1, ℓ2, and ℓ∞ attacks.

Average of all perturbations (AVG). The optimization
problem of AVG is formulated as follow

min
θ

1

n

n∑
i=1

Ep∼{1,2,∞} max
∥zi−z′

i∥p≤ϵp
g(θ, z′i), (3.3)

where p ∼ {1, 2,∞} uniformly at random. The goal of the
minimax problem in Eq. (3.3) is to train the neural networks
using data augmented with all three types of adversarial
examples. The AVG strategy (Tramèr & Boneh, 2019) and
the stochastic adversarial training (SAT) (Madaan et al.,
2020) are two algorithms to solve the problem in Eq. (3.3).
In each inner iteration, AVG takes the average loss on these
three adversarial examples and SAT randomly chooses one
type of adversarial example among ℓ1, ℓ2, and ℓ∞ attacks.
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Problem WST and AVG are similar but slightly different
problems. WST aims to defend union attacks, i.e., the opti-
mal attack within the union of multiple perturbations. AVG
aims to defend mixture attacks, i.e., the attacker randomly
pick one ℓp attack. In this paper, we mainly focus on prob-
lem AVG.

4. Stability-based Excess Risk Analysis
In App. C, we first prove that the smoothness of different
ℓp adversaries are different. In this section, we focus on the
problem AVG.

We use Rst
D(θ) and Rst

S (θ) to denote the population and em-
pirical risk for adversarial training with different strategy, i.e.
st ∈ {1, 2,∞,wst, avg}. Assuming that the target model
are facing P potential attacks. In the above setting, P = 3
and the three attacks are ℓ1, ℓ2, and ℓ∞ attacks. The test and
training performance against mixture attacks is

RD(θ) =
1

P

P∑
p=1

Rp
D(θ) and RS(θ) =

1

P

P∑
p=1

Rp
S(θ),

respectively, where Rp
D(θ) and Rp

S(θ) are the population
and empirical risk against the pth attack.

Risk Decomposition. Let θ∗ and θ̄ be the optimal solution
of RD(θ) and RS(θ), respectively. Then for the algorithm
output θ̂ = A(S), the excess risk can be decomposed as

RD(θ̂)−RD(θ
∗)

=RD(θ̂)−RS(θ̂)︸ ︷︷ ︸
Egen

+RS(θ̂)−RS(θ̄)︸ ︷︷ ︸
Eopt

+RS(θ̄)−RS(θ
∗)︸ ︷︷ ︸

≤0

+RS(θ
∗)−RD(θ

∗)︸ ︷︷ ︸
E=0

.

(4.1)

To control the excess risk, we need to control the generaliza-
tion gap Egen and the optimization gap Eopt. In the rest of
the paper, we use Egen and Eopt to denote the expectation
of the generalization and optimization gap. The smoothness
of the loss function is highly related to the generalization
gap Egen and the optimization gap Eopt, we first provide the
the optimization error bound (Nemirovski et al., 2009) and
stability-based generalization bound1 (Hardt et al., 2016)
for running SGD on Eq. (3.3).

Theorem 1. Under Assumption 2, assuming in addition
that g(θ, z) is convex in θ for all given z ∈ Z . Let D =
∥θ0 − θ∗∥, where θ0 is the initialization of SGD. Suppose
that we run SGD with step sizes α ≤ 1/βavg for T steps.

1We refer the readers to (Hardt et al., 2016) for the preliminaries
of uniform stability.

Then, adversarial training satisfies

Eopt ≤
D2 + L2Tα2

2Tα
, Egen ≤ 2L2Tα

n
.2 (4.2)

Therefore, the β-gradient Lipschitz constant of the loss
function is related to the choice of stepsize, the optimization
and generalization bound. In the loss function of AVG, each
of the ℓp adversarial loss have different Lipschitz constant
βp. It motivates us to study whether we can assign different
stepsize to different ℓp adversarial loss to improve the excess
risk.

4.1. Smoothness-weighted Adversarial Training for
Multiple Perturbations

Considering the algorithm

θt+1 = θt− 1

P

[
αt
1∇R1

S(θ
t)+ · · ·+αt

P∇RP
S (θ

t)

]
, (4.3)

In each of the iterations t, we assign stepsize αt
p to the

pth-tasks.

Properties of Update Rules. We define Gz(θ) = θ −
1
P

∑P
p=1 αp∇hp(θ, z) be the update rule. The following

lemma holds.

Lemma 1 (Non-expansive). Assuming that the function
hp(θ, z) is βp-gradient Lipschitz, convex for all z ∈ Z .
Then, ∀θ1, θ2 and ∀z ∈ Z , for αp ≤ 1/βp, we have
∥Gz(θ1)−Gz(θ2)∥ ≤ ∥θ1 − θ2∥.

Proof of Lemma 1 is deferred to App. A. Based on Lemma 1,
we have the following generalization guarantee for problem
AVG.

Theorem 2 (Generalization error bounds of smooth-
ness-weighted learning rate). Under Assumption 2, assume
in addition that hp(θ, z) is convex in θ for all given z ∈ Z .
Suppose that we run Algorithm 1 with step sizes αp ≤ 1/βp

for T steps. Then, adversarial training satisfies uniform
stability with

Egen ≤
2L2T

∑P
p=1 αp/P

n
.

Proof: The proof is based on Lemma 1 and defer to App. A.

Let αt
sw = (αt

1 + · · · + αt
P )/P , we have Egen ≤

2L2Tαsw/n.

Theorem 3 (Optimization error bounds of smooth-
ness-weighted learning rate). Under Assumption 2, assume
in addition that hp(θ, z) is convex in θ for all given z ∈ Z .

2For varing stepsize, we can replace Tα and Tα2 by
∑T

t=1 αt

and
∑T

t=1 α
2
t , respectively.
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Suppose that we run SGD with step sizes αt
p ≤ 1/βp for T

steps. Then, adversarial training satisfies

Eopt ≤
D2 + L2Tα2

sw

2Tαsw
+B

∑P
p=1 |αsw − αp|

αsw
.

The proof is deferred to App. A. The first term has the same
form as Theorem 1, the second term is an additional bias
term introduced by the smoothness-weighted learning rate.
Combining the Eopt and Egen, we have

Egen + Eopt

≤ 2L2Tαsw

n
+

D2 + L2Tα2
sw

2Tαsw︸ ︷︷ ︸
The same as Thm. 1 with different α

+B

∑P
p=1 |αsw − αp|

αsw︸ ︷︷ ︸
bias term

.

Optimizing the first two terms with respective to α, we have

α∗ =
D
√
n

L
√
T (n+ 2T )

.

In adversarial training, T cannot be too large because of
robust overfitting. Then, The right-hand-side may be too
large and we may not choose α∗ as the learning rate. We
need a larger α to reduce the first two term. From the
previous dicussion, we have

αavg ≤ P

β1 + · · ·+ βP
and αsw ≤

1
β1

+ · · ·+ 1
βP

P
.

Therefore, αsw can be view as the inverse of the harmonic
mean of βp and αavg can be view as the inverse of the
arithmetic mean of βp. αsw is larger and reduce the first
two terms when T is small.

Overall, we need smaller T and carefully chosen learning
rates to speed up adversarial training to avoid robust overfit-
ting. Smoothness-weighted learning rate gives us a way to
increase the learning rate. As a side-effect, it introduce an
additional bias term. In experiments, we will show that αsw

can improve the test performance.

4.2. Adaptive Smoothness Estimation

In practice, βp are unknown. We adaptively estimate βp in
each iterations. The main idea to estimate the smoothess
comes from the descent Lemma, which is

hp(θt)− hp(θ∗)

≤∇hp(θ∗)⟨θt − θ∗⟩+ βp

2
∥θt − θ∗∥2 =

βp

2
∥θt − θ∗∥2.

Organize the terms, we have

1

βp
≤ ∥θt − θ∗∥2

2(hp(θt)− hp(θ∗))
.

Therefore, we use the right-hand-side of the above inequality
to estimate the proportion between different αt

p, i.e.,

αt
p ∝ 1

βp
∝ ∥θt − θ∗∥2

hp(θt)− hp(θ∗)
∝ 1

hp(θt)− hp(θ∗)
,

where ∥θt − θ∗∥2 is omitted because it does not de-
pended on p. Assume that hp(θ∗) = 0, we can use∑

p h
p(θt)/(Php(θt)) as the weight of αt

p. Given the initial
learning rate schedule α1, ·, αT , the following Algorithm 1
is the adaptive smoothness-weighted ATMP.

Algorithm 1 Adaptive Smoothness-Weighted ATMP
Inputs: classifier fθ(x, y), dataset {xi, yi}i=1,··· ,n.
Initialize learning rate schedule α1, ·, αT .
for t = 1 to T do

for p = 1 to P do

Lp =
1

n

n∑
i=1

max
∥δi∥p≤ϵp

ℓ(fθt(xi + δi, yi).

end for
Define L = L1 + · · ·+ LP .
Update αt

p = αt × L/PLp, p = 1, 2, · · · , P .
Update

θt+1 = θt − 1

P

[
αt
1∇R1

S(θ
t) + · · ·+ αt

P∇RP
S (θ

t)

]
,

end for

5. Experiments
5.1. Performance of ADT

Datasets and Classification Models. We conduct experi-
ments on two widely used benchmark datasets: CIFAR-10
and CIFAR-100 (Krizhevsky et al., 2009). CIFAR-10
includes 50k training images and 10k test images with 10
classes. CIFAR-100 includes 50k training images and 10k
test images with 100 classes. For classification models,
we use PreActRes-18 (He et al., 2016). Code is avail-
able at https://github.com/JiancongXiao/
Adaptive-Smoothness-Weighted-AT.

Evaluation Protocol. We consider two formulations,
WST in Eq. (3.2) and AVG in Eq. (3.3). We use ADT
to stand for our proposed algorithm. Since ADT is designed
for defending mixture attacks, we mainly use Mix to eval-
uate the performance. We also provide the performance
against union attacks.

Comparison of AVG, SAT, and ADT. We mainly com-
pare the three methods for the problem in Eq. (3.3). The

https://github.com/JiancongXiao/Adaptive-Smoothness-Weighted-AT
https://github.com/JiancongXiao/Adaptive-Smoothness-Weighted-AT
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Table 1. Test accuracy (%) of different algorithms (MAX, AVG, MSD, SAT, and ADT) against ℓ1, ℓ2, and ℓ∞ attacks on CIFAR-10.
Dataset CIFAR-10

Attack methods clean ℓ1 ℓ2 ℓ∞ Union Mix

AT
ℓ1 93.22 89.81 0.00 0.00 0.00 29.98
ℓ2 88.66 41.41 61.72 39.84 18.41 47.66
ℓ∞ 84.94 17.19 53.91 46.88 40.11 39.32

WST (Eq. 3.2) MAX 84.96 52.63 64.74 46.93 46.08±0.43 54.77±0.22
MSD 83.51 54.92 67.68 49.88 46.99±0.23 57.49±0.11

AVG (Eq. 3.3)
AVG 85.28 58.78 68.08 43.87 43.28±0.55 56.91±0.34
SAT 85.23 58.68 67.77 43.59 43.12±1.89 56.68±1.01
ADT 85.87 61.81 69.61 46.64 46.05±0.31 59.16±0.09

Table 2. Test accuracy (%) of different algorithms (AVG, SAT, and
ADT) against ℓ1, ℓ2, and ℓ∞ AutoAttacks on CIFAR-10/100.

CIFAR-10 ℓ1 ℓ2 ℓ∞ Mix
AVG 46.81 64.01 42.82 51.21
SAT 47.72 64.21 42.17 51.37
ADT 49.07 65.21 44.43 52.90

CIFAR-100 ℓ1 ℓ2 ℓ∞ Mix
AVG 29.72 38.31 20.19 29.40
SAT 29.09 39.32 22.32 30.24
ADT 31.22 39.45 22.86 31.18

highest numbers are in bold. Mixture attack (average of all
attacks) is the main index to evaluate the performance. On
the CIFAR-10 dataset, we observe that ADT achieves the
highest robust accuracy at 59.16%. Similarly, on CIFAR-
100, ADT demonstrates a robust accuracy of 35.39%. These
results indicate that ADT has the capability to automati-
cally adapt to cases that may not have been well-optimized.
Furthermore, ADT exhibits a smaller deviation compared
to SAT and AVG. To further analyze the effectiveness of
the techniques employed, ablation studies are conducted.
Specifically, we compare AVG, SAT, and ADT with and
without early stopping and SWA techniques, as shown in
Table 4. The results demonstrate that ADT consistently out-
performs the baseline algorithms, even without the inclusion
of SWA and early stopping techniques. Finally, we evaluate
the performance against AutoAttack, and the corresponding
results are presented in Table 2.

5.2. Discussion: different goals of WST and AVG

Comparison of ADT and MSD. The formulations of Eq.
(3.3) and (3.2) have similar but slightly different goals. WST
tries to fit the adversarial examples who have the largest loss
within the union of the three norms. AVG is designed to
defend the mixture attacks. The difference in ADT and
MSD is the difference in the optimization problems AVG
and WST. In Table 1, ADT achieves competitive perfor-
mance, 46%, on union of all the attacks. In terms of mixture

attack, ADT achieves 59% robust accuracy, while the robust
accuracy of MSD is 57%.

Overall, ℓ∞ adversarial examples induce larger norm within
the union of the three norms, and MSD tends to find and fit
them. ADT pays more attention to ℓ1 adversarial examples.
Comparing the overall performance, ADT achieves better
robustness trade-off against mixture adversarial attacks.

Solutions for WST. Our paper mainly focus on problem
AVG. We also discuss some solutions to improve the per-
formance of WST. In Fig. 2, we plot the robust accuracy
against ℓ1, ℓ2, and ℓ∞ adversarial attacks of four different
strategies (MAX, AVG, MSD and SAT) on CIFAR-10. It
shows that SWA is an effective methods to improve the
performance of ATMP. For instance, in subplot (a), the l1
/ l2 / linf denotes the robust accuracy of ATMP trained
with AVG strategy against the ℓ1 / ℓ2 / ℓinf adversarial at-
tacks. While the SWA_l1 / SWA_l2 / SWA_linf relates to
the ATMP model that trained by AVG strategy coupled with
SWA. From the plots, we observe that the test accuracy
is highly unstable among different training epochs with-
out SWA. When coupling with SWA, the tendency curves
of all four ATMP strategies are largely stabilized. Using
early stopping, we could find the checkpoint for the best
performance. On CIFAR-10, the improvement of SWA is
1.82%, 3.39%, 1.56%, and 2.67% using MSD, SAT, AVG,
and MAX, respectively.

6. Conclusion
In this paper, we study the smoothness of adversarial loss
on different ℓp adversaries and try to use this property to
improve the performance of adversarial training for multiple
perturbations. To this end, we provide a uniform stability
analysis and propose adaptive smoothness-weighted adver-
sarial training for multiple perturbations, which achieves
better excess risk bound and achieve better performance.
Our framework might also be possible to extend to other
multi-task learning problems with the following two proper-
ties or issues. 1, Each task should be equally important. 2,
Training epochs cannot be too large.
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A. Proof of Theorem
In this section, we provide the detailed proof.

A.1. Proof of Proposition 1

Since

∥(X + δ)θ − y∥2

≤ [∥Xθ − y∥+ ∥δθ∥]2

= [∥Xθ − y∥+
√∑

|δiθ|2]2

≤ [∥Xθ − y∥+
√∑

[∥δi∥p∥θ∥p∗]2]2

≤ [∥Xθ − y∥+
√
nϵ2p∥θ∥2p∗]2

= [∥Xθ − y∥2 +
√
nϵp∥θ∥p∗ ]2,

where the first inequality is due to triangle inequality, the second inequality is due to Cauchy-Schwarz inequality, and the
last inequality is due to the constraint ∥δ∥p,∞ ≤ ϵp. Choosing δi to satisfy the aforementioned three inequalities, we obtain

Rp
S(θ) = max

∥δ∥p,∞≤ϵp
∥(X + δ)θ − y∥2 = [∥Xθ − y∥2 +

√
nϵp∥θ∥p∗ ]2.

Based on this, we directly have

Rwst
S (θ) = max

p∈{1,2,∞}
max

∥δ∥p,∞≤ϵp
∥(X + δ)θ − y∥2

= max
p∈{1,2,∞}

[∥Xθ − y∥2 +
√
nϵp∥θ∥p∗ ]2,

Ravg
S (θ) = Ep∈{1,2,∞} max

∥δ∥p,∞≤ϵp
∥(X + δ)θ − y∥2

= Ep∈{1,2,∞}[∥Xθ − y∥2 +
√
nϵp∥θ∥p∗ ]2.

A.2. Proof of Lemma 2

Proof:
Case 1: st ∈ {1, 2,∞}. The proof can be found in (Sinha et al., 2017; Wang et al., 2019).
Case 2: st = wst. Since g(θ, z) is locally µp-strongly concave for all z ∈ Z in ℓp-norm, g(θ, z) is locally minµp-strongly
concave within the union of ℓp norm ball for all z ∈ Z .
Case 3: st = avg. Since havg(θ, z) = Ehp(θ, z), we have

∥∇θh
avg(θ1, z)−∇θh

avg(θ2, z)∥ = ∥E(∇θh
p(θ1, z)−∇θh

p(θ2, z))∥ ≤ Eβp∥θ1 − θ2∥.

A.3. Discussion on Non-Strongly-Convex Cases

Assumption 1. The function g satisfies the following Lipschitzian smoothness conditions:

∥g(θ1, z)− g(θ2, z)∥ ≤ L∥θ1 − θ2∥,
∥∇θg(θ1, z)−∇θg(θ2, z)∥ ≤ Lθ∥θ1 − θ2∥,
∥∇θg(θ, z1)−∇θg(θ, z2)∥ ≤ Lp

θz∥z1 − z2∥p,
∥∇zg(θ1, z)−∇θg(θ2, z)∥ ≤ Lzθ∥θ1 − θ2∥.
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Assumption 1 assumes that the gradient Lipschitz in different ℓp-norm are Lp
θz , which can be verified by the relation between

norms.

Lemma 1. Under Assumption 1, ∀θ1, θ2 and ∀z ∈ Z , the following properties hold.

1. (Lipschitz function.) ∥hst(θ1, z)− hst(θ2, z)∥ ≤ L∥θ1 − θ2∥.

2. (Non-gradient Lipschitz.) ∥∇θh
st(θ1, z) − ∇θh

st(θ2, z)∥ ≤ Lθ∥θ1 − θ2∥ + ηst, where ηp = 2Lp
θzϵp, ηwst =

2max{Lp
θzϵp}, and ηavg = 2EpL

p
θzϵp.

Lemma 1.2 and 2.2 show that adversarial surrogate loss in different ℓp adversaries have different smoothness in general
non-concave case.

Proof: Notice that Rst
S (θ) =

∑n
i=1 h

st(θ, zi)/n, we only need to prove that ∀x, we have

∥hst(θ1, z)− hst(θ1, z)∥ ≤ Lθ∥θ1 − θ2∥,
∥∇θh

st(θ1, z)−∇θh
st(θ2, z)∥ ≤ Lθθ∥θ1 − θ2∥+ ηst,

(A.1)

where st ∈ {1, 2,∞,wst, avg} with ηp = 2Lp
θxϵp, ηwst = 2max{Lp

θxϵp}, and ηavg = 2EpL
p
θxϵp.

Case 1: st ∈ {1, 2,∞}:

Let the adversarial examples for parameter θ1 and θ2 be

x1 = arg max
∥δ∥≤ϵp

g(x+ δ, θ1)

x2 = arg max
∥δ∥≤ϵp

g(x+ δ, θ2),

then we have
∥hst(θ1, z)− hst(θ1, z)∥

=|g(θ1, z1)− g(θ2, z2)|
≤max{|g(θ1, z1)− g(θ2, z1)|, |g(θ1, z2)− g(θ2, z2)|}
≤Lθ∥θ1 − θ2∥,

where the first inequality is based on the fact that g(θ1, z1) ≥ g(θ1, z2) and g(θ2, z2) ≥ g(θ2, z1), the second inequality is
based on Assumption 11. This proves the first inequality in equation (A.1) in this case. For the second one in equation (A.1),
we have

∥∇θh
st(θ1, z)−∇θh

st(θ2, z)∥
=∥∇θh

st(θ1, z1)−∇θg(θ2, z2)∥
≤∥∇θh

st(θ1, z1)−∇θg(θ2, z1)∥+ ∥∇θg(θ2, z1)−∇θg(θ2, z2)∥
≤Lθθ∥θ1 − θ2∥+ Lp

θx∥z1 − z2∥p
≤Lθθ∥θ1 − θ2∥+ Lp

θx[∥z1 − z∥p + ∥z − z2∥p]
≤Lθθ∥θ1 − θ2∥+ 2Lp

θxϵp

=Lθθ∥θ1 − θ2∥+ ηst,

where the first and the third inequality is triangle inequality, the second inequality is based on Assumption 1. This proves the
second inequality.

Case 2: st = wst:

Let the adversarial examples for parameter θ1 and θ2 be

x1 = arg max
p∈{1,2,∞}

max
∥δ∥≤ϵp

g(x+ δ, θ1)

x2 = arg max
p∈{1,2,∞}

max
∥δ∥≤ϵp

g(x+ δ, θ2),
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the prove of the first inequality in equation (A.1) is the same as the proof in Case 1. For the second inequality in equation
(A.1), we have

∥∇θh
st(θ1, z)−∇θh

st(θ2, z)∥
≤Lθθ∥θ1 − θ2∥+ Lp

θx[∥z1 − z∥p + ∥z − z2∥p]
≤Lθθ∥θ1 − θ2∥+ 2 max

p∈{1,2,∞}
[Lp

θxϵp]

=Lθθ∥θ1 − θ2∥+ ηst.

This proves the second inequality.

Case 3: st = avg:

Let the adversarial examples for parameter θ1 and θ2 and p = 1, 2,∞ be

xp
1 = arg max

∥δ∥≤ϵp
g(x+ δ, θ1)

xp
2 = arg max

∥δ∥≤ϵp
g(x+ δ, θ2).

For the first inequality in equation (A.1), we have

∥hst(θ1, z)− hst(θ1, z)∥
=|Ep∼{1,2,∞}g(x

p
1, θ1)− Ep∼{1,2,∞}g(x

p
2, θ2)|

≤Ep∼{1,2,∞}|g(xp
1, θ1)− g(xp

2, θ2)|
≤Ep∼{1,2,∞} max{|g(xp

1, θ1)− g(xp
1, θ2)|, |g(x

p
2, θ1)− g(xp

2, θ2)|}
≤Ep∼{1,2,∞}Lθ∥θ1 − θ2∥
≤Lθ∥θ1 − θ2∥,

where the first inequality is Jensen’s inequality. This proves of the first inequality in equation (A.1) in this case. For the
second inequality in equation (A.1), we have

∥∇θh
st(θ1, z)−∇θh

st(θ2, z)∥
=∥∇θEp∼{1,2,∞}g(x

p
1, θ1)−∇θEp∼{1,2,∞}g(x

p
2, θ2)∥

≤Ep∼{1,2,∞}∥∇θg(x
p
1, θ1)−∇θg(x

p
2, θ2)∥

≤Ep∼{1,2,∞}[Lθθ∥θ1 − θ2∥+ 2Lp
θxϵp]

=Lθθ∥θ1 − θ2∥+ ηst,

where the first inequality is the Jensen’s inequality, the second one is the result in Case 1. the This proves the second
inequality in equation (A.1) in this case.

A.4. Proof of Lemma 1

∥Gz(θ1)−Gz(θ2)∥ = ∥θ1 − θ2 −
1

P

P∑
p=1

αphp(θ1, z) +
1

P

P∑
p=1

αphp(θ2, z)∥

≤ 1

P

P∑
p=1

∥θ1 − θ2 − αphp(θ1, z) + αphp(θ2, z)∥

≤ 1

P

P∑
p=1

∥θ1 − θ2∥

= ∥θ1 − θ2∥,
where the first inequality is due to triangular inequality, the second inequality is due to the co-coercive propertiy of convex
function.
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A.5. Proof of Theorem 2

To bound the generalization gap of a model, we employ the following notion of uniform stability.

Definition 1. A randomized algorithm A is ε-uniformly stable if for all data sets S, S′ ∈ Zn such that S and S′ differ in at
most one example, we have

sup
z

EA [h(A(S); z)− h(A(S′); z)] ≤ ε . (A.2)

Here, the expectation is taken over the randomness of A. Uniform stability implies generalization in expectation (Hardt
et al., 2016).

Theorem 4 (Generalization in expectation). Let A be ε-uniformly stable. Then, the expected generalization gap satisfies

|Egen| = |ES,A[RD[A(S)]−RS [A(S)]]| ≤ ε .

Let S and S′ be two samples of size n differing in only a single example. Consider two trajectories θ11, . . . , θ
T
1 and

θ12, . . . , θ
T
2 induced by running an algorithm on sample S and S′, respectively. Let δt = ∥θt1 − θt2∥.

Fixing an example z ∈ Z and apply the Lipschitz condition on h(· ; z), we have

E
∣∣h(θT1 ; z)− h(θT2 ; z)

∣∣ ≤ LE [δT ] . (A.3)

Observe that at step t, with probability 1− 1/n, the example selected by the randomized algorithms is the same in both S
and S′. With probability 1/n the selected example is different. Based on Lemma 1, we have

E [δt+1] ≤
(
1− 1

n

)(
E[δt]

)
+

1

n
E [δt] +

2 1
P

∑P
p=1 α

p
tL

n
(A.4)

≤ E [δt] +

(
η +

2L

n

)
1

P

P∑
p=1

αp
t . (A.5)

Unraveling the recursion, we have

E [δT ] ≤
(
2L

n

) T∑
t=1

1

P

P∑
p=1

αp
t , and Egen ≤ L

(
2L

n

) T∑
t=1

1

P

P∑
p=1

αp
t .

Since this bounds holds for all S, S′ and z, we obtain the desired bound on the uniform stability.

A.6. Proof of Theorem 3

∥θt+1 − θ∗∥2 =

∥∥∥∥θt − θ∗ − 1

P

P∑
p=1

αt
p∇hp(θt, z)

∥∥∥∥2

= ∥θt − θ∗∥2 +
∥∥∥∥ 1

P

P∑
p=1

αt
p∇hp(θt, z)

∥∥∥∥2 − 2

〈
1

P

P∑
p=1

αt
p∇hp(θt, z), θt+1 − θ∗

〉
.

Take expectation over z, we have

E∥θt+1 − θ∗∥2

≤ E∥θt − θ∗∥2 +
(
1

P

P∑
p=1

αt
pL

)2

− 2

P

P∑
p=1

αt
pE[hp(θt)− hp(θ∗)],
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Then,

αt
sw

2

P

P∑
p=1

E[hp(θt)− hp(θ∗)] ≤ E∥θt − θ∗∥2 − E∥θt+1 − θ∗∥2

+(αt
swL)

2 +
2

P

P∑
p=1

(αt
sw − αt

p)E[hp(θt)− hp(θ∗)]

Considering constant step size and expand the recursive, we have

Tαsw
2

P

P∑
p=1

E[hp(θT )− hp(θ∗)]

≤ E∥θT − θ∗∥2 + T (αswL)
2 +

2T

P

P∑
p=1

|αt
sw − αt

p|B.

Therefore, we obtain the optimization error bound

Eopt ≤
D2 + L2Tα2

sw

2Tαsw
+B

∑P
p=1 |αsw − αp|

αsw
.

B. Additional Experiments
Training settings. We adopt popular training techniques and three widely considered types of adversarial examples
mentioned above: ℓ1, ℓ2, and ℓ∞ attacks in the inner maximization. For ℓ1 attack, we adopt the attack method used in (Maini
et al., 2020). For ℓ2 and ℓ∞, we utilize the multi-step PGD attack methods (Madry et al., 2017). The perturbation budgets
are set as 12, 0.5, 0.03. For better convergence performance of the inner maximization problem (Tramer et al., 2020), we set
the number of steps as 50 and further increase it to 100 in the testing phase. For the stepsize in the inner maximization, we
set it as 1, 0.05, and 0.003. respectively. Cyclic Learning Rates: in the outer minimization, we use the SGD optimizer with
momentum 0.9 and weight decay 5× 10−4, along with a variation of learning rate schedule from (Smith, 2018), which is
piece-wise linear from 0 to 0.1 over the first 40 epochs, down to 0.005 over the next 40 epochs, and finally back down to 0
in the last 20 epochs. Stochastic Weight Averaging and Early Stopping: following the state-of-the-art training techniques
for adversarial training, we incorporate stochastic weight averaging (SWA) (Izmailov et al., 2018) and early stopping in
ATMP. It is shown that SWA could find flat local minima and yields performance (Stutz et al., 2021). The update of SWA is
θtswa = γθt−1

swa + (1− γ)θt−1, where γ is a hyper-parameter and the final θTswa is used for evaluation. We follow the setting
of (Izmailov et al., 2018) and start SWA from the 60-th epoch for all the methods we compare. For all the methods, we
repeat five runs.

Table 3. Test accuracy (%) of different algorithms (MAX, AVG, MSD, SAT, and ADT) against ℓ1, ℓ2, and ℓ∞ attacks on CIFAR-100.
Dataset CIFAR-100

Attack methods clean ℓ1 ℓ2 ℓ∞ Union Mix

AT
ℓ1 70.98 73.44 00.82 00.51 0.04 24.92
ℓ2 63.76 21.88 43.75 20.31 12.07 28.64
ℓ∞ 58.86 11.02 39.22 28.01 9.41 26.08

WST (Eq. 3.2) MAX 57.82 30.36 40.71 26.08 25.03±0.39 32.38±0.18
MSD 57.33 32.08 41.90 27.06 26.21±0.22 34.02±0.08

AVG (Eq. 3.3)
AVG 59.75 35.55 41.03 24.61 24.31±0.68 33.73±0.41
SAT 59.25 35.60 42.33 25.01 24.78 ±1.41 34.31±0.88
ADT 59.41 37.64 42.82 25.70 25.29±0.15 35.39±0.07

In the additional experiments, the test accuracy are evaluated using the first batch (128 samples) to save the computational
cost.
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Figure 2. Tendency curves of robust accuracy against different types of adversarial attacks. The models are trained by ATMP using four
different strategies, with and without SWA.

Table 4. Test accuracy (%) of AVG and ADT w/o early stopping and w/o SWA against ℓ1, ℓ2, and ℓ∞ attacks on CIFAR-10.
ℓ1 ℓ2 ℓ∞ Union Mix

AVG 53.32 60.93 39.76 39.03 51.33
AVG+ES 57.37 66.48 43.33 43.02 55.72

AVG+ES+SWA 57.78 68.08 43.87 43.28 56.91
ADT 55.43 65.72 41.43 41.21 54.19

ADT+ES 61.11 67.88 44.67 44.31 57.89
ADT+ES+SWA 61.81 69.61 46.64 46.05 59.16

B.1. Ablation Study of SWA

We give more ablation study of SWA in this subsection.

SWA on CIFAR-100 In Fig. 3, we we plots the robust accuracy of of ATMP using AVG, SAT, MAX, and MSD respectively
on CIFAR-100, which are the same experiments we show in Figure 3. From the plots, we observe that without SWA, the test
accuracy are highly unstable among different training epochs. There exists a trade-off between different types of adversaries.
The increase in robust accuracy against one kind of adversaries may accompany with the decrease in robust accuracy on
another adversarial examples. On the other side, when coupling with SWA, the tendency curves of all four ATMP strategies
are largely stabilized. Besides, SWA (red, orange, and brown line) will increase the test accuracy in most of the case. The
experiments in Figure 3 give the same conclusion as that of Figure 2 in the main paper.

Gradient norm of SWA In Figure 4, we show the gradient norm of all the batches with and without SWA using AVG and
MAX. On training set, the gradient norm with and without SWA is similar. On test set, the gradient norm of using SWA is
smaller than that without SWA. This proves that SWA can find flatter minima with smaller gradient norm, and have better
generalization.

When to start SWA In Table 5 we try to start SWA at the 60th, 70th, and 80th epochs. We use MSD for our experiments.
We can see that the test accuracy against ℓ∞ attack is higher when we start later. BUt the test accuracy against ℓ1 attack is
higher when we start earlier. It is hard to say which is better but using SWA is always better than no SWA. The accuracy of
AVG, MAX MSD, and SAT with and without SWA are provided in Table 6.

Table 5. Test accuracy (%) of MSD with SWA started from the 60th,70th, and 80th epochs.
Dataset CIFAR-10

Attack methods clean ℓ1 ℓ2 ℓ∞

MSD with SWA
no SWA 83.51 50.78 66.41 43.75

the 60th epochs 81.99 53.12 68.75 46.09
the 70th epochs 82.01 49.22 69.53 47.66
the 80th epochs 81.95 50.78 69.54 48.44



Improving Adversarial Training for Multiple Perturbations through the Lens of Uniform Stability

Figure 3. Results of robust accuracy for each type perturbation over epochs of multiple perturbation AT in CIFAR-100 dataset:(a) Avg and
Avg-SWA, (b) SAT and SAT-SWA, (c) Max and Max-SWA, (d) MSD and MSD-SWA.

Figure 4. Gradient norm with and without SWA.

B.2. Other Tricks

Label smoothing (LS) Label smoothing is introduced as regularization to improve generalization by replacing the one-hot
labels to soft labels in the cross-entropy loss. It is shown that it relates to flat minima and yields better generalization. In
the cross-entropy loss, using soft labels other than one-hot label can increase the smoothness of the loss function. Given
probability γ ∈ [0, 1] and number of classes K, for each sample (xi, yi), let yi keeps the true label with probability 1− γ,
yi is replace by a wrong label in one of the other K − 1 classes with equal probability γ/(K − 1). The performance of
ATMP with label smoothing is provided in Table 7. We can see that label smoothing provides some improvement in these
four strategies.

Label noise Label noise is a alternative choose of label smoothing. Given probability γ ∈ [0, 1] and number of classes K,
for each sample (xi, yi), let yi keeps the true label with probability 1− γ, yi is replace by a wrong label in one of the other
K − 1 classes with equal probability γ/(K − 1). The difference between label noise and label smoothing is that label noise
use hard label while label smoothing use soft label.

In Table 8, we provide the experiments of incorporating label noise in ATMP. We can see that label noise can give some
improvements. But the improvements are not competitive to label smoothing. The reason behind is that label noise cannot
increase the smoothness of the loss function of ATMP.

Silu activation function Silu activation function is proposed to deal with the non-smoothness of Relu activation function.
In Table 9, we can see that Silu has some small improvement on ATMP.

Mixup We use adversarial examples in the form xadv = x+ (δ1 + δ2 + δ∞)/3 for adversarial training. In Table 10, we
can see that the robust accuracy is not comparable to MAX and AVG. It is because this training procedure focuses more on
the mixup adversarial examples. It fails to fit the three types of adversarial examples.
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Table 6. Test accuracy (%) of different algorithms (MAX, AVG, MSD and SAT, with and without SWA) against ℓ1, ℓ2, and ℓ∞ attacks on
CIFAR-10 and CIFAR-100.

Dataset CIFAR-10 CIFAR-100
Attack methods clean ℓ1 ℓ2 ℓ∞ clean ℓ1 ℓ2 ℓ∞

AT
ℓ1 93.19 89.84 0.00 0.00 70.98 73.44 00.78 00.78
ℓ2 88.66 41.41 61.72 39.84 63.76 21.88 43.75 20.31
ℓ∞ 84.94 17.19 53.91 46.88 58.86 11.72 39.06 30.47

ATMP

AVG 85.28 50.78 64.84 38.28 59.71 39.84 47.66 21.88
MAX 84.96 43.75 49.22 41.41 57.90 30.47 39.06 26.56
MSD 83.51 50.78 66.41 43.75 57.33 34.38 45.31 28.12
SAT 85.23 53.12 69.53 40.62 59.25 39.84 42.97 28.12

ATMP
with
SWA

AVG 83.19 57.03 69.53 42.97 58.04 40.62 48.44 28.12
MAX 83.78 42.19 60.16 47.66 58.29 33.59 42.19 31.25
MSD 81.99 53.12 68.75 46.09 57.33 35.94 48.44 28.12
SAT 84.76 59.38 71.09 42.97 60.18 39.84 45.31 28.12

Table 7. Test accuracy (%) of different algorithms (MAX, AVG, MSD and SAT, with label smoothing) against ℓ1, ℓ2, and ℓ∞ attacks on
CIFAR-10 and CIFAR-100.

Dataset CIFAR-10 CIFAR-100
Attack methods clean ℓ1 ℓ2 ℓ∞ clean ℓ1 ℓ2 ℓ∞

ATMP
with
LS

AVG 85.57 55.47 68.75 39.06 60.58 38.28 46.88 24.22
MAX 84.49 45.31 57.03 45.31 58.25 33.59 45.31 29.69
MSD 83.49 50.78 69.53 45.30 58.61 35.94 48.44 32.03
SAT 85.70 53.91 67.97 37.50 60.17 39.84 44.53 26.56

ATMP
with
LS

& SWA

AVG 83.42 57.03 71.09 48.44 59.09 42.19 45.31 28.12
MAX 83.05 47.66 63.28 46.09 57.76 39.84 47.66 31.25
MSD 82.15 50.78 71.88 46.09 57.70 38.28 46.88 35.94
SAT 84.96 56.25 66.41 41.41 60.51 39.06 47.66 29.69

Table 8. Test accuracy (%) of ATMP with label noise.
Dataset CIFAR-10

Attack methods clean ℓ1 ℓ2 ℓ∞

ATMP with LN

MAX 84.18 43.75 57.03 44.53
AVG 84.67 57.03 70.31 41.41
MSD 82.79 52.34 6562 47.66
SAT 85.36 56.25 69.53 42.19

ATMP with LN & SWA

MAX 81.66 50.78 63.28 47.66
AVG 81.06 57.81 70.31 42.97
MSD 81.03 51.56 64.84 50.00
SAT 84.00 59.38 67.19 46.88

Table 9. Test accuracy (%) of ATMP with Silu activation function.
Dataset CIFAR-10

Attack methods clean ℓ1 ℓ2 ℓ∞

ATMP with Silu

MAX 80.91 53.91 64.84 46.09
AVG 81.61 57.03 70.31 42.19
MSD 80.44 57.03 64.84 48.44
SAT 83.89 54.69 64.84 44.53

ATMP with Silu & SWA

MAX 78.48 50.78 67.19 49.22
AVG 78.20 58.59 68.75 42.98
MSD 78.39 55.47 66.41 49.99
SAT 82.02 57.81 67.19 45.31
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Table 10. Test accuracy (%) of ATMP using mixup.
Dataset CIFAR-10

Attack methods clean ℓ1 ℓ2 ℓ∞
Other tricks Mixup 84.73 51.56 67.19 39.06

C. Smoothness Analysis
We first study the smoothness of the minimax problems in Eq. (3.2) and (3.3). To simplify the notation, let

hp(θ, z) = max
∥z−z′∥p≤ϵp

g(θ, z′),

havg(θ, z) = Ep∼{1,2,∞} max
∥z−z′∥p≤ϵp

g(θ, z′),

hwst(θ, z) = max
p∈{1,2,∞}

max
∥z−z′∥p≤ϵp

g(θ, z′)

be the loss function of standard adversarial training, worst-case multiple perturbation adversarial training, and average of all
perturbations adversarial training, respectively. The population and empirical risks are the expectation and average of hst(·),
respectively. We use Rst

D(θ) and Rst
S (θ) to denote the population and empirical risk for adversarial training with different

strategy, i.e. st ∈ {1, 2,∞,wst, avg}.

Case study: Linear regression. We use a simple case, adversarial linear regression, to illustrate the smoothness of the
optimization problem of (3.2) and (3.3). Let fθ(x) = θTx and ℓ(θTx, y) = |θTx− y|2, we have the following proposition.

Proposition 1. Let X = [x1, · · · ,xn]
T , y = [y1, · · · ,

yn]
T , and δ = [δ1, · · · , δn]T , we have

Rp
S(θ) = [∥Xθ − y∥2 +

√
nϵp∥θ∥p∗ ]2,

Rwst
S (θ) = max

p∈{1,2,∞}
[∥Xθ − y∥2 +

√
nϵp∥θ∥p∗ ]2,

Ravg
S (θ) = Ep∈{1,2,∞}[∥Xθ − y∥2 +

√
nϵp∥θ∥p∗ ]2.

The proof is deferred to Appendix A. From Proposition 1, the loss landscape of adversarial training is non-smooth because
of the term ∥θ∥p∗ . Specifically, the loss function of ℓ2 adversarial training is non-smooth at θ = 0. For ℓ1 adversarial
training, the loss function is non-smooth at |θi| = |θj |,∀i, j. For ℓ∞ adversarial training, the loss function is non-smooth
at θi = 0,∀i. For adversarial training for multiple perturbations, the loss function is non-smooth at both θi = 0,∀i and
|θi| = |θj |,∀i, j. The non-smooth region of the loss function of ATMP is the union of that of the single perturbation cases.
Different ℓp adversaries give different contribution to the smoothness of the loss function of ATMP.

In Fig. 5, we give a numerical simulation and demonstrate the loss landscape in a two-dimensional case. In ℓ2 adversarial
training, the loss landscape is smooth almost everywhere, except the original point. In ℓ1 and ℓ∞ cases, the non-smooth
region is a ‘cross’. In the cases of WST and AVG, the non-smooth region is the union of two ‘crosses’.

ℓ" ℓ# ℓ$ Worst	case All	perturbations

Figure 5. Loss landscape of adversarial linear regression for single and multiple perturbations.
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(a) (b) (c) (d)

Figure 6. Gradient norms and loss value of adversarial training for single and multiple perturbations. (a) ∥∇R1
S(θ)∥, last 1173 batch. (b)

∥∇R2
S(θ)∥ (green) and ∥∇R∞

S (θ)∥ (blue), last 1173 batch. (c) ∥∇Ravg
S (θ)∥ (yellow) and ∥∇Rwst

S (θ)∥ (purple), last 1173 batch. (d)
Training loss for the total 100 epochs.

General nonlinear model. Now let us consider general nonlinear models. Following the work of (Sinha et al., 2017),
without loss of generality, let us assume

Assumption 2. The function g satisfies the following Lipschitzian smoothness conditions:

∥g(θ1, z)− g(θ2, z)∥ ≤ L∥θ1 − θ2∥,
∥∇θg(θ1, z)−∇θg(θ2, z)∥ ≤ Lθ∥θ1 − θ2∥,
∥∇θg(θ, z1)−∇θg(θ, z2)∥ ≤ Lθz∥z1 − z2∥,
∥∇zg(θ1, z)−∇θg(θ2, z)∥ ≤ Lzθ∥θ1 − θ2∥.

Assumption 2 assumes that the loss function is smooth (in zeroth-order and first-order). While ReLU activation function
is non-smooth, recent works (Allen-Zhu et al., 2019; Du et al., 2019) showed that the loss function of overparamterized
DNNs is semi-smooth. It helps justify Assumption 2. Under Assumption 2, the following Lemma Provide the smoothness
of ATMP.

Lemma 2. Under Assumption 2, assuming in addtion that g(θ, z) is locally µp-strongly concave for all z ∈ Z in ℓp-norm.
∀θ1, θ2 and ∀z ∈ Z , the following properties hold.

1. (Lipschitz function.) ∥hst(θ1, z)− hst(θ2, z)∥ ≤ L∥θ1 − θ2∥.

2. (Gradient Lipschitz.) If we Then, ∥∇θh
st(θ1, z)−∇θh

st(θ2, z)∥ ≤ βst∥θ1 − θ2∥, where

βst =


LθzLzθ/µst + Lθ st ∈ {1, 2,∞},
LθzLzθ/minp µp + Lθ st = wst,
Ep∼{1,2,∞}βp st = avg.

Proof: see Appendix A. Lemma 2 shows that adversarial surrogate loss in different ℓp adversaries have different smoothness
in strongly-concave case. This property is not specific for strongly-concave case. The analysis of non-strongly-concavity
case is provided in App. A.3. Lemma 2 motivates us to study a question:

How to achieve better performance on adversarial robustness against different ℓp adversarial attacks utilizing the
smoothness properties?

In the next section, we first discuss the stability analysis of ATMP. Then, we discuss how to utilize the smoothness-properties
of different ℓp adversaries to obtain smaller generalization bound.

C.1. Gradient Norm Analysis

Since the gradient Lipschitz Lp
θx is unknown in practice, we provide a numerical simulation of the convergence error in this

subsection on CIFAR-10 to help justify our Theoretical results. In Fig. 6, we show the gradient norm ∥∇Rst
S (θ)∥ of the last

layer for the last 3 epochs (3× 391 = 1173 batchs) for st ∈ {1, 2,∞, avg, wst} as well as the training loss3 for the total
100 epochs.

3We should use optimality gap (training loss - optimal loss) to evaluate convergence, but the optimal loss is unknown, we use training
loss as a substitude.
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Comparison of ℓ1, ℓ2, and ℓ∞ In Fig. 6, We can see that ∥∇R1
S(θ)∥ is the largest one accompany with the largest

variance among these three. In (d), the training loss of R1
S(θ) is unstable. It is because the top-k ℓ1 attack is inefficient and

sparse (Tramèr & Boneh, 2019). In the middle stage, the fluctuation is large since the success rate of the top-k attack is
small. In the final stage, the top-k attack cannot find adversarial examples. Therefore, the loss is small. Comparing the
R2

S(θ) and R∞
S (θ), we can see that ℓ∞ adversarial training has higher gradient norm and larger training loss. In conclusion,

ℓ1 and ℓ∞ give less contributions to the smoothness of ATMP.

D. Other related work
Adversarial training Adversarial training (AT) has been demonstrated to be one of the most effective ways to increase the
adversarial robustness (Szegedy et al., 2013). The key idea of AT is to augment the training set with adversarial examples
during training. Currently, most AT-based methods are trained with a single type of adversarial examples, and the ℓp (p=1, 2,
or ∞) is commonly used to generate adversarial examples during training (Madry et al., 2017). It is shown that AT overfits
the adversarial examples on the training set and generalizes badly on the test sets. Many approaches have been proposed
to increase the adversarial generalization (Raghunathan et al., 2019; Schmidt et al., 2018). Meanwhile, there have been
some attempts for the theoretical understanding of adversarial training, mainly focusing on the convergence properties and
generalization bound. For example, the work of (Gao et al., 2019) studies the convergence of adversarial training in the
neural tangent kernel (NTK) regime. In terms of generalization bound, the work of (Yin et al., 2019; Awasthi et al., 2020;
Xiao et al., 2022a) study the generalization bound in terms of Rademacher complexity. The work of (Xiao et al., 2022d)
considers manifold properties of adversarial examples.

Uniform Stability The work of (Hardt et al., 2016) introduced uniform stability to study the generalization-optimization
trade-off in machine learning problem. The work of (Farnia & Ozdaglar, 2021; Xing et al., 2021; Xiao et al., 2022b)
extended the analysis to adversarial training and emphasize the severe of robust overfitting issues.


