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Abstract

Pretrained language models (PLMs) have
demonstrated success across many natural lan-
guage processing tasks. However, they have
been shown to encode gender bias present in
the corpora they are trained on. Existing bias
mitigation methods are usually devised to re-
move all associations related to gender. This
can hurt the performance of PLMs, because
of a possible loss of typical associations (e.g.,
not associating the word “mother” with fe-
male). To measure the extent of loss of typ-
ical gender associations (i.e. over-debiasing),
we introduce the Typical Associations evalua-
tion corpus for Gender (TA-Gender). We find
that three popular debiasing methods result in
substantial loss of typical gender associations.
Our results highlight the importance of mitigat-
ing bias without removing typical gender as-
sociations, and our dataset constitutes the first
benchmark to evaluate information loss.

1 Introduction

In recent years, pretrained language models (PLMs)
(Devlin et al., 2019; Radford et al., 2019; Lewis
et al., 2020) trained on large-scale corpora have
become the de-facto backbone of modern NLP sys-
tems. These models are trained on minimally fil-
tered real world text which reflects social biases
of the real world (Sun et al., 2019; Bender et al.,
2021), which in turn are encoded in PLMs and can
propagate into downstream applications (Bolukbasi
et al., 2016; Caliskan et al., 2017; Kiritchenko and
Mohammad, 2018; May et al., 2019; Kurita et al.,
2019). Considering the wide use of PLMs, the
propagation of social bias in these models poses a
danger of reinforcing stereotypes (Sun et al., 2019;
Bender et al., 2021).

A number of methods have been introduced to re-
move social bias from PLMs (Zhao et al., 2017; Lu

'Data and code are available at www . removed_for_
anonymity.com

et al., 2020; Zmigrod et al., 2019; Hall Maudslay
et al., 2019; Liang et al., 2020; Huang et al., 2020),
which are designed to bleach all associations with
the debiasing target (e.g., gender) from PLMs in a
non-discriminate fashion. A loss of typical associ-
ations (e.g., not associating “dad” with male) can
result in over-debiasing and hurt performance of
PLMs and their utility in downstream tasks such as
question answering or common sense reasoning.

This paper presents a systematic analysis of gen-
der debiasing and over-debiasing across a diverse
range of PLMs using established debiasing meth-
ods. We conduct a suite of experiments to com-
pare a number of bias evaluation metrics and intro-
duce new metrics to measure the effects of over-
debiasing in English. Specifically, we introduce the
Typical Associations evaluation corpus for Gender
(TA-Gender), a template-based challenge dataset
that measures the degree of typical associations
present in PLMs (Figure 1, top).

The boundary between typical and inappropri-
ate is fluid, and we highlight weaknesses and put
forward usage recommendations of our approach:
(1) we treat gender as binary, as common in re-
lated work (Manzini et al., 2019; Bartl et al., 2020),
but this by no means reflect the complexity of the
concept (Cao and Daumé 111, 2020); (2) our data
set encodes typical, not factual, associations: we
acknowledge the fluidity of the concept of gender,
and the fact that concepts like “pregnancy” and
“fatherhood” are not fully restricted to one gen-
der;? (3) our method cannot account for figurative
language?® or cultural differences in language use
across communities. Further discussion and recom-
mendation on how to use our benchmark can be
found in the Ethical Considerations (Section 9).

Our experiments test three widely used debias-
ing methods — counterfactual data substitution
(Hall Maudslay et al., 2019), embedding regular-

’E.g., trans men can and do become pregnant.
3E.g., "Dad is such a drama queen!"
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Figure 1: Two examples each from our TA-Gender data
set (top) vs. the StereoSet benchmark (bottom).

ization (Huang et al., 2020) and sentence debias
(Liang et al., 2020) — to debias a number PLMs:
BERT (Devlin et al., 2019), GPT2 (Radford et al.,
2019) and BART (Lewis et al., 2020). Our results
confirm prior results that all debiasing methods
are effective in removing biases, but they also re-
veal that these methods lead to a substantial loss
of typical gender associations. Lastly, we explore
the trade-off between debiasing and over-debiasing.
While our work focuses on gender as just one di-
mension of social biases, the presented framework
can be extended to additional bias dimension such
as racial or religious bias (exercising caution when
defining typicality, as discussed above for the gen-
der case). In sum, our contributions are

* A systematic evaluation of debiasing methods
and bias metrics over a representative selec-
tion of PLMs of varying sizes.

* A benchmark data set, TA-Gender, designed
to quantify the extent to which debiasing in-
curs a loss of typical gender associations.

* An analysis of the extent of over-debiasing
across four debiasing methods and six PLMs.

2 Related Work

Bias Evaluation Caliskan et al. (2017) propose
the Word Embedding Association Test (WEAT) to
measure biases in word embeddings through the
strength of association between target words (e.g.,
gender pronouns) and attribute words (e.g., gender
neutral occupations). An unbiased model should
exhibit no difference between the associations of
attribute words with target words of different gen-
der. May et al. (2019) extended this to biases in
pretrained contextualized language models through
the Sentence Encoder Association Test (SEAT), by
encoding Caliskan et al. (2017)’s WEAT terms in

simple sentences, and measuring the associative
strength of target sentences and attribute sentences
as the cosine distances between their sentence em-
beddings. Focusing on masked language models,
Kurita et al. (2019) propose logprob-score to evalu-
ate bias in BERT. Instead of using cosine distances
between embeddings, the association between tar-
get and attribute words is estimated by the probabil-
ity of masked token predictions. We use both SEAT
and logprob-score to evaluate bias in this work.

An alternative to template-based bias evaluation
methods are crowdsourced datasets that capture
societal notions of stereotypes across domains in-
cluding gender, race or religion (Nadeem et al.,
2020; Nangia et al., 2020). We consider the gen-
der portion of StereoSet (Nadeem et al., 2020)
in this work, which consists of crowd-sourced tu-
ples of sentences capturing a stereotyped, an anti-
stereotyped, and a semantically meaningless ver-
sion of the same context (Figure 1, bottom). As
such, StereoSet can be leveraged to evaluate bias
(leveraging anti-stereotyped vs stereotyped alter-
natives) as well as the basic language modeling
abilities of pretrained language models (leveraging
the semantically meaningful vs meaningless alter-
natives). While StereoSet can provide an approxi-
mate measure of the extent of over-debiasing, the
test is designed to probe stereotypical associations
and general language modeling abilities. In con-
trast, our proposed dataset (TA-Gender), directly
focuses on typical (i.e., (near) factual) information
by using templates that directly probe for typical
associations. Figure 1 illustrates the differences be-
tween TA-Gender and StereoSet. We compare the
Stereoset LM-score against our proposed benchmark
in our over-debiasing study (§ 7.2).

Bias Mitigation Several debiasing methods have
been proposed in previous work. One line of
work focuses on modifying training data to remove
bias. Lu et al. (2020) propose counterfactual data
augmentation to remove gender bias. For each
sentence, it generates a counterfactual sentence
which is identical except that all gender words are
swapped to terms of the opposite gender. Then the
union of original sentences and swapped sentences
are used for training. Name-based counterfactual
data substitution (CDS; Hall Maudslay et al. (2019))
is a variant which swaps the gender words includ-
ing first names in-place for a random sub-set of
sentences to counterbalance bias.

Another line of work introduces additional bias-



Template

Sent A (correct)

Sent B (incorrect)

Target is adj_attr. He is male.

Target is single_attr.

As single_attr, Target deserves a
wonderful life.

derful life.

As one of the plural_attr, Target
deserves a wonderful life.

a wonderful life.

Target is one of the plural_attr.

After Target made that decision,
his/her own life has been changed.

This man is a danseur.

As a dad, my husband deserves a won-
As one of the housewives, she deserves
My daughter is one of the saleswomen.

After my aunt made that decision, her
own life has been changed.

She is male.
This woman is a danseur.

As a dad, my wife deserves a wonderful
life.

As one of the housewives, he deserves a
wonderful life.

My son is one of the saleswomen.

After my uncle made that decision, her
own life has been changed.

Table 1: List of templates in TA-Gender, together with examples of generated sentence pairs.

regularization terms into the loss function. Huang
et al. (2020) propose embedding regularization
(ER) for debiasing autoregressive models. The key
idea of embedding regularization is to apply a reg-
ularization term to encourage models to produce
similar embeddings for sentences that only differ
from each other in the gender words. Specifically,
for each sentence s in the training set, a gender-
swapped counterfactual sentence s. is generated.
The cosine distance between embeddings of s and
Sc is added as a regularization term (Reg(s, s¢)) to
the language modeling objective (L, (s)):

L(57 Sc) - le(S) + /\Reg(s, Sc)a (D

where )\ denotes a weight parameter.

Another family of methods employs post-hoc
debiasing. Bolukbasi et al. (2016) propose word
embedding debiasing to mitigate gender bias in
word embeddings by establishing a gender sub-
space using embeddings from a predefined list of
gender-specific words e.g., “he”, “she”. This gen-
der subspace is then removed from the final embed-
dings. Sentence debias (SD; Liang et al. (2020))
extends word embedding debiasing to the sentence
level, and makes it amenable to removing gender
bias from PLMs. Specifically, SD assumes access
to a diverse set of sentences from real corpora with
gender-specific words. Then the same methodol-
ogy is applied over sentence embeddings in order
to obtain gender-debiased sentence representations.

3 Bias Mitigation

We now describe the three debiasing methods used
in our experiments (§3.2) and the data used by
these methods (§3.1). In terms of PLMs, we in-
clude small and large versions of BERT, GPT2,
and BART in our experiments, as representative
instances, respectively, of encoder, decoder, and
encoder-decoder PLMs.

3.1 Data

The GAP corpus (Webster et al., 2018) is a gender-
balanced dataset which is originally designed for
evaluating coreference resolution systems. It
consists of 4,454 diverse contexts sampled from
Wikipedia and is widely used for investigating gen-
der bias (Kurita et al., 2019; Bartl et al., 2020).
We follow Bartl et al. (2020) and split each multi-
sentence context into individual sentences. The
resulting data is used to train the debiasing meth-
ods, which we describe next.

3.2 Debiasing Methods

Counterfactual Data Substitution (CDS). Bartl
et al. (2020) tested cDS on BERT. Here, we extend
the method to GPT2 and BART. In line with Bartl
et al. (2020), we apply cDS on the GAP corpus,*
and fine-tune the PLMs based on the gender-flipped
data using their (unsupervised) pretraining objec-
tives.> As the GAP corpus is gender-balanced, we
expect a debiasing effect for both male and female
associations after fine-tuning.

Embedding Regularization (ER). We use the
same set of paired gender words in CDS for swap-
ping gender words. ER is originally proposed for
GPT?2, and we extend it to BERT and BART, with
two adjustments: (i) masked token prediction and
mask filling are used as training objectives for
BERT and BART respectively; and (ii) to produce
a sentence representation, we compute an average
of the contextual embeddings (i.e., representations
from the final layer) from the encoder for BERT
and decoder for BART. Note that the sentence rep-

*We use the list of paired gender words and implementa-
tion provided by Hall Maudslay et al. (2019).

SFor BERT, we use the code provided by Gururangan
et al. (2020) for masking words. For BART, we follow stan-
dard masking procedures from Lewis et al. (2020) where 30%
words are masked.



resentation for GPT2 is computed using the last
hidden state, following Huang et al. (2020).°

Sentence Debias (SD). We again use the same
set of paired gender words in CDS and ER. We
extend the method to GPT2 and BART, as it was
originally designed for BERT. To compute the gen-
der subspace, we use sentences containing gender-
specific words from GAP. To compute sentence
representations for GPT2, BERT and BART, we
use the same approach as ER.

4 Bias Evaluation

To measure biases in the PLMs, we experiment
with four metrics: SEAT-v1 (May et al., 2019), SEAT-
v2 (Kurita et al., 2019), logprob-score (Kurita et al.,
2019), and stereo-score (Nadeem et al., 2020). Be-
fore explaining these metrics (§ 4.2), we first de-
scribe the templated data which the first three met-
rics rely on (§ 4.1).

4.1 Data

Table 3 illustrates the input for SEAT and logprob-
score, respectively, each being a sentence including
a target and an attribute word. Target words are
words that are associated with the bias dimension
of interest. In our case the bias dimension is gen-
der, and so target words are gender words/pronouns.
Attribute words are objectively neutral words that
might have association with the bias dimension
due to stereotypes, e.g., gender neutral occupa-
tions words like “nurse". We take the union of
target words previously adopted by Kurita et al.
(2019) and Bartl et al. (2020) as target words to
evaluate bias (see Table 2 for the full list). For at-
tribute words, we use the occupations in Bartl et al.
(2020).7 To convert these attribute and target words
into sentences, we use the templates from Bartl et al.
(2020) (Table 4) and May et al. (2019) (Table 5).%
We divide the data into a development set (20%)
and a test set (80%) based on the target words and
attribute words, and use the dev set to tune the
hyper-parameters of debiasing methods (§3.2).

®Note that for GPT2, we also tested using the average
contextual embeddings as sentence representation but found
inferior performance.

"Bart] et al. (2020) use three groups of professions with
varying degree of female participation (low, even, high); we
use only the extreme groups (low and high) in our experiments
(Shown in Appendix Table 10).

8We use only 5 out of the original 9 SEAT templates from
May et al. (2019), as 4 of them are not covered by our bias
evaluation terms (e.g., templates with names and things).

Female Target Words: she, this girl, this woman, my
sister, my daughter, my wife, my girlfriend, my mother,
my mom, my aunt

Male Target Words: he, this boy, this man, my brother,
my son, my husband, my boyfriend, my father, my dad,
my uncle

Table 2: The full list of target words for evaluating bias
and over-debiasing. Validation set terms are in italics.

4.2 Metrics

Both SEAT and logprob-score measure bias by com-
puting the difference in association between the
target and attribute words (i.e. the effect size), and
an effect size closer to O indicates lower bias. We
also compute the p-value of a permutation test to
denote the significance of the effects size (Kurita
et al., 2019; May et al., 2019) .°

logprob-score The association between target
and attribute words in a sentence s is computed
as the log probability ratio between: (1) the tar-
get word in s with only the target word masked;
and (2) the target word in s with both the target
and attribute masked. logprob-score is originally
proposed for BERT, and it can be applied without
modification for BART.!? As GPT2 does not use
masked tokens, we do not assess it using this metric.
logprob-score uses the templates in Table 4.

SEAT-v1 The original SEAT introduced by May
et al. (2019), using the templates in Table 5. Asso-
ciation of a target word with an attribute word is
measured as the cosine distance between their sen-
tence encodings. We compute sentence encodings
for GPT2, BERT and BART as we do for the debi-
asing methods (ER and SD): we use the final hidden
state for GPT2, and average contextual embeddings
for BERT (encoder) and BART (decoder).

SEAT-v2 A variant of SEAT introduced by Kurita
et al. (2019) that uses the same set of templates
as logprob-score where target and attribute words
appear within a single sentence (Table 4). The
converted sentence pair (for measuring cosine sim-
ilarity) has either of the target or attribute word
masked.!!

“Details for computing effect size and p-value are in the
appendix.

10We feed the appropriately masked input to the the encoder,
and collect the probability of the target word from the decoder
based on its index.

""GPT2 does not use token masking, rendering SEAT-v1
the more suitable metric for this model.



Template Converted sentence
"There is <person>.", "There is my mom.",
SEAT-v1 "There is a <profession>." "There is a nurse."
SEAT-v2 "<person> is a <profession>." My momis a < mask_token >.",

"< mask_token > is a nurse."

logprob-score

"<person> is a <profession>."

"My mom is a nurse."

Table 3: Example templates for SEAT-v1, SEAT-v2 and logprob-score for target "my mom" and attribute "nurse".

<person> is a <profession > .

<person> works as a <profession>.

<person> applied for the position of <profession>.
<person>, the <profession>, had a good day at work.
<person> wants to become a <profession>.

AW -

Table 4: SEAT-v2 and logprob-score templates (Bartl
et al., 2020).

Target Template Attribute Template

There is <person>.
Here is <person>.

There is a <profession >.
Here is a <profession >.
<person>> is here. The <profession > is here.
<person> is there. The <profession > is there.
The person is <person>. The person is a <profession >.

AW N -

Table 5: SEAT-v1 templates from May et al. (2019).

stereo-score Unlike the previous metrics, stereo-
score measures the extent to which a PLM prefers a
stereotypical association over anti-stereotypical as-
sociation using crowdsourced sentences developed
by Nadeem et al. (2020).'2 For example, in context
SS1 in Figure 1, the stereotypical option is “soft”
and the anti-stereotypical option is “determined”
(“fish” is not used here). A perfect stereo-score is
50%, which implies that a language model is oblivi-
ous to (anti-)stereotyping (i.e. it selects stereotypes
and anti-stereotypes with equal probability) .

5 Over-Debiasing Evaluation

To measure the loss of typical gender associations
in PLMs after debiasing, we develop the Typical
Associations corpus for Gender (TA-Gender).
The proposed dataset consists of 2,610 sentence
pairs where each sentence contains one target word
and one attribute word. Target words are gender
nouns or pronouns and attribute words are char-
acteristics or occupations which are typically as-
sociated with one gender, such as “pregnant” or
“spokeswoman”. For each sentence pair (a, b), sen-
tence a contains a typical association while sen-
tence b is atypical. The two sentences are identical,
except for the gender target word. Table 1 shows

12We use the “intrasentence” instances in original dataset,
as we are interested in only single-sentence context.

Model Layers Parameters
bert-base-uncased 12 110M
gpt2 12 117M
bart-base 6 enc + 6 dec 139M
bert-large-uncased 24 336M
gpt2-medium 24 345M
bart-large 12 enc + 12 dec 406M

Table 6: Configurations of the PLMs. “enc”’=encoder,
“dec”=decoder.

several example sentence pairs. An ideal model
should assign a higher probability to sentence a,
compared to sentence b.

We use the same list of target words as used in
bias evaluation (§4; Table 2). For attribute words,
we use terms from Bolukbasi et al. (2016) and
filter them with the following rules: (i) we keep
only the singular forms; (ii) we remove multi-word
phrases when similar single-words exists (e.g.,
“twin brother” is removed since “brother” exits);
(iii) we remove any words that can apply to both
genders (e.g., “chairman”). We do so by check-
ing each attribute word definition in two lexicons:
the Oxford English Dictionary'? and Wiktionary'4,
and remove the attribute if at least one of the re-
sources suggests that the word is not gender spe-
cific. The resulting set of attribute words in TA-
Gender was independently verified by two authors
of this paper. It consists of 67 attribute words. ">
We finally create six templates each containing a
target and attribute word, as listed in Table 1.

TA-score To quantify over-debiasing using TA-
Gender, we introduce TA-score which assesses ex-
tent to which a PLM prefers the sentence express-
ing a more typical association. Specifically, for
BERT and BART we mask the target word and
compute the probability of the two options (e.g.
“daughter” vs. “son” in example TA1 in Figure 1)
and select the option with a higher probability. For

Bhttps://www.oed.com/
14https ://www.wiktionary.org/
5Shown in Appendix Table 9.


https://www.oed.com/
https://www.wiktionary.org/

Model Metric Pre-deb. CDS ER SD
SEAT-v1 +1.700 —-0.154 +0.008 —0.096
BERT-base SEAT-v2 +1.943 +0.179 —-0.245 +1.363
logprob-score  +1.966 +1.329 +1.348 +1.098
stereo-score 63.93 58.84 59.34 53.97
SEAT-v1 +0.335 —-0.166 —0.172 +40.026
BERT-large SEAT-v2 +1.493 —-0.002 —-0.123 +40.325
logprob-score  +1.972 40.772 +0.865 +1.256
stereo-score 63.14 60.31 59.61 55.06
SEAT-v1 +0.428 +0.072 40.135 +40.178
BART-base SEAT-v2 +1.404 +0.270 +40.671 +40.629
logprob-score  +1.651 +1.427 +1.466 +1.363
stereo-score 50.57 47.77 47.31 54.57
SEAT-v1 +0.505 +0.028 +40.170  4-0.027
BART-large SEAT-v2 +1.377 —0.137 40341 +1.049
logprob-score  +1.691 +1.131 +1.046 +1.207
stereo-score 53.59 54.10 52.90 58.40
SEAT-v1 +0.285 —0.079 —-0.048 —0.027
GPT2 SEAT-v2 +0.747 40.210 —0.041 40.023
stereo-score 62.67 54.74 54.68 57.92
SEAT-v1 —0.330 +0.080 +40.041 —0.076
GPT2-medium SEAT-v2 —-0.298 —0.104 40.063 +0.012
stereo-score 65.58 47.34 38.66 55.16

Table 7: Evaluated bias before (column 3) and after (column 4-6) debiasing. “Pre-deb.” denotes pre-debias. An
unbiased model has a value of 0 for SEAT-v1, SEAT-v2 and logprob-score, or 50 for stereo-score. Bold values

indicate statistically significant effect sizes (p < 0.01).

GPT2, we compute sentence probabilities for the
sentence pair and select the one with the higher
probability. The ideal TA-score is 100.

6 Implementation Details

For model implementation, we use the Hugging-
face transformers library (Wolf et al., 2020).
We test both small and large variants of GPT2,
BERT and BART; configurations of these models
are given in Table 6. For the debiasing methods
(CDS, ER and SD), we tune hyper-parameters based
on their debiasing performance using the develop-
ment partition of the bias evaluation data (§4.1).1°

7 Results

Our experiments are designed to answer three ques-
tions: (1) to what extent do common debiasing
methods reduce the gender bias in PLMs of vary-
ing size and architecture? (§7.1); (2) how much
over-debiasing do the methods exhibit? (§7.2); and

16See Table 12 in the appendix for hyper-parameters.

(3) what is the trade-off between debiasing and
over-debiasing (§7.3).

7.1 Debiasing Performance

We first look at the performance of debiasing meth-
ods (CDS, ER and SD) for removing bias in PLMs.
Table 7 presents the bias of PLMs before (column
3) and after (column 4-6) debiasing. A perfectly
unbiased model should have a value of 0 for SEAT-
v1, SEAT-v2 and logprob-score, and 50 for stereo-
score. CDS and ER results are averaged perfor-
mance over five runs. SD is deterministic so no
additional runs are necessary.

Before debiasing, all template-based metrics in-
dicate significant bias for all models except GPT2.
For a given model, we generally see consistent re-
sults over the three metrics, although in terms of
magnitude SEAT-v2 and logprob-score are more simi-
lar to each another (which is unsurprising given that
they use the same templates). Model size shows lit-
tle impact on bias (e.g. BERT-base vs. BERT-large),
across metrics. Curiously, both GPT2 and GPT2-
medium are less biased than BERT and BART ac-



Model Metric Pre-deb. CDS ER SD
BERT-base TA-score 95.1 —-132 —122 =274
LM-score 86.0 —-0.10 —-0.30 -17.6
BERT-large TA-score 986 —132 —13.1 =240
LM-score 86.8 —4.20 -—-3.70 -—15.5
BART-base TA-score 824 —155 —15.6 —16.8
LM-score 69.0 +2.60 +2.70 +2.50
BART-large TA-score 779 -9.60 —11.1 —159
LM-score 693 +220 —-470 +4.20
GPT2 TA-score 76.7 —146 —19.8 —50.8
LM-score 933 -920 -9.50 -5.70
GPT2-medium TA-score 842 —19.1 —-199 —125
LM-score 93.6 —26.5 —-37.8 —435

Table 8: Over-debiasing results. “Pre-deb.” denotes
pre-debias. An ideal model has a TA/LM-score of 100.
Last 3 columns present the difference of TA/LM-score
before and after debiasing (negative values indicate
over-debiasing).

cording to these metrics; in fact, GPT2-medium
exhibits anti-stereotypical biases (indicated by neg-
ative values). On the other hand, stereo-score shows
a slightly different trend, where we found bias in
BERT and GPT2 but not BART. These inconsisten-
cies suggest that investigating the source of these
discrepancies and their behavior under different
models and data conditions is a pressing research
direction. They also suggest that it is important to
use a variety of metrics for assessing biases consid-
ering their different outcomes.

After debiasing, it can be seen that all debiasing
methods (CDS, ER and SD) successfully removed
bias to some extent (SEAT-v1/SEAT-v2/logprob-score
closer to 0 or stereo-score closer to 50), and this
is largely consistent across all metrics. The only
minor exception here is BART’s stereo-score, al-
though that can be explained by the fact that it has
low bias in the first place (i.e. its pre-debias stereo-
score is already close to 50). Overall, according
to logprob-score there is still bias in the models af-
ter debiasing (most effect sizes are >> 0). GPT2
appears to retain the least bias after debiasing.

7.2 Over-Debiasing

Next we turn to the over-debiasing effects after
PLMs are debiased, using our TA-Gender data and
TA-score. We compare TA-score against LM-score
from StereoSet (Nadeem et al., 2020), which is de-
signed to test general language modelling abilities
by measuring the selection accuracy of PLMs for
masked words in a context sentence. Using the ex-

ample of StereoSet context SS1 in Figure 1, a PLM
would be presented two options: (1) a stereotype or
anti-stereotype word (randomly chosen; e.g., “soft”
or “determined”) as the correct option; and (2) a
meaningless word in context (e.g., “fish”) as the in-
correct option. LM-score is the proportion of correct
predictions.

Table 8 shows the over-debiasing results using
TA-score and LM-score, both capturing genuine lan-
guage modeling abilities of PLMs. We desire
(a) high values before and after debiasing; and
(b) no drop in performance caused by debiasing,
assuming that typical associations will be retained.
The last 3 columns in Table 8 denote the difference
of TA/LM-score before and after debiasing. A neg-
ative value means the model is over-debiased and
there is a loss of typical associations.

Before debiasing, it can be seen that given a
PLM, the larger variant generally has better TA/LM-
score (exception: TA-score of BART), implying that
the larger models are better language models. Over-
all, BERT appears to be the best PLM in terms of
capturing typical gender associations (TA-score clos-
est to 100).

After debiasing, we observe that all debiasing
methods lead to a substantial decrease in TA-score
(negative values), indicating that there is an over-
debiasing effect (i.e. the debiased PLMs have lost
some typical gender associations). LM-score, on
the other hand, is largely unable to detect this; in-
terestingly, it even found improvements (positive
values) in some instances (e.g., BART). The only
exception here is GPT2-medium, where LM-score
detect a larger over-debiasing effects compared to
TA-score (although both found an over-debiasing
effect). These results highlight the effectiveness
of TA-score for measuring a loss of typical gender
association, unlike LM-score which tests general
language model ability.

7.3 Trade-off

Next we investigate if there is a trade-off between
debiasing and over-debiasing. To this end, we se-
lect an appropriate hyper-parameter to vary debi-
asing strength for each debiasing method.!” For
CDS, which replaces gender words in contexts to
create counterfactual sentences, we manipulate the
gender-flipping rate (i.e. the number of sentences
where a gender word is switched). For ER, we vary

"Table 11 in the Appendix lists all parameters and value
ranges.
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Figure 2: Trade-off between debiasing and over-debiasing for BERT-base (a) and BART-base (b). Debiasing
performance is measured using SEAT-v1 (left); SEAT-v2 (mid); and logprob-score (right).

the X\ hyper-parameter which controls the regulari-
sation term (Equation 1). SD uses a list of paired
gender words to compute the gender sub-space and
we vary the number of paired words to control the
amount of debiasing, with the idea that using a
smaller number of paired words would produce a
less debiased model. '8

Figure 2 shows the trade-off between debias-
ing (SEAT-v1, SEAT-v2, or logprob-score) and over-
debiasing (1—TA-score) for BERT-base and BART-
base. Similar patterns were observed for the other
PLMs (cf., Figure 3 in the Appendix).

For both axes, a lower value indicates better per-
formance, and an ideal model would be completely
unbiased (SEAT-v1/SEAT-v2/logprob-score = 0) and
still retain typical associations to gender (1— TA-
score = 0) after debiasing. Generally, we see that
the hyper-parameters we choose for each debiasing
method result in an effective trade-off, and that as
the strength of debiasing increases, there is a gen-
eral increase in loss of typical associations. Overall,
CDS appears to achieve the best trade-off across
metrics and models. Taken together, our results
highlight the importance of measuring both debi-
asing and over-debiasing effects when assessing
model bias and debiasing methods, as the complete
bleaching of all gender associations, including typ-

"8We train each model on a single NVIDIA V100 GPU,
and the training process takes around 5 hrs.

ical associations, may negatively impact model per-
formance on downstream tasks.

8 Discussion and Conclusions

We introduce an approach to measure the effects of
over-debiasing, i.e. the loss of typical associations,
after model debiasing. We also presented a system-
atic comparison of debiasing methods across bias
metrics and PLM architectures. We focus on gen-
der as the bias dimension, and develop TA-Gender,
a dataset of over 2.6K sentence pairs for measuring
over-debiasing through probes for typical associa-
tions. We show that three widely used debiasing
methods (CDS, ER and SD) have a tendency to over-
remove gender associations, highlighting the need
to develop debiasing methods that eliminate bias
without removing important associations.

We emphasize that the notion of typical associa-
tions can depend on the application and user profile,
and recommend using it in combination with other
diagnostic tests (see § 9 for further discussion).
To the best of our knowledge we are one of the
first studies to investigate over-debiasing, and our
results pave way for a number of future research
directions, including extending the methodology to
other bias dimensions (e.g., race or religion), ex-
plaining the discrepancies of bias metrics across
models and data conditions, and improving debias-
ing methods to reduce the extent of over-debiasing.



9 Ethical Considerations

The distinction between debiasing and loss of infor-
mation can be a fine line, especially in the context
of complex concepts such as gender, however, suc-
cessful debiasing hinges on retained model utility.
We proposed a metric and model to help capture
the subtle distinction between problematic and less
problematic associations. In doing so, we made a
number of simplifications and assumptions which
must be made explicit: (1) we assume a binary
notion of gender, which does not reflect the com-
plexity of the concept (Cao and Daumé III, 2020);
(2) our benchmark encodes largely cis-normative
associations, glossing over the fact that e.g., trans-
men are well capable of motherhood and that gen-
der can be fluid over time; (3) our method can-
not account for figurative language ("He is such a
princess about [...]").

Responsible use. We encourage researchers who
use our benchmark to adhere to the following
recommendations: First, it should be considered
whether the assumptions listed above reflect the
world view and use case of the modeler and/or
application. Second, we recommend to use our
dataset and metric in combination with a range of
other evaluation metrics and data sets, for instance
StereoSet or WEAT, in order to obtain a holistic
view of model performance.
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A Computation of Effect Size and
p-value

Given two sets of target words T} and 15 and two
sets of attribute words A7 and As, the normalized
association (denoted as effect size) is

meanger, s(x, Al, A2) — meanyecr,s(y, Al, A2)

std_dev,er, uTys(w,A1,A42)
Where s(t, A1, Ag) is computed by:
meange A, asso(t, a) — meanpe a,asso(t,b)

asso(t,a) computes associations between the tar-
get word ¢ and the attribute word a. For SEAT-v1 and
SEAT-v2, t and a will be converted into the target
sentence and attribute sentence, then the associa-
tions is computed as the cosine distance between
sentence embeddings. For logprob-score, the associ-
ation is the normalized probabilities of target words
produced by masked token prediction.

The permutation test is used in WEAT for mea-
suring significance of results. The null hypothesis
is that there is no difference between 77 and 15
in terms of their associations to A; and A,. The
permutation test computes the likelihood of the
null hypothesis by computing the probability that
a random permutation of the target words would
generate the greater or equal difference in sample
means. Let (T}, T%) denote the set of all possible
partitions of target sets 77 U T5, then the p-value of
permutation test is

P’I“Obi[S(Tli, TQZ, Al, Ag) 2 S(Tl, TQ, Al, Ag)]

Where S(Tl, TQ, Al, AQ) is

D s(w, Ar, Ag) = Y s(y, Ar, Ag)

xzeT) yeTs
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Female-specific words: actress, aunt, bride, businesswoman, chairwoman, congresswoman, councilwoman,
daughter, female, gal, girl, girlfriend, goddess, granddaughter, grandma, grandmother, heiress, her, heroine, hostess,
housewife, lady, lesbian, mama, matriarch, mistress, mom, mommy, mother, niece, nun, pregnant, princess, queen,
saleswoman, schoolgirl, sister, spokeswoman, stepdaughter, stepmother, wife, woman

Male-specific words: boy, boyfriend, bridegroom, brother, businessman, dad, daddy, danseur, father, gentleman,
godfather, grandfather, grandpa, grandson, his, husband, male, man, nephew, schoolboy, son, stepfather, stepson,
uncle, widower

Table 9: The list of attribute words for TA-Gender (in alphabetical order).

Female-dominated Occupations: secretary, childcare worker, billing clerk, phlebotomist, vocational nurse,
medical records technician, speech-language pathologist, paralegal, hairdresser, bookkeeper, kindergarten teacher,
medical assistant, dietitian, housekeeper, dental hygienist, teacher assistant, registered nurse, health aide, reception-
ist, dental assistant

Male-dominated Occupations: plumber, operating engineer, security system installer, mason, mining machine
operator, floor installer, heating mechanic, carpenter, steel worker, electrician, logging worker, mobile equipment
mechanic, taper, bus mechanic, service technician, conductor, repairer, roofer, firefighter, electrical installer

Table 10: The list of profession terms from Bartl et al. (2020) used in this work. Validation set terms are denoted
in italics.

Hyper-parameter Values

Swap rate [0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95]
A [0.2,0.3,0.4,0.5,0.75, 1.0, 1.5, 2.0]
Ratio of pairs [0.01, 0.05, 0.1, 0.15, 0.2, 0.4, 0.6, 1.0]

Table 11: Varied hyper-parameters for investigating the trade-off between debiasing and over-debiasing effects.
The gender-flipping rate (swap rate), A, and the proportions of adopted paired words (ratio of pairs) separately
controls the debiasing effect of CDS, ER and SD.

Hyper-parameter BERT-base BERT-large GPT2 GPT2-medium BART-base BART-large

Swap rate 1.0 1.0 0.9 0.9 1.0 1.0
A 0.5 0.5 0.5 1.0 1.25 1.25
Ratio of pairs 0.05 0.05 1.0 1.0 0.07 0.07
Batch size 8 2 8 2 8 2
Learning rate 2e-5 2e-5 5e-5 5e-5 2e-5 2e-5
Epoch 8 8 8 8 8 8

Table 12: Hyper-parameters that decided by the development set. The gender-flipping rate (swap rate), A, and the
proportions of adopted paired words (ratio of pairs) separately controls the debiasing effect of CDS, ER and SD.
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Figure 3: Trade-off between debiasing and over-debiasing for BERT-large (a); BART-large (b); GPT2 (c); and
GPT2-medium (d). Debiasing performance is measured using SEAT-v1 (left); SEAT-v2 (mid); and logprob-score
(right); .
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