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Abstract

Pretrained language models (PLMs) have001
demonstrated success across many natural lan-002
guage processing tasks. However, they have003
been shown to encode gender bias present in004
the corpora they are trained on. Existing bias005
mitigation methods are usually devised to re-006
move all associations related to gender. This007
can hurt the performance of PLMs, because008
of a possible loss of typical associations (e.g.,009
not associating the word “mother” with fe-010
male). To measure the extent of loss of typ-011
ical gender associations (i.e. over-debiasing),012
we introduce the Typical Associations evalua-013
tion corpus for Gender (TA-Gender). We find014
that three popular debiasing methods result in015
substantial loss of typical gender associations.016
Our results highlight the importance of mitigat-017
ing bias without removing typical gender as-018
sociations, and our dataset constitutes the first019
benchmark to evaluate information loss.1020

1 Introduction021

In recent years, pretrained language models (PLMs)022

(Devlin et al., 2019; Radford et al., 2019; Lewis023

et al., 2020) trained on large-scale corpora have024

become the de-facto backbone of modern NLP sys-025

tems. These models are trained on minimally fil-026

tered real world text which reflects social biases027

of the real world (Sun et al., 2019; Bender et al.,028

2021), which in turn are encoded in PLMs and can029

propagate into downstream applications (Bolukbasi030

et al., 2016; Caliskan et al., 2017; Kiritchenko and031

Mohammad, 2018; May et al., 2019; Kurita et al.,032

2019). Considering the wide use of PLMs, the033

propagation of social bias in these models poses a034

danger of reinforcing stereotypes (Sun et al., 2019;035

Bender et al., 2021).036

A number of methods have been introduced to re-037

move social bias from PLMs (Zhao et al., 2017; Lu038

1Data and code are available at www.removed_for_
anonymity.com

et al., 2020; Zmigrod et al., 2019; Hall Maudslay 039

et al., 2019; Liang et al., 2020; Huang et al., 2020), 040

which are designed to bleach all associations with 041

the debiasing target (e.g., gender) from PLMs in a 042

non-discriminate fashion. A loss of typical associ- 043

ations (e.g., not associating “dad” with male) can 044

result in over-debiasing and hurt performance of 045

PLMs and their utility in downstream tasks such as 046

question answering or common sense reasoning. 047

This paper presents a systematic analysis of gen- 048

der debiasing and over-debiasing across a diverse 049

range of PLMs using established debiasing meth- 050

ods. We conduct a suite of experiments to com- 051

pare a number of bias evaluation metrics and intro- 052

duce new metrics to measure the effects of over- 053

debiasing in English. Specifically, we introduce the 054

Typical Associations evaluation corpus for Gender 055

(TA-Gender), a template-based challenge dataset 056

that measures the degree of typical associations 057

present in PLMs (Figure 1, top). 058

The boundary between typical and inappropri- 059

ate is fluid, and we highlight weaknesses and put 060

forward usage recommendations of our approach: 061

(1) we treat gender as binary, as common in re- 062

lated work (Manzini et al., 2019; Bartl et al., 2020), 063

but this by no means reflect the complexity of the 064

concept (Cao and Daumé III, 2020); (2) our data 065

set encodes typical, not factual, associations: we 066

acknowledge the fluidity of the concept of gender, 067

and the fact that concepts like “pregnancy” and 068

“fatherhood” are not fully restricted to one gen- 069

der;2 (3) our method cannot account for figurative 070

language3 or cultural differences in language use 071

across communities. Further discussion and recom- 072

mendation on how to use our benchmark can be 073

found in the Ethical Considerations (Section 9). 074

Our experiments test three widely used debias- 075

ing methods — counterfactual data substitution 076

(Hall Maudslay et al., 2019), embedding regular- 077

2E.g., trans men can and do become pregnant.
3E.g., "Dad is such a drama queen!"
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TA1 My is one of the saleswomen.

daughter (X) son (7)

TA2 My is a danseur.
uncle (X) aunt (7)
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SS1 Girls tend to be more than boys.
determined (X) soft (X) fish (7)

SS2 Every male acts .
soft (X) dumb (X) target (7)

Figure 1: Two examples each from our TA-Gender data
set (top) vs. the StereoSet benchmark (bottom).

ization (Huang et al., 2020) and sentence debias078

(Liang et al., 2020) — to debias a number PLMs:079

BERT (Devlin et al., 2019), GPT2 (Radford et al.,080

2019) and BART (Lewis et al., 2020). Our results081

confirm prior results that all debiasing methods082

are effective in removing biases, but they also re-083

veal that these methods lead to a substantial loss084

of typical gender associations. Lastly, we explore085

the trade-off between debiasing and over-debiasing.086

While our work focuses on gender as just one di-087

mension of social biases, the presented framework088

can be extended to additional bias dimension such089

as racial or religious bias (exercising caution when090

defining typicality, as discussed above for the gen-091

der case). In sum, our contributions are092

• A systematic evaluation of debiasing methods093

and bias metrics over a representative selec-094

tion of PLMs of varying sizes.095

• A benchmark data set, TA-Gender, designed096

to quantify the extent to which debiasing in-097

curs a loss of typical gender associations.098

• An analysis of the extent of over-debiasing099

across four debiasing methods and six PLMs.100

2 Related Work101

Bias Evaluation Caliskan et al. (2017) propose102

the Word Embedding Association Test (WEAT) to103

measure biases in word embeddings through the104

strength of association between target words (e.g.,105

gender pronouns) and attribute words (e.g., gender106

neutral occupations). An unbiased model should107

exhibit no difference between the associations of108

attribute words with target words of different gen-109

der. May et al. (2019) extended this to biases in110

pretrained contextualized language models through111

the Sentence Encoder Association Test (SEAT), by112

encoding Caliskan et al. (2017)’s WEAT terms in113

simple sentences, and measuring the associative 114

strength of target sentences and attribute sentences 115

as the cosine distances between their sentence em- 116

beddings. Focusing on masked language models, 117

Kurita et al. (2019) propose logprob-score to evalu- 118

ate bias in BERT. Instead of using cosine distances 119

between embeddings, the association between tar- 120

get and attribute words is estimated by the probabil- 121

ity of masked token predictions. We use both SEAT 122

and logprob-score to evaluate bias in this work. 123

An alternative to template-based bias evaluation 124

methods are crowdsourced datasets that capture 125

societal notions of stereotypes across domains in- 126

cluding gender, race or religion (Nadeem et al., 127

2020; Nangia et al., 2020). We consider the gen- 128

der portion of StereoSet (Nadeem et al., 2020) 129

in this work, which consists of crowd-sourced tu- 130

ples of sentences capturing a stereotyped, an anti- 131

stereotyped, and a semantically meaningless ver- 132

sion of the same context (Figure 1, bottom). As 133

such, StereoSet can be leveraged to evaluate bias 134

(leveraging anti-stereotyped vs stereotyped alter- 135

natives) as well as the basic language modeling 136

abilities of pretrained language models (leveraging 137

the semantically meaningful vs meaningless alter- 138

natives). While StereoSet can provide an approxi- 139

mate measure of the extent of over-debiasing, the 140

test is designed to probe stereotypical associations 141

and general language modeling abilities. In con- 142

trast, our proposed dataset (TA-Gender), directly 143

focuses on typical (i.e., (near) factual) information 144

by using templates that directly probe for typical 145

associations. Figure 1 illustrates the differences be- 146

tween TA-Gender and StereoSet. We compare the 147

Stereoset LM-score against our proposed benchmark 148

in our over-debiasing study (§ 7.2). 149

Bias Mitigation Several debiasing methods have 150

been proposed in previous work. One line of 151

work focuses on modifying training data to remove 152

bias. Lu et al. (2020) propose counterfactual data 153

augmentation to remove gender bias. For each 154

sentence, it generates a counterfactual sentence 155

which is identical except that all gender words are 156

swapped to terms of the opposite gender. Then the 157

union of original sentences and swapped sentences 158

are used for training. Name-based counterfactual 159

data substitution (CDS; Hall Maudslay et al. (2019)) 160

is a variant which swaps the gender words includ- 161

ing first names in-place for a random sub-set of 162

sentences to counterbalance bias. 163

Another line of work introduces additional bias- 164
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Template Sent A (correct) Sent B (incorrect)

Target is adj_attr. He is male. She is male.

Target is single_attr. This man is a danseur. This woman is a danseur.

As single_attr, Target deserves a
wonderful life.

As a dad, my husband deserves a won-
derful life.

As a dad, my wife deserves a wonderful
life.

As one of the plural_attr, Target
deserves a wonderful life.

As one of the housewives, she deserves
a wonderful life.

As one of the housewives, he deserves a
wonderful life.

Target is one of the plural_attr. My daughter is one of the saleswomen. My son is one of the saleswomen.

After Target made that decision,
his/her own life has been changed.

After my aunt made that decision, her
own life has been changed.

After my uncle made that decision, her
own life has been changed.

Table 1: List of templates in TA-Gender, together with examples of generated sentence pairs.

regularization terms into the loss function. Huang165

et al. (2020) propose embedding regularization166

(ER) for debiasing autoregressive models. The key167

idea of embedding regularization is to apply a reg-168

ularization term to encourage models to produce169

similar embeddings for sentences that only differ170

from each other in the gender words. Specifically,171

for each sentence s in the training set, a gender-172

swapped counterfactual sentence sc is generated.173

The cosine distance between embeddings of s and174

sc is added as a regularization term (Reg(s, sc)) to175

the language modeling objective (Llm(s)):176

L(s, sc) = Llm(s) + λReg(s, sc), (1)177

where λ denotes a weight parameter.178

Another family of methods employs post-hoc179

debiasing. Bolukbasi et al. (2016) propose word180

embedding debiasing to mitigate gender bias in181

word embeddings by establishing a gender sub-182

space using embeddings from a predefined list of183

gender-specific words e.g., “he”, “she”. This gen-184

der subspace is then removed from the final embed-185

dings. Sentence debias (SD; Liang et al. (2020))186

extends word embedding debiasing to the sentence187

level, and makes it amenable to removing gender188

bias from PLMs. Specifically, SD assumes access189

to a diverse set of sentences from real corpora with190

gender-specific words. Then the same methodol-191

ogy is applied over sentence embeddings in order192

to obtain gender-debiased sentence representations.193

3 Bias Mitigation194

We now describe the three debiasing methods used195

in our experiments (§3.2) and the data used by196

these methods (§3.1). In terms of PLMs, we in-197

clude small and large versions of BERT, GPT2,198

and BART in our experiments, as representative199

instances, respectively, of encoder, decoder, and200

encoder-decoder PLMs.201

3.1 Data 202

The GAP corpus (Webster et al., 2018) is a gender- 203

balanced dataset which is originally designed for 204

evaluating coreference resolution systems. It 205

consists of 4,454 diverse contexts sampled from 206

Wikipedia and is widely used for investigating gen- 207

der bias (Kurita et al., 2019; Bartl et al., 2020). 208

We follow Bartl et al. (2020) and split each multi- 209

sentence context into individual sentences. The 210

resulting data is used to train the debiasing meth- 211

ods, which we describe next. 212

3.2 Debiasing Methods 213

Counterfactual Data Substitution (CDS). Bartl 214

et al. (2020) tested CDS on BERT. Here, we extend 215

the method to GPT2 and BART. In line with Bartl 216

et al. (2020), we apply CDS on the GAP corpus,4 217

and fine-tune the PLMs based on the gender-flipped 218

data using their (unsupervised) pretraining objec- 219

tives.5 As the GAP corpus is gender-balanced, we 220

expect a debiasing effect for both male and female 221

associations after fine-tuning. 222

Embedding Regularization (ER). We use the 223

same set of paired gender words in CDS for swap- 224

ping gender words. ER is originally proposed for 225

GPT2, and we extend it to BERT and BART, with 226

two adjustments: (i) masked token prediction and 227

mask filling are used as training objectives for 228

BERT and BART respectively; and (ii) to produce 229

a sentence representation, we compute an average 230

of the contextual embeddings (i.e., representations 231

from the final layer) from the encoder for BERT 232

and decoder for BART. Note that the sentence rep- 233

4We use the list of paired gender words and implementa-
tion provided by Hall Maudslay et al. (2019).

5For BERT, we use the code provided by Gururangan
et al. (2020) for masking words. For BART, we follow stan-
dard masking procedures from Lewis et al. (2020) where 30%
words are masked.
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resentation for GPT2 is computed using the last234

hidden state, following Huang et al. (2020).6235

Sentence Debias (SD). We again use the same236

set of paired gender words in CDS and ER. We237

extend the method to GPT2 and BART, as it was238

originally designed for BERT. To compute the gen-239

der subspace, we use sentences containing gender-240

specific words from GAP. To compute sentence241

representations for GPT2, BERT and BART, we242

use the same approach as ER.243

4 Bias Evaluation244

To measure biases in the PLMs, we experiment245

with four metrics: SEAT-v1 (May et al., 2019), SEAT-246

v2 (Kurita et al., 2019), logprob-score (Kurita et al.,247

2019), and stereo-score (Nadeem et al., 2020). Be-248

fore explaining these metrics (§ 4.2), we first de-249

scribe the templated data which the first three met-250

rics rely on (§ 4.1).251

4.1 Data252

Table 3 illustrates the input for SEAT and logprob-253

score, respectively, each being a sentence including254

a target and an attribute word. Target words are255

words that are associated with the bias dimension256

of interest. In our case the bias dimension is gen-257

der, and so target words are gender words/pronouns.258

Attribute words are objectively neutral words that259

might have association with the bias dimension260

due to stereotypes, e.g., gender neutral occupa-261

tions words like “nurse". We take the union of262

target words previously adopted by Kurita et al.263

(2019) and Bartl et al. (2020) as target words to264

evaluate bias (see Table 2 for the full list). For at-265

tribute words, we use the occupations in Bartl et al.266

(2020).7 To convert these attribute and target words267

into sentences, we use the templates from Bartl et al.268

(2020) (Table 4) and May et al. (2019) (Table 5).8269

We divide the data into a development set (20%)270

and a test set (80%) based on the target words and271

attribute words, and use the dev set to tune the272

hyper-parameters of debiasing methods (§3.2).273

6Note that for GPT2, we also tested using the average
contextual embeddings as sentence representation but found
inferior performance.

7Bartl et al. (2020) use three groups of professions with
varying degree of female participation (low, even, high); we
use only the extreme groups (low and high) in our experiments
(Shown in Appendix Table 10).

8We use only 5 out of the original 9 SEAT templates from
May et al. (2019), as 4 of them are not covered by our bias
evaluation terms (e.g., templates with names and things).

Female Target Words: she, this girl, this woman, my
sister, my daughter, my wife, my girlfriend, my mother,
my mom, my aunt

Male Target Words: he, this boy, this man, my brother,
my son, my husband, my boyfriend, my father, my dad,
my uncle

Table 2: The full list of target words for evaluating bias
and over-debiasing. Validation set terms are in italics.

4.2 Metrics 274

Both SEAT and logprob-score measure bias by com- 275

puting the difference in association between the 276

target and attribute words (i.e. the effect size), and 277

an effect size closer to 0 indicates lower bias. We 278

also compute the p-value of a permutation test to 279

denote the significance of the effects size (Kurita 280

et al., 2019; May et al., 2019) .9 281

logprob-score The association between target 282

and attribute words in a sentence s is computed 283

as the log probability ratio between: (1) the tar- 284

get word in s with only the target word masked; 285

and (2) the target word in s with both the target 286

and attribute masked. logprob-score is originally 287

proposed for BERT, and it can be applied without 288

modification for BART.10 As GPT2 does not use 289

masked tokens, we do not assess it using this metric. 290

logprob-score uses the templates in Table 4. 291

SEAT-v1 The original SEAT introduced by May 292

et al. (2019), using the templates in Table 5. Asso- 293

ciation of a target word with an attribute word is 294

measured as the cosine distance between their sen- 295

tence encodings. We compute sentence encodings 296

for GPT2, BERT and BART as we do for the debi- 297

asing methods (ER and SD): we use the final hidden 298

state for GPT2, and average contextual embeddings 299

for BERT (encoder) and BART (decoder). 300

SEAT-v2 A variant of SEAT introduced by Kurita 301

et al. (2019) that uses the same set of templates 302

as logprob-score where target and attribute words 303

appear within a single sentence (Table 4). The 304

converted sentence pair (for measuring cosine sim- 305

ilarity) has either of the target or attribute word 306

masked.11 307

9Details for computing effect size and p-value are in the
appendix.

10We feed the appropriately masked input to the the encoder,
and collect the probability of the target word from the decoder
based on its index.

11GPT2 does not use token masking, rendering SEAT-v1
the more suitable metric for this model.
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Template Converted sentence

SEAT-v1 "There is <person>.",
"There is a <profession>."

"There is my mom.",
"There is a nurse."

SEAT-v2 "<person> is a <profession>." "My mom is a < mask_token >.",
"< mask_token > is a nurse."

logprob-score "<person> is a <profession>." "My mom is a nurse."

Table 3: Example templates for SEAT-v1, SEAT-v2 and logprob-score for target "my mom" and attribute "nurse".

1 <person> is a <profession > .
2 <person> works as a <profession>.
3 <person> applied for the position of <profession>.
4 <person>, the <profession>, had a good day at work.
5 <person> wants to become a <profession>.

Table 4: SEAT-v2 and logprob-score templates (Bartl
et al., 2020).

Target Template Attribute Template

1 There is <person>. There is a <profession >.
2 Here is <person>. Here is a <profession >.
3 <person> is here. The <profession > is here.
4 <person> is there. The <profession > is there.
5 The person is <person>. The person is a <profession >.

Table 5: SEAT-v1 templates from May et al. (2019).

stereo-score Unlike the previous metrics, stereo-308

score measures the extent to which a PLM prefers a309

stereotypical association over anti-stereotypical as-310

sociation using crowdsourced sentences developed311

by Nadeem et al. (2020).12 For example, in context312

SS1 in Figure 1, the stereotypical option is “soft”313

and the anti-stereotypical option is “determined”314

(“fish” is not used here). A perfect stereo-score is315

50%, which implies that a language model is oblivi-316

ous to (anti-)stereotyping (i.e. it selects stereotypes317

and anti-stereotypes with equal probability) .318

5 Over-Debiasing Evaluation319

To measure the loss of typical gender associations320

in PLMs after debiasing, we develop the Typical321

Associations corpus for Gender (TA-Gender).322

The proposed dataset consists of 2,610 sentence323

pairs where each sentence contains one target word324

and one attribute word. Target words are gender325

nouns or pronouns and attribute words are char-326

acteristics or occupations which are typically as-327

sociated with one gender, such as “pregnant” or328

“spokeswoman”. For each sentence pair (a, b), sen-329

tence a contains a typical association while sen-330

tence b is atypical. The two sentences are identical,331

except for the gender target word. Table 1 shows332

12We use the “intrasentence” instances in original dataset,
as we are interested in only single-sentence context.

Model Layers Parameters

bert-base-uncased 12 110M
gpt2 12 117M
bart-base 6 enc + 6 dec 139M

bert-large-uncased 24 336M
gpt2-medium 24 345M
bart-large 12 enc + 12 dec 406M

Table 6: Configurations of the PLMs. “enc”=encoder,
“dec”=decoder.

several example sentence pairs. An ideal model 333

should assign a higher probability to sentence a, 334

compared to sentence b. 335

We use the same list of target words as used in 336

bias evaluation (§4; Table 2). For attribute words, 337

we use terms from Bolukbasi et al. (2016) and 338

filter them with the following rules: (i) we keep 339

only the singular forms; (ii) we remove multi-word 340

phrases when similar single-words exists (e.g., 341

“twin brother” is removed since “brother” exits); 342

(iii) we remove any words that can apply to both 343

genders (e.g., “chairman”). We do so by check- 344

ing each attribute word definition in two lexicons: 345

the Oxford English Dictionary13 and Wiktionary14, 346

and remove the attribute if at least one of the re- 347

sources suggests that the word is not gender spe- 348

cific. The resulting set of attribute words in TA- 349

Gender was independently verified by two authors 350

of this paper. It consists of 67 attribute words.15 351

We finally create six templates each containing a 352

target and attribute word, as listed in Table 1. 353

TA-score To quantify over-debiasing using TA- 354

Gender, we introduce TA-score which assesses ex- 355

tent to which a PLM prefers the sentence express- 356

ing a more typical association. Specifically, for 357

BERT and BART we mask the target word and 358

compute the probability of the two options (e.g. 359

“daughter” vs. “son” in example TA1 in Figure 1) 360

and select the option with a higher probability. For 361

13https://www.oed.com/
14https://www.wiktionary.org/
15Shown in Appendix Table 9.
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Model Metric Pre-deb. CDS ER SD

BERT-base

SEAT-v1 +1.700 −0.154 +0.008 −0.096
SEAT-v2 +1.943 +0.179 −0.245 +1.363
logprob-score +1.966 +1.329 +1.348 +1.098
stereo-score 63.93 58.84 59.34 53.97

BERT-large

SEAT-v1 +0.335 −0.166 −0.172 +0.026
SEAT-v2 +1.493 −0.002 −0.123 +0.325
logprob-score +1.972 +0.772 +0.865 +1.256
stereo-score 63.14 60.31 59.61 55.06

BART-base

SEAT-v1 +0.428 +0.072 +0.135 +0.178
SEAT-v2 +1.404 +0.270 +0.671 +0.629
logprob-score +1.651 +1.427 +1.466 +1.363
stereo-score 50.57 47.77 47.31 54.57

BART-large

SEAT-v1 +0.505 +0.028 +0.170 +0.027
SEAT-v2 +1.377 −0.137 +0.341 +1.049
logprob-score +1.691 +1.131 +1.046 +1.207
stereo-score 53.59 54.10 52.90 58.40

GPT2

SEAT-v1 +0.285 −0.079 −0.048 −0.027
SEAT-v2 +0.747 +0.210 −0.041 +0.023
stereo-score 62.67 54.74 54.68 57.92

GPT2-medium

SEAT-v1 −0.330 +0.080 +0.041 −0.076
SEAT-v2 −0.298 −0.104 +0.063 +0.012
stereo-score 65.58 47.34 38.66 55.16

Table 7: Evaluated bias before (column 3) and after (column 4–6) debiasing. “Pre-deb.” denotes pre-debias. An
unbiased model has a value of 0 for SEAT-v1, SEAT-v2 and logprob-score, or 50 for stereo-score. Bold values
indicate statistically significant effect sizes (p < 0.01).

GPT2, we compute sentence probabilities for the362

sentence pair and select the one with the higher363

probability. The ideal TA-score is 100.364

6 Implementation Details365

For model implementation, we use the Hugging-366

face transformers library (Wolf et al., 2020).367

We test both small and large variants of GPT2,368

BERT and BART; configurations of these models369

are given in Table 6. For the debiasing methods370

(CDS, ER and SD), we tune hyper-parameters based371

on their debiasing performance using the develop-372

ment partition of the bias evaluation data (§4.1).16373

7 Results374

Our experiments are designed to answer three ques-375

tions: (1) to what extent do common debiasing376

methods reduce the gender bias in PLMs of vary-377

ing size and architecture? (§7.1); (2) how much378

over-debiasing do the methods exhibit? (§7.2); and379

16See Table 12 in the appendix for hyper-parameters.

(3) what is the trade-off between debiasing and 380

over-debiasing (§7.3). 381

7.1 Debiasing Performance 382

We first look at the performance of debiasing meth- 383

ods (CDS, ER and SD) for removing bias in PLMs. 384

Table 7 presents the bias of PLMs before (column 385

3) and after (column 4–6) debiasing. A perfectly 386

unbiased model should have a value of 0 for SEAT- 387

v1, SEAT-v2 and logprob-score, and 50 for stereo- 388

score. CDS and ER results are averaged perfor- 389

mance over five runs. SD is deterministic so no 390

additional runs are necessary. 391

Before debiasing, all template-based metrics in- 392

dicate significant bias for all models except GPT2. 393

For a given model, we generally see consistent re- 394

sults over the three metrics, although in terms of 395

magnitude SEAT-v2 and logprob-score are more simi- 396

lar to each another (which is unsurprising given that 397

they use the same templates). Model size shows lit- 398

tle impact on bias (e.g. BERT-base vs. BERT-large), 399

across metrics. Curiously, both GPT2 and GPT2- 400

medium are less biased than BERT and BART ac- 401

6



Model Metric Pre-deb. CDS ER SD

BERT-base
TA-score 95.1 −13.2 −12.2 −27.4

LM-score 86.0 −0.10 −0.30 −17.6

BERT-large
TA-score 98.6 −13.2 −13.1 −24.0

LM-score 86.8 −4.20 −3.70 −15.5

BART-base
TA-score 82.4 −15.5 −15.6 −16.8

LM-score 69.0 +2.60 +2.70 +2.50

BART-large
TA-score 77.9 −9.60 −11.1 −15.9

LM-score 69.3 +2.20 −4.70 +4.20

GPT2
TA-score 76.7 −14.6 −19.8 −50.8

LM-score 93.3 −9.20 −9.50 −5.70

GPT2-medium
TA-score 84.2 −19.1 −19.9 −12.5

LM-score 93.6 −26.5 −37.8 −43.5

Table 8: Over-debiasing results. “Pre-deb.” denotes
pre-debias. An ideal model has a TA/LM-score of 100.
Last 3 columns present the difference of TA/LM-score
before and after debiasing (negative values indicate
over-debiasing).

cording to these metrics; in fact, GPT2-medium402

exhibits anti-stereotypical biases (indicated by neg-403

ative values). On the other hand, stereo-score shows404

a slightly different trend, where we found bias in405

BERT and GPT2 but not BART. These inconsisten-406

cies suggest that investigating the source of these407

discrepancies and their behavior under different408

models and data conditions is a pressing research409

direction. They also suggest that it is important to410

use a variety of metrics for assessing biases consid-411

ering their different outcomes.412

After debiasing, it can be seen that all debiasing413

methods (CDS, ER and SD) successfully removed414

bias to some extent (SEAT-v1/SEAT-v2/logprob-score415

closer to 0 or stereo-score closer to 50), and this416

is largely consistent across all metrics. The only417

minor exception here is BART’s stereo-score, al-418

though that can be explained by the fact that it has419

low bias in the first place (i.e. its pre-debias stereo-420

score is already close to 50). Overall, according421

to logprob-score there is still bias in the models af-422

ter debiasing (most effect sizes are >> 0). GPT2423

appears to retain the least bias after debiasing.424

7.2 Over-Debiasing425

Next we turn to the over-debiasing effects after426

PLMs are debiased, using our TA-Gender data and427

TA-score. We compare TA-score against LM-score428

from StereoSet (Nadeem et al., 2020), which is de-429

signed to test general language modelling abilities430

by measuring the selection accuracy of PLMs for431

masked words in a context sentence. Using the ex-432

ample of StereoSet context SS1 in Figure 1, a PLM 433

would be presented two options: (1) a stereotype or 434

anti-stereotype word (randomly chosen; e.g., “soft” 435

or “determined”) as the correct option; and (2) a 436

meaningless word in context (e.g., “fish”) as the in- 437

correct option. LM-score is the proportion of correct 438

predictions. 439

Table 8 shows the over-debiasing results using 440

TA-score and LM-score, both capturing genuine lan- 441

guage modeling abilities of PLMs. We desire 442

(a) high values before and after debiasing; and 443

(b) no drop in performance caused by debiasing, 444

assuming that typical associations will be retained. 445

The last 3 columns in Table 8 denote the difference 446

of TA/LM-score before and after debiasing. A neg- 447

ative value means the model is over-debiased and 448

there is a loss of typical associations. 449

Before debiasing, it can be seen that given a 450

PLM, the larger variant generally has better TA/LM- 451

score (exception: TA-score of BART), implying that 452

the larger models are better language models. Over- 453

all, BERT appears to be the best PLM in terms of 454

capturing typical gender associations (TA-score clos- 455

est to 100). 456

After debiasing, we observe that all debiasing 457

methods lead to a substantial decrease in TA-score 458

(negative values), indicating that there is an over- 459

debiasing effect (i.e. the debiased PLMs have lost 460

some typical gender associations). LM-score, on 461

the other hand, is largely unable to detect this; in- 462

terestingly, it even found improvements (positive 463

values) in some instances (e.g., BART). The only 464

exception here is GPT2-medium, where LM-score 465

detect a larger over-debiasing effects compared to 466

TA-score (although both found an over-debiasing 467

effect). These results highlight the effectiveness 468

of TA-score for measuring a loss of typical gender 469

association, unlike LM-score which tests general 470

language model ability. 471

7.3 Trade-off 472

Next we investigate if there is a trade-off between 473

debiasing and over-debiasing. To this end, we se- 474

lect an appropriate hyper-parameter to vary debi- 475

asing strength for each debiasing method.17 For 476

CDS, which replaces gender words in contexts to 477

create counterfactual sentences, we manipulate the 478

gender-flipping rate (i.e. the number of sentences 479

where a gender word is switched). For ER, we vary 480

17Table 11 in the Appendix lists all parameters and value
ranges.
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Figure 2: Trade-off between debiasing and over-debiasing for BERT-base (a) and BART-base (b). Debiasing
performance is measured using SEAT-v1 (left); SEAT-v2 (mid); and logprob-score (right).

the λ hyper-parameter which controls the regulari-481

sation term (Equation 1). SD uses a list of paired482

gender words to compute the gender sub-space and483

we vary the number of paired words to control the484

amount of debiasing, with the idea that using a485

smaller number of paired words would produce a486

less debiased model. 18487

Figure 2 shows the trade-off between debias-488

ing (SEAT-v1, SEAT-v2, or logprob-score) and over-489

debiasing (1−TA-score) for BERT-base and BART-490

base. Similar patterns were observed for the other491

PLMs (cf., Figure 3 in the Appendix).492

For both axes, a lower value indicates better per-493

formance, and an ideal model would be completely494

unbiased (SEAT-v1/SEAT-v2/logprob-score = 0) and495

still retain typical associations to gender (1− TA-496

score = 0) after debiasing. Generally, we see that497

the hyper-parameters we choose for each debiasing498

method result in an effective trade-off, and that as499

the strength of debiasing increases, there is a gen-500

eral increase in loss of typical associations. Overall,501

CDS appears to achieve the best trade-off across502

metrics and models. Taken together, our results503

highlight the importance of measuring both debi-504

asing and over-debiasing effects when assessing505

model bias and debiasing methods, as the complete506

bleaching of all gender associations, including typ-507

18We train each model on a single NVIDIA V100 GPU,
and the training process takes around 5 hrs.

ical associations, may negatively impact model per- 508

formance on downstream tasks. 509

8 Discussion and Conclusions 510

We introduce an approach to measure the effects of 511

over-debiasing, i.e. the loss of typical associations, 512

after model debiasing. We also presented a system- 513

atic comparison of debiasing methods across bias 514

metrics and PLM architectures. We focus on gen- 515

der as the bias dimension, and develop TA-Gender, 516

a dataset of over 2.6K sentence pairs for measuring 517

over-debiasing through probes for typical associa- 518

tions. We show that three widely used debiasing 519

methods (CDS, ER and SD) have a tendency to over- 520

remove gender associations, highlighting the need 521

to develop debiasing methods that eliminate bias 522

without removing important associations. 523

We emphasize that the notion of typical associa- 524

tions can depend on the application and user profile, 525

and recommend using it in combination with other 526

diagnostic tests (see § 9 for further discussion). 527

To the best of our knowledge we are one of the 528

first studies to investigate over-debiasing, and our 529

results pave way for a number of future research 530

directions, including extending the methodology to 531

other bias dimensions (e.g., race or religion), ex- 532

plaining the discrepancies of bias metrics across 533

models and data conditions, and improving debias- 534

ing methods to reduce the extent of over-debiasing. 535
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9 Ethical Considerations536

The distinction between debiasing and loss of infor-537

mation can be a fine line, especially in the context538

of complex concepts such as gender, however, suc-539

cessful debiasing hinges on retained model utility.540

We proposed a metric and model to help capture541

the subtle distinction between problematic and less542

problematic associations. In doing so, we made a543

number of simplifications and assumptions which544

must be made explicit: (1) we assume a binary545

notion of gender, which does not reflect the com-546

plexity of the concept (Cao and Daumé III, 2020);547

(2) our benchmark encodes largely cis-normative548

associations, glossing over the fact that e.g., trans-549

men are well capable of motherhood and that gen-550

der can be fluid over time; (3) our method can-551

not account for figurative language ("He is such a552

princess about [...]").553

Responsible use. We encourage researchers who554

use our benchmark to adhere to the following555

recommendations: First, it should be considered556

whether the assumptions listed above reflect the557

world view and use case of the modeler and/or558

application. Second, we recommend to use our559

dataset and metric in combination with a range of560

other evaluation metrics and data sets, for instance561

StereoSet or WEAT, in order to obtain a holistic562

view of model performance.563
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A Computation of Effect Size and727

p-value728

Given two sets of target words T1 and T2 and two729

sets of attribute words A1 and A2, the normalized730

association (denoted as effect size) is731

meanx∈T1s(x,A1, A2)−meany∈T2s(y,A1, A2)

std_devw∈T1∪T2s(w,A1,A2)
732

Where s(t, A1, A2) is computed by:733

meana∈A1asso(t, a)−meanb∈A2asso(t, b)734

asso(t, a) computes associations between the tar-735

get word t and the attribute word a. For SEAT-v1 and736

SEAT-v2, t and a will be converted into the target737

sentence and attribute sentence, then the associa-738

tions is computed as the cosine distance between739

sentence embeddings. For logprob-score, the associ-740

ation is the normalized probabilities of target words741

produced by masked token prediction.742

The permutation test is used in WEAT for mea-743

suring significance of results. The null hypothesis744

is that there is no difference between T1 and T2745

in terms of their associations to A1 and A2. The746

permutation test computes the likelihood of the747

null hypothesis by computing the probability that748

a random permutation of the target words would749

generate the greater or equal difference in sample750

means. Let (T i
1, T i

2) denote the set of all possible751

partitions of target sets T1 ∪T2, then the p-value of752

permutation test is753

Probi[s(T
i
1, T

i
2, A1, A2) ≥ s(T1, T2, A1, A2)]754

Where s(T1, T2, A1, A2) is755 ∑
x∈T1

s(x,A1, A2)−
∑
y∈T2

s(y,A1, A2)756
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Female-specific words: actress, aunt, bride, businesswoman, chairwoman, congresswoman, councilwoman,
daughter, female, gal, girl, girlfriend, goddess, granddaughter, grandma, grandmother, heiress, her, heroine, hostess,
housewife, lady, lesbian, mama, matriarch, mistress, mom, mommy, mother, niece, nun, pregnant, princess, queen,
saleswoman, schoolgirl, sister, spokeswoman, stepdaughter, stepmother, wife, woman

Male-specific words: boy, boyfriend, bridegroom, brother, businessman, dad, daddy, danseur, father, gentleman,
godfather, grandfather, grandpa, grandson, his, husband, male, man, nephew, schoolboy, son, stepfather, stepson,
uncle, widower

Table 9: The list of attribute words for TA-Gender (in alphabetical order).

Female-dominated Occupations: secretary, childcare worker, billing clerk, phlebotomist, vocational nurse,
medical records technician, speech-language pathologist, paralegal, hairdresser, bookkeeper, kindergarten teacher,
medical assistant, dietitian, housekeeper, dental hygienist, teacher assistant, registered nurse, health aide, reception-
ist, dental assistant

Male-dominated Occupations: plumber, operating engineer, security system installer, mason, mining machine
operator, floor installer, heating mechanic, carpenter, steel worker, electrician, logging worker, mobile equipment
mechanic, taper, bus mechanic, service technician, conductor, repairer, roofer, firefighter, electrical installer

Table 10: The list of profession terms from Bartl et al. (2020) used in this work. Validation set terms are denoted
in italics.

Hyper-parameter Values

Swap rate [0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95]
λ [0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, 2.0]
Ratio of pairs [0.01, 0.05, 0.1, 0.15, 0.2, 0.4, 0.6, 1.0]

Table 11: Varied hyper-parameters for investigating the trade-off between debiasing and over-debiasing effects.
The gender-flipping rate (swap rate), λ, and the proportions of adopted paired words (ratio of pairs) separately
controls the debiasing effect of CDS, ER and SD.

Hyper-parameter BERT-base BERT-large GPT2 GPT2-medium BART-base BART-large

Swap rate 1.0 1.0 0.9 0.9 1.0 1.0
λ 0.5 0.5 0.5 1.0 1.25 1.25
Ratio of pairs 0.05 0.05 1.0 1.0 0.07 0.07
Batch size 8 2 8 2 8 2
Learning rate 2e-5 2e-5 5e-5 5e-5 2e-5 2e-5
Epoch 8 8 8 8 8 8

Table 12: Hyper-parameters that decided by the development set. The gender-flipping rate (swap rate), λ, and the
proportions of adopted paired words (ratio of pairs) separately controls the debiasing effect of CDS, ER and SD.
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Figure 3: Trade-off between debiasing and over-debiasing for BERT-large (a); BART-large (b); GPT2 (c); and
GPT2-medium (d). Debiasing performance is measured using SEAT-v1 (left); SEAT-v2 (mid); and logprob-score
(right); .
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