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ABSTRACT

Cross-skeleton motion retargeting remains a challenging problem in computer
animation, particularly when dealing with characters having significantly dif-
ferent skeletal structures. Existing methods often struggle to preserve motion
semantics while adapting to diverse skeleton topologies. We propose a novel
transformer-based approach that leverages group-based body part processing and
spatio-temporal attention mechanisms. Our method organizes joints into semantic
body groups and employs attention pooling to generate robust representations that
capture both local joint relationships and global body dynamics. A transformer
encoder models temporal dependencies across these body-part tokens, learning
motion patterns invariant to specific skeletal configurations. The decoder uses
cross-attention to enable fine-grained motion transfer by attending to spatial body
part correspondences and temporal motion patterns. We incorporate T-pose con-
ditioning and joint text embeddings to provide anatomical structure awareness
during retargeting. Evaluation on the Mixamo dataset demonstrates particular
strength in handling complex skeletal variations while maintaining motion quality
and semantic consistency. We will release the code to facilitate reproducibility
and future research.

1 INTRODUCTION

Motion retargeting, the process of transferring motion sequences between characters with different
skeletal structures, is essential across gaming, virtual reality, film, and robotics industries. As digital
content creation scales, studios frequently need to adapt existing motion capture data to characters
with vastly different anatomical configurations. Currently, this process relies on manual interven-
tion by skilled animators, creating a time-intensive bottleneck in production pipelines. The need for
robust automated cross-skeleton motion retargeting has thus become a fundamental research chal-
lenge, promising to accelerate content creation while enabling efficient reuse of motion assets across
diverse character types.

With the advancement of deep learning, numerous approaches have emerged that leverage neural
networks to automate motion retargeting through an encode-decode paradigm: first encoding mo-
tion from the source skeleton, then decoding it for playback on the target skeleton. Early methods
Villegas et al. (2018); Aberman et al. (2020); Lee et al. (2023) employed RNN or Graph Neural Net-
works (GNNs) Zhou et al. (2021) to aggregate information across different skeletal structures, but
these approaches require predefined network architectures tailored to specific joint configurations,
limiting their generalizability across skeletons with varying numbers of joints. To address this limi-
tation, recent transformer-based methods Martinelli et al. (2024); Zhang et al. (2023) have been pro-
posed to handle variable skeletal topologies through self-attention and cross-attention mechanisms
Vaswani et al. (2023). However, the computational complexity of these attention operations scales
quadratically with sequence length and joint count, resulting in prohibitively high computational
costs and training times, particularly for long motion sequences or complex skeletal structures.

To address these limitations, we propose SPARK (Spatio-temporal Part-based Attention for
Retargeting Cross-skeleton Motion), a novel approach that efficiently handles skeletons with vary-
ing joint numbers while significantly reducing computational overhead. Our method introduces a
semantic body part grouping strategy that organizes skeletal joints into anatomically meaningful
clusters (e.g., torso, limbs, extremities), enabling consistent motion representation across diverse
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skeletal topologies. Rather than applying attention across all individual joints, SPARK operates on
these semantic groups, dramatically reducing the computational complexity from quadratic to linear
scaling. We further enhance efficiency through a spatio-temporal cross-attention mechanism that
captures both spatial relationships between body parts and temporal motion dynamics within a uni-
fied framework. Additionally, our approach incorporates a part-aware positional encoding scheme
that preserves the geometric relationships within each body part while maintaining semantic cor-
respondence across different skeletal structures. Extensive experiments demonstrate that SPARK
achieves superior motion quality compared to existing methods while requiring substantially less
training time and computational resources.

Our main contributions are threefold. First, we introduce a semantic body part grouping strategy
that enables consistent motion representation across skeletons with varying joint numbers while
reducing computational complexity from quadratic to linear scaling. Second, we propose a spatio-
temporal cross-attention mechanism combined with part-aware positional encoding that effectively
captures both spatial relationships between body parts and temporal motion dynamics. Third, we
demonstrate through comprehensive experiments that our approach achieves superior motion retar-
geting quality compared to state-of-the-art methods while requiring significantly less training time
and computational resources.

2 RELATED WORKS

2.1 SKELETAL VARIATION

Character skeletons can differ by topology, which we classify into three categories: Isomorphic
skeletons, Homeomorphic skeletons, and Non-homeomorphic skeletons. It is difficult to perform
motion retarget and motion gen with the last two skeletons. Handling homeomorphic skeletons
requires methods to bridge small topology gaps, such as extra or fewer joints along a chain. Graph-
based approaches like Skeleton-Aware Networks Aberman et al. (2020) reduce homeomorphic
skeletons to a common ”primal skeleton” representation using differentiable skeletal pooling op-
erations, enabling retargeting between characters with different joint counts by encoding to and de-
coding from a shared latent space. More recent works like M-R²ET Zhang et al. (2024) extend this
paradigm by learning automatic joint correspondence mappings and applying residual correction
modules to maintain motion semantics and physical plausibility across homeomorphic variations.
Non-homeomorphic cases involving fundamentally different skeletons are the most challenging and
historically require manual intervention, with traditional methods like Yamane et al. (2010) need-
ing paired motion data and Creature Features Seol et al. (2013) requiring manual joint mapping
definitions. Recent transformer-based approaches like Martinelli et al. (2024) treat each joint’s mo-
tion as an independent token using masked autoencoder training to learn implicit correspondences
without paired data, while the AnyTop framework Gat et al. (2025) uses diffusion-based generation
with graph-aware encoding to produce motions for arbitrary skeletal topologies. These approaches
demonstrate significant progress in cross-topology motion transfer, though performance on com-
pletely unseen skeleton types may still require further investigation.

2.2 MOTION RETARGETING

Cross-skeleton motion retargeting is challenging because motions must be transferred between char-
acters with different skeletal topologies and proportions while preserving semantic meaning. Early
works like SAN Aberman et al. (2020) and SAME Lee et al. (2023) define Graph Neural Networks
(GNNs) on skeleton graphs, enabling motions to be embedded into common latent spaces shared
by homeomorphic skeletons. PAN Hu et al. (2024) follows a similar GNN approach but focuses on
part-based operations. However, since these network structures are fundamentally defined based on
joint numbers, their generalization to characters with significantly different structural topologies re-
mains limited. To handle skeletons with varying joint numbers, recent approaches like R2ET Zhang
et al. (2023) and MoMa Martinelli et al. (2024) employ transformers to encode different skeleton
structures. While effective, the quadratic complexity of transformer attention mechanisms results in
substantial computational overhead and slow training. Motion2Motion Chen et al. (2025) proposes
a lightweight, training-free retargeting method based on motion retrieval. However, this approach
requires explicit joint correspondence definition between skeletons and assumes the availability of
motion sequences for target skeletons, which may not always be practical.
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3 PRELIMINARY

Attention pooling. Attention pooling is a mechanism that aggregates variable-length sequences
into fixed-size representations by learning to focus on the most relevant elements. It builds upon the
attention mechanism popularized by transformers, but differs in its application: while transform-
ers typically use attention for sequence-to-sequence modeling, attention pooling specifically targets
sequence-to-fixed-size aggregation.

Given a sequence of feature vectors X = {x1,x2, . . . ,xn} ∈ Rn×d, attention pooling employs the
same scaled dot-product attention as transformers but with learnable query vectors. We implement
attention pooling using the standard transformer attention structure, where a set of learnable query
vectors Q = {q1,q2, . . . ,qm} ∈ Rm×d are initialized with uniform random values and trained to
extract m different aspects of the input sequence.

For each query qi, the attention weights are computed as:

αi,j =
exp(qT

i xj/
√
d)∑n

k=1 exp(q
T
i xk/

√
d)

(1)

Then the pooled representation for query qi is zi =
∑n

j=1 αi,jxj . This results in a fixed-size output
Z = {z1, z2, . . . , zm} ∈ Rm×d regardless of the input sequence length n.

In our approach, we employ attention pooling with m = 4 queries for each skeleton part, allowing
the model to capture four distinct motion characteristics per body part. This design choice balances
expressiveness with computational efficiency, providing sufficient representational capacity while
maintaining manageable model complexity.

4 METHOD

Given a source skeleton Ss with Ns joints and a corresponding motion sequence Ms =

{p(1)
s ,p

(2)
s , . . . ,p

(T )
s }, where p

(t)
s ∈ RNs×6 represents the 6D joint rotations Zhou et al. (2020)

at time step t, our goal is to retarget this motion to a target skeleton St with Nt joints, producing a
semantically equivalent motion sequence Mt = {p(1)

t ,p
(2)
t , . . . ,p

(T )
t }, where p

(t)
t ∈ RNt×3.

The key challenge lies in the fact that Ss and St may have significantly different topologies, with
Ns ̸= Nt and distinct joint connectivity patterns and different joint bone lengths. Despite these
structural differences, the retargeted motion Mt must preserve the semantic content and naturalness
of the original motion Ms while being anatomically plausible for the target skeleton.

Formally, we seek to learn a mapping function f : (Ss,Ms,St) → Mt that maintains motion
semantics across different skeletal structures. This requires the model to understand the functional
correspondence between body parts across skeletons and transfer motion characteristics accordingly,
rather than relying on explicit joint-to-joint mappings.

In the following, we describe how we group joints in 4.1, how we design the motion encoder in 4.2,
and the decoder in 4.3. Finally, we show the overall architecture of our training and testing pipeline
in 4.4, followed by the training objective descriptions.

4.1 JOINT GROUPS

The key insight behind our approach is that human motion exhibits inherent locality: joints that are
anatomically distant have minimal direct influence on each other during movement. For instance,
hand movements are largely independent of foot motions, while joints within the same limb are
highly correlated due to shared neural pathways and biomechanical constraints. In mathematical
terms, spatially distant joints require minimal attention, whereas proximate joints within the same
kinematic chain exhibit strong interdependencies that benefit from focused attention mechanisms.

Inspired by this biological principle, we partition the skeleton into six semantic body parts: torso,
left leg, right leg, left arm, right arm, and head. This grouping reflects the natural organization of
the human musculoskeletal system, where each group corresponds to a functionally coherent unit
controlled by related neural and muscular structures.
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The torso group plays a central role in our partitioning scheme, as it represents the spine—the pri-
mary structural axis that coordinates overall body movement and serves as the kinematic foundation
for limb motions. So different from PAN Hu et al. (2024), in which each body group shares no joints
with other groups, to capture this biomechanical hierarchy, we design overlapping connections be-
tween groups: the left and right leg groups share the hip joint with the torso, while the left arm, right
arm, and head groups share the uppermost spine joint with the torso. This design ensures that the
torso’s coordinating influence on peripheral body parts is preserved while maintaining the locality
principle within each group. We will show in the ablation study about how this design helps improve
the performance of motion retargeting.

4.2 MOTION ENCODER

Spatial space attention. Our motion encoder processes each semantic body part independently
through a specialized spatial attention mechanism. For a motion sequence with T frames and batch
size B, we first organize joints according to the six semantic groups defined in Section 4.1. Each
joint group gi (where i ∈ {1, 2, . . . , 6}) contains a variable number of joints ni. To enable efficient
batch processing, we pad each group to its maximum joint count max(ni), resulting in group rep-
resentations of size RT×B×max(ni)×D, where D is the feature dimension. For each joint within a
group, we incorporate three types of embeddings to provide rich contextual information. (1) Po-
sitional encoding: we add learnable positional encodings E

(i)
pos ∈ Rmax(ni)×D to distinguish joint

positions within each group. (2) Joint name embeddings: we extract joint names from the original
BVH motion files and encode them using the T5 text encoder Raffel et al. (2023). The resulting
joint name embeddings E(i)

name ∈ Rmax(ni)×D capture semantic relationships between anatomically
similar joints. (3) T-pose embeddings: inspired by Guo et al. (2022); Gat et al. (2025), we adopt
a redundant representation for T-pose. Each joint j (except the root) consists of its root-relative
position pj ∈ R3, 6D joint rotation rj ∈ R6, linear velocity vj ∈ R3, and foot contact label
fcj ∈ {0, 1}. The T-pose representation is processed through an MLP and then added to every
frame-axis of the motion embedding, providing temporal context that helps the model understand
the motion dynamics and phase information across the sequence. After the enhancement, we get
X

(i)
enhanced = X(i) +E

(i)
pos +E

(i)
name + MLP(tpos(t)).

To improve the model’s robustness to varying skeletal structures, we randomly mask joints in
each group by setting them to zero. We then apply transformer-based attention pooling along
the joint axis for each group. As described in Section 3, each group employs m = 4 learn-
able queries, enabling the extraction of four distinct motion characteristics per body part Z(i) =

AttentionPooling(X(i)
enhanced,Q

(i)), where Q(i) ∈ R4×D are the learnable query vectors for group
i, and Z(i) ∈ RT×B×4×D represents the pooled features. Finally, we concatenate the outputs from
all six groups to obtain a unified representation Z = Concat([Z(1),Z(2), . . . ,Z(6)]) ∈ RT×B×24×D.
This design yields 24 tokens (4 × 6) that capture the essential motion characteristics across all se-
mantic body parts while maintaining spatial locality within each group.

Temporal space attention. Following the spatial attention pooling, we process the temporal dy-
namics through our main transformer encoder blocks. The concatenated spatial features Z ∈
RT×B×24×D from the previous stage serve as input to this temporal processing module. We employ
multi-head attention mechanisms applied along the temporal axis to capture long-range temporal
dependencies in the motion sequence. The temporal attention operates on each of the 24 seman-
tic tokens independently, allowing the model to learn how motion characteristics evolve over time
within each body part.

For each token position j ∈ {1, 2, . . . , 24}, we extract the temporal sequence zj =

[z
(1)
j , z

(2)
j , . . . , z

(T )
j ]T ∈ RT×D and apply multi-head attention:

h
(ℓ)
j = MultiHeadAttn(h(ℓ−1)

j ) + h
(ℓ−1)
j (2)

h
(ℓ)
j = FFN(h

(ℓ)
j ) + h

(ℓ)
j (3)
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where h
(0)
j = zj , ℓ ∈ {1, 2, 3, 4} denotes the transformer block index, and FFN represents the

feed-forward network with residual connections and layer normalization.

Our temporal encoder consists of 4 transformer blocks, providing sufficient depth to model com-
plex temporal patterns while maintaining computational efficiency. Each block follows the stan-
dard transformer architecture with multi-head self-attention, position-wise feed-forward networks,
and residual connections. The output of the temporal encoder is a refined representation H ∈
RT×B×24×D that encodes both spatial motion characteristics and their temporal evolution, serving
as a comprehensive motion representation for the subsequent retargeting process.

The structure of the motion encoder is shown on the left side of Figure. 1.

Figure 1: Our Transformer-based encoder and decoder structure. Attention pooling is only used in
the encoder. The uniformly sampled noise to put into the decoder is of the same size as the output
motion.

4.3 MOTION DECODER

The decoder transforms the encoded motion representation into retargeted motion for the target
skeleton through a cross-attention mechanism. The temporal encoder output H ∈ RT×B×24×D

serves as keys and values for cross-attention, providing the motion context from the source skeleton.

Decoder input construction. The decoder input is initialized with random uniform values Yinit ∈
RT×B×Nt×D, where Nt is the number of joints in the target skeleton. This shape matches the
desired output dimensions, allowing the decoder to directly predict joint positions for the target
skeleton.

To provide the decoder with essential information about the target skeleton structure and pose, we
also incorporate three types of embeddings: (1) Positional embeddings: target-specific positional
encodings E(t)

pos ∈ RNt×D distinguish joint positions within the target skeleton hierarchy. (2) Tar-
get joint name embeddings: joint names from the target skeleton are encoded using the same T5
text encoder, producing embeddings E(t)

name ∈ RNt×D that capture semantic correspondences with
source joints. (3) T-pose embeddings: the target skeleton’s T-pose configuration Etpose ∈ RNt×D

provides structural constraints and default joint relationships specific to the target anatomy. Then
the enhanced decoder input is formulated as Yinput = Yinit +E

(t)
pos +E

(t)
name +Etpose.

Decoder architecture. The decoder employs a standard transformer decoder architecture with both
self-attention and cross-attention mechanisms. The cross-attention mechanism uses the encoder
output H as both keys and values, enabling the decoder to attend to relevant motion patterns from
the source skeleton while generating motion for the target skeleton. Then the final decoder output
Yfinal ∈ RT×B×Nt×D represents the predicted retargeted motion, where each position corresponds
to a joint trajectory in the target skeleton that preserves the semantic motion content from the source.
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The structure of the motion decoder is shown on the right side of Figure. 1.

4.4 OVERALL ARCHITECTURE

Figure 2 illustrates the complete pipeline of our cross-skeleton motion retargeting framework when
training and testing separately.

For training, given a source motion sequence MA performed by skeleton SA, and a target skeleton
SB , the encoder E takes the source motion and skeleton as input and produces a semantic motion
representation: HA = E(MA,SA), where HA ∈ RT×B×24×D captures the essential motion
characteristics through our spatial-temporal attention mechanism.

Then the decoder D utilizes both the encoded motion representation HA and the target skeleton
structure SB to generate the retargeted motion MB = D(HA,SB), where MB represents the mo-
tion sequence adapted for skeleton SB . Then the predicted motion MB and the target skeleton SB is
sent into the same encoder E to get the semantic motion representation HB = E(MB ,SB), where
HB ∈ RT×B×24×D captures the essential motion characteristics for motion MB and skeleton SB .
Besides that, HA and SA are also sent into the same decoder D to get predicted motion MA′ .

Motion Reconstruction Training. To enable the encoder to effectively capture spatial-temporal
information from motion sequences conditioned on specific skeleton structures, and to ensure the
decoder can accurately decode motion based on attention mechanisms and skeleton constraints, we
employ motion reconstruction training. This self-supervised approach trains the model to recon-
struct the original motion from its encoded representation.

Specifically, for a given motion-skeleton pair (MA,SA), we first encode the motion to obtain the
semantic representation HA, then use the same decoder to reconstruct the original motion MA′ =
D(HA,SA).

The reconstruction loss is formulated as a mean squared error between the original motion and the
reconstructed motion Lrec = MSE(MA,MA′) = 1

N

∑N
i=1 ||M

(i)
A −M(i)

A′ ||22, where N represents
the total number of joint-frame pairs in the motion sequence. This reconstruction objective ensures
that the encoder-decoder pair learns to preserve essential motion information while being condi-
tioned on the specific skeletal structure, providing a strong foundation for cross-skeleton motion
transfer.

Cycle consistency training While motion reconstruction training ensures the encoder-decoder pair
can preserve motion information for a given skeleton, it does not guarantee that the learned represen-
tations are skeleton-agnostic. To address this limitation, we introduce cycle consistency training that
enforces the encoder to learn motion features that are independent of specific skeleton structures.

The key insight behind cycle consistency training is that if the encoder truly captures skeleton-
invariant motion semantics, then the attention representations HA and HB derived from the same
underlying motion should be similar, regardless of the different skeletons on which they are condi-
tioned. By enforcing this consistency, we encourage the encoder to focus on the intrinsic motion
characteristics rather than skeleton-specific details.

Specifically, given the attention representations HA = E(MA,SA) from the original motion-
skeleton pair and HB = E(MB ,SB) from the retargeted motion-skeleton pair, we formulate the cy-
cle consistency loss as Lcyc = MSE(HA,HB) =

1
T×B×24×D

∑
t,b,j,d ||HA

(t,b,j,d)−HB
(t,b,j,d)||22,

where the summation is over all temporal frames t, batch samples b, semantic joints j, and feature
dimensions d.

For testing, our framework performs cross-skeleton motion retargeting in a straightforward forward
pass, as illustrated in Figure 2(b). Given a source motion sequence MA and target skeleton SB ,
the trained encoder E processes the source motion and its corresponding skeleton to extract the
skeleton-agnostic motion representation: HA = E(MA,SA). Then, the trained decoder D takes
this motion representation along with the target skeleton structure to generate the retargeted motion
MB = D(HA,SB).

6
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4.5 TRAINING OBJECTIVE.

Our complete training objective combines the reconstruction loss with additional regularization
terms to ensure motion quality:

Ltotal = Lrec + λcycLcyc + λrootLroot + λFKLFK , (4)

where Lrec and Lcyc are the reconstruction and cycle consistency losses described above, and the
additional terms provide crucial constraints for realistic motion generation.

Root stability loss: The root stability loss Lroot ensures that the global positioning and orientation
of the character remain consistent during reconstruction. This loss is computed as the mean squared
error between the root position and rotation of the original motion MA and the reconstructed motion
MA′ : Lroot = MSE(pA

root,p
A′

root) + MSE(rAroot, r
A′

root), where proot and rroot represent the root
position and rotation respectively. This constraint is particularly important for maintaining character
stability and preventing unrealistic drifting or spinning behaviors.

Forward kinematic loss: The forward kinematic loss LFK enforces anatomical consistency by en-
suring that the reconstructed motion respects the skeletal constraints and joint limitations. This loss
computes the difference between the forward kinematic solutions of the original and reconstructed
motions: LFK = MSE(FK(MA),FK(MA′)), where FK(·) represents the forward kinematic func-
tion that converts joint angles to 3D joint positions.

The hyperparameters λcyc, λroot, and λFK control the relative importance of each loss component.
We set λcyc = 20, λroot = 7 and λFK = 100 in our experiment.

Figure 2: The pipeline of our training and testing process.

5 EXPERIMENTS

Implementation details. Our method is implemented in PyTorch and trained on NVIDIA A100
GPUs. We use the AdamW optimizer with a starting learning rate of 1e− 4, momentum parameters
β1 = 0.9 and β2 = 0.99, and weight decay of 0.999. The training is conducted with a batch size of
16 and a motion window length of 64 frames.

Datasets. We evaluate our method on the Mixamo dataset Adobe (2025). We collect 12 charac-
ters (Big Vegas, Warrok W Kurniawan, Michelle, Amy, Castle Guard 01, Doozy, Mousey, Mutant,
Prisoner B Styperek, Remy, Goblin, Skeletonzombie T Avelange) for training and 7 characters (Big
Vegas, Warrok W Kurniawan, Michelle, AJ, Kaya, Paladin J Nordstrom, Peasant Man) for test-
ing, which in total results in 1756 motion sequences at 30 frames per second. Following previous
methods Martinelli et al. (2024); Lee et al. (2023); Zhang et al. (2023); Aberman et al. (2020), we
eliminate finger joints from all skeletons to focus on body motion retargeting. However, unlike ap-
proaches that select joints by specific joint names, we remove joints by filtering out those containing
finger-related identifiers (e.g., ”finger”, ”thumb”, ”index”) and other joints related to human clothes
or hair. This deletion-based approach results in skeletons with varying numbers of remaining joints,
which better reflects the diversity of real-world skeletal structures and poses additional challenges
for cross-skeleton motion transfer. Besides that, we also follow SAN Aberman et al. (2020) to split
joints to get more varied skeleton structures with different joint numbers. To comprehensively evalu-
ate our method’s generalization capability, we construct four evaluation splits based on the visibility

7
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of characters and motions during training: We have unseen character (uc), unseen motion (um), seen
character (sc), and seen motion (sm), resulting in four evaluation scenarios: sc+sm, sc+um, uc+sm,
uc+um.

Baselines. We compare our method with two recent state-of-the-art approaches for motion retar-
geting: R2ET Zhang et al. (2023) and PAN Hu et al. (2024). R2ET is a shape-aware method that
employs separate networks for skeletal structure and character geometry. Following our problem
setting, we train and evaluate only the skeleton network component. Since R2ET is limited to intra-
structural motion retargeting, we compare against it only on the same-skeleton scenarios. PAN
supports both intra-structural and cross-structural retargeting, enabling comprehensive comparison
across all test conditions. For fair evaluation, we train both baselines on our training dataset and
evaluate them on our test set using identical experimental protocols. The training dataset contains
no paired motion sequences across different characters. We evaluate the retargeted motions by com-
paring the global joint positions of the generated sequences against the ground truth motions for the
target skeleton. The evaluation metric is Mean Squared Error (MSE).

5.1 QUANTITATIVE RESULTS

We compare our method with R2ET and PAN in the four evaluation scenarios defined above. The
quantitative results are shown in Table 1. Our method demonstrates superior performance across
all test conditions, achieving the lowest MSE in both intra-structural and cross-structural motion
retargeting tasks. Notably, our approach shows particularly strong improvements in the challenging
cross-structural scenarios (us+sm and us+um), where the skeletal differences are most pronounced.
The consistent performance gains across different motion types (same vs. unlike motions) indicate
that our group-based body part processing and spatio-temporal attention mechanisms effectively
capture motion semantics while adapting to diverse skeletal topologies.

Intra-Structural Cross-Structural
sc+sm sc+um uc+sm uc+um mean sc+sm sc+um uc+sm uc+um mean

R2ET 0.07388 0.15561 0.24846 0.36392 0.21047 - - - - -
PAN 0.00629 0.00852 0.01030 0.01079 0.00898 0.01294 0.01412 0.01378 0.01660 0.01436
Ours 0.00262 0.00495 0.00297 0.00189 0.00310 0.00282 0.00586 0.00390 0.00226 0.00371

Table 1: Comparison with state-of-the-art methods on intra-structure and cross-structure motion
retargeting. sc: seen character, uc: unseen character, sm: seen motion, um: unseen motion. The
evaluation metric is MSE, so a smaller value means a better performance.

5.2 QUALITATIVE RESULTS

Figure 3 presents qualitative comparisons of motion retargeting results across different methods.
Our approach produces more natural and semantically consistent motions compared to the baselines.
The difference in joint count results from our joint deletion policy, in contrast to their joint selection
approach compared to their choice policy.

5.3 ABLATION STUDY

To validate the effectiveness of each component in our proposed method and understand their indi-
vidual contributions to motion retargeting performance, we conduct comprehensive ablation studies
on key design choices. We systematically analyze the following components: (1) Group joint pol-
icy: We examine whether allowing shared joints between different body parts improves the grouping
strategy compared to strictly disjoint body part assignments. (2) Joint masking: We evaluate the
impact of randomly masking joints to zero before attention pooling, which is designed to enhance
robustness to varying skeletal structures. (3) Motion representation: We compare using the full
motion representation, including both joint positions and rotations, versus using only rotational in-
formation. (4) Forward kinematics loss: We analyze whether incorporating the FK loss term
improves the physical plausibility and accuracy of the retargeted motions. We also introduce two
experiment settings. One is that the training motion set for each character is distinct. The other
is that every two characters have at most 10 paired motion sequences. Results shown in Table. 2
indicates that: (1) Allowing shared joints between body parts significantly improves performance
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Figure 3: Qualitative results of our method and the two baselines.

across all metrics. Shared joints provide vital connections between different body parts. Without
shared connections, body parts can move independently, leading to unnatural motion artifacts and
reduced overall quality. (2) The random joint masking strategy demonstrates clear benefits, improv-
ing robustness metrics and overall retargeting quality. This validates our hypothesis that masking
forces the attention mechanism to learn more generalizable representations that can handle varying
skeletal topologies effectively. (3) Including joint positions in the motion representation reduces
performance compared to using rotations alone. This occurs because positional information con-
tains skeleton-specific characteristics that make it difficult for the attention pooling network to de-
compose skeleton structure from pure motion dynamics, hindering the model’s ability to generalize
across different character structures.

Distinct Intra-Structural Cross-Structural
w/o share 0.00428 0.00512
w/o mask 0.00403 0.00487
w/ pos 0.00321 0.00394
w/o FK 0.00346 0.00420
Our’s Full 0.00310 0.00371

(a) Ablation study for distinct training data.

Mix Intra-Structural Cross-Structural
w/o share 0.00502 0.00589
w/o mask 0.00431 0.00501
w/ pos 0.00344 0.00399
w/o FK 0.00369 0.00425
Our’s Full 0.00317 0.00422

(b) Ablation study for mixed training data.

Table 2: Ablation study results showing the impact of different components on both intra-structure
and cross-structure motion retargeting performance.The performance differences between distinct
and mixed training data demonstrate that unpaired data provides the model greater freedom to learn
features independent of skeletal structure.

6 CONCLUSION

In this paper, we presented a novel skeleton-aware motion retargeting method that effectively trans-
fers motions across characters with different skeletal structures. Our approach leverages spatial
attention pooling with joint grouping to extract skeleton-invariant motion representations while pre-
serving essential movement dynamics. We hope this work contributes to advancing cross-character
motion transfer techniques and may be beneficial for applications in animation, gaming, and virtual
reality where diverse character motions are required.
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A APPENDIX: LLM USAGE

Large Language Models were used to assist with manuscript writing and polishing, specifically for
language refinement, grammar checking, and improving text clarity and flow. The LLM was not
involved in research ideation, methodology, experimental design, or data analysis—all scientific
concepts and contributions were developed by the authors. The authors take full responsibility for
all manuscript content and ensure compliance with ethical guidelines.
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