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Abstract

Automated feature engineering plays a critical role in improving predictive model performance
for tabular learning tasks. Traditional automated feature engineering methods are limited
by their reliance on pre-defined transformations within fixed, manually designed search
spaces, often neglecting domain knowledge. Recent advances using Large Language Models
(LLMs) have enabled the integration of domain knowledge into the feature engineering
process. However, existing LLM-based approaches use direct prompting or rely solely on
validation scores for feature selection, failing to leverage insights from prior feature discovery
experiments or establish meaningful reasoning between feature generation and data-driven
performance. To address these challenges, we propose LLM-FE, a novel framework that
combines evolutionary search with the domain knowledge and reasoning capabilities of
LLMs to automatically discover effective features for tabular learning tasks. LLM-FE
formulates feature engineering as a program search problem, where LLMs propose new
feature transformation programs iteratively, and data-driven feedback guides the search
process. Our results demonstrate that LLM-FE consistently outperforms state-of-the-art
baselines, showcasing generalizability across diverse models, tasks, and datasets.
Code: https://anonymous.4open.science/r/LLM-FE-5525

1 Introduction

Feature engineering, the process of transforming raw data into meaningful features for machine learning
models, is crucial for improving predictive performance, particularly when working with tabular data Domingos
(2012). In many tabular prediction tasks, well-designed features have been shown to significantly enhance
the performance of tree-based models, often outperforming deep learning models that rely on learned
representations (Grinsztajn et al., 2022). However, data-centric tasks such as feature engineering are one
of the most time-consuming and resource-intensive processes in the tabular learning workflow (Anaconda;
Hollmann et al., 2024), as they require experts and data scientists to explore many possible combinations in
the vast combinatorial space of feature transformations. Classical feature engineering methods (Kanter &
Veeramachaneni, 2015; Khurana et al., 2016; 2018; Horn et al., 2020; Zhang et al., 2023) construct extensive
search spaces of feature processing operations, relying on various search and optimization techniques to
identify the most effective features. However, these search spaces are mostly constrained by predefined,
manually designed transformations and often fail to incorporate domain knowledge (Zhang et al., 2023).
Domain knowledge can serve as an invaluable prior for identifying these transformations, leading to reduced
complexity and more interpretable and effective features (Hollmann et al., 2024).

Recently, Large Language Models (LLMs) have emerged as a powerful solution to this challenge, offering
access to extensive embedded domain knowledge that can be leveraged for feature engineering. While recent
approaches have demonstrated promising results in incorporating this knowledge into automated feature
discovery, current LLM-based methods (Hollmann et al., 2024; Han et al., 2024) rely predominantly on direct
prompting mechanisms or validation scores to guide the feature generation process. These approaches do not
leverage insights from prior feature discovery experiments, thereby falling short of establishing meaningful
reasoning between feature generation and data-driven performance.
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Figure 1: Overview of the LLM-FE Framework. For a given dataset, LLM-FE follows these steps: (a)
New Feature Generation, where an LLM generates feature transformation hypotheses as programs for
a given tabular dataset; (b) Feature Engineering, where the feature transformation program is applied
to the underlying dataset, resulting in a modified dataset; (c) Feature Evaluation, where the modified
dataset with the new features is evaluated using a prediction model; (d) Experience Management, which
maintains a buffer of high-scoring programs that act as in-context samples for LLM’s iterative refinement
prompt. The features generated by LLM-FE are interpretable, using LLM’s domain knowledge.

To address these limitations, we propose LLM-FE, a novel framework integrating the capabilities of LLMs
with tabular prediction models and evolutionary search to facilitate effective feature optimization. As shown
in Figure 1, LLM-FE follows an iterative process to generate and evaluate the hypothesis of the feature
transformation, using the performance of the tabular prediction model as a reward to enhance the generation
of effective features. Starting from an initial feature transformation program, LLM-FE leverages the LLMs’
embedded domain knowledge by incorporating task-specific details, feature descriptions, and a subset of
data samples to generate new feature discovery programs (Figure 1(a)). At each iteration, LLM acts
as a knowledge-guided evolutionary optimizer, which mutates examples of previously successful feature
transformation programs to generate new effective features (Meyerson et al., 2024). The newly proposed
features are then integrated with the original dataset to yield an augmented dataset (Figure 1(b)). The
prediction model’s performance is evaluated on a held-out validation set derived from the augmented dataset
(Figure 1(c)), provides data-driven feedback that, combined with a dynamic memory of previously explored
feature transformation programs (Figure 1(d)), guides the LLM to refine its feature generation iteratively.

Table 1: Comparison of existing feature engineering methods.
Method Domain Feedback Complex Multi-Feature

Knowledge Driven Features Refinement
AutoFeat Horn et al. (2020) ✗ ✗ ✓ ✗

OpenFE Zhang et al. (2023) ✗ ✗ ✓ ✗

FeatLLM Han et al. (2024) ✓ ✗ ✗ ✗

CAAFE Hollmann et al. (2024) ✓ ✓ ✗ ✗

OCTree Nam et al. (2024) ✓ ✓ ✗ ✗

LLM-FE ✓ ✓ ✓ ✓

Table 1 compares LLM-FE to several state-
of-the-art classical and LLM-based feature en-
gineering methods. Traditional methods lack
adaptability and deeper contextual understand-
ing, while LLM-based methods generate simple
features (Küken et al., 2024) or use feedback to
iteratively refine only a single rule. In contrast,
LLM-FE supports all four aspects by leverag-
ing LLM-based domain knowledge and feedback-driven optimization to generalize well across table prediction
tasks. We evaluate LLM-FE with GPT-3.5-Turbo OpenAI (2023) and Llama-3.1-8B-Instruct Dubey et al.
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(2024) backbones on classification and regression tasks across diverse tabular datasets. LLM-FE consistently
outperforms the state-of-the-art feature engineering methods, identifying contextually relevant features that
improve downstream performance. In particular, we observe improvements with tabular models like XGBoost
(Chen & Guestrin, 2016), TabPFN (Hollmann et al., 2022), and MLP (Gorishniy et al., 2021). Our analysis also
highlights the importance of evolutionary search in achieving effective results. The major contributions of
this work can be summarized as.

• We introduce LLM-FE, a novel framework that casts feature engineering as an LLM-guided evolutionary
optimization problem, integrating domain knowledge, data-driven evaluation, and long-term memory for
iterative refinement.

• Our experimental results demonstrate the effectiveness of LLM-FE, showcasing its ability to outperform
state-of-the-art baselines, demonstrating generalizability across different predictors and LLM backbones.

• Through a comprehensive ablation study, we highlight the critical role of domain knowledge, evolutionary
search, data-driven feedback, and data samples in guiding the LLM to efficiently explore the feature space
and discover impactful features more effectively.

2 Related Works

Feature Engineering. Feature engineering involves creating meaningful features from raw data to improve
predictive performance (Hollmann et al., 2024). The growing complexity of datasets has driven the automation
of feature engineering to reduce manual effort and optimize feature discovery. Traditional automated feature
engineering methods include tree-based exploration, transformation enumeration, and learning-based methods
(Khurana et al., 2016; Kanter & Veeramachaneni, 2015; Nargesian et al., 2017; Zhang et al., 2023). These
traditional approaches often fail to leverage domain knowledge for feature discovery, making LLMs well-suited
for such tabular prediction tasks due to their prior contextual domain understanding.

LLMs and Optimization. Advances in LLMs have shown that they can adapt to novel tasks via prompt
engineering and in-context learning without retraining (Brown et al., 2020; Wei et al., 2022). Yet, their
outputs can be inconsistent or factually incorrect (Madaan et al., 2024; Zhu et al., 2023), motivating research
into mechanisms that refine or stabilize generations. A growing body of work has explored coupling LLMs
with evaluators in iterative or evolutionary frameworks, where feedback, mutation, and crossover guide
solution search (Lehman et al., 2023; Wu et al., 2024; Meyerson et al., 2024). This paradigm has yielded
progress in prompt optimization (Yang et al., 2024; Guo et al., 2023), neural architecture search (Zheng
et al., 2023; Chen et al., 2024), mathematical heuristic discovery (Romera-Paredes et al., 2024), and symbolic
regression (Shojaee et al., 2024). Building on this trajectory, our LLM-FE framework operationalizes LLMs
as evolutionary optimizers, combining their rich prior knowledge with systematic, data-driven refinement to
discover compact and high-performing features.

LLMs for Tabular Learning. The application of LLMs to structured data has typically relied on converting
tables into textual representations (Dinh et al., 2022; Hegselmann et al., 2023; Wang et al., 2023), or tailoring
tokenization and pre-training strategies for tabular robustness (Yan et al., 2024). For tabular prediction
specifically, LLMs have been employed in fine-tuning and few-shot in-context paradigms (Hegselmann et al.,
2023; Nam et al., 2023), as well as in direct feature engineering. For example, FeatLLM (Han et al., 2024)
generates binary rules, while CAAFE (Hollmann et al., 2024) exploits task descriptions to generate contextual
features, and OCTree (Nam et al., 2024) iteratively improves features through decision tree reasoning.
However, these approaches often rely on incremental refinement of a single candidate. In contrast, LLM-FE
maintains a diverse pool of promising programs and employs evolutionary search to efficiently traverse the
feature space, leveraging mutation and crossover to uncover interpretable and data-driven transformations.
This design enables the discovery of features that are not only predictive but also aligned with human
interpretability, bridging the gap between domain-informed reasoning and optimization. Appendix E further
illustrates the qualitative differences between LLM-FE and the baseline methods.
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3 LLM-FE Approach

3.1 Problem Formulation

A tabular dataset D comprises N rows (or instances), each characterized by d columns (or features). Each
data instance xi is a d-dimensional feature vector with feature names denoted by C = {cj}d

j=1. The dataset
is accompanied by metadata M, which contains feature descriptions and task-specific information. For
supervised learning tasks, each instance xi is associated with a corresponding label yi, where yi ∈ {0, 1, ..., K}
for classification tasks with K classes, and yi ∈ R for regression tasks. Given a labeled tabular dataset
D = (xi, yi)N

i=1 and prediction model f to map from the input feature space X to its corresponding label space
Y, the feature engineering objective is to determine an optimal feature transformation T , which enhances
the performance of a predictive model when trained on the transformed input space. Formally, the feature
engineering task can be defined as:

max
T

E(f∗(T (Xval)), Yval) (1)

subject to:

f∗ = arg min
f

Lf (f(T (Xtr)), Ytr) (2)

where (Xtr, Ytr) and (Xval, Yval) are the sub-training set and validation set, respectively, that is derived from
the training data (Xtrain, Ytrain). The feature transformation T generated by the LLM πθ and defined as
T = πθ(Xtrain), meaning the transformation is learned from the training data by the LLM. The predictive
model f∗ is then trained on the transformed training data T (Xtrain) to minimize loss. Consequently, the
bilevel optimization problem seeks to identify the feature transformations T that maximize the performance E
on T (Xval) while minimizing the loss function on the transformed training data, thereby efficiently exploring
the potential feature space.

3.2 Feature Generation

Figure 1(a) illustrates the feature generation step that uses an LLM to create multiple new feature trans-
formation programs, leveraging the model’s prior knowledge, reasoning, and in-context learning abilities to
effectively explore the feature space.

3.2.1 Input Prompt

To facilitate the creation of effective and contextually relevant feature discovery programs, we develop
a structured prompting methodology. The prompt is designed to provide comprehensive data-specific
information, an initial feature transformation program for the evolution starting point, an evaluation function,
and a well-defined output format (see Appendix B.2 for more details). Our input prompts p are composed of
the following key elements:
Instruction. The LLM is assigned the task of finding the most relevant features to help solve the given
task. The task emphasizes using the LLM’s prior knowledge of the dataset’s domain to generate features.
The LLM is explicitly instructed to generate novel features and provide clear step-by-step reasoning for their
relevance to the prediction task. Moreover, since LLMs tend to generate simple features, we specifically
instruct the LLM to generate complex features.
Dataset Specification. After providing the instructions, we provide LLM with the dataset-specific
information from the metadata M. This information encompasses a detailed description of the intended
downstream task, along with the feature names C and their corresponding descriptions. In addition, we
provide a limited number of representative samples from the tabular dataset. To improve the effective
interpretation of the data, we adopt the serialization approach used in previous works (Dinh et al., 2022;
Hegselmann et al., 2023; Han et al., 2024). We serialized the data samples as follows:

Serialize(xi, yi, C) = ‘If c1 is x1
i , ..., cd is xd

i . Then Result is yi’ (3)

By providing dataset-specific details, we guide the language model to focus on the most contextually pertinent
features that directly support the dataset and task objective.
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Evaluation Function. The evaluation function, incorporated into the prompt, guides the language model
to generate feature transformation programs that align with performance objectives. These programs augment
the original dataset with new features, which are assessed on the basis of a prediction model’s performance
when trained on the augmented data. The model’s evaluation score on the augmented validation set serves
as an indicator of feature quality. By including the evaluation function in the prompt, the LLM generates
programs that are inherently aligned with the desired performance criteria.

In-Context Demonstration. Specifically, we sample the k highest-performing demonstrations from
previous iterations, enabling the LLM to build on successful outputs. The iterative interaction between the
LLM’s generative outputs and the evaluator’s feedback, informed by these examples, facilitates a systematic
refinement process. With each iteration, the LLM progressively improves its outputs by leveraging patterns
and insights identified in previous successful demonstrations.

3.2.2 Feature Sampling

At each iteration t, we construct the prompt pt by sampling the previous iteration as input to the LLM πθ,
resulting in the output T1, . . . , Tb = πθ(pt) representing a set of b sampled programs. To promote diversity
and maintain a balance between exploration (creativity) and exploitation (prior knowledge), we employ
stochastic temperature-based sampling. Each of the sampled feature transforms (Ti) is executed before
evaluation to discard error-prone programs. This ensures that only valid and executable feature transformation
programs are considered further in the optimization pipeline. In addition, to ensure computational efficiency,
a maximum execution time threshold is enforced, discarding any programs that exceed it.

3.3 Data-Driven Evaluation

As illustrated in Figure 1(b), we use the generated features to augment the original dataset with the newly
derived features. Similar to (Hollmann et al., 2024; Nam et al., 2024), our feature evaluation process comprises
two stages: (i) model training on the augmented dataset, and (ii) performance assessment for feature quality
(Figure 1(c)). We fit a tabular predictive model f∗, to the transformed training set T (Xtr), by minimizing
the loss Lf as shown in Eq.1. Subsequently, we evaluated the LLM-generated feature transformations T by
evaluating the model’s performance on the augmented validation set T (Xval) (see Eqs. 1 and 2). As explained
in Section 3.1, the objective is to find optimal features that maximize the performance E , i.e., accuracy for
classification and error metrics for regression.

3.4 Experience Management

Algorithm 1 LLM-FE
Require: LLM πθ, Dataset D, Metadata M, Itera-

tions T , Model f , Metric E
1: P0 ← BufferInit()
2: T ∗, s∗ ← null,−∞
3: p← UpdatePrompt(D,M)
4: for t = 1 to T−1 do
5: pt ← p + Pt−1.topk()
6: {Tj}b

j=1 ← πθ(pt)
7: for j = 1 to b do
8: sj ← FeatureScore(f, Tj ,D, E)
9: if sj > s∗ then

10: T ∗, s∗ ← Tj , sj

11: end if
12: Pt ← UpdateBuffer(Pt−1, Tj , sj)
13: end for
14: end for
15: return T ∗, s∗

To promote diverse feature discovery and avoid stag-
nation in local optima, LLM-FE employs evolutionary
multi-population experience management (Figure 1(d)) to
store feature discovery programs in a dedicated database.
Then, it uses samples from this database to construct
in-context examples for LLM, facilitating the generation
of novel features. This step consists of two components:
(i) multi-population memory to maintain a long-term mem-
ory buffer, and (ii) sampling from this memory buffer to
construct in-context example demonstrations. After eval-
uating the feature transforms in iteration t, we store the
pair of feature transforms and score (T , s) in the popu-
lation buffer Pt to iteratively refine the search process.
To effectively evolve a population of programs, we adopt
a multi-population model inspired by the ‘island’ model
employed by (Cranmer, 2023; Shojaee et al., 2024; Romera-
Paredes et al., 2024). The program population is divided
into m independent islands, each evolving separately and
initialized with a copy of the user’s initial example (see Figure 9(d)). This enables parallel exploration of the
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feature space, mitigating the risk of suboptimal solutions. At each iteration t, we select one of the m islands
and sample programs from the memory buffer to update the prompt with new in-context examples. The newly
generated feature samples b are evaluated, and if their scores sj exceed the current best score, the feature
score pair (Tj , sj) is added to the same island from which the in-context examples were sampled. To preserve
diversity and ensure that programs with different performance characteristics are maintained in the buffer,
we cluster programs within islands based on their signature, defined by their scores. To build refinement
prompts, we follow the sampling process from (Romera-Paredes et al., 2024), first sampling one of the m
available islands, followed by sampling the k programs from the selected island to create k-shot in-context
examples for the LLM. Cluster selection prefers high-scoring programs and follows Boltzmann sampling
(De La Maza & Tidor, 1992) with a score-based probability of choosing a cluster i: Pi = exp(si/τc)∑

i
exp(si/τc)

, where
si denotes the mean score of the i-th cluster and τc is the temperature parameter. The sampled feature
transformation programs from the memory buffer are then included in the prompt as examples to guide LLM
toward successful feature transformations—incurring negligible computational overhead. Refer to Appendix
5.3 for more details. Algorithm 1 presents the pseudocode of LLM-FE. We begin with the initialization of
a memory buffer BufferInit, incorporating an initial population that contains a simple feature transform.
This initialization serves as the starting point for the evolutionary search for feature transformation programs
to be evolved in the subsequent steps. At each iteration t, the function topk is used to sample k in-context
examples from the population of the previous iteration Pt−1 to update the prompt. Subsequently, we prompt
the LLM using this updated prompt to sample b new programs. The sampled programs are then evaluated
using FeatureScore, which represents the Data-Driven Evaluation (Section 3.3). After T iterations, the
best-scoring program T ∗ from Pt and its score s∗ are returned as the optimal solution found for the problem.
LLM-FE employs an iterative search to enhance programs, harnessing the LLM’s capabilities. Learning from
the evolving pool of experiences in its buffer, the LLM steers the search toward effective solutions.

4 Experimental Setup
We evaluated LLM-FE on a range of tabular datasets, encompassing classification and regression tasks.
Our experimental analysis included quantitative comparisons with baselines and detailed ablation studies.
Specifically, we assessed our approach using three known tabular predictive models with distinct architectures:
(1) XGBoost, a tree-based model (Chen & Guestrin, 2016), (2) MLP, a neural model (Gorishniy et al., 2021),
and (3) TabPFN (Hollmann et al., 2022), a transformer-based foundation model (Vaswani, 2017). The results
highlight LLM-FE’s capability to generate effective features that consistently enhance the performance of
different prediction models across datasets.

4.1 Datasets
We followed (Hollmann et al., 2024) to select datasets from previous feature engineering works like (Han
et al., 2024; Hollmann et al., 2024; Zhang et al., 2023) that include descriptive feature information. Our
analysis contains 16 classification and 10 regression datasets, each containing mixed categorical and numerical
features. We also include 8 large-scale, high-dimensional classification datasets to ensure comprehensive
evaluation. These datasets were sourced from established machine learning repositories, including OpenML
(Vanschoren et al., 2014; Feurer et al., 2021), UCI Machine Learning Repository (Asuncion et al., 2007), and
Kaggle. Each dataset is accompanied by metadata, which includes a natural language description of the
prediction task and descriptive feature names. We partitioned each dataset into train and test sets using an
80-20 split. Following (Hollmann et al., 2024), we evaluated all methods over five iterations, each time using
a distinct random seed and train-test splits. For more details, check Appendix A.

4.2 Baselines
We evaluated LLM-FE against state-of-the-art feature engineering approaches, including OpenFE (Zhang
et al., 2023) and AutoFeat (Horn et al., 2020), as well as LLM-based methods CAAFE (Hollmann et al., 2024),
FeatLLM (Han et al., 2024) and OCTree (Nam et al., 2024). We used XGBoost as the default tabular data
prediction model in comparison with baselines and employed GPT-3.5-Turbo as the default LLM backbone
for all LLM-based methods (Tables 2 and 3). To ensure a fair comparison, all LLM-based baselines were
configured to query the LLM backbone for a total of 20 samples until they converged to their best performance.
Appendix B.1 contains additional implementation details.
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Table 2: Performance of XGBoost on Classification Datasets using various Feature Engineering
(FE) Methods, evaluated using accuracy (higher values indicate better performance). We report the mean
values and standard deviation across five splits. ✗ : denotes execution time of greater than 12 hours or
failure due to execution errors. bold: indicates the best performance. underline: indicates the second-best
performance. ‘n’: indicates the number of samples; ‘p’: indicates the number of features.

Dataset n p Base Classical FE Methods LLM-based FE Methods LLM-FE
AutoFeat OpenFE CAAFE FeatLLM OCTree

adult 48.8k 14 0.873 ± 0.002 ✗ 0.873 ± 0.002 0.872 ± 0.002 0.842 ± 0.003 0.870 ± 0.002 0.874 ± 0.003

arrhythmia 452 279 0.657 ± 0.019 ✗ ✗ ✗ ✗ ✗ 0.659 ± 0.018

bank-marketing 45.2k 16 0.906 ± 0.003 ✗ 0.908 ± 0.002 0.907 ± 0.002 0.907 ± 0.002 0.900 ± 0.002 0.907 ± 0.002

breast-w 699 9 0.956 ± 0.012 0.956 ± 0.019 0.956 ± 0.014 0.960 ± 0.009 0.967 ± 0.015 0.969 ± 0.009 0.973 ± 0.009

blood-transfusion 748 4 0.742 ± 0.012 0.738 ± 0.014 0.747 ± 0.025 0.749 ± 0.017 0.771 ± 0.016 0.755 ± 0.026 0.751 ± 0.036

car 1728 6 0.995 ± 0.003 0.998 ± 0.003 0.998 ± 0.003 0.999 ± 0.001 0.808 ± 0.037 0.995 ± 0.004 0.999 ± 0.001

cdc diabetes 253k 21 0.849 ± 0.001 ✗ 0.849 ± 0.001 0.849 ± 0.001 0.849 ± 0.001 0.849 ± 0.001 0.849 ± 0.001

cmc 1473 9 0.528 ± 0.029 0.505 ± 0.015 0.517 ± 0.007 0.524 ± 0.016 0.479 ± 0.015 0.525 ± 0.027 0.535 ± 0.019

communities 1.9k 103 0.706 ± 0.016 ✗ 0.704 ± 0.009 0.707 ± 0.013 0.593 ± 0.012 0.708 ± 0.016 0.711 ± 0.012

covtype 581k 54 0.870 ± 0.001 ✗ 0.885 ± 0.007 0.872 ± 0.003 0.554 ± 0.001 0.832 ± 0.002 0.882 ± 0.003

credit-g 1000 20 0.751 ± 0.019 0.757 ± 0.017 0.758 ± 0.017 0.751 ± 0.020 0.707 ± 0.034 0.753 ± 0.021 0.766 ± 0.015

eucalyptus 736 19 0.655 ± 0.024 0.664 ± 0.028 0.663 ± 0.033 0.679 ± 0.024 ✗ 0.658 ± 0.041 0.668 ± 0.027

heart 918 11 0.858 ± 0.013 0.857 ± 0.021 0.854 ± 0.020 0.849 ± 0.023 0.865 ± 0.030 0.852 ± 0.022 0.866 ± 0.021

myocardial 1.7k 111 0.784 ± 0.023 ✗ 0.787 ± 0.026 0.789 ± 0.023 0.778 ± 0.023 0.787 ± 0.031 0.789 ± 0.023

pc1 1109 21 0.931 ± 0.004 0.931 ± 0.014 0.931 ± 0.009 0.929 ± 0.005 0.933 ± 0.007 0.934 ± 0.007 0.935 ± 0.006

vehicle 846 18 0.754 ± 0.016 0.788 ± 0.018 0.785 ± 0.008 0.771 ± 0.019 0.744 ± 0.035 0.753 ± 0.036 0.769 ± 0.013

Mean Rank 4.26 4.89 3.26 3.31 4.94 3.84 1.47

Table 3: Performance of XGBoost on Regression Datasets using various Feature Engineering
(FE) Methods, evaluated using normalized root mean square error (N-RMSE) (lower values indicate better
performance). We report the mean and standard deviation across five splits. bold: indicates the best
performance. underline: indicates the second-best performance. ‘n’: indicates the number of samples; ‘p’:
indicates the number of features.

Dataset n p Base Classical FE Methods Base LLM LLM-FE
AutoFeat OpenFE

airfoil_self_noise 1503 6 0.013 ± 0.001 0.012 ± 0.001 0.013 ± 0.001 0.012 ± 0.001 0.011 ± 0.001
bike 17389 11 0.216 ± 0.005 0.223 ± 0.006 0.216 ± 0.007 0.218 ± 0.006 0.207 ± 0.006
cpu_small 8192 10 0.034 ± 0.003 0.034 ± 0.002 0.034 ± 0.002 0.034 ± 0.003 0.033 ± 0.003
crab 3893 8 0.234 ± 0.009 0.228 ± 0.008 0.224 ± 0.001 0.232 ± 0.010 0.223 ± 0.013
diamonds 53940 9 0.139 ± 0.002 0.140 ± 0.004 0.137 ± 0.002 0.137 ± 0.002 0.134 ± 0.002
forest-fires 517 13 1.469 ± 0.080 1.468 ± 0.086 1.448 ± 0.113 1.445 ± 0.096 1.417 ± 0.083
housing 20640 9 0.234 ± 0.009 0.231 ± 0.013 0.224 ± 0.005 0.239 ± 0.019 0.218 ± 0.009
insurance 1338 7 0.397 ± 0.020 0.384 ± 0.024 0.383 ± 0.022 0.384 ± 0.029 0.381 ± 0.028
plasma_retinol 315 13 0.390 ± 0.032 0.411 ± 0.036 0.392 ± 0.032 0.395 ± 0.038 0.388 ± 0.033
wine 4898 10 0.110 ± 0.001 0.109 ± 0.001 0.108 ± 0.001 0.109 ± 0.001 0.105 ± 0.001

Mean Rank 3.80 3.50 2.40 3.10 1.00

4.3 LLM-FE Configuration
In our experiments, we utilized GPT-3.5-Turbo and Llama-3.1-8B-Instruct as backbone LLMs, with a
sampling temperature parameter of t = 0.8 and the number of islands set to m = 3. At each iteration, the
LLM generated b = 3 feature transformation programs per prompt in Python. To ensure consistency with
baselines, LLM-FE was also configured with a total of 20 LLM samples for each experiment. Finally, we
sampled the top m (where m denotes the number of islands) feature discovery programs based on their
respective validation scores and reported the final prediction through an ensemble. More implementation
details are provided in Appendix B.2.

4.4 Results and Discussion
In Table 2, we compare LLM-FE against various feature engineering baselines across 16 classification datasets.
The results demonstrate that LLM-FE consistently enhances predictive performance from the base model
(using raw data). LLM-FE also obtains the lowest mean rank (best performance) at a lower computational
cost (see Appendix 5.3), showing better effectiveness in enhancing feature discovery compared to other leading
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baselines. To further evaluate the effectiveness of LLM-FE, we perform experiments on 10 regression datasets
using the same evaluation settings employed for the classification datasets. Due to the lack of regression data
implementations in the available codebases for LLM-based baselines, in Table 3, we restrict our comparison
to only non-LLM methods (OpenFE and AutoFeat), which have been previously validated on regression
tasks. The results indicate that LLM-FE outperforms all baseline methods, achieving the lowest mean rank
and consistently improving across all datasets. We provide additional analyses in Appendix C, including the
effect of hyperparameter optimization on LLM-FE and evaluations with alternative predictive models such as
CatBoost and Logistic Regression. We further study the transferability and generalizability of discovered
features across different LLM backbones, showing that LLM-FE remains robust and effective under varied
modeling and architectural choices.

4.5 Ablation Study

Classification Datasets0.55

0.60

0.65

0.70

Ac
cu

ra
cy

0.687

0.644

0.626

0.587

LLM-FE
w/o Data Examples

w/o Domain Knowledge
w/o Evolutionary Refinement

Figure 2: Aggregated ablation study results
across classification datasets, showcasing the im-
pact of individual components on LLM-FE’s perfor-
mance: (a) Data Examples, (b) Domain Knowledge,
and (c) Evolutionary Refinement. Values are nor-
malized with respect to the base LLM-FE model to
facilitate fair comparison across conditions.

We perform an ablation study on the classification
datasets (<10,000 samples) listed in Table 2 to as-
sess the contribution of each component in LLM-FE.
Figure 2 illustrates the impact of individual com-
ponents on overall performance, using XGBoost and
GPT-3.5-Turbo. We report the accuracy aggregated
and normalized over all the datasets. In the ‘w/o Do-
main Knowledge’ setting, dataset and task-specific
details are removed from the prompt and feature names
are anonymized with generic placeholders such as C1,
C2,. . . , Cn. In this way, we remove any semantic mean-
ing that could provide contextual insights about the
problem. Without domain knowledge, the performance
significantly drops to 0.626, underscoring its critical
role in generating meaningful features. The ‘w/o
Evolutionary Refinement’ setting) also leads to
the greatest decline in performance (0.587), emphasiz-
ing the importance of iterative data-driven feedback
in addition to domain knowledge for refining feature
transforms. Lastly, the results show that ‘w/o Data
Examples’ variant leads to only a slight performance
drop, as LLMs might struggle to comprehend the nu-
ances and patterns within the data samples. LLM-FE
benefits significantly from each component, leading to
an improvement.

5 Analysis

5.1 Memorization in Feature Engineering

Recent work demonstrates that LLMs can unintentionally memorize data under certain conditions (Carlini
et al., 2021; Bordt et al., 2024), raising concerns about whether improvements result from genuine LLM
reasoning or merely from recalling training examples. To probe this issue, we evaluate XGBoost with and
without LLM-FE using GPT-3.5-Turbo on datasets introduced by (Bordt et al., 2024), which are explicitly
constructed to detect memorization and are confirmed to be absent from model pretraining. We further include
datasets from (Hollmann et al., 2024), released after the September 2021 GPT training cutoff and provided on
Kaggle with hidden splits, making pretraining exposure highly unlikely. As shown in Table 4, LLM-FE delivers
modest but consistent performance gains across all datasets. This is a notable contrast to naive LLM feature
generators, which may inadvertently overfit or hallucinate domain relationships. Instead of relying solely on
the raw outputs of the LLM, LLM-FE iteratively selects, mutates, and evaluates candidate features based on
downstream model performance. This process acts as a filter that systematically suppresses memorization-
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driven artifacts and promotes features that generalize under repeated evaluation. While memorization remains
an important risk in LLM-driven tabular workflows, our results indicate that evolutionary refinement provides
a practical and effective safeguard, underscoring the need for future benchmarks that isolate and stress-test
these behaviors more directly.

Table 4: Comparison of the XGBoost with and without LLM-FE on five classification datasets.

Dataset Base LLM-FE
kidney-stones 0.761 ± 0.024 0.761 ± 0.027
health-insurance 0.756 ± 0.001 0.759 ± 0.001
pharyngitis 0.655 ± 0.008 0.660 ± 0.023
fico 0.715 ± 0.006 0.719 ± 0.009
acs-income 0.807 ± 0.002 0.809 ± 0.003

5.2 Bias Mitigation

LLMs also exhibit a pronounced bias toward a narrow set of simple mathematical operators such as addition,
subtraction, and absolute value when asked to generate feature transformations (Küken et al., 2024). These
biases arise from the pretraining corpora, where simple patterns dominate and thus become default strategies.
As a result, naive LLM-based feature engineering pipelines tend to produce repetitive, low-complexity
transformations that fail to exploit the richer compositional space of meaningful tabular operations. As
illustrated in Figure 3, CAAFE also tends to favor simple transformations with multiply and divide
operations covering up to 75% of the total operators. Despite this inherent bias, LLM-FE regularly discovers
and retains more sophisticated feature transformations through evolutionary refinement. Operators such as
groupbythenmean, groupbythenmin, groupbythenmax, residual, and sigmoid emerge far more frequently
under our evolutionary framework than in direct LLM generation. These higher-level operations capture
aggregation structure, class-conditional variation, and nonlinear relationships that simple arithmetic cannot
express. This outcome highlights an important point: while LLMs alone are biased toward oversimplified
transformations, our evolutionary search mechanism actively counteracts this tendency by (1) promoting
diversity, (2) evaluating transformations through empirical performance, and (3) iteratively refining candidate
features. Consequently, LLM-FE not only reduces the risk of memorization but also mitigates operator-
selection bias, enabling the discovery of expressive, domain-relevant features that would rarely surface through
naive prompting alone.

abs add divide multiply subtract square residual sigmoid groupby
thenmax

log groupby
thenmin

min/max groupby
thenmean

Operator

0.0
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0.2

0.3

0.4

0.5
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nc

y

Base LLM CAAFE LLM-FE

Figure 3: Frequency of Feature Engineering Operators. Comparison of operator usage between
LLM-FE and simple LLM baselines, highlighting the ability of evolutionary refinement to extract more
complex and informative transformations.
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5.3 Efficiency Analysis
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Figure 4: Pareto Plot: comparing trade-off be-
tween performance (accuracy) vs time (in seconds)
for LLM-FE and other feature engineering baselines.

Evaluating feature quality through repeated model
training and validation is a fundamental compo-
nent of automated feature engineering pipelines, used
for both classical and LLM-based methods. While
LLM-FE maintains multiple evolutionary islands, this
design does not introduce additional computational
overhead in practice. To assess the practical effi-
ciency–performance trade-off of our approach, we fo-
cus on the larger and more challenging datasets from
Section 4.4, where high sample counts and rich fea-
ture spaces create a realistic stress test for automated
methods. Our comparative Pareto analysis (Figure 4)
contrasts the base model with multiple feature engineer-
ing baselines. Across all datasets, LLM-FE lies on the
Pareto frontier, consistently achieving higher predictive
performance while requiring nearly the same execution
time as OCTree, and substantially less runtime than
CAAFE. Competing approaches either require substan-
tially more runtime (CAAFE, OpenFE) or fail to reach
comparable accuracy (OCTree). Although the base
model remains the cheapest computationally, it does
so at a steep performance deficit. Overall, these results demonstrate that LLM-FE offers the best effi-
ciency–performance trade-off among all evaluated methods. It achieves state-of-the-art predictive performance
on large, complex tabular datasets, with no additional overhead introduced by its evolutionary design.

5.4 Generalizability Analysis

Table 5: Performance improvement by LLM-FE
using different prediction models and LLM back-
bones. We report the aggregated values for accuracy
on classification tasks and normalized root mean square
error on regression tasks. All results represent the mean
and standard deviation computed across five splits. bold:
indicates the best performance. TabPFN∗ evaluations are
conducted using only 10,000 samples due to its limited
processing capacity.

Method LLM Classification ↑ Regression ↓

XGBoost

Base – 0.820 ± 0.020 0.324 ± 0.016

LLM-FE Llama 3.1-8B 0.832 ± 0.021 0.310 ± 0.022

GPT-3.5 Turbo 0.840 ± 0.022 0.306 ± 0.015

MLP

Base – 0.745 ± 0.034 0.871 ± 0.027

LLM-FE Llama 3.1-8B 0.768 ± 0.032 0.794 ± 0.016

GPT-3.5 Turbo 0.791 ± 0.029 0.631 ± 0.043

TabPFN∗

Base – 0.852 ± 0.028 0.289 ± 0.016

LLM-FE Llama 3.1-8B 0.856 ± 0.017 0.288 ± 0.016

GPT-3.5 Turbo 0.863 ± 0.018 0.286 ± 0.015

To evaluate the generalizability of LLM-FE, we con-
duct a systematic assessment of its performance across
multiple tabular prediction models as well as diverse
LLM backbones. In particular, we consider two
representative LLMs—Llama-3.1-8B-Instruct and
GPT-3.5-Turbo and pair them with three widely-used
tabular prediction models: XGBoost (Chen & Guestrin,
2016), a strong tree-based baseline for structured data;
a Multilayer Perceptron (MLP), which provides a simple
yet competitive deep-learning architecture for tabular
inputs (Gorishniy et al., 2021); and TabPFN (Hollmann
et al., 2022), a recent transformer-based foundation
model tailored specifically to tabular learning. As sum-
marized in Table 5, our results consistently show that
LLM-FE identifies informative and task-relevant fea-
tures that improve the downstream performance of all
three prediction models under both LLM backbones.
Moreover, we observe that feature sets generated by
LLM-FE reliably outperform their non-feature engi-
neering counterparts, suggesting that the method pro-
vides robust benefits across model classes, backbone
choices, and tasks, underscoring its broadly applicable
feature engineering framework.
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Figure 5: Quantitative impact of domain
knowledge on model accuracy. Using domain
knowledge boosts performance compared to both
the base model and LLM-FE without domain
knowledge.
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Figure 6: Performance Trajectory Analysis.
for LLM-FE w/o evolutionary refinement and
LLM-FE. LLM-FE demonstrates a better trajec-
tory, highlighting the advantage of evolutionary
refinement.

 def modify_features(df_input) -> pd.DataFrame:
    """ 

     Thought 1: Insulin levels in conjunction with Glucose levels can provide 
insights into the metabolic state.

     Feature 1: insulin_glucose_ratio | 

   insulin_glucose_ratio = Insulin / Glucose
     Thought 2: BMI can be an indicator of potential diabetes risk, especially 

when combined with age.
     Feature 2: bmi_age_ratio | bmi_age_ratio = BMI / Age
    """
      df_output = df_input.copy()

     # Calculate Insulin divided by Glucose
      df_output['insulin_glucose_ratio'] = df_output['Insulin'] / 

    df_output['Glucose']
     # Calculate BMI divided by Age
     df_output['bmi_age_ratio'] = df_output['BMI'] / df_output['Age']
    
    return df_output

(b) LLM-FE(a) Feature Engineering without domain knowledge

 def modify_features(df_input) -> pd.DataFrame:
    """
    Introducing a new feature 'C10' as the square root of the
    product of 'C1' and 'C3' to capture a non-linear relationship 
    between these variables.
    Additionally, dropping less informative feature 'C2'.
    """
    df_output = df_input.copy()
    
    df_output['C10'] = np.sqrt(df_output['C1'] * df_output['C3'])
    df_output.drop('C2', axis=1, inplace=True)
    
    return df_output

Figure 7: Qualitative Analysis on Impact of Domain Knowledge. illustrating how LLM-FE (b)
utilizes domain knowledge to create meaningful features with descriptions , in contrast to feature engineer-

ing without domain insights (a) leading to uninterpretable outputs.

5.5 Impact of Domain Knowledge and Evolutionary Refinement

Figure 7 illustrates the qualitative benefits of incorporating domain knowledge into feature engineering. In
this example, two approaches are contrasted: one without domain knowledge (Figure 7(a)), and LLM-FE
guided by domain-specific insights through an LLM-based feature engineering (Figure 7(b)). The domain-
agnostic variant creates arbitrary transformations, such as combining features C1 and C3 using a square
root of their product and dropping feature C2 without clear justification. In contrast, LLM-FE leverages
its embedded knowledge to derive interpretable and clinically meaningful features. Figure 5 presents a
quantitative comparison of model performance on the same dataset, showing that LLM-FE with domain
knowledge achieves the highest accuracy, outperforming both the base model and LLM-FE without domain
knowledge. Figure 6 illustrates the validation accuracy trajectory of LLM-FE with and without evolutionary
refinement across 20 iterations. The variant without refinement shows early improvement but quickly plateaus,
indicating convergence to a local optimum. In contrast, LLM-FE continues to improve across iterations,
achieving higher accuracy overall. This comparison highlights the effectiveness of evolutionary refinement in
enhancing performance by enabling the model to escape local optima and optimize more effectively. Further
analyses on feature interpretability, bias and memorization, and computational efficiency are provided in
Appendix D.

11



Under review as submission to TMLR

6 Conclusion
In this work, we introduce a novel framework LLM-FE that leverages LLMs as evolutionary optimizers
to discover new features for tabular prediction tasks. By combining LLM-driven hypothesis generation
with data-driven feedback and evolutionary search, LLM-FE effectively automates the feature engineering
process. Through comprehensive experiments on diverse tabular learning tasks, we demonstrate that
LLM-FE consistently outperforms state-of-the-art baselines, delivering substantial improvements in predictive
performance across various tabular prediction models. Future work could explore integrating more powerful or
domain-specific language models to enhance the relevance and quality of generated features for domain-specific
problems. Moreover, our framework could extend beyond feature engineering to other stages of the tabular
learning and data-centric pipeline, such as data augmentation, automated data cleaning (including imputation
and outlier detection), and model tuning.
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Impact Statement

The introduction of LLM-FE as a framework for LLM-driven automated feature engineering has the potential
to advance machine learning by improving predictive performance and reducing manual effort, especially
valuable in resource-intensive domains. By combining domain expertise with evolutionary optimization,
LLM-FE overcomes limitations of existing methods that struggle to discover strong feature representations.
Although presently focused on feature engineering, the framework could extend to broader tasks such as
data cleaning, exploratory analysis, data augmentation, model tuning, and hyperparameter optimization,
contributing to more streamlined and robust ML pipelines.
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Reproducibility Statement

To ensure the reproducibility of our work, we provide comprehensive implementation details of LLM-FE.
Section 3 outlines the full methodology, while Appendix B.2 offers an in-depth description of the framework,
including the specific LLM prompts used. The datasets employed in our experiments are detailed in
Appendix A. Additionally, we release our code and data1 to facilitate further research.

A Dataset Details

Table 6 describes the diverse collection of datasets spanning three major categories: (1) binary classification,
(2) multi-class classification, and (3) regression problems used in our evaluation. The datasets were primarily
sourced from established platforms, including OpenML (Vanschoren et al., 2014; Feurer et al., 2021), UCI
(Asuncion et al., 2007), and Kaggle. We specifically selected datasets with descriptive feature names, excluding
those with merely numerical identifiers. Each dataset includes a task description, enhancing contextual
understanding for users. Our selection encompasses not only small datasets but also larger ones, featuring
extensive data samples and high-dimensional datasets with over 50 features. This diverse and comprehensive
selection of datasets represents a broad spectrum of real-world scenarios, varying in both feature dimensionality
and sample size, thereby providing a robust framework for evaluating feature engineering works.

Table 6: Dataset statistics.

Dataset #Features #Samples Source ID/Name
Binary Classification

adult 14 48842 OpenML 1590
blood-transfusion 4 748 OpenML 1464
bank-marketing 16 45211 OpenML 1461
breast-w 9 699 OpenML 15
credit-g 20 1000 OpenML 31
tic-tac-toe 9 958 OpenML 50
pc1 21 1109 OpenML 1068
pima-indian-diabetes 8 768 OpenML 43582

Multi-class Classification
arrhythmia 279 452 OpenML 5
balance-scale 4 625 OpenML 11
car 6 1728 OpenML 40975
cmc 9 1473 OpenML 23
eucalyptus 19 736 OpenML 188
jungle_chess 6 44819 OpenML 41027
vehicle 18 846 OpenML 54
cdc diabetes 21 253680 Kaggle diabetes-health-indicators-dataset
heart 11 918 Kaggle heart-failure-prediction
communities 103 1994 UCI communities-and-crime
myocardial 111 1700 UCI myocardial-infarction-complications

Regression
airfoil_self_noise 6 1503 OpenML 44957
cpu_small 12 8192 OpenML 562
diamonds 9 53940 OpenML 42225
plasma_retinol 13 315 OpenML 511
forest-fires 13 517 OpenML 42363
housing 9 20640 OpenML 43996
crab 8 3893 Kaggle crab-age-prediction
insurance 7 1338 Kaggle us-health-insurancedataset
bike 11 17389 UCI bike-sharing-dataset
wine 10 4898 UCI wine-quality

1https://anonymous.4open.science/r/LLM-FE-5525
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B Implementation Details

B.1 Baselines

We implement and evaluate various state-of-the-art feature engineering baselines, spanning traditional methods
to recent LLM-based approaches, for comparison with LLM-FE. After generating features with each baseline,
we apply a unified preprocessing pipeline to prepare the data for training and evaluation in the machine
learning model. We implement the following baselines:

AutoFeat. AutoFeat is a classical feature engineering approach that uses iterative feature subsampling
with beam search to select informative features. We utilize the open-source autofeat2 package, retaining the
default parameter settings. For parameter settings, we refer to the example ‘.ipynb’ files provided in their
official repository.

OpenFE. OpenFE is another state-of-the-art traditional feature engineering method using feature boosting
and pruning algorithms. We employ the open-source openfe3 package with standard parameter settings.

FeatLLM. FeatLLM uses an LLM to generate rules to binarize features that are then used as input to a
simple model, such as linear regression. We adapt the open-source featllm4 implementation, modifying the
pipeline to use an XGBoost model for inference. To ensure a fair comparison with other methods, we provide
the entire training dataset to train the XGBoost model while using only a subset of the dataset (10 samples)
to the LLM to generate binary features. As FeatLLM generates multiple feature sets in parallel across LLM
calls, we report the results through an ensemble over three samples to maintain consistency with LLM-FE.

CAAFE. We utilize the official implementation of CAAFE,5, maintaining all parameter settings as specified
in the original repository. Additionally, the repository is designed for classification datasets. Following their
workflow, we preprocess the data before inputting it into the prediction model after the feature engineering
process. As CAAFE implements sequential feature refinement and does not produce multiple independent
candidate solutions, ensembling is not applicable.

OCTree. The official OCTree implementation6 was modified to keep the data loading and model initialization
part common. We implemented OCTree only for classification datasets, as the official implementation is
limited to classification datasets, and running for regression datasets on our own could have resulted in
incorrect implementation. Furthermore, OCTree also follows a sequential optimization procedure and does
not produce multiple independent solutions for ensembling.

B.2 LLM-FE

Feature Generation. Figure 9 presents an example prompt for the balance-scale dataset. The prompt
begins with general instructions, followed by dataset-specific details, such as task descriptions, feature
descriptions, and a subset of data instances serialized and expressed in natural language. To introduce
diversity in prompting, we randomly sample between this approach and an alternative set of instructions,
encouraging the LLM to explore a wider range of operators from OpenFE (Zhang et al., 2023), as prior LLMs
tend to favor simpler operators (Küken et al., 2024) (see Figure 8). The quality of features generated has been
detailed in Appendix 5.2. By providing this structured context, the model can leverage its domain knowledge
to generate semantically and contextually meaningful hypotheses for new feature optimization programs.

Data-Driven Evaluation. After prompting the LLM, we sample b = 3 outputs. Based on preliminary
experiments, we set the temperature for LLM output generation to t = 0.8 to balance creativity (exploration)

2https://github.com/cod3licious/autofeat.git
3https://github.com/IIIS-Li-Group/OpenFE.git
4https://github.com/Sungwon-Han/FeatLLM
5https://github.com/noahho/CAAFE
6https://github.com/jaehyun513/OCTree

16

https://github.com/cod3licious/autofeat.git
https://github.com/IIIS-Li-Group/OpenFE.git
https://github.com/Sungwon-Han/FeatLLM
https://github.com/noahho/CAAFE
https://github.com/jaehyun513/OCTree


Under review as submission to TMLR

and adherence to problem constraints, as well as reliance on prior knowledge (exploitation). The data
modification process is illustrated in Figure 9(c), where the outputs are used to modify the features via
modify_features(input). These modified features are then input into a prediction model, and the resulting
validation score is calculated. To ensure efficiency, our evaluation is constrained by time and memory limits
set at T = 30 seconds and M = 2GB, respectively. Programs exceeding these limits are disqualified and
assigned None scores, ensuring timely progress and resource efficiency in the search process.

Memory Management. Following the ‘islands’ model used by (Cranmer, 2023; Shojaee et al., 2024;
Romera-Paredes et al., 2024), we maintain the generated hypotheses along with their evaluation scores in
a memory buffer comprising multiple islands (m = 3) that evolve independently. Each island is initialized
with a basic feature transformation program specific to the dataset. Each island is initialized with a simple
feature transformation program specific to the dataset (def modify_features_v0()in Figure 9(d)). In each
iteration, novel hypotheses and their validation metrics are incorporated into their respective islands only
if they exceed the island’s current best score. Within each island, we additionally cluster feature discovery
programs based on their signature, characterized by their validation score. Feature transformation programs
that produce identical scores are consolidated together, creating distinct clusters. This clustering approach
helps preserve diversity by ensuring that programs with varying performance characteristics remain in the
population. We leverage this island model to construct prompts for the LLM. After an initial update of
the prompt template with dataset-specific information, we integrate in-context demonstrations from the
buffer. Following (Shojaee et al., 2024; Romera-Paredes et al., 2024), we randomly select one of the m
available islands. Within the chosen island, we sample k = 2 programs to serve as in-context examples. To
sample programs, we first select clusters based on their signatures using the Boltzmann selection strategy
(De La Maza & Tidor, 1992) to sample clusters based on their signatures with a preference for clusters with
higher scores. Let si be the score of the i-th cluster, and the probability Pi for selecting the i-th cluster is
given as:

Pi =
exp( si

τc
)∑

i(
si

τc
) , where τc = T0(1 − u mod N

N
) (4)

where τc is the temperature parameter, u is the current number of programs on the island, and T0 = 0.1 and
N = 10, 000 are hyperparameters. Once a cluster is selected, we sample the programs from it.

###

<Role>

You are a data scientist with expert knowledge about the provided dataset.

Your primary responsibility is to identify the most informative features that can enhance the solution to the

specified <Task>.

###

<Instructions>

  - You are given a task description, a list of existing features, a set of advanced operators, and sample

data.

  - Your objective is to leverage the provided advanced operators within <Operators> to generate meaningful

and insightful features that enhance task performance. These operators have been carefully curated to extract

deeper patterns from the data.

  - Avoid relying on basic arithmetic operators (e.g., addition, subtraction, multiplication, or division).

Instead, focus exclusively on the provided advanced operators inside <Operators>.

  - For each feature you derive, provide a concise explanation of why it is relevant and to solving the <Task>

in the docstring.

###

<Operators>

  - General Operators: Frequency (Frequency of feature in the data)

  - Numerical Input Operators: Absolute, Logarithm, Square Root, Sigmoid, Square, Round, Residual

  - Numeric-Numeric Operators: Minimum, Maximum

  - Categorical-Numeric Operators: GroupByThenMin, GroupByThenMax, GroupByThenMean, GroupByThenMedian,

GroupByThenStd, GroupByThenRank

  - Categorical-Categorical Operators: Combine, CombineThenFreq, GroupByThenNUnique

Instruction

Figure 8: An example of the alternate set of instructions used to direct the model to use a complex
set of operations over simple operators for generating features.

17



Under review as submission to TMLR

###
<Role>  

You are a data scientist expert in the field of the given dataset.  
Your role is to apply your domain expertise to identify and create, and refine the most informative features

that solve the <Task> effectively.  

###

<Instructions>  
- You are provided with the task description, a list of existing features, and data examples.  

- Use your domain knowledge to derive features that capture meaningful patterns, trends, or relationships
inherent in the data.  
- Prioritize features that have high potential to enhance the model’s ability to solve the <Task>, considering

both relevance and predictive power.  
- For each derived feature, provide:  
- A clear explanation of how it was derived and justification of its relevance for solving the <Task>.  

- Ensure your approach remains grounded in the context of the dataset and the <Task>, and aim for features
that are interpretable and actionable.

###
<Task>

Which direction does the balance scale tip to? Right, left, or balanced?

###
<Features>

- Left-Weight: Left-Weight (numerical variable within range [1, 5])
....

....

###

<Examples>
If Left-Weight is 3, Left-Distance is 3, Right-Weight is 4, Right-Distance is 5,  Then Result is right.

....

....

Please generate as many new features as possible using the information from the task, feature descriptions,
examples, and your domain understanding of the dataset. Remove any irrelevant, redundant, or less informative
features to enhance overall performance.  

First, describe your new feature transformation and the main steps in a concise, one-sentence docstring.Then,

implement it in Python as a function that adheres to the given specifications.  
Avoid providing any further explanations or additional descriptions.

def modify_features_v0(df_input) -> pd.DataFrame:

    """

    Thought 1: The absolute difference between Left-Weight and Right-Weight can 

    capture the imbalance in weight distribution.

    Feature 1: weight_difference | weight_difference = abs(Left-Weight - Right-Weight)

    """

    df_output = df_input.copy()

    # Calculate absolute difference between Left-Weight and Right-Weight

    df_output['weight_difference'] = 

                    abs(df_output['Left-Weight'] - df_output['Right-Weight'])

    

    return df_output

Instruction

Dataset Specification

In-Context Example

def modify_features_v1(df_input) -> pd.DataFrame:

    """Improved version of modify_features_v0""" Function to Complete

def evaluate(data: dict):

    """ Evaluate the feature transformations on data observations."""

    import torch

    import utils

    from sklearn.model_selection import train_test_split

    from sklearn.metrics import accuracy_score

    from sklearn import preprocessing   

    import xgboost as xgb

    

 #Data Loading and Processing

    # Load model

    model = xgb.XGBClassifier(random_state=42)

    # Training

    model.fit(X_train, y_train)

    # Inference

    y_pred = model.predict(X_test)

    score = accuracy_score(y_test, y_pred)

   

    return score, inputs, outputs Evaluation Function

    # Load data observations

    label_encoder = preprocessing.LabelEncoder() 

    # Load data observations

    inputs, outputs = data['inputs'], data['outputs']

    X = modify_features(inputs)

    y = label_encoder.fit_transform(outputs)

    for col in X.columns:

        if X[col].dtype == 'string':

            X[col] = label_encoder.fit_transform(X[col])

    # Split the data

    X_train, X_test, y_train, y_test = train_test_split(

    X, y, test_size=0.25, random_state=0)

    # Data Processing

    X_train = utils.make_numeric(X_train)

    X_test = utils.make_numeric(X_test)

    X_train = torch.tensor(X_train.to_numpy())

    X_test = torch.tensor(X_test.to_numpy())

Figure 9: Example of an input prompt for balance-scale dataset containing (a) instruction, (b) dataset
specification containing the details about the task, features, and data samples, (c) evaluation function, (d) initial
in-context demonstration, and (e) function to complete.

18



Under review as submission to TMLR

C Additional Results

C.1 LLM-FE and Hyperparameter Optimization (HPO)

To assess the impact of hyperparameter optimization (HPO) on LLM-FE, we conduct experiments with
XGBoost and Multilayer Perceptron (MLP) models across five classification datasets where baseline models
achieve accuracies below 0.8. We adopt the hyperparameter search spaces detailed in Table 7 (XGBoost)
and Table 8 (MLP), following prior work (Grinsztajn et al., 2022; Gorishniy et al., 2021). Optimization is
performed with Optuna (Akiba et al., 2019), using 400 trials with random sampling across multiple dataset
splits. All MLP models are trained for up to 100 epochs with early stopping, retaining the checkpoint that
achieves the best validation score.

Table 7: XGBoost hyperparameters space.
Parameter Distribution
Max depth UniformInt [1, 11]
Num estimators UniformInt [100, 6100, 200]
Min child weight LogUniformInt [1, 1e2]
Subsample Uniform [0.5, 1]
Learning rate LogUniform [1e-5, 0.7]
Col sample by level Uniform [0.5, 1]
Col sample by tree Uniform [0.5, 1]
Gamma LogUniform [1e-8, 7]
Lambda LogUniform [1, 4]
Alpha LogUniform [1e-8, 1e2]

Table 8: MLP hyperparameters space.
Parameter Distribution
Num layers UniformInt [1, 8]
Layer size UniformInt [16, 1024]
Dropout Uniform [0, 0.5]
Learning rate LogUniform [1e-5, 1e-2]
Category embedding size UniformInt [64, 512]
Learning rate scheduler {True, False}
Batch size {256, 512, 1024}

As summarized in Table 9, HPO consistently improves performance across all datasets for the Base model.
Crucially, our proposed method LLM-FE delivers further gains even after HPO, highlighting that while HPO
provides meaningful improvements, LLM-FE offers complementary and substantial enhancements that are
independent of hyperparameter tuning.

Table 9: Comparison of classification accuracy across datasets using Base and LLM-FE models,
evaluated under (a) without hyperparameter optimization (HPO) and (b) with HPO. Results are reported
for both XGBoost and MLP.

Dataset
XGBoost MLP

w/o HPO w/ HPO w/o HPO w/ HPO

Base LLM-FE Base LLM-FE Base LLM-FE Base LLM-FE
eucalyptus 0.655 ± 0.024 0.668 ± 0.027 0.659 ± 0.022 0.678 ± 0.020 0.655 ± 0.024 0.668 ± 0.027 0.501 ± 0.041 0.506 ± 0.028

credit-g 0.751 ± 0.019 0.766 ± 0.025 0.761 ± 0.022 0.784 ± 0.017 0.558 ± 0.144 0.633 ± 0.101 0.689 ± 0.032 0.693 ± 0.028

cmc 0.528 ± 0.030 0.531 ± 0.015 0.554 ± 0.026 0.578 ± 0.021 0.559 ± 0.020 0.566 ± 0.020 0.572 ± 0.024 0.567 ± 0.027

blood-transfusion 0.674 ± 0.017 0.782 ± 0.017 0.777 ± 0.021 0.805 ± 0.009 0.674 ± 0.071 0.782 ± 0.017 0.616 ± 0.182 0.705 ± 0.078

vehicle 0.754 ± 0.016 0.761 ± 0.027 0.776 ± 0.035 0.801 ± 0.033 0.583 ± 0.062 0.673 ± 0.043 0.637 ± 0.095 0.694 ± 0.039
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C.2 Additional Models

We extend the results from Section 4.4, showcasing the performance improvements achieved by LLM-FE
across various prediction models. Specifically, we employ XGBoost, MLP, and TabPFN to generate features and
subsequently use the same models for inference. As shown in Table 10, the features using GPT-3.5-Turbo
by LLM-FE consistently enhance model performance across different datasets, outperforming the base
versions trained without feature engineering. To further assess the generalizability of LLM-FE, we conducted
experiments on smaller prediction models like CatBoost and Logistic Regression. From Table 11 that LLM-FE
outperforms the respective base models for most of the datasets.

Table 10: Performance improvement with LLM-FE. We report the mean and standard deviation
over five splits. We use Normalized Root Mean Square Error for all regression datasets, with a lower value
indicating better performance, and Accuracy for classification datasets, with a higher value indicating better
performance. bold: indicates the best performance.

Dataset XGBoost MLP TabPFN
Base LLM-FE Base LLM-FE Base LLM-FE

Classification Datasets
breast-w 0.956 ± 0.012 0.973 ± 0.009 0.957 ± 0.010 0.964 ± 0.005 0.971 ± 0.006 0.971 ± 0.007

blood-transfusion 0.742 ± 0.012 0.751 ± 0.036 0.674 ± 0.071 0.782 ± 0.017 0.790 ± 0.012 0.791 ± 0.011

car 0.995 ± 0.003 0.999 ± 0.001 0.929 ± 0.019 0.950 ± 0.009 0.984 ± 0.007 0.996 ± 0.006

cmc 0.528 ± 0.030 0.535 ± 0.019 0.559 ± 0.028 0.566 ± 0.028 0.563 ± 0.030 0.566 ± 0.036

credit-g 0.751 ± 0.019 0.766 ± 0.025 0.558 ± 0.144 0.633 ± 0.101 0.728 ± 0.008 0.794 ± 0.022

eucalyptus 0.655 ± 0.024 0.668 ± 0.027 0.414 ± 0.064 0.456 ± 0.062 0.712 ± 0.016 0.715 ± 0.021

heart 0.858 ± 0.013 0.866 ± 0.021 0.840 ± 0.010 0.844 ± 0.006 0.882 ± 0.025 0.880 ± 0.021

pc1 0.931 ± 0.004 0.935 ± 0.006 0.931 ± 0.002 0.904 ± 0.055 0.936 ± 0.007 0.937 ± 0.003

vehicle 0.754 ± 0.016 0.769 ± 0.027 0.583 ± 0.062 0.673 ± 0.043 0.852 ± 0.016 0.856 ± 0.028

Regression Datasets
airfoil_self_noise 0.013 ± 0.001 0.011 ± 0.001 0.275 ± 0.008 0.108 ± 0.001 0.008 ± 0.001 0.007 ± 0.001

bike 0.216 ± 0.005 0.207 ± 0.005 0.636 ± 0.015 0.551 ± 0.022 0.200 ± 0.005 0.199 ± 0.006

cpu_small 0.034 ± 0.003 0.033 ± 0.003 3.793 ± 0.731 2.360 ± 1.263 0.036 ± 0.001 0.035 ± 0.001

crab 0.234 ± 0.009 0.223 ± 0.014 0.214 ± 0.010 0.212 ± 0.011 0.208 ± 0.013 0.207 ± 0.014

diamond 0.139 ± 0.002 0.134 ± 0.002 0.296 ± 0.018 0.265 ± 0.011 0.132 ± 0.005 0.130 ± 0.005

forest-fires 1.469 ± 0.080 1.417 ± 0.083 1.423 ± 0.104 1.344 ± 0.091 1.270 ± 0.101 1.269 ± 0.114

housing 0.234 ± 0.009 0.218 ± 0.009 0.505 ± 0.009 0.444 ± 0.036 0.210 ± 0.004 0.202 ± 0.003

insurance 0.397 ± 0.144 0.381 ± 0.142 0.896 ± 0.053 0.487 ± 0.026 0.351 ± 0.018 0.346 ± 0.020

plasma_retinol 0.390 ± 0.032 0.388 ± 0.033 0.440 ± 0.070 0.411 ± 0.053 0.348 ± 0.048 0.348 ± 0.055

wine 0.110 ± 0.001 0.105 ± 0.001 0.125 ± 0.001 0.125 ± 0.013 0.117 ± 0.004 0.116 ± 0.004

Table 11: Performance improvement with LLM-FE on CatBoost and Logistic Regression. We
report the mean and standard deviation over five splits. We use Accuracy for classification datasets, with a
higher value indicating better performance. bold: indicates the best performance.

Dataset Logistic Regression CatBoost
Base LLM-FE Base LLM-FE

breast-w 0.955 ± 0.014 0.962 ± 0.008 0.957 ± 0.009 0.962 ± 0.008
blood-transfusion 0.799 ± 0.014 0.799 ± 0.009 0.742 ± 0.012 0.751 ± 0.036
car 0.690 ± 0.017 0.696 ± 0.031 0.999 ± 0.001 0.999 ± 0.001
cmc 0.520 ± 0.019 0.525 ± 0.012 0.518 ± 0.028 0.548 ± 0.027
credit-g 0.764 ± 0.006 0.780 ± 0.015 0.714 ± 0.046 0.700 ± 0.021
eucalyptus 0.671 ± 0.036 0.667 ± 0.042 0.436 ± 0.027 0.509 ± 0.050
heart 0.877 ± 0.021 0.872 ± 0.025 0.845 ± 0.015 0.839 ± 0.018
pc1 0.931 ± 0.003 0.935 ± 0.003 0.929 ± 0.005 0.932 ± 0.012
vehicle 0.772 ± 0.028 0.769 ± 0.015 0.719 ± 0.045 0.725 ± 0.033
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C.3 Transferability of Generated Features

While traditional approaches typically use the same model for both feature generation and inference, we
demonstrate that the features generated by one model can be utilized by other models. Following (Nam
et al., 2024), we use XGBoost, a computationally efficient decision tree-based model, to generate features to be
used by more complex architectures for inference. As demonstrated in Table 12, XGBoost-generated features
show an improvement in the performance of MLP and TabPFN over their base versions. This cross-architecture
performance improvement suggests that the generated features capture meaningful data characteristics that
are valuable across different modeling paradigms.

Table 12: Comparative analysis of LLM-FE using feature transfer. We use XGBoost to perform feature
engineering and apply these features to MLP and TabPFN (indicated as LLM-FE XGB). We report the accuracy for
classification tasks and the normalized root mean square error for regression tasks. We report the mean and standard
deviation across five random splits. bold: indicates the best performance.

Method LLM Classification ↑ Regression ↓

MLP

Base – 0.745 ± 0.034 0.871 ± 0.027

LLM-FEXGB GPT-3.5-Turbo 0.763 ± 0.030 0.848 ± 0.017

LLM-FE GPT-3.5-Turbo 0.791 ± 0.029 0.631 ± 0.043

TabPFN

Base – 0.852 ± 0.028 0.289 ± 0.016

LLM-FEXGB GPT-3.5-Turbo 0.861 ± 0.017 0.287 ± 0.015

LLM-FE GPT-3.5-Turbo 0.863 ± 0.018 0.286 ± 0.015

D Qualitative Analysis

D.1 Interpretability Analysis

As illustrated in Figure 10, LLM-FE generates feature-transformation programs in natural language, thus
supporting interpretability. Each generated feature program is evaluated independently, and successful ones
are stored for evolutionary refinement, enabling early discoveries to compose into higher-order features while
preserving interpretability.To evaluate the utility of the generated features, we conduct attribution analysis
using SHAP values. The results demonstrate that a consistent subset of discovered features receives high
attribution scores, indicating that they actively contribute to the prediction process rather than serving as
spurious or unused augmentations. Specifically, 16.7% of generated features rank among the top-10 most
impactful features, and over 60% appear within the top-50 (Table 13), providing strong evidence that the
features discovered by LLM-FE meaningfully enhance model performance and decision-making.

Table 13: Percentage of generated features ranked among the top-k most impactful features by SHAP.

Top-k Percentage
Top-10 16.67
Top-20 25.93
Top-30 37.04
Top-40 57.41
Top-50 62.96
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 def modify_features(df_input) -> pd.DataFrame:
    """    
    Thought: Taking the logarithm of serum cholesterol   
         may help normalize the distribution and 
         emphasize the impact of extreme values.

    Feature: Log_Cholesterol | Log_Cholesterol =         
                                  Logarithm(Cholesterol)
    """

    df_output = df_input.copy()

    # Calculate Log_Cholesterol
    df_output['Log_Cholesterol'] =                       
               df_output['Cholesterol'].apply(lambda x:   
               np.log(x) if x > 0 else 0)
    
    return df_output

 def modify_features(df_input) -> pd.DataFrame:
    """
    Thought: Considering the importance of categorical variables in 
             the prediction task.
    Feature: Frequency of C_1.
    Feature: GroupByThenMean of C_3 based on C_1.
    """
    df_output = df_input.copy()

    # Frequency of C_1
    df_output['C_1_freq'] = 

df_output['C_1'].map(df_output['C_1'].value_counts())
    # GroupByThenMean of C_3 based on C_1
    df_output['C_3_mean_by_C_1'] = 

df_output.groupby('C_1')['C_3'].transform('mean')

    return df_output

(c) LLM-FE (GPT-3.5-Turbo) Output(b) LLM-FE w/o Domain Knowledge (GPT-3.5-Turbo) Output(a) Quantitative Performance

def modify_features(df_input) -> pd.DataFrame:
    """
    Thought: Interaction between normal nucleoli and 
      mitoses could capture the proliferative activity 
      and potentially enhance the predictive power for 
      malignancy.
    Feature: proliferation_activity | 
      proliferation_activity = Normal_Nucleoli*Mitoses
    """
    df_output = df_input.copy()
    # Calculate the proliferation activity
    df_output['proliferation_activity'] = 
      df_output['Normal_Nucleoli']*df_output['Mitoses']

    return df_output

def modify_features(df_input) -> pd.DataFrame:
    """

    Adding a feature representing the average value of C_0 to 
    C_8 as a potential indicator of the overall severity

    """
    
    df_output = df_input.copy()
    df_output['avg_C'] = df_output[

['C_0', 'C_1', 'C_2', 'C_3', 
'C_4', 'C_5', 'C_6', 'C_7', 'C_8']
].mean(axis=1)

    
    return df_output

Heart Dataset

Breast-W Dataset

Figure 10: Quantitative and Qualitative Analysis on Impact of Domain Knowledge for LLM-FE on
Heart and Breast-W datasets. (a) Comparison of XGBoost performance for LLM-FE against its domain-
agnostic variant and traditional methods, such as OpenFE and AutoFeat, which do not integrate domain
knowledge and exhibit reduced performance. (b) Features generated using the w/o Domain Knowledge variant
of LLM-FE. (c) Feature discovery program generated by LLM-FE. The generated programs emphasize how
incorporating domain expertise leads to more interpretable features that improve model performance.

D.2 Impact of Domain Knowledge

Figure 10 highlights the qualitative and quantitative benefits of domain-specific feature transforms. We
demonstrate this using two datasets: the Breast-W dataset, which focuses on distinguishing between benign
and malignant tumors, and the Heart dataset, which predicts cardiovascular disease risk based on patient
attributes. These tasks underscore the crucial role of domain knowledge in identifying meaningful features.
Using embedded domain knowledge, LLM-FE not only significantly improves accuracy but also provides the
reasoning for choosing the given feature, leading to more interpretable feature engineering. For example, in
the Heart dataset, LLM-FE suggests the feature ‘Log_Cholesterol’, recognizing cholesterol’s critical role in
heart health and applying a logarithmic transformation to reduce the impact of outliers and stabilize the
variance. In contrast, the ‘w/o Domain Knowledge’ variant arbitrarily combines existing features, leading
to uninterpretable transformations and reduced overall performance (Figure 10(a)). Similarly, for breast
cancer prediction, LLM-FE identifies ‘proliferation_activity’ a biologically relevant metric leading to
performance improvement, whereas the absence of domain knowledge results in a simple mean of all features,
lacking interpretability and clinical significance (Figures 10(b) and 10(c)).

D.3 Impact of Multi-Island Evolution

At initialization, the feature discovery process is partitioned into k independent islands by evenly splitting the
candidate feature set. Given a fixed computational budget of T iterations, each island receives approximately
T/k iterations, making k a key factor in controlling the trade-off between exploration and exploitation.
Smaller values of k allow deeper refinement within each island, emphasizing exploitation, while larger values
of k encourage broader exploration by enabling multiple independent search trajectories with shallower
refinement. As shown in Table 14, we evaluate representative settings with k = 1, 3 and 5. Moderate island
counts consistently provide the best balance between exploration and refinement. Using a single island limits
the diversity of discovered features, whereas too many islands reduces the refinement depth available to
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each trajectory. Overall performance is robust across island counts, with independent trajectories enabling
complementary exploration and stable results when the compute budget is appropriately distributed.

Table 14: Effect of the number of islands in LLM-FE. We report the mean and standard deviation over
five splits using accuracy for classification datasets (higher is better). Bold indicates the best performance.

# Islands adult bank cmc car breast-w vehicle
1 0.874 ± 0.002 0.908 ± 0.003 0.532 ± 0.017 0.999 ± 0.003 0.966 ± 0.014 0.761 ± 0.012
3 0.874 ± 0.002 0.907 ± 0.002 0.535 ± 0.019 0.999 ± 0.001 0.973 ± 0.009 0.769 ± 0.013
5 0.874 ± 0.003 0.907 ± 0.003 0.528 ± 0.010 0.998 ± 0.003 0.969 ± 0.014 0.773 ± 0.015

D.4 Robustness to Noise
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Figure 11: Impact of Noise Levels on XGBoost
model performance across different approaches under
increasing noise conditions (σ = 0.0 to 0.1). We report
the mean accuracy across six classification datasets
containing only numerical features.

Noise is a pervasive challenge in real-world datasets,
stemming from sensor imperfections, human errors,
environmental variability, and hardware constraints.
Such corruption can obscure meaningful structure
and hinder a model’s ability to learn true under-
lying relationships. To assess how well LLM-FE
leverages prior knowledge and evolutionary search
to remain effective under noisy conditions, we added
Gaussian noise (σ ∈ 0, 0.01, 0.05, 0.1) to numerical
classification datasets. As shown in Figure 11, we
evaluated XGBoost with several feature engineering
approaches, using GPT-3.5-Turbo as the backbone
for all LLM-based methods. Across all noise lev-
els, LLM-FE consistently maintains higher accu-
racy and exhibits greater robustness than competing
approaches, demonstrating its resilience to noise-
induced degradation.

D.5 Impact of Evolutionary Refinement

Figure 12 shows the detailed performance trajectory of LLM-FE compared with its ‘w/o Evolutionary
Refinement’ variant on PC1 and Balance-Scale datasets. The graph demonstrates that LLM-FE, using
evolutionary search, consistently improves validation accuracy, while the non-refinement variant stagnates
due to local optima. On the PC1 dataset, the non-refinement variant plateaus after seven iterations, and
on the Balance-Scale dataset, it stagnates after five iterations. LLM-FE’s evolutionary refinement helps it
escape local optima with more robust optimization, leading to better validation accuracy on both datasets.

E Comparison with LLM-based Baselines

While LLM-FE, CAAFE, and OCTree all leverage LLMs for automated feature engineering, they differ
fundamentally in how they explore and refine the feature space. The key methodological differences are:
(i) Parallel and Multi-Path Exploration. LLM-FE explores the feature space in parallel by evolving
multiple candidate programs simultaneously across islands. CAAFE and OCTree both follow a single-
path optimization process, where the LLM incrementally refines one candidate or rule at a time. (ii)
Population-Based Memory. Unlike CAAFE and OCTree, LLM-FE maintains a multi-population external
memory that stores diverse, high-performing feature programs across iterations. (iii) Feedback and
Refinement Design. LLM-FE applies LLM-guided mutation and crossover over multiple populations to
drive exploration and recombination. In contrast, OCTree relies on stepwise rule refinement informed by
decision-tree feedback, whereas CAAFE employs prompt-based refinement without the use of evolutionary
operators. These differences enable LLM-FE to achieve broader exploration and more robust optimization,
leading to consistent empirical gains over both CAAFE and OCTree (see Table 2).
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Figure 12: Performance Trajectory Analysis. Validation Accuracy progression for LLM-FE w/o evolutionary
refinement and LLM-FE. LLM-FE demonstrates better validation accuracy, highlighting the advantage of evolutionary
iterative refinement.
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