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Abstract

Deep learning is leading to major advances in the realm of brain decoding from functional
Magnetic Resonance Imaging (fMRI). However, the large inter-individual variability in brain
characteristics has constrained most studies to train models on one participant at a time.
This limitation hampers the training of deep learning models, which typically requires very
large datasets. Here, we propose to boost brain decoding of videos and static images across
participants by aligning brain responses of training and left-out participants. Evaluated on a
retrieval task, compared to the anatomically-aligned baseline, our method halves the median
rank in out-of-subject setups. It also outperforms classical within-subject approaches when
fewer than 100 minutes of data is available for the tested participant. Furthermore, we
show that our alignment framework handles multiple subjects, which improves accuracy
upon classical single-subject approaches. Finally, we show that this method aligns neural
representations in accordance with brain anatomy. Overall, this study lays the foundations
for leveraging extensive neuroimaging datasets and enhancing the decoding of individual
brains when a limited amount of brain-imaging data is available.

1 Introduction

Decoding brain activity The generative capabilities of deep learning have recently unlocked decoding
mental representations from brain activity. Originally restricted to linear models (Mitchell et al., 2004;
Harrison & Tong, 2009; Haynes & Rees, 2006), the decoding of brain activity can now be carried out
with deep learning techniques. In particular, using functional Magnetic Resonance Imaging (fMRI) signals,
significant progress has been made in the decoding of images (Ozcelik & VanRullen, 2023; Chen et al., 2023a;
Scotti et al., 2023; Takagi & Nishimoto, 2023; Gu et al., 2023; Ferrante et al., 2023; Mai & Zhang, 2023),
speech (Tang et al., 2023), and videos (Kupershmidt et al., 2022; Wen et al., 2018; Wang et al., 2022; Chen
et al., 2023b; Lahner et al., 2023; Phillips et al., 2022).

The bottleneck of inter-subject variability A core issue is that brain organization is highly variable
across participants, which makes it challenging to train a single model on multiple participants using fMRI
data. Therefore, with few noteworthy exceptions (Haxby et al., 2020; Ho et al., 2023), studies typically
train a brain decoder on a single participant at a time. With this constraint in mind, major effort has
been put towards building fMRI datasets collecting a lot of data in a limited number of participants (Allen
et al., 2022; Wen et al., 2017; LeBel et al., 2023; Pinho et al., 2018). Nonetheless, the necessity to train
and test models on a single participant constitutes a major impediment to using notoriously data-hungry
deep learning approaches. In addition, generalization to new individuals is essential to the validation of
discoveries.

Functional alignment Several methods can align the functional organization – on top of the anatomy – of
multiple brains, and thus offer a potential solution to inter-individual variability: differentiable warps of the
cortical surface (Robinson et al., 2014), rotations between brain voxels in the functional space (Haxby et al.,
2011), shared response models (Chen et al., 2015; Richard et al., 2020), permutations of voxels minimizing
an optimal transport cost (Bazeille et al., 2019; Thual et al., 2022), or combinations of these approaches
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Figure 1: General outline of video decoding from BOLD fMRI signal in left-out participants
A. For each frame associated with a brain volume, one computes its low- and high-level latent representations
using pre-trained encoders. Then, brain decoders (green) can then be fitted to map brain features onto each
of these latent representations. B. The BOLD signal acquired from two participants watching the same
movie can be used to derive an alignment model (purple) that maps voxels from the two participants based
on functional similarity. C. Then, this alignment model can be used to transform brain features of the
left-out participant into the brain features that match those of the reference participant. In particular, this
allows one to use decoders that have been trained on a lot of data coming from a reference participant, and
apply them on a left-out participant for whom less data was collected.

(Feilong et al., 2022). More recently, several studies rely on deep learning models trained in a self-supervised
fashion to build an embedding of brain activity, in hope that it could be meaningful across participants
(Thomas et al., 2022; Chen et al., 2023a). However, to this day, it is not clear which of these methods offers
the best performance and generalization capabilities (Bazeille et al., 2021).

Approach It is currently unknown whether any of the aforementioned methods improve the decoding of
naturalistic stimuli such as videos, and how such hypothetical gain would vary with the amount of fMRI
recording available in a given a participant. To address this issue, we leverage fMRI recordings of training
participants to boost the decoding of videos and static images in a single left-out participant, as illustrated
in Figure 1. This requires fitting two models: an alignment model and a brain decoder. The alignment aims
at making brain responses of a left-out participant most similar to those of a reference participant. Here,
we leverage optimal transport to compute this transformation using functional and anatomical data from
both participants. The brain decoder – which we will refer to as the decoder – consists of a linear regression
trained to predict the latent representations of movie frames or static images from the corresponding BOLD
signals or beta coefficients. We evaluate video and image decoding in different setups. In particular, we
assess (1) whether decoders generalize to participants on which they were not trained, (2) whether training
a decoder on data from multiple participants improves performance and (3) the extent to which functional
alignment improves the aforementioned setups.

Contributions We first confirm the feasibility of decoding, from 3 Tesla (3T) fMRI, the semantics of
videos watched by the participants (Wen et al., 2017). We verify that this approach also performs well for
the decoding of static images from 7T fMRI data (Allen et al., 2022). Our study makes three main novel
contributions:
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1. Compared to the baseline, functional alignment across participants boosts visual semantics decoding
performance in left-out participants, especially when the latter have a limited amount of data

2. Training a decoder on multiple functionally aligned participants yields a model with improved per-
formance compared to training one model per participant, but anatomical alignment does not

3. The resulting alignments, computed from movie-watching data, are anatomically coherent

2 Methods

Our goal is to decode visual stimuli seen by individuals from their brain activity. To this end, we train a
linear model to predict latent representations – shortened as latents – of these visual stimuli from BOLD
fMRI signals recorded in participants watching naturalistic videos.

In the data under study, brains are typically imaged at a rate of one scan every 2 seconds. During this
period, a participant sees 60 video frames on average, or a static image for the case of Allen et al. (2022).
For simplicity, we consider the restricted problem of decoding only the first video frame seen by participants
at each brain scan. Formally, regardless of the dataset, for a given participant, let X ∈ Rn,v be the BOLD
response collected in v voxels over n brain scans and Y ∈ Rn,m the m-dimensional latent representation of
each selected video frame.

2.1 Brain alignment

Anatomical alignment As a baseline, we consider the alignment method implemented in Freesurfer
(Fischl, 2012), which relies on anatomical information to project each participant onto a surface template
of the cortex (in our case fsaverage5 ). Consequently, brain data from all participants lie on a mesh of size
v = 10 242 vertices per hemisphere.

Functional alignment On top of the aforementioned anatomical alignment, we apply a recent method
from Thual et al. (2022) denoted as Fused Unbalanced Gromov-Wasserstein (FUGW) 1. As illustrated
in Figure 1.B, this method consists in using functional data to train an alignment that transforms brain
responses of a given left-out participant into the brain responses of a reference participant. This approach
can be seen as a soft permutation of voxels 2 of the left-out participant which maximizes the functional
similarity to voxels of the reference participant.

Formally, for a left-out participant, let Dout ∈ Rv,v be the matrix of anatomical distances between vertices
on the cortex, and wout ∈ Rv

+ a probability distribution on vertices. wout can be interpreted as the relative
importance of vertices; without prior knowledge, we use the uniform distribution. Reciprocally, we define
Dref and wref for a reference participant. Note that, in the general case, v can be different from one
participant to the other, although we simplify notations here.

We derive a transport plan P ∈ Rv,v to match the vertices of the two participants based on functional sim-
ilarity, while preserving anatomical organisation. For this, we simultaneously optimize multiple constraints,
formulated in the loss function LΘ(P ) described in Equation 1:

LΘ(P ) ≜ (1 − α) LW(P ) + α LGW(P )

+ ρ LU(P ) + ε H(P )
(1)

Wasserstein loss
Gromov Wasserstein loss

Marginal constraints Regularization

Each component of the loss is expressed as follows:
1https://alexisthual.github.io/fugw
2We use the words voxel (volumetric pixel) or vertex (point on a mesh) indifferently.
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• LW(P ) ≜
∑

0≤i,j<v

||Xout
i − Xref

j ||22 Pi,j

• LGW(P ) ≜
∑

0≤i,k,j,l<v

|Dout
i,k − Dref

j,l |2 Pi,j Pk,l

• LU(P ) ≜ KL(P#1 ⊗ P#1|ws ⊗ ws) + KL(P#2 ⊗ P#2|wt ⊗ wt)

• H(P ) ≜ KL
(
P ⊗ P | (ws ⊗ wt) ⊗ (ws ⊗ wt)

)
Here, KL(·, ·) denotes the Kullback-Leibler divergence, P#1 ≜ (

∑
j Pi,j)0≤i<n is the first marginal of P ,

P#2 ≜ (
∑

i Pi,j)0≤j<n is the second marginal of P , α ∈ [0, 1], ρ ∈ R+ are the hyper-parameters setting the
relative importance of each constraint, and Θ ≜ (Xout, Xref, Dout, Dref, α, ρ, ε).

Following Thual et al. (2022), we minimize LΘ(P ) with 10 iterations of a block coordinate descent algorithm
(Séjourné et al., 2021), each running 1 000 Sinkhorn iterations (Cuturi, 2013). Subsequently, we define
ϕout→ref : X 7→

(
P T XT

)
⊘ P#2 ∈ Rn,v where ⊘ is the element-wise division, a function which transports

any matrix of brain features from the left-out participant to the reference participant. To simplify notations,
for any X defined on the left-out participant, we define Xout→ref ≜ ϕout→ref(X).

Hyper-parameters selection for functional alignment We use default parameters shipped with ver-
sion 0.1.0 of FUGW. Namely, α, which controls the balance between Wasserstein and Gromov-Wasserstein
losses – i.e. how important functional data is compared to anatomical data – is set to 0.5. Empirically, we see
that α = 0.5 yields values for the Wasserstein loss which are larger than that of the Gromov-Wasserstein loss,
meaning that functional data drives these alignments. Secondly, ρ, which sets the importance of marginal
constraints – i.e. to what extent more or less mass can be transported to / from each voxel – is set to 1.
Empirically, this value leads to all voxels being transported / matched with equal importance. Finally, ε,
which controls for entropic regularization – i.e. how blurry computed alignments will be – is set to 10−4.
Empirically, this value yields alignments which are anatomically very sharp, i.e source voxels are matched
with a handful of target voxels only (and vice-versa).

2.2 Decoding

Brain input There is a time lag between the moment a stimulus is played and the moment it elicits a
maximal BOLD response in the brain (Glover, 1999). Moreover, the effect induced by this stimulus might
span over multiple consecutive brain volumes. To account for these effects, we use a standard Finite Impulse
Response (FIR) approach. It consists in fitting the decoder on a time-lagged, multi-volume version of the
BOLD response. In particular, we refer to the number of brain volumes to aggregate together in the FIR
approach as the window size. Different aggregation functions can be used, such as stacking or averaging.
Figure S2 describes these concepts visually.

Video output The matrix of latent features Y is obtained by using a pre-trained image encoder on each
video frame and concatenating all obtained vectors in Y . Similarly to Ozcelik & VanRullen (2023), and as
illustrated in Figure 1.A, we seek to predict CLIP 257 × 768 (high-level) and VD-VAE (low-level) latent
representations . We use visual – as opposed to textual – CLIP representations (Radford et al., 2021). For
comparison, we reproduce our approach on latent representations from CLIP CLS (high-level) and AutoKL
(low-level), which happen to be much smaller 3 and are computationally easier to fit.

Model Fitting the decoder consists in deriving W ∈ Rv,m, b ∈ Rm the solution of a Ridge regression
problem – i.e. a linear regression with L2 regularization – predicting Y from X.

3Dimensions for CLIP CLS: 768 ; CLIP 257 × 768 : 257 × 768 = 197 376 ; AutoKL: 4 × 32 × 32 = 4 096 ; VD-VAE:
2 × 24 + 4 × 28 + 8 × 210 + 16 × 212 + 214 = 91 168
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Evaluation We evaluate the performance of the decoder with retrieval metrics. Let us denote Xtrain and
Ytrain the brain and latent features used to train the decoder, Xtest and Ytest those to test the decoder, and
Ŷ ≜ W Xtest + b the predicted latents. We ensure that the train and test data are disjoint.

We randomly draw a retrieval set K of 499 frames without replacement from the test data. For each pair
(ŷ, y) of predicted and ground truth latents, one derives their cosine similarity score s(ŷ, y), as well as
similarity scores to all latents yneg of the retrieval set s(ŷ, yneg). Let us denote rK(ŷ, y) the rank of y, which
we define as the number of elements of K whose similarity score to ŷ is larger than s(ŷ, y). In order for
the rank to not depend on the size of K, we define the relative rank as r(ŷ, y)/|K|. Finally, one derives the
median relative rank MR(Ŷ , K):

rK(ŷ, y) ≜
∣∣{yneg ∈ K | s(ŷ, yneg) > s(ŷ, y)

}∣∣
MR(Ŷ , K) ≜ median

({
rK(ŷ, y)/|K| , ∀ (ŷ, y)

})
2.3 Decoding and alignment setups

Within- vs out-of-subject Let us consider a decoder trained on data (XS1
train, Y S1

train) from a given
participant. The within-subject setup consists in testing it on left-out data (XS1

test, Y S1
test) acquired in the

same participant. The out-of-subject setup consists in testing it on data (XS2
test, Y S2

test) acquired in a left-out
participant.

Single- vs multi-subject The single-subject setup consists in training a decoder using data from one
participant only. The multi-subject setup consists in training a decoder using data from multiple participants.
In this study, data from several participants are stacked, resulting in a matrix Xmulti ∈ Rn1+...+np,v and
Ymulti ∈ Rn1+...+np,m , where p is the number of participants.

Aligned vs un-aligned Let S1 be the reference participant. In the out-of-subject and multi-subject
setups, data coming from different participants can be functionally aligned – or not – to that of the reference
participant. It modifies these respective setups as follows: (1) in the out-of-subject case, it corresponds
to aligning S2 onto S1, such that a decoder trained on S1 will be tested on XS2→S1

test , Y S2
test, (2) in the

multi-subject case, all participants are aligned to S1 and the decoder is trained on a concatenation of
XS1 , XS2→S1 , ..., XSp→S1 (see notations introduced at the end of section 2.1) and Y S1 , ..., Y Sp .

Setups of interest are visually described in Figure 3.A.

Evaluation under different data regimes Note that the alignment and decoding models do not need
to be fitted using the same amount of data. In particular, we are interested in evaluating out-of-subject
performance in setups where a lot of data is available for the reference participant, and little data is available
for the left-out participant: this would typically be the case in clinical setups where, usually, little data is
available in patients. In this case, we evaluate whether it is possible to use this small amount of data to
align the left-out participant onto the reference participant, and have the left-out participant benefit from a
decoder previously trained on a lot of data.

2.4 Datasets

We analyze two fMRI datasets. The first dataset (Wen et al., 2017) comprises 3 human participants who
watched 688 minutes of video. The videos consists of 18 train segments of 8 minutes each and 5 test segments
of 8 minutes each. Each training segment was presented twice. Each test segment was presented 10 times.
Each segment consists of a sequence of roughly 10-second video clips. The fMRI data was acquired at 3T,
3.5mm isotropic spatial resolution and 2-second temporal resolution. It was minimally pre-processed with the
same pre-processing pipeline as that of the Human Connectome Project (Glasser et al., 2013). In particular,
data from each participant are projected onto a common volumetric anatomical template. Similarly to prior
work on this dataset (Wen et al., 2018; Kupershmidt et al., 2022; Wang et al., 2022), we use runs related to
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the first 18 video segments - 288 minutes - as training data, and runs related to the last 5 video segments as
test data.
The second dataset (Allen et al., 2021) – denoted as the Natural Scenes Dataset (NSD) – comprises 8
participants who are shown 10 000 static images three times. They were scanned over 40 sessions of 60
minutes, amounting to 2 400 minutes of data. Instead of raw BOLD signal, we leverage precomputed
per-trial regression coefficients accessible online. See supplementary section A.6 for more details.

2.5 Preprocessing

For the Wen et al. (2017) dataset, we implement minimal additional preprocessing steps for each participant
separately. For this, we (1) project all volumetric data onto the FreeSurfer average surface template fsav-
erage5 (Fischl, 2012), then (2) regress out cosine drifts in each vertex and each run and finally (3) center
and scale each vertex time-course in each run. Figure S1 gives a visual explanation as to why the last two
steps are needed. The first two steps are implemented with Nilearn (Abraham et al., 2014) 4 and the last
one with Scikit-Learn (Pedregosa et al., 2011).
Additionally, for a given participant, we try out two different setups: a first one where runs showing the
same video are averaged, and a second one where they are stacked.
The Allen et al. (2021) dataset is already preprocessed by the original authors, and maps of beta coefficients
from a General Linear Model are accessible online.

2.6 Hyper-parameters selection for decoders

To train decoders, we use the same regularization coefficient αridge across latent types and choose it by
running a cross-validated grid search on folds of the training data. We find that results are robust to using
different values and therefore set αridge = 50 000. Similarly, values for lag, window size and aggregation
function are determined through a cross-validated grid search.

3 Results

3.1 Within-subject prediction of visual representations from BOLD signal and retrieval of visual
inputs

Table 1: Within-subject metrics for all participants and all latent types on the test set Reported
metrics are relative median rank ↓ (MR) of retrieval on a set of 500 samples, top-5 accuracy % ↑ (Acc) of
retrieval on a set of 500 samples. Chance level is at 50.0 and 1.0 for these two metrics respectively. These
results were averaged across 50 retrieval sets, hence results are reported with a standard error of the mean
(SEM) smaller than 0.01. The Dummy (D) model systematically predicts the mean latent representation of
the training set and achieves chance level.

CLIP 257 × 768 VD-VAE CLIP CLS AutoKL
MR Acc MR Acc MR Acc MR Acc

Dummy 50.0 1.0 50.0 1.0 50.0 1.0 50.0 1.0
S1 9.4 13.8 29.9 3.0 15.1 8.4 24.9 3.9
S2 6.8 16.4 30.2 3.5 10.6 10.5 21.8 3.8
S3 7.8 13.6 28.5 3.1 11.0 9.9 26.0 3.3

We report video decoding results on the retrieval task in Table 1. For all three participants of the Wen 2017
dataset, and for all four types of latent representations considered, a Ridge regression fitted within-subject
achieves significantly above-chance performance. Besides, performance varies across participants, although
well-performing participants reach good performance on all types of latents.

4https://nilearn.github.io
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Figure 2: Image retrievals using predicted latent representations of CLIP 257 × 768 latents
We use a model fitted on Subject 2 (S2) and predict the latent representation of unseen videos (test set).
Ground truth (GT) images featured within the first 5 retrieved (Ret.) images are indicated with a bold
purple border. In a given row, images which appear similar across columns are actually different frames of
the same video clip. Images featuring human faces were blurred. More cases are available in supplementary
Figure S4.

Results reported in Table 1 were obtained for a lag of 2 brain volumes (i.e. 4 seconds since TR = 2 seconds)
and a window size of 2 brain volumes that were averaged together (see definitions in section 2.2). These
parameters were chosen after running a k-fold cross-validated grid search for lag values ranging from 1 to
5, a window size ranging from 1 to 3, and 2 possible aggregation functions for brain volumes belonging to
the same window (namely averaging and stacking). Figure S3 shows results using the averaging aggregation
function for different values of lag and window size, averaged across participants. These results were obtained
by stacking all runs of the training dataset, as opposed to averaging repetitions of the same video clip. The
two approaches yielded very similar metrics. We give more details in section 3.3.
Figure 2 shows retrieved images for Subject 2. Qualitatively, we observe that retrieved images often fit the
theme of images shown to participants (with categories like indoor sports, human faces, animals, etc.), yet
with occasional failures.

3.2 Out-of-subject decoding and multi-subject training

As illustrated in Figure 3, models trained on one participant do not generalise well to other participants:
using CLIP 257 × 768, the within-subject and out-of-subject median rank (MR) are respectively 8.0 and
17.2 on average. However, functional alignment allows to reduce the median rank back to 11.1 on average.
In particular, we show that left-out participants do not need to have the same amount of available data as
training participants to benefit from their decoder: with only 30 minutes of data, left-out participants can
reach performance which would have required roughly 100 minutes of data in a within-subject setting.

In addition, we show that a single decoder trained on all functionally aligned participants can reach better
results than a decoder trained on all un-aligned participants (MR is 7.7 against 8.6 averaged across subjects),
and performs on par with each corresponding single-subject decoders.

Framework generality Note that, in Figure 3, we chose the best performing participant (S2) as the ref-
erence participant. We report all other combinations of reference and left-out participants in Supplementary
Figures S6 and S7 and find that all effects persist for all combinations. In addition, supplementary Figures
S8 and S9 show that these results hold for all types of latents. Furthermore, we replicate this experiment on
four participants from the Natural Scenes Dataset: decoding performance, reported in Tables S1 and S2, is
higher than for the Wen 2017 dataset, probably due to using much more training data. Importantly, func-
tional alignment allows the median rank to drop from 22.5 (baseline) to 11.5 on average in the out-of-subject
setup for CLIP 257 × 768. In particular, it drops to 8.3 on average across left-out participants when S7 is
used as reference. Finally, Figures S11 and S12 present all other setups we ran for this study. In particular,
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Figure 3: Effects of functional alignment on multi-subject and out-of-subject setups
We report relative median rank ↓ in all setups described in section 2.3 for CLIP 257 × 768. In all aligned
cases, S1 and S3 were aligned onto S2. In all out-of-subject cases, we test S1 and S3 onto a decoder trained
on S2. In all multi-subject cases, the decoder was trained on all data from all 3 participants. A. In this
panel, all models (alignment and decoding) were trained on all available training data. Results for other
latent types are available in Figure S8. B. In left-out S1 and S3, decoding performance is much better when
using functional alignment to S2 (solid dark purple) than when using anatomical alignment only (solid pale
purple). Performance increases slightly as the amount of data used to align participants grows, but does not
always reach levels which can be achieved with a single-subject model fitted in left-out participants (solid
pale gray dots) when a lot of training data is available. Training a model on multiple participants yields
good performance in all 3 participants (dashed pale teal) which can be further improved by using functional
alignment (dashed dark teal). Results for other latent types are available in Figure S9.

they show that a multi-subject aligned model (e.g. trained on S1 and S2) has better performance on aligned
left-out participants (e.g. S3) than a single-subject model (e.g. trained on S2 only).

Exploring computed inter-subject alignments To better understand how brain features are trans-
formed by functional alignment, we show in Figure 4 how vertices from participant S1 are warped to fit
those of participant S2. To this end, we colorize vertices in S1 using the MMP 1.0 atlas (Glasser et al.,
2016) and use ϕS1→S2 to transport each of the three RGB channels of this colorization to S2. Note that both
participants’ data lie on fsaverage5.
We see that, in low data regimes, FUGW does not recover a smooth inter-subject mapping of the cortical
surface, but still manages to recover the cortical organization of the occipital lobe. A greater amount of
data allows FUGW to reconstruct inter-subject mappings that are anatomically consistent in a much higher
number of cortical areas such as the temporal and parietal lobes, and, unexpectedly, in the primary motor
cortex as well. The prefrontal cortex and temporo-parietal junction (TPJ) seem challenging to map, perhaps
due to greater inter-subject functional variability or lesser responsivity in those regions.
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Figure 4: Visualizing functional alignments in the left hemisphere Vertices of the left-out participant
(left column) are warped by FUGW. The result of this transport is visualized on the reference participant
(columns 2, 3, and 4). Fitting FUGW with increasing amounts of data gradually leads the inter-subject
mapping to better respect the cortical organisation of multiple areas, including non-visual ones. Note that
all 3 models were fitted using the same number of iterations.

8 16 32 64 128
5

10

15

20

25

30

1 2 4 8

Total duration of unique video segments seen
(in minutes) Number of averaged test runs

1 run
2 runs mean
2 runs stack

Re
la

tiv
e 

m
ed

ia
n 

ra
nk

 

Figure 5: Influence of training set size and test set noise Relative median rank ↓ on a fixed test set
gets better as more training data is used to fit the model (left). Interestingly, averaging brain volumes of
2 similar runs does not bring improvements compared to using just 1 run. Instead, stacking runs yields
significant improvements. Note that training sets using 2 runs have twice as much data as those using 1 run.
Finally, these metrics are highly affected by the noise level of the test set (left): averaging more runs in the
test set yields better metrics despite using the same decoder.

3.3 Influence of training set size and test set repetitions

Recent publications (Ozcelik & VanRullen, 2023; Scotti et al., 2023; Tang et al., 2023) in brain decoding
using fMRI have shown impressive results, but these results are obtained using unusually large datasets and
signal-to-noise ratios (e.g. tens of hours of 7T fMRI per participant). To evaluate the importance of these
two factors, we report in Figure 5 performance metrics for models trained with various amounts of data and
tested with various amounts of noise.
Firstly, using a fixed test set, our results allow to systematically estimate the quantity of training data needed
to achieve a given decoding performance. Interestingly, our results show that stacking two runs displaying
the same stimuli yields better results than averaging them. Besides, for a given acquisition budget, showing
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different stimuli (as opposed to repeating stimuli) yields small but systematic performance improvements.
Secondly, reported performance metrics only hold in favorable signal-to-noise setups. Indeed, the test set
associated with the Wen 2017 dataset comes with 10 runs for each video segment, which, when averaged
together, greatly reduce the noise level. However, as reported in Figure 5, when tested in real-life signal-to-
noise conditions (i.e. only one run per test video clip), our models’ performance degrades: when using CLIP
latents, for each participant, it is approximately twice as bad as when averaging all 10 runs.

4 Discussion

Impact The present work confirms the feasibility of using fMRI signals in response to natural images and
videos to decode high level visual features (Nishimoto et al., 2011). It further demonstrates that it is possible
to leverage these fMRI signals to estimate meaningful functional alignments between participants, and use
them to transfer semantic decoders to novel participants.
In particular, our study shows that decoding brain data from a left-out participant can be substantially
improved by aligning this left-out participant to a large reference dataset on which a decoder was trained.
Our method thus paves the way to using models trained on large amounts of individual data to decode
signals acquired in smaller neuroimaging studies, which typically record an hour or two of fMRI data for
each participant (Madan, 2022).
In addition, this study reports decoding accuracy in setups where participants are shown test stimuli for
the first time, thus providing insight into how these models would perform in real-time decoding. While
performance improves with the number of repetitions at test time, reasonable decoding performance of
semantics can be achieved with only one repetition in two out of three participants.
Lastly, by systematically quantifying decoding accuracy as a function of the amount of training data, the
present work brings insightful recommendations as to what stimuli should be played in future fMRI datasets
collecting large amounts of data in a limited number of participants. In the current setup (naturalistic movie
clips acquired at 3T), training with diverse semantic content is more valuable than training with repeated
content for fitting decoding models.

Limitations This work is a first step towards training accurate semantic decoders which generalize across
individuals, but subsequent work remains necessary to ensure the generality of our findings.
Firstly, although the reported gains in out-of-subject setups are significant, the small number of participants
present in the dataset under study requires replications on larger cohorts. However, to our knowledge, no
other dataset has presented similar features to Wen et al. (2017), namely a large amount of data per partic-
ipant and a large variety of video stimuli.
Secondly, our approach currently requires left-out participants to watch the same stimuli as reference par-
ticipants. It is yet unclear whether functional alignment could bring improvements without this constraint.
However, multi-subject decoding can probably help partially address this issue: since it is possible to train
a decoder on multiple participants and because not all of them have to watch the same movies, it is possible
that a lot of different movies - each seen by a different participant used in the training set - could be used
as “anchors” for left-out individuals.
Finally, while restricting this study to linear models makes sense to establish baselines and ensure repli-
cability, non-linear models have proved to perform as well (Scotti et al., 2023), and constitute a natural
improvement of this work.

Ethical implications Out-of-subject generalization is an important test for decoding models, but it raises
legitimate concerns. In this regard, this study highlights that signal-to-noise ratio still currently makes it
challenging to very accurately decode semantics in a real-time setup, and that a non-trivial amount of data
is needed per individual for these models to work. In particular, it would be interesting to see if recent
work in perception decoding in MEG (Défossez et al., 2022; Benchetrit et al., 2023) could be applied to
out-of-subject setups with a method similar to ours. Moreover, we stress that, while great progress has
been made in decoding perceived stimuli, imagined stimuli are still very challenging to decode (Horikawa &
Kamitani, 2017). Nonetheless, it is important for advances in this domain to be publicly documented. We
thus advocate that open and peer-reviewed research is the best way forward to safely explore the implications
of inter-individual modeling, and more generally brain decoding.
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