When To Solve, When To Verify: Compute-Optimal Problem Solving and
Generative Verification for LLM Reasoning

Nishad Singhi “' Hritik Bansal “?> Arian Hosseini *3*
Aditya Grover”> Kai-Wei Chang?> Marcus Rohrbach! Anna Rohrbach'

Abstract

Scaling test-time compute has emerged as a key
strategy for enhancing the reasoning capabilities
of large language models (LLMs), particularly
in tasks like mathematical problem-solving. A
traditional approach, Self-Consistency (SC), gen-
erates multiple solutions to a problem and se-
lects the most common answer via majority vot-
ing. Another common method involves scoring
each solution with a reward model (verifier) and
choosing the best one. Recent advancements in
Generative Reward Models (GenRM) reframe
verification as a next-token prediction task, en-
abling inference-time scaling along a new axis.
Specifically, GenRM generates multiple verifi-
cation chains-of-thought to score each solution.
Under a limited inference budget, this introduces
a fundamental trade-off: should you spend the
budget on scaling solutions via SC or generate
fewer solutions and allocate compute to verifi-
cation via GenRM? To address this, we evaluate
GenRM against SC under a fixed inference budget.
Interestingly, we find that SC is more compute-
efficient than GenRM for most practical inference
budgets across diverse models and datasets. For
instance, GenRM first matches SC after consum-
ing up to 8 x the inference compute and requires
significantly more compute to outperform it. Fur-
thermore, we derive inference scaling laws for
the GenRM paradigm, revealing that compute-
optimal inference favors scaling solution genera-
tion more aggressively than scaling the number of
verifications. Our work provides practical guid-
ance on optimizing test-time scaling by balancing
solution generation and verification.

“Equal contribution 'TU Darmstadt and hessian.AI 2UCLA
*Google Deepmind *MILA. Correspondence to: Nishad Singhi
<nishad.singhi @tu-darmstadt.de>.

The second Al for MATH Workshop at the 42™¢ International
Conference on Machine Learning, Vancouver, Canada.

1. Introduction

Large Language Models (LLMs) have shown substantial
improvements in their reasoning capabilities with increased
test-time compute (Guo et al., 2025; Goyal et al., 2023;
Snell et al., 2024) across diverse domains such as math
and science. One of the most straightforward and effective
ways to scale test-time compute is by generating multiple
solution chains-of-thought (CoTs) for a given problem and
performing majority voting over them, a technique known
as Self-Consistency (SC) (Wang et al., 2022). Alternatively,
a reward model (aka ‘verifier’) can be used to score the
solutions and identify the best one. This strategy, commonly
referred to as Best-of-N (BoN), has been widely employed to
enhance LLM reasoning capabilities (Cobbe et al., 2021). A
robust reward model can detect errors and discard incorrect
solutions, even when they are overrepresented among gener-
ated solutions, making this approach particularly effective.

Recent studies (Zhang et al., 2024; Mahan et al., 2024;
Ankner et al., 2024) have framed verification as a next-token
prediction task, leading to a new class of reward models
known as Generative Reward Models (GenRM). These mod-
els enable test-time scaling along a new axis: generating
multiple verification CoTs and aggregating their verdicts
to score a given solution. Prominently, prior work com-
pares the performance of GenRM (BoN) and SC at a fixed
number of solutions. For instance, Llama GenRM (BoN)
with 32 verification CoTs surpasses SC across different so-
lution counts (Figure 1(a)). This comparison suggests that
GenRM is more efficient, achieving the same performance
as SC with 4 x fewer solutions. However, this conclusion is
misleading in practical scenarios where inference compute
budgets (FLOPs) are limited, as the current comparisons
overlook the significant computational cost of generating
many verifications for several candidate solutions of a given
problem. This gives rise to the question: At a fixed inference
compute budget, is it better to perform SC over many solu-
tions, or use GenRM to select the best one from a smaller
set of solutions by scaling the number of verifications?

To address this, we present a framework to estimate the
inference budget for Self-Consistency and GenRMs. Sub-
sequently,

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

—e— SC —e— V=20 v=21

—e— V=22

—— V=23 V=24 V=25

SC vs GenRM-FT at Fixed Num. Solutions

()]
o

4x fewer solutions

[P —
h

(9,1
Ul

u
o

(a)

H
U1

Success Rate (%)

I
o

w
Ul

2! 23 23 27
Number of Solutions

SC vs GenRM at Fixed Compute Budget

60 ,128x compute
§8x compute +3.8%

~55 rd
X o~
£50 St
o
@ 45
8 o—-0—0—o
@ 40

35

22 25 28 211 214

Inference Compute per Problem (FLOPSs)

Figure 1. Left: The prominent approach is to compare GenRM and Self-Consistency (SC) at a fixed number of solutions, suggesting
that GenRM is more efficient as it matches SC with fewer solutions. Right: When evaluated under a fixed compute budget, including
verification costs, SC outperforms GenRM at lower budgets, using up to 8 x less compute, while GenRM excels at higher budgets. Each
curve corresponds to a fixed number of verifications; the number of solutions is doubled at each point along the x-axis. The solutions are
generated by Llama-3.1-8B-Instruct (Grattafiori et al., 2024), which also performs verifications after being fine-tuned as GenRM, on the

MATH dataset (Hendrycks et al., 2021).

paring the effectiveness of these test-time scaling strategies
under a fixed computational budget (§3.1). Specifically, we
assume an LLM is used for both problem-solving (solution
generator) and generative verification (reward model). The
generative verification capability can be leveraged through
either prompting or task-specific fine-tuning. Consequently,
the inference compute comparison between SC and Gen-
RM:s is based on the total number of solutions and verifica-
tions generated by the LLM, as illustrated in Figure 2.

In our experiments, we compare the performance of scal-
ing solutions and verifications with GenRM against simply
scaling solutions via SC across various inference compute
budgets. Our results indicate that SC outperforms GenRM
at lower compute budgets, while GenRM performs better
at higher budgets (Figure 1(b)). In particular, GenRM first
surpasses SC after 8 x compute and requires an additional
128x inference compute to achieve a 3.8% performance
gain over SC. While prior work realized GenRM in limited
settings, we demonstrate the robustness of our findings
across various model families (e.g., Llama (Grattafiori et al.,
2024) and Qwen (Yang et al., 2024)), model sizes (e.g., 7B
and 70B), thinking models (e.g., QwQ-32B (Qwen, 2025)),
and reasoning tasks (e.g., math) (§5.1).

As the compute budget is scaled and GenRM starts outper-
forming SC, a second challenge emerges: with GenRM, the
available compute can be split between generating solutions
and verifying them in different ways, leading to varying per-
formance. For example, in Figure 1(b), using 8 verifications

(red curve) performs better than 4 verifications (green curve)
at a budget proportional to 28 FLOPs. This shows a key
tradeoff in GenRM: sampling too few solutions may lower
the chances of generating a correct one (low coverage),
while performing too few verifications can make it harder
to identify the correct solution (low precision). Hence, this
raises the question: Under GenRM, how to allocate a given
compute budget between generating solutions and verifying
them to achieve optimal performance?

To address this, we derive inference scaling laws for
GenRM, which describe how the optimal number of so-
lutions and verifications scales with the total compute bud-
get (§3.2). We observe that while both need to be scaled
in tandem, the solutions should be scaled more rapidly
than verifications, by a factor of 1.5 — 2x, for optimal
performance (§ 5.2). Overall, our work provides a solid
foundation for understanding the trade-offs associated with
test-time scaling of solutions and verifications, offering key
insights for practitioners seeking to optimize their inference
strategies and budgets.

2. Background

Repeated sampling. A prominent approach for scaling
test-time compute is repeated sampling, which involves
generating multiple potential solutions from the LLM, G,
and selecting a final answer as the prediction. Specifically,
we study two common methods for choosing the final an-

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

(a) (b)
Self-Consistency (SC)

Compute-Matched Analysis

(c)

Generative Reward Models (GenRM)

1 1
1 - - 1
| | Scaling Scaling 1
o o - Majori Solutions Verifications
ajority 1 1 BoN
D Voting 1 (sC) (GenRM) 1 Verifs.
. | 1 R R per Sol.
Solution 1 | Solution Generative
Generator (more solutions) | | Generator (fewersols) Verifier
Compute =B ! Fixed Budget = B ! Compute = (B/V) xV =B

Figure 2. Compute-Matched Analysis. Given a fixed inference budget B, our analysis (b) compares the performance of (a) scaling the
number of solutions (S = B) with Self-Consistency vs. (c) generating fewer solutions (S = B/V') while relying on verifications (V')

using Generative Reward Models.

swer: (a) Self-Consistency (SC) selects the most common
answer—determined by majority voting—as the final an-
swer (Wang et al., 2022). This strategy benefits from ex-
ploring diverse reasoning pathways and marginalizing over
them, increasing the likelihood of correct answers. (b) Best-
of-N (BoN) scores each candidate solution independently
and selects the highest-scoring one (Cobbe et al., 2021).
This method relies on a reward model capable of accurately
assessing problem-solution pairs for correctness.

Generative Verification. Unlike traditional reward models
that are discriminative, recent works have developed Gener-
ative Reward Models (GenRM) that pose verification as a
next token prediction task (Zhang et al., 2024; Mahan et al.,
2024). Concretely, the verifier takes as input the problem
and the step-by-step solution, and provides a verification
chain-of-thought (CoT) followed by its verdict (e.g., ‘Is this
answer correct? Yes/No’). This approach enables GenRM
to inherit all the advantages of LLM reasoning, most no-
tably test-time scaling, along a new axis: verification. In
particular, we can sample multiple verification CoTs for
each solution, and average over their verdicts to obtain a
more accurate score. !

GenRM-Base. The simplest form of GenRM involves
prompting an instruction-tuned LLM to verify a solution
step-by-step and predict whether the candidate solution/an-
swer is correct for the given problem. We refer to this as
GenRM-Base since it uses an off-the-shelf LLM without
specialized fine-tuning to act as GenRM.?

GenRM-Finetuning. (Zhang et al., 2024) train an LLM to
perform generative verification via supervised fine-tuning,
which we denote as GenRM-FT. We start with a solution
generator G, a student verifier rgygene Which will be fine-
tuned to obtain GenRM-FT, and a teacher verifier 7ych

'While other sophisticated inference strategies exist (e.g.
process-level scoring or tree search (Wu et al., 2024; Snell et al.,
2024)), their practical use is constrained by the necessity of high-
quality process-level training data and the inherent complexities
associated with their training.

2This is akin to self-verification in (Zhao et al., 2025) where an
LLM verifies its own solutions.

which is used to generate synthetic data to fine-tune 7sydent-
The fine-tuning data is generated in the following way. We
take a training dataset, Dyqin = {(X;,¥;,a;)}, consisting of
problems x;, ground-truth solutions y;, and ground-truth
answers a;. We use G to generate Ny solutions for each
problem in the dataset, where y; ; and a; ; are the 5™ solu-
tion and answer generated by G for problem i. Then, we
use the teacher verifier re,n (usually a strong model like
GPT-40 (Hurst et al., 2024)) to generate N,, synthetic ver-
ification rationales for the generated solutions y; ;. The
teacher verifier has access to the ground-truth solutions in
its prompt, allowing it to generate accurate, high-quality
verifications. Every verification generated by the teacher
consists of chain-of-thought (CoT) reasoning about the
solution’s correctness, followed by a final verdict (‘Yes’
or ‘No’). We filter these synthetic verifications, retain-
ing only those whose final verdict matches the ground-
truth correctness of the generated answer a; ;. Further, we
balance this data to have an equal number of ‘Yes’ and
‘No’ verifications, leading to the final fine-tuning dataset
Dgenrmrr = {(Vcor, V | X,¥)} consisting of verification
rationales vcor and final verdicts v. Finally, we fine-tune
Tsudent ON this dataset to obtain GenRM-FT. During infer-
ence, we generate a verification rationale via the GenRM
(-base or -FT) and use the probability of the ‘Yes’ token as
the final score 7Genrm (X, ¥) = o (Yes|X, ¥, Veor).>

Test-time scaling with GenRM. For every problem x; in
the test dataset, we generate S samples {(¥;, j,ﬁi7j);-if}
using the solution generator G, where y, ; and a; ; re-
fer to the j™ solution and answer, respectively. For ev-
ery problem-solution pair, we generate V verifications
{(Vijk, Pijk)¥=V} using the generative verifier, where
Tijk ~ rGenRM(xi,)Afi,j) € [0,1] is the verification score.
We obtain the final score for the solution y, ; by aver-
aging the verification scores from all V' verifications as
Fi; = (1/V) ZkV:1 7i,j,k- Finally, we pick the solution
with the highest score 7; ; as the final solution. To sum
up, GenRM allows time-test scaling along a new dimension

3We find that counting the number of Yes’ across multiple
verifications also works well.

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

by increasing the number of verifications V' in addition to
increasing the number of solutions S.

Thinking Models. An emerging approach to scaling test-
time computation is training models to generate longer
chains-of-thought (CoTs) involving deep thinking before
producing a solution. These models, e.g., DeepSeek-
R1 (DeepSeek-Al, 2025), QwQ-32B (Qwen, 2025), are
trained using reinforcement learning and can leverage ad-
ditional test-time compute for self-verification, reflection,
and backtracking to arrive at a final solution. However, the
amount of compute they allocate to find and verify a solution
in their thought process remains uncontrollable. Moreover,
their reasoning mechanisms are not yet well understood in
the current literature. Here, we focus on complementary
inference strategies, which can also benefit thinking mod-
els, rather than sequentially refining a single solution. We
present detailed related work in Appendix B.

3. Methodology

3.1. Compute-Matched Analysis of Test-time Scaling
Strategies

Given the option to allocate a fixed inference budget toward
either scaling solutions via Self-Consistency or verifying
them using GenRMs, it remains unclear which approach
is compute-optimal for LLM reasoning. To address this
question, we conduct a compute-matched analysis of their
respective scaling behaviors. We consider an autoregressive
LLM with P parameters that will perform 2P FLOPs per
output token during inference (Kaplan et al., 2020). Hence,
the inference FLOPs for generating 7" tokens is 2P7T'.

Let the number of tokens required for generating a solu-
tion and verification be T's and Ty, respectively. Follow-
ing (Zhang et al., 2024), we use the same model for problem-
solving and generative verification. For instance, one might
use Llama-8B to generate solutions and a fine-tuned ver-
sion of the same model as GenRM-FT (or the same model
without fine-tuning as GenRM-Base). Hence, the number
of model parameters for the solution generator and veri-
fier is identical, say P. Thus, the total inference compute
(FLOPs) required to solve a reasoning problem with .S solu-
tions and V' verifications is ‘ 2P(TsS + Ty SV) ‘ Further,
we consider Ty, = \T's where) is the ratio of the number
of tokens per verification and solution. In our analysis, we
use the formula‘ C(S,V)=8S1+ V) ‘to measure infer-
ence compute for simplicity, as it is proportional to the total
inference FLOPs for a given LLM. For Self-Consistency
(SC), we set the number of verifications to V' = 0.

We evaluate SC by sampling S solutions and performing
majority voting over them, forall S € & = {2°,21 ... 2V},
where 2% is the maximum number of solutions. Similarly,

we evaluate GenRM by varying the number of solutions
S € S and verifications V € V = {20, 21, ..., 2M} where
2M is the maximum number of verifications per solution.
For every combination S,V € {S x V}, we sample the
corresponding number of solutions and verifications, and
pick the final answer via Best-of-N. We compare the final
answers against the ground-truth to compute success rates
(SR), and plot them against the total compute, C(S, V).
Thus we compare the performance of GenRM and SC at the
same compute budget.

3.2. Inference Scaling Laws for GenRM

As an emerging paradigm, GenRM lacks formalized infer-
ence scaling laws. Scaling test-time compute with GenRM
involves scaling two independent axes: solutions and ver-
ifications. Further, the same amount of compute can be
allocated between these two in different ways, leading to
different performance outcomes. Hence, understanding the
tradeoff between scaling solutions and verifications is cru-
cial for compute-optimal inference. To address this, we ex-
tend the approach from Chinchilla (Hoffmann et al., 2022)
to inference-time scaling. Specifically, we follow these
steps:

1. Compute the success rate SR ,, for an increasing number
of verifications v, while keeping the number of solutions
per problem s constant.

2. Plot [SR; 0, ..., SR, on] against the inference compute
budget C' = s(1 + \v), and generate such plots for all
values of s.

3. Smooth and interpolate curves to obtain a mapping from
inference compute to SR.

4. For each budget, determine the optimal number of solu-
tions (Sopt) that maximizes SR (Appendix I Fig. 8). This
results in a trend of S,p as a function of the inference
budget C'.

5. Fita power law, Sop o< C¢, to establish a relationship be-
tween the optimal number of solutions and the inference
budget.

6. Similarly, repeat steps 1-5 for verifications to compute
Viopt CP.

A higher value of a (b) indicates that as compute increases,
the number of solutions (verifications) must be scaled more
rapidly compared to the number of verifications (solutions).
If a = b, it implies that solutions and verifications should
be scaled at the same rate.

4. Experimental Setup

Tasks. We use MATH (Hendrycks et al., 2021), a dataset of
high-school competition problems to evaluate mathematical
reasoning. Additionally, we utilize the MATH train split
to train GenRM-FT models. To evaluate generalization

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

of GenRM-FT to harder math tasks, we use the AIME24
dataset (AoPS, 2024), which consists of advanced high-
school math problems. Finally, to evaluate reasoning beyond
math, we use the GPQA-Diamond dataset (Rein et al., 2024),
which consists of problems pertaining to physics, chemistry,
and biology. Following (Brown et al., 2024), we perform all
experiments on a subset of 128 problems randomly sampled
from the MATH test set. Similarly for GPQA, we perform
experiments on a subset of 64 problems randomly sampled
from the diamond split.

Models. Following prior works (Brown et al., 2024; Mahan
et al., 2024; Ankner et al., 2024), we perform our experi-
ments with Llama-3.1-8B-Instruct (Grattafiori et al., 2024).
To ensure coverage across model families and sizes, we also
experiment with Qwen-2.5-7B-Instruct (Yang et al., 2024)
and Llama-3.3-70B-Instruct on the MATH dataset. We sam-
ple solutions with a temperature of 0.7 and with a maximum
of 1024 tokens.

GenRM-FT. We fine-tune Llama-3.1-8B-Instruct and
Qwen-2.5-7B-Instruct models to serve as GenRM-FT. To
create the GenRM fine-tuning data, we use the correspond-
ing models to generate solutions to problems from the
MATH training split. Then, we use a stronger model, GPT-
4o (Hurst et al., 2024), to generate verification rationales for
these solutions. Further details are available in Appendix D.
We find that the verifications generated by GPT-40 tend to
be lengthier than the solution itself, as it analyzes several
steps in the solution before making its verdict (Appendix K).
Hence, during inference, we sample up to 2048 tokens from
our GenRM-FT models with a temperature of 0.7,1.e., A = 2
for GenRM-FT. We sample up to 32 verifications for 256
solutions, i.e., S = {2°,...,28} and V = {20, ..., 2%},

GenRM-Base. We use Llama-3.3-70B-Instruct to generate
solutions and verifications with no fine-tuning, i.e., GenRM-
Base, due to its strong instruction-following and reasoning
capabilities. We sample solutions and verifications on the
MATH and GPQA datasets using a temperature of 0.7 and
a maximum length of 1024 tokens, i.e., A = 1.

Evaluation. We measure performance in terms of success
rate (SR), i.e., the average percentage of problems solved
on a test set. Following (Zhang et al., 2024; Hosseini et al.,
2024), we use Best-of-N to select the final answer with a
verifier. Unlike SC, Best-of-N can detect rare but correct
solutions with an effective verifier (Zhao et al., 2025). We
provide the verifier success rate in Appendix Eq. 1.

S. Experiments

First, we address the question whether at a given budget one
should scale both solutions and verifications via GenRM or
only scale solutions via Self-Consistency (SC). Hence, in
§5.1, we compare the performance of these two approaches

across a range of computational budgets. Further, using
GenRM poses another question, as the same budget can be
distributed between solutions and verifications in different
ways, leading to different performance outcomes. Hence,
we develop inference-time scaling laws for GenRM in §5.2.

5.1. Fixed Budget Comparison between
Self-Consistency and GenRM

Following prior work (Zhang et al., 2024; Mahan et al.,
2024), we compare the success rates of Self-Consistency
(SC) and GenRM-FT (w/ 32 verifications) across different
number of solutions using Llama-3.1-8B-Instruct on the
MATH dataset in Figure 1(a). We see that GenRM-FT out-
performs SC when both have the same number of solutions.
Further, GenRM-FT matches the performance of SC with
4x fewer solutions. However, this comparison does not
account for the cost of generating verifications, and may
give the misleading impression that GenRM is generally
more efficient than SC.

For a fair comparison, we plot the success rates against the
total compute used to generate solutions and verifications,
and compare SC and GenRM at the same budget in Figure
1(b). Interestingly, we find that SC outperforms GenRM-FT
at lower compute budgets. Notably, GenRM-FT requires
8 more compute to match the performance of SC.

Similar to Brown et al. (2024), we find that the performance
of SC plateaus at around 128 solutions, and sampling solu-
tions further does not provide additional benefits. Conse-
quently, allocating test-time compute to GenRM-FT only
starts to yield benefits beyond a certain budget. Finally, we
find that GenRM-FT achieves a 3.8% improvement over the
best performance of SC, but requires 128 x more compute
to achieve this performance.

Takeaway

At lower inference-compute budgets, scaling solutions us-
ing Self-Consistency leads to better performance than
scaling both solutions and verifications with GenRM.
However, at higher budgets, GenRM surpasses Self-
Consistency in performance.

Impact of Problem Difficulty. When GenRM outperforms
SC at higher inference budgets, we investigate which types
of problems benefit the most. In Figure 3a, we analyze
the relative improvement achieved by applying Best-of-
N with GenRM-FT over Self-Consistency, computed as
Improvement = (SRgenrm — SRsc)/SRsc. Specifically, we
evaluate Llama-3.1-8B-Instruct on two difficulty levels from
the MATH dataset: level 1 and level 5, which we denote
as MATH (Easy) and MATH (Hard), respectively. Our re-
sults indicate that GenRM is particularly advantageous for
more challenging problems, yielding up to a 30% relative

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

—e— MATH (Easy) —e— MATH (Hard)\

Normalized GenRM Improvement Over SC

30
c
[J]
€20
()
>
o
210
E
X *
0
210 211 212 213

Inference Compute Per Problem (FLOPs)

(a)

—— GenRM-FT GenRM-Base \

GenRM-FT vs GenRM-Base

~55

X 16x less compute

0 50

at

& 45

40

Success

7

23 26 29 212
Inference Compute per Problem (FLOPs)

(b)

35

Figure 3. Left: Relative improvement achieved by Llama-3.1-8B-Instruct GenRM-FT (32 verifications) over SC for different difficulty
levels in MATH. Hard problems benefit more from GenRM-FT, with up to 30% relative improvement over SC. Right: Comparing
GenRM-FT against GenRM-Base, we find that GenRM-FT consistently performs better, requiring much less compute to match the
performance of GenRM-Base. This highlights the importance of high-quality verifications.

improvement in performance. These findings can inform
the choice between GenRM and SC, with GenRM offering
greater benefits for harder problems.

Impact of Verifier Quality. We also compare the perfor-
mance of GenRM-FT against GenRM-Base at a fixed com-
pute budget in Figure 3b. We find that GenRM-FT consis-
tently outperforms GenRM-Base, requiring up to 16X less
compute to reach the same performance. This highlights
the benefit of fine-tuning LLMs for verification, especially
for smaller models with weaker instruction-following and
reasoning capabilities. Additionally, this suggests that as the
verification capabilities of LLMs improve, GenRM based
methods might become more compute-efficient. More de-
tails are available in Appendix F.

Easy-To-Hard Generalization. In practice, GenRM-FT
may encounter unseen problems with higher difficulty than
the ones seen during training (Sun et al., 2024). Hence,
we extend our analysis to a harder dataset (AIME-2024)
for a GenRM-FT trained on an easier dataset (MATH). In
particular, we compare SC and GenRM-FT for Llama-3.1-
8B-Instruct in Figure 4(a). Interestingly, we find that our
previous observations still hold: SC outperforms GenRM-
FT at lower compute budgets, whereas GenRM-FT outper-
forms SC at higher budgets. For instance, SC achieves
its peak performance using 16X less inference compute
than GenRM-FT needs to reach the same level. However,
GenRM almost doubles the performance of SC, but requires
256 x more compute to do so. This highlights that gen-
erative verifiers can effectively generalize to much harder
reasoning tasks.

Trends Across Model Families. To study whether our
findings generalize to other model families, we compare

GenRM-FT and SC with Qwen-2.5-7B-Instruct on the
MATH dataset. Our results in Appendix Figure 7 are consis-
tent with our previous findings: SC outperforms GenRM-FT
for most of the lower end of the budget spectrum, achieving
its peak performance with 64 x less compute than GenRM-
FT. However, GenRM-FT shines at higher budgets, achiev-
ing an improvement of 5.4%, but by utilizing 512x more
compute.

Trends for Thinking Models. We extend our analysis to
the emerging class of RL-tuned reasoning models that are
capable of deep thinking involving self-reflection (e.g., ‘aha
moments’) before generating the final solution (DeepSeek-
Al 2025). We evaluate QwQ-32B (Qwen, 2025) on the
challenging AIME 2025 (AoPS, 2025) dataset as a solution
generator and verifier (GenRM-Base). We provide more
inference details in Appendix H. We present the results in
Figure 4(b). Interestingly, we observe very similar trends
for these models as well. In particular, GenRM requires
4x more compute to match the performance of SC, and
achieves a 2.5% improvement with 16 X more compute.

Trends Across Model Sizes. Here, we study whether our
findings apply to larger LLMs. To this end, we experiment
with Llama-3.3-70B-Instruct as GenRM-Base, which has
9x more parameters than Llama-3-8B. The results in Figure
5(a) are consistent with our previous findings: SC performs
better at lower budgets and achieves its peak performance
with 4x less compute as compared to GenRM-Base at the
same performance. Further, GenRM-Base performs better at
higher budgets, using 64 X more compute to improve perfor-
mance by 1.7%. This also highlights that using strong mod-
els like Llama-3.3-70B as Generative Reward Models can
improve reasoning performance even without fine-tuning

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

—e— SC —— V=20 v=21 —— V=22

—— V=23 v=2% V=2> V=26

Transfer to AIME24 (GenRM-FT Trained on MATH)

12 ‘256x compute
S i
<9 3 +6.2%
i)
2 16 ¢
16x compute
(a)g 6 e/
S 7
(V)] 3 _-0/‘\.
- —o—o—o
—"%
22 25 28 211 214

Inference Compute per Problem (FLOPs)

GenRM-Base QwQ-32B - AIME25

84 16x compute
4x compute I+2.5%

—_ IRty
<80
[}
o
26 L7 7
& ;u\\‘
4}
g
372
0

68

21 23 25 27 29 211

Inference Compute per Problem (FLOPs)

Figure 4. (Left) Evaluation of GenRM-FT (Llama-3.1-8B trained on MATH) generalizing to AIME24. GenRM-FT provides significant
improvements over Self-Consistency (SC) on these harder problems, demonstrating its generalization ability, though it requires substantially
more compute to outperform SC. (Right) Comparison of GenRM-Base versus SC for an RL-tuned QwQ-32B model. This confirms
previous observations: SC performs better at lower budgets, while GenRM shines at higher budgets.We extrapolate the SC curves (dashed

lines) because their performance saturates beyond a certain point.

them for verification.

Trends Across Reasoning Domains. Test-time scaling can
benefit reasoning in domains beyond math, such as physics,
chemistry, and biology. Hence, we compare SC against
GenRM-Base at a fixed compute budget on GPQA-Diamond
using Llama-3.3-70B-Instruct. Our results in Figure 5(b)
show that GenRM-Base can provide a boost in reasoning
abilities across domains, but only at a large budget. For
instance, it uses 256 x more compute than SC to yield a
2.5% improvement on SC. At lower budgets, however, SC
performs better.

Takeaway

Our findings about compute-optimality of SC and GenRM
hold across model families, sizes, and tasks. Improving
verification quality (GenRM-FT) benefits performance at
fixed compute.

We sample up to 128 solutions per problem and up to 128
verifications per solution for the MATH test split using
Llama-3.1-8B-Instruct and GenRM-FT. Then, we compute
the performance at various values of .S and V' (Figure Ap-
pendix 9a) and identify the optimal number of solutions and
verifications for a given budget. Subsequently, we study how
the optimal number of solutions and verifications must be
scaled as the budget is increased by fitting power law curves.
Our findings in Figure 6 show that the optimal number of
solutions scales as Syp o< C%-57 while the optimal number
of verifications scales as Vo o< C0-3%. The larger exponent
associated with S, indicates that while both solutions and
verifications should be scaled in tandem, solutions should
be scaled at a faster rate for compute-optimal performance.
Further experiments in Appendix I show that this finding
holds across models.

Takeaway

5.2. Inference Scaling Laws for Generative Reward
Models

Our experiments so far have shown that GenRM becomes a
favourable choice as the compute budget increases. How-
ever, it is important to strike a careful balance between the
number of solutions and verifications to achieve optimal
performance at a given budget. This raises the question:
What is the optimal way to allocate a given compute budget
between generating solutions and verifying them? To ad-
dress this, we derive inference scaling laws, which describe
how the optimal number of solutions and verifications scales
with compute budget.

We derive inference scaling laws for generative reward
models along two axes: the number of solutions to verify
and the number of verifications per solution. For compute-
optimal inference, the number of solutions should scale
1.572x faster than the number of verifications.

6. Conclusion

Generative Reward Models (GenRMs) introduce a novel
approach to scaling test-time compute through verifications.
While prior work demonstrates that scaling both solutions
and verifications can surpass Self-Consistency (SC), it often
overlooks verification costs. In this study, we investigate

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

- —e— =20 v=21

SC
GenRM-Base Llama-3-70B (MATH)

i 64x compute
76 O e 7%
’\3 5 ———o—0
S-/ — L °
P ——o—0
w72
o
(@ w
S
S 68
>
0
64
22 25 28 211 214

Inference Compute per Problem (FLOPSs)

—e— V=22

(b)

—— V=23 v=24 v=2°

GenRM-Base Llama-3-70B (GPQA-D)

i 256x compute

—~50 !
Q i
s |_8x compyte / +2.1%
g : /-}'/.
© i
o 48 7
(9]
0
9]
(9]
S 46
0

44

21 23 25 27 29 211

Inference Compute per Problem (FLOPs)

Figure 5. Comparing GenRM-Base with Llama-3.3-70B-Instruct on (a) MATH, and (b) GPQA-Diamond, respectively. These results
highlight that across model sizes and reasoning domains, GenRM outperforms Self-consistency (SC) only at high compute budgets. We
extrapolate the SC curve (horizontal dashed line) as its performance saturates after a point.

Optimal Num. Solutions at Budget

§ 26 :91{:.
) PR
~ -’
g ooooo"‘:oooo
k) e
5 24 0000000
3> -~
(a) w0 oooo,":o
#* e
—_ -7
g 22 oo/o”‘o
5 e e Syt at given budget
Q oo
o ---- Power law: Sgp¢ « CO57
20
24 26 28 210 212

Inference Compute per Problem (FLOPs)

Optimal Num. Verifications at Budget

5
> 26
"] o
g LYYTTITY V. Y
= T
_g 24 ‘o,uci:o
= -
(b) 5 aee
g o:go(oooooooo
#* -7
= 22 _-~""eoec0e
€ -~ o Vot at given budget
a
(@)

Power law: Vop x C0-3°

20

24 26 28 210 212
Inference Compute per Problem (FLOPs)

Figure 6. The optimal number of (left) solutions and (right) verifications for a given compute budget, using Llama-3-8B and GenRM-FT.
Every point corresponds to a compute budget. The plots show that as the budget scales, the optimal number of solutions and verifications
follows a power law, with the number of solutions increasing more rapidly. See Appendix I Fig. 8 for Sep: and Vi computation.

whether scaling verifications improves performance under
a fixed budget. We find that SC outperforms GenRMs at
lower budgets, whereas GenRMs excel at higher ones. Our
conclusions regarding the compute-optimality of SC and
GenRMs across different budgets remain robust across vari-
ous model families (including thinking models), sizes, and
reasoning tasks. Furthermore, we derive inference scal-
ing laws to optimize budget allocation between solutions
and verifications in GenRM. Overall, our findings provide
practical guidance for compute-efficient scaling to achieve
optimal performance.

Impact Statement

This work investigated the tradeoff between scaling solu-
tions and verifications for compute-optimal scaling of test-
time compute. Our findings offer guidance to help practition-
ers build stronger reasoning systems at lower computational
cost, making them faster, more economical, and environ-
mentally friendly. We do not foresee any direct negative
consequences apart from the broader ethical concerns shared
by the field.

References

Ankner, Z., Paul, M., Cui, B., Chang, J. D., and Am-
manabrolu, P. Critique-out-loud reward models. arXiv
preprint arXiv:2408.11791, 2024.

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

AoPS. Aime 2024 dataset, 2024. URL https:
//artofproblemsolving.com/wiki/index.
php/2024_AIME_TI, II.

AoPS. Aime 2025 dataset, 2025. URL https:
//artofproblemsolving.com/wiki/index.
php/2025_AIME_I, II.

Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J.,
Jones, A., Chen, A., Goldie, A., Mirhoseini, A., McKin-
non, C., et al. Constitutional ai: Harmlessness from ai
feedback. arXiv preprint arXiv:2212.08073, 2022.

Bansal, H., Hosseini, A., Agarwal, R., Tran, V. Q., and
Kazemi, M. Smaller, weaker, yet better: Training llm
reasoners via compute-optimal sampling. arXiv preprint
arXiv:2408.16737, 2024.

Brown, B., Juravsky, J., Ehrlich, R., Clark, R., Le, Q. V.,
Ré, C., and Mirhoseini, A. Large language monkeys:
Scaling inference compute with repeated sampling. arXiv
preprint arXiv:2407.21787, 2024.

Chen, J., Ren, J., Chen, X., Yang, C., Sun, R., and Arik, S. O.
SETS: leveraging self-verification and self-correction for
improved test-time scaling. CoRR, abs/2501.19306, 2025.
doi: 10.48550/ARXIV.2501.19306. URL https://
doi.org/10.48550/arXiv.2501.19306.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Cook, J., Rocktischel, T., Foerster, J. N., Aumiller,
D., and Wang, A. Ticking all the boxes: Gener-
ated checklists improve LLM evaluation and generation.
CoRR, abs/2410.03608, 2024. doi: 10.48550/ARXIV.
2410.03608. URL https://doi.org/10.48550/
arXiv.2410.03608.

DeepSeek-Al. Deepseek-rl: Incentivizing reasoning ca-
pability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li,
H., McDonell, K., Muennighoff, N., Ociepa, C., Phang,
J., Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika,
L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou,
A. A framework for few-shot language model evaluation.
12 2023. URL https://zenodo.org/records/
10256836.

Gou, Z., Shao, Z., Gong, Y., Shen, Y., Yang, Y., Duan, N.,
and Chen, W. CRITIC: large language models can self-
correct with tool-interactive critiquing. In The Tivelfth
International Conference on Learning Representations,

ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenRe-
view.net, 2024. URL https://openreview.net/
forum?id=Sx038gxjek.

Goyal, S., Ji, Z., Rawat, A. S., Menon, A. K., Kumar,
S., and Nagarajan, V. Think before you speak: Train-
ing language models with pause tokens. arXiv preprint
arXiv:2310.02226, 2023.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Vaughan, A., et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Guha, E., Raoof, N., Mercat, J., Marten, R., Frankel, E.,
Keh, S., Grover, S., Smyrnis, G., Vu, T., Saad-Falcon, J.,
Choi, C., Arora, K., Merrill, M., Deng, Y., Suvarna, A.,
Bansal, H., Nezhurina, M., Choi, Y., Heckel, R., Oh, S.,
Hashimoto, T., Jitsev, J., Shankar, V., Dimakis, A., Sathi-
amoorthy, M., and Schmidt, L. Evalchemy: Automatic
evals for 1lms, November 2024.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P, Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A.,
Welbl, J., Clark, A., et al. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556,
2022.

Hosseini, A., Yuan, X., Malkin, N., Courville, A., Sordoni,
A., and Agarwal, R. V-star: Training verifiers for self-
taught reasoners. arXiv preprint arXiv:2402.06457, 2024.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., Chen, W., et al. Lora: Low-rank adaptation
of large language models. ICLR, 1(2):3, 2022.

Hurst, A., Lerer, A., Goucher, A. P., Perelman, A., Ramesh,
A., Clark, A., Ostrow, A., Welihinda, A., Hayes, A.,
Radford, A., et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

https://artofproblemsolving.com/wiki/index.php/2024_AIME_I,II
https://artofproblemsolving.com/wiki/index.php/2024_AIME_I,II
https://artofproblemsolving.com/wiki/index.php/2024_AIME_I,II
https://artofproblemsolving.com/wiki/index.php/2025_AIME_I,II
https://artofproblemsolving.com/wiki/index.php/2025_AIME_I,II
https://artofproblemsolving.com/wiki/index.php/2025_AIME_I,II
https://doi.org/10.48550/arXiv.2501.19306
https://doi.org/10.48550/arXiv.2501.19306
https://doi.org/10.48550/arXiv.2410.03608
https://doi.org/10.48550/arXiv.2410.03608
https://arxiv.org/abs/2501.12948
https://zenodo.org/records/10256836
https://zenodo.org/records/10256836
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=Sx038qxjek

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

Kim, S., Shin, J., Choi, Y., Jang, J., Longpre, S., Lee,
H., Yun, S., Shin, S., Kim, S., Thorne, J., and Seo,
M. Prometheus: Inducing fine-grained evaluation ca-
pability in language models. In The Twelfth Interna-
tional Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net,
2024. URL https://openreview.net/forum?
id=8eudaTveKw.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H,, Gonzalez, J. E., Zhang, H., and Stoica, 1. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles, 2023.

Lee, K., Fischer, 1., Wu, Y., Marwood, D., Baluja, S., Schu-
urmans, D., and Chen, X. Evolving deeper LLM thinking.
CoRR, abs/2501.09891, 2025. doi: 10.48550/ARXIV.
2501.09891. URL https://doi.org/10.48550/
arxXiv.2501.098091.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, 1., and
Cobbe, K. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations,
2023.

Luo, L., Liu, Y., Liu, R., Phatale, S., Lara, H., Li, Y., Shu,
L., Zhu, Y., Meng, L., Sun, J., and Rastogi, A. Improve
mathematical reasoning in language models by automated
process supervision. CoRR, abs/2406.06592, 2024. doi:
10.48550/ARXIV.2406.06592. URL https://doi.
org/10.48550/arXiv.2406.06592.

Mahan, D., Van Phung, D., Rafailov, R., Blagden, C.,
Lile, N., Castricato, L., Frinken, J.-P., Finn, C., and
Albalak, A. Generative reward models. arXiv preprint
arXiv:2410.12832, 2024.

Nie, S., Zhu, F., You, Z., Zhang, X., Ou, J., Hu, J., Zhou, J.,
Lin, Y., Wen, J.-R., and Li, C. Large language diffusion
models. arXiv preprint arXiv:2502.09992, 2025.

OpenAl Learning to reason with Illms, 2024.
URL https://openai.com/index/
learning-to-reason-with-11lms/.

Qwen. Qwq-32b: Embracing the power of reinforcement
learning, 2025. URL https://gwenlm.github.
io/blog/qwg-32b/.

Rein, D., Hou, B. L., Stickland, A. C., Petty, J., Pang, R. Y.,
Dirani, J., Michael, J., and Bowman, S. R. Gpqa: A
graduate-level google-proof q&a benchmark. In First
Conference on Language Modeling, 2024.

10

Setlur, A., Rajaraman, N., Levine, S., and Kumar, A. Scal-
ing test-time compute without verification or rl is subopti-
mal, 2025. URL https://arxiv.org/abs/2502.
12118.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters. arXiv preprint arXiv:2408.03314,
2024.

Sun, Z., Yu, L., Shen, Y., Liu, W., Yang, Y., Welleck,
S., and Gan, C. Easy-to-hard generalization: Scalable
alignment beyond human supervision. arXiv preprint
arXiv:2403.09472, 2024.

Wang, P, Li, L., Shao, Z., Xu, R., Dai, D., Li, Y., Chen, D.,
Wu, Y., and Sui, Z. Math-shepherd: Verify and reinforce
IIms step-by-step without human annotations. In Ku, L.,
Martins, A., and Srikumar, V. (eds.), Proceedings of the
62nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), ACL 2024,
Bangkok, Thailand, August 11-16, 2024, pp. 9426-9439.
Association for Computational Linguistics, 2024. doi: 10.
18653/V1/2024.ACL-LONG.510. URL https://doi.
org/10.18653/v1/2024.acl-1long.510.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Wu, Y., Sun, Z., Li, S., Welleck, S., and Yang, Y. Infer-
ence scaling laws: An empirical analysis of compute-
optimal inference for problem-solving with language
models. arXiv preprint arXiv:2408.00724, 2024.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu,
B., Li, C, Liu, D., Huang, F., Wei, H., et al. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115, 2024.

Yu, F.,, Gao, A., and Wang, B. Ovm, outcome-supervised
value models for planning in mathematical reason-
ing. In Duh, K., Gémez-Adorno, H., and Bethard,
S. (eds.), Findings of the Association for Computa-
tional Linguistics: NAACL 2024, Mexico City, Mexico,
June 16-21, 2024, pp. 858-875. Association for Com-
putational Linguistics, 2024. doi: 10.18653/V1/2024.
FINDINGS-NAACL.55. URL https://doi.org/
10.18653/v1/2024.findings—naacl.55.

Yuan, L., Li, W., Chen, H., Cui, G., Ding, N., Zhang, K.,
Zhou, B., Liu, Z., and Peng, H. Free process rewards
without process labels, 2024. URL https://arxiv.
org/abs/2412.01981.

https://openreview.net/forum?id=8euJaTveKw
https://openreview.net/forum?id=8euJaTveKw
https://doi.org/10.48550/arXiv.2501.09891
https://doi.org/10.48550/arXiv.2501.09891
https://doi.org/10.48550/arXiv.2406.06592
https://doi.org/10.48550/arXiv.2406.06592
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2502.12118
https://arxiv.org/abs/2502.12118
https://doi.org/10.18653/v1/2024.acl-long.510
https://doi.org/10.18653/v1/2024.acl-long.510
https://doi.org/10.18653/v1/2024.findings-naacl.55
https://doi.org/10.18653/v1/2024.findings-naacl.55
https://arxiv.org/abs/2412.01981
https://arxiv.org/abs/2412.01981

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

Zhang, L., Hosseini, A., Bansal, H., Kazemi, M., Ku-
mar, A., and Agarwal, R. Generative verifiers: Re-

ward modeling as next-token prediction. arXiv preprint
arXiv:2408.15240, 2024.

Zhao, E., Awasthi, P., and Gollapudi, S. Sample, scrutinize
and scale: Effective inference-time search by scaling ver-
ification, 2025. URL https://arxiv.org/abs/
2502.018309.

Zheng, L., Chiang, W., Sheng, Y., Zhuang, S., Wu,
Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E. P,
Zhang, H., Gonzalez, J. E., and Stoica, I. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Oh, A., Naumann, T., Globerson, A., Saenko, K.,
Hardt, M., and Levine, S. (eds.), Advances in Neural
Information Processing Systems 36: Annual Conference
on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023a. URL http://papers.
nips.cc/paper_files/paper/2023/hash/
91f18a1287b398d378e£f22505bf41832-Abstract—-Datasets_
and_Benchmarks.html.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. Judging
llm-as-a-judge with mt-bench and chatbot arena. Ad-

vances in Neural Information Processing Systems, 36:
46595-46623, 2023b.

11

https://arxiv.org/abs/2502.01839
https://arxiv.org/abs/2502.01839
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

A. Discussion

In this work, we conduct a compute-matched comparison between self-consistency and generative reward models. Specifi-
cally, we analyze performance under a fixed inference FLOP budget. A relevant direction for future work is to extend this
analysis to a fixed latency (tokens/sec) setting across diverse hardware (e.g., GPUs/TPUs, different VRAM configurations)
and algorithmic approaches (e.g., batching, efficient attention). Additionally, our compute budget calculations focus on the
widely used decoder-only autoregressive large language models (LLMs). However, emerging LLLM architectures, such as
sub-quadratic models (Gu & Dao, 2023) and language diffusion models (Nie et al., 2025), present promising directions
for future exploration. A key bottleneck is the current lack of competitive reasoning-capable LLMs in these architectures.
Finally, we evaluate the Best-of-N strategy with outcome-based verification using a generative verifier. Future work could
extend compute-matched analyses to alternative inference strategies, such as beam search or lookaround search (Snell et al.,
2024).

B. Related Work

Test-Time Compute Scaling. Leveraging more test-time compute to improve the performance of LLMs has gained a lot
of popularity. Recent studies have explored various methods to scale test-time compute. A widely recognized baseline
technique is repeatedly sampling candidate solutions from a model to choose the most frequent answer (aka self-consistency
or majority-voting) (Wang et al., 2022). However, recent studies are pushing beyond this, investigating methods that leverage
LLMs to iteratively refine their generated outputs (Gou et al., 2024; Cook et al., 2024; Lee et al., 2025). Reasoning models,
such as OpenAl 03 series (OpenAl, 2024) and DeepSeek R1 (DeepSeek-Al, 2025) have enabled sequential scaling of
test-time compute by scaling the length of the generated CoT (rather than parallel scaling by generating multiple shorter
candidate solutions). While these long CoTs may implicitly incorporate forms of reflection, verification, or refinement
within their extended reasoning sequence, such models and previous studies do not primarily address the compute optimality
of their proposed methods, the main focus of our investigation.

Verification. Another common method to scale inference-time compute is to score candidate solutions through verification,
which can be achieved via several techniques. Traditionally, discriminative models are employed, trained via binary
classification (Cobbe et al., 2021; Luo et al., 2024; Yu et al., 2024) or preferences (Hosseini et al., 2024; Yuan et al., 2024).
Generative verifiers frame verification as a next-token-prediction task, enabling the use of CoT reasoning and another axis
to increase inference-time compute, either with trained verifiers (Zhang et al., 2024; Mahan et al., 2024; Ankner et al.,
2024) or simply via prompting an off-the-shelf LLM (aka LLM-as-a-judge) (Bai et al., 2022; Zheng et al., 2023b; Chen
et al., 2025; Kim et al., 2024; Zheng et al., 2023a) or self-verification based sampling (Zhao et al., 2025). These studies
evaluate candidate solutions at outcome level, rather than process level verification (Lightman et al., 2023; Wang et al.,
2024). Discriminative verifiers have become less favored due to the inherent challenges in their training and their tendency
to exhibit lower performance compared to generative approaches (Zhang et al., 2024). Existing verification-based scaling
studies focus on improving accuracy but ignore the overall cost of adding more verifications. They are not concerned with
the compute optimal setting about spending one’s budget on generating more candidate solutions or more verifications for
existing solutions.

Inference Scaling Laws. We can better allocate resources by understanding the characteristics of different inference scaling
strategies. (Snell et al., 2024) study how scaling test-time compute, through search against dense rewards and adaptive
response updates impacts reasoning performance, revealing prompt difficultly as a key factor. In contrast, our work takes
into account the verification budget and studies the trade-off between allocating compute to generate new candidate solutions
versus verifying existing ones. (Wu et al., 2024) investigate compute-optimal scaling, specifically examining the trade-off
between model size and generating multiple samples. Consistent with findings in (Wu et al., 2024; Brown et al., 2024,
Bansal et al., 2024), they demonstrate that sampling multiple times from a smaller model can outperform a larger and
stronger model within a fixed budget. However, we focus our scaling analysis on the trade-off between generating additional
solution candidates and generating verifications for existing solutions. (Setlur et al., 2025) argue that test-time compute
scaling without verification is suboptimal which is consistent with our overall findings.

C. Inference Details

Following (Brown et al., 2024), we use vLLM (Kwon et al., 2023) with up to 16 A100 GPUs to generate solutions and
verifications from LLMs.

12

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

Math Datasets Following (Brown et al., 2024), we use a 4-shot prompt to generate solutions (Prompt J.1). We use the
minerva_math function from LMEval (Gao et al., 2023) to extract the final answer from the solution, and the is_equiv
function to check if the answer matches the ground-truth answer. For GenRM-base, we use a 2-shot prompt to generate
verifications (Prompt J.2). For GenRM-FT, we use Prompt J.3 for both fine-tuning and inference.

GPQA We perform our experiments on a subset of 64 randomly sampled problems from the diamond split of GPQA. We
use a zero-shot prompt to generate solutions (Prompt J.5). We sample with a temperature of 0.7 and with the maximum
number of tokens set to 1024. For GenRM-Base, we use a zero-shot prompt to generate verifications (Prompt J.6) with a
temperature of 0.7 and a maximum of 1024 tokens.

D. GenRM Training Details

We use the solution generator, e.g., Llama-3.1-8B-Instruct, to generate 4 solutions for problems in the MATH training split
(7500 problems), using the prompt described in Appendix C. Then, we provide these solutions to GPT-40 along with the
ground-truth solutions, and generate 4 verifications for every solution using Prompt J.4. We filter out the verifications whose
verdict doesn’t match the ground-truth correctness of the solution. Further, we sample verifications such that the number of
correct and incorrect samples is balanced. We use LoRA (Hu et al., 2022) to fine-tune the same model on this dataset of
synthetic verification rationales for 3 epochs. We pick the learning rate from {5e — 7, 1e — 6, le — 5} based on accuracy on
a validation split (10% of training split).

E. Evaluation Details

Reliable Estimation of Best-of-N Following (Hosseini et al., 2024), we estimate the average success rate by estimating
the probability that when sampling & out of N (> k) solutions, the one with the highest score is correct, and averaging it
over K repetitions:

N—k .
1 N—-i—-1
Best-of-k := m Z (b1)041' e
k) i=0
where [, a1, ..., @ _1] are the binary correctness scores (0 or 1) for the candidate solutions sorted in decreasing order of
their verifier scores.

F. Impact of Verifier Quality

Our results indicate that using a small number of verifications does not lead to competitive performance. In most cases, at
least 32 verifications are needed to achieve good results, which significantly increases computational cost. This suggests that
individual verifications may be noisy. If verification quality improves, however, then fewer verifications might be required to
achieve the same performance.

To investigate this, we compare two generative verifiers: (1) a “strong" verifier: Llama-3.1-8B-Instruct fine-tuned on GPT-40
verification rationales (GenRM-FT), and (2) a “weak" verifier: Llama-3.1-8B-Instruct using a two-shot verification prompt
(GenRM-base) on the MATH dataset. We use A = 1 for GenRM-Base and A = 2 for GenRM-FT.

Figure 3b shows how these verifiers perform as the number of solutions and verifications increases. For clarity, we only plot
the best-performing configurations (number of solutions and verifications) for a given compute budget. Our findings reveal
that across the board, the strong verifier achieves similar performance with significantly less (up to 16 x) compute than the
weak verifier. Moreover, the strong verifier outperforms the weak verifier overall.

These results underscore the importance of high-quality verification rationales. As the verification capabilities of LLMs
improve in the future, the compute required for GenRM to achieve strong performance may decrease.

G. Trends Across Model Families

In Figure 7, we present a compute-matched comparison between SC and GenRM-FT with Qwen-2.5-7B-Instruct on the
MATH dataset. Similar to previous observations, we find that SC outperforms GenRM-FT at lower budgets, whereas

13

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

—— SC v=21 —— v=23 v=2°
—— V=20 —e— V=22 v=24

GenRM-FT Qwen-2.5-7B-Instruct (MATH)

512x compute

70.0 ‘
= +5.4%
=675 | 64x compute Figure 7. Comparing GenRM-FT against Self-consistency (SC)
% 65.0 i with Qwen-2.5-7B-Instruct. SC is better at lower budgets while
5 65.

GenRM outperforms at higher budgets, suggesting that our find-

ﬁ 62.5 _._:M ings hold across model families.

;60.0 . A

sis /7

22 25 28 211 214
Inference Compute per Problem (FLOPs)

GenRM shines at higher budgets.

H. Inference Details For Thinking Model

In this work, we evaluate QwQ-32B on the challenging AIME2025 benchmark.* We use Prompt J.7 (Guha et al., 2024) and
Prompt J.8 to generate solutions and verifications, respectively. Since this model generates much longer reasoning traces
than traditional instruction-tuned models, we generate a maximum of 32768 tokens (A = 1) with a temperature of 0.7 for
both solution and verification tasks. We note that the compute required to generate the thought process within the <think>
tokens is included in the solution and verification token budget.

I. Additional Details and Results on Compute-Optimal Scaling Analysis

In this section, we derive scaling laws for Qwen-2.5-7B-Instruct and Llama-3.3-70B-Instruct on the MATH dataset. For
Qwen-2.5-7B-Instruct, we sample 128 solutions and 128 verifications using GenRM-FT. Our findings in Figure 10 show
that as the budget is increased, the optimal number of solutions scales as Sqp; ¢ C%75 and Vopt o (€932, For Llama-3.3-
70B-Instruct, we sample 64 solutions and 64 verifications using GenRM-Base. Figure 11 shows that Sy o< C%-%9 and

Vopt < C%-43_ These results show that as test-time compute is scaled, the number of solutions should be scaled more rapidly
as compared to the number of verifications.

*We observed significant performance drop on AIME2025 in comparison to MATH and AIME2024. This highlights that the scope of
improvement is higher with verification in comparison to saturated datasets.

14

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

Scaling GenRM at Fixed Num. Solutions

The curve for S=2°

54 has the highest
success rate at
-~ budget=2°. Hence,
X 52 s, =2
~— opf

£50
o
§ 48

=04 ; ;
8 46 som-z for this entire
A range of budgets

8 /
42 :
n —
24 25 26 27 28 29
Inference Compute per Problem (FLOPs)

Figure 8. Toy illustration of how we compute Sy for a given budget. Every curve corresponds to a fixed number of solutions, with the
number of verifications increasing along x-axis. For any budget on the x-axis, we find the curve that has the highest success rate at that
budget. For instance, at a budget of 2°, the curve of S = 23 has the highest success rate, hence, Sopt = 23 at this budget. Further, the
value of St increases in step-changes, as the number of optimal solutions must be an integer. The figure shows that Sop = 2% for budgets
between ~ 27 and ~ 25, V,, can be computed analogously from a plot of fixed verifications and increasing number of solutions.

15

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

Llama-3-8B w/ GenRM-FT on MATH

5=21
—— §=22

—— 5=23
s=24

S=2°
S=26

s=27

GenRM Inference Scaling - Varying Num. Verifications

55
9
% 50 ST T
o
A —
$ a—
S 45
>
w0

40

24 26 28 210 212

Inference Compute per Problem (FLOPs)

Optimal Num. Solutions at Budget

= o
s 26 ogedoe
) o
0] eoccsessaccse
c -7
.9 4 ”’
=1 2 oo:gwﬁ
° =
(a) 2] .ooo’c‘:o
H* ptag
g 22 00’0)03:
= ot e Sopt at given budget
Q soooe
o ---- Power law: Sop¢ « C7
20
24 26 28 210 212

Inference Compute per Problem (FLOPSs)

v=21 v=27

—— V=22

—— V=23 V=23
V=24 V=26
GenRM Inference Scaling - Varying Num. Solutions

55
0\0 ./a——"
[}
© 50
o [o——eF—0
[92]
[%2]
[}
945
>
w0

40

24 26 28 210 212

Inference Compute per Problem (FLOPs)

(a) Scaling trends of GenRM at (Left) a fixed number of solutions and increasing the number of verifications, and (Right) a fixed number
of verifications and increasing the number of solutions.

Optimal Num. Verifications at Budget

3
>2°
a
S oooo::gmooo
+~ -~
_S 24 ’0,00‘:0
= -
(b) 5 08
g o:;oi’oooooooo
TS -7
= 22 _-~""ecccee
= -~ o Vypt at given budget
a
(@)

Power law: Vgp; C0-3°

20

24 26 28 210 212
Inference Compute per Problem (FLOPSs)

(b) The optimal number of (a) solutions and (b) verifications for a given compute budget. Every point corresponds to a compute budget.
The plots show that as the budget scales, the optimal number of solutions and verifications follows a power law, with the number of

solutions increasing more rapidly.

Figure 9. Compute-optimal scaling of solutions and verifications in GenRM-FT with Llama-3.1-8B-Instruct on MATH.

16

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

Qwen-2-7B w/ GenRM-FT on MATH
§=21 —— 5=23 S=25 s=27 v=21 —— v=23 V=25 v=27
—— 5=22 S=24 5=26 —— V=22 v=2% V=26

GenRM Inference Scaling - Varying Num. Verifications ~ GenRM Inference Scaling - Varying Num. Solutions

70 70
*68 g 68
(0] [J]
= 66 = 66
o o
%) A~ 7
2 64 64 R
O Lt —h o /
S 3 = i
a 62 &a 62 i ~—e
60 60

24 26 28 210 212 214 24 26 28 210 212 214
Inference Compute per Problem (FLOPs) Inference Compute per Problem (FLOPs)

(a) Scaling trends of GenRM at (Left) a fixed number of solutions and increasing the number of verifications, and (Right) a fixed number
of verifications and increasing the number of solutions.

Optimal Num. Solutions at Budget Optimal Num. Verifications at Budget
00800

7’
’

og.’o,o
4

N
=)

26 [1) o0g00

24 gseehe

N
E=
\
|3
°
°
°

7
eccoocoeshece
7’
7’
7’
eooccoccse -

N
N

22 (1T 1)
e // ---- Power law: Sqp; « CO7>
P 0
24 26 28 210 212 214 24 26 28 210 212 214
Inference Compute per Problem (FLOPs) Inference Compute per Problem (FLOPs)

Optimal #Solutions (Sept)
Y
Optimal #Verifications (Vqpt)
\
\

---- Power law: V,p; x C0-32

N
o

(b) The optimal number of (a) solutions and (b) verifications for a given compute budget. Every point corresponds to a compute budget.
The plots show that as the budget scales, the optimal number of solutions and verifications follows a power law, with the number of
solutions increasing more rapidly.

Figure 10. Compute-optimal scaling of solutions and verifications in GenRM-FT with Qwen-2.5-7B-Instruct on MATH.

17

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

Llama-3-70B w/ GenRM-Base on MATH
v=2! e v=23 v=25 V=26 §=21 —— 5=23 5=25 5=26
—— V=22 V=24 —— §=22 S=24

GenRM Inference Scaling - Varying Num. Solutions ~ GenRM Inference Scaling - Varying Num. Verifications

78 78

~
(o))
~
[¢)]

i

I\

~
N

Success Rate (%)
~
iy
Success Rate (%)
~
N

~
o
~
o

24 26 28 210 212 24 26 28 210 212
Inference Compute per Problem (FLOPs) Inference Compute per Problem (FLOPs)

(a) Scaling trends of GenRM at (Left) a fixed number of solutions and increasing the number of verifications, and (Right) a fixed number
of verifications and increasing the number of solutions.

Optimal Num. Solutions at Budget Optimal Num. Verifications at Budget
- . . 0.69 = J
%96 Power law: Sopt « C wospes X 26 coscsspevice
2] /,/’ 2 /,/
2 /,0.0. o 0..:.:’0“..0
(o] i = Prag
-g 24 oo}ﬁ;oooo S 24 ‘,.ﬂ'o:o
3> e = -
ﬁ,ﬂ/... g - -~ - 00000
— //’ H# -~
© ~2 - 2
g 2 ecoc00 //,/ = 2 000000
46- 0000 ,’// g 00000000
o P o ---- Power law: Vp; « CO43
20l 7 © 20
24 26 28 210 212 24 26 28 210 212
Inference Compute per Problem (FLOPs) Inference Compute per Problem (FLOPs)

(b) The optimal number of (a) solutions and (b) verifications for a given compute budget. Every point corresponds to a compute budget.
The plots show that as the budget scales, the optimal number of solutions and verifications follows a power law, with the number of
solutions increasing more rapidly.

Figure 11. Compute-optimal scaling of solutions and verifications in GenRM-Base with Llama-3.3-70B-Instruct on MATH.

18

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

J. Prompts

J.1. Generating Solutions to Math Problems

4-shot Prompt for generating solutions to math problems

1 Problem :

2 Find the domain of the expression $\\frac {\\sqrt{x-2}}{\\sqrt{5-x}}$.}

3

4 Solution:

5 The expressions inside each square root must be non—-negative. Therefore, $x-2 \\
ge 0%, so $x\\ge2$, and $5 - x \\ge 0%, so $x \\le 5$%. Also, the denominator
cannot be equal to zero, so $5-x>0$, which gives $x<5%. Therefore, the domain of
the expression is $\\boxed{[2,5)}$.\nFinal Answer: The final answer is $[2,5)$.
I hope it is correct.

6

7 Problem :

8 If $\\det \\mathbf{A} = 2% and $\\det \\mathbf{B} = 12,$ then find $\\det (\\
mathbf {A} \\mathbf{B}).$

9

10 Solution:

11 We have that $\\det (\\mathbf{A} \\mathbf{B}) = (\\det \\mathbf{A}) (\\det \\
mathbf{B}) = (2)(12) = \\boxed{24}.$\nFinal Answer: The final answer is 24. I
hope it is correct.

12

13 Problem:

14 Terrell usually lifts two 20-pound weights 12 times. If he uses two 15-pound
weights instead , how many times must Terrell 1lift them in order to lift the same
total weight?

15

16 Solution:

17 If Terrell lifts two 20-pound weights 12 times, he lifts a total of $2\\cdot
12\\cdot20=480$% pounds of weight. If he lifts two 15-pound weights instead for
n times, he will lift a total of $2\\cdotl5\\cdot n=30n$ pounds of weight.
Equating this to 480 pounds, we can solve for n:\n\\begin{align*}\n30n&=480\\\
n\\ Rightarrow \\ qquad n&=480/30=\\boxed {16}\n\\end{align*}\nFinal Answer: The
final answer is 16. I hope it is correct.

18

19 Problem:

20 If the system of equations\n\n\\begin{align*}\n6x—4y&=a,\\\n6y-9x &=b.\n\\end{
alignx}has a solution (x, y) where x and y are both nonzero,\nfind $\\frac
{a}{b},$ assuming b is nonzero.

21

22 Solution:

23 If we multiply the first equation by $-\\frac{3}{2}$, we obtain\n\n$$6y-9x=-\\
frac {3}{2}a.$$Since we also know that $6y-9x=b$, we have\n\n$$ -\\frac {3}{2}a=b\\
Rightarrow \\ frac{a}{b}=\\boxed { —-\\frac {2}{3}}.$$\nFinal Answer: The final answer
is $-\\frac{2}{3}$. I hope it is correct.

24

25 Problem:

26 <Problem>

27

28 Solution:

19

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

J.2. GenRM-Base

Few-shot GenRM-Base prompt for math problems

1 Problem :

2 Find the domain of the expression $\\frac {\\sqrt{x-2}}{\\sqrt{5-x}}$.}

3

4 Solution:

5 The expressions inside each square root must be non—-negative. Therefore, $x-2 \\
ge 0%, so $x\\ge2$, and $5 — x \\ge 0%, so $x \\le 5%. Also, the denominator
cannot be equal to zero, so $5-x>0$, which gives $x<5$. Therefore, the domain of
the expression is $\\boxed{[2,5)}$.\nFinal Answer: The final answer is $[2,5)$.
I hope it is correct.

6

7 Problem :

8 If $\\det \\mathbf{A} = 2% and $\\det \\mathbf{B} = 12,$ then find $\\det (\\
mathbf {A} \\mathbf{B}).$

9

10 Solution:

11 We have that $\\det (\\mathbf{A} \\mathbf{B}) = (\\det \\mathbf{A}) (\\det \\
mathbf{B}) = (2)(12) = \\boxed{24}.$\nFinal Answer: The final answer is 24. I
hope it is correct.

12

13 Problem:

14 Terrell usually lifts two 20-pound weights 12 times. If he uses two 15-pound
weights instead , how many times must Terrell 1lift them in order to lift the same
total weight?

15

16 Solution:

17 If Terrell lifts two 20—pound weights 12 times, he lifts a total of $2\\cdot
12\\cdot20=480$% pounds of weight. If he lifts two 15-pound weights instead for
n times, he will lift a total of $2\\cdotl5\\cdot n=30n$ pounds of weight.
Equating this to 480 pounds, we can solve for n:\n\\begin{alignx}\n30n&=480\\\
n\\ Rightarrow \\ qquad n&=480/30=\\boxed {16}\n\\end{align*}\nFinal Answer: The
final answer is 16. I hope it is correct.

18

19 Problem:

20 If the system of equations\n\n\\begin{align:*}\n6x—4y&=a ,\\\nby-9x &=b.\n\\end({
align+}has a solution (x, y) where x and y are both nonzero,\nfind $\\frac
{a}{b},$ assuming b is nonzero.

21

22 Solution:

23 If we multiply the first equation by $-\\frac{3}{2}$, we obtain\n\n$$6y—-9x=-\\
frac {3}{2}a.$$Since we also know that $6y-9x=b$, we have\n\n$$ -\\frac {3}{2}a=b\\
Rightarrow \\ frac{a}{b}=\\boxed { -\\frac {2}{3}}.$$\nFinal Answer: The final answer
is $-\\frac{2}{3}$. I hope it is correct.

25 Problem:
26 <Problem>

28 Solution:

J.3. GenRM-FT

Prompt used for GenRM-FT

Problem :

{}

Solution:

20

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

{}

~N O\

Verification :

J.4. Prompt to Generate Synthetic Training Data

Prompt used to generate synthetic verification rationales for training GenRM

1 You are a math teacher. Grade the Solution, verifying correctness step by step.
At the end of the Solution verification, when you give your final grade, write
it in the form ’Verification: Is the answer correct (Yes/No)? X’, where X is
either Yes or No.

Example 1:

2

3

4

5 Question :
6 <Question >
7

8

Solution:
9 <Solution >
11 Expected Solution:
12 <Ground-truth Solution>
15 Teacher Verification:

16 <Ground-truth verification rationale >

18 Verification: Is the answer correct (Yes/No)? No

22 Example 2:

24 Question:
25 <Question >

27 Solution:
28 <Solution >

30 Expected Solution:
31 <Ground-truth Solution>
34 Teacher Verification:

35 <Ground-truth verification rationale >

37 Verification: Is the answer correct (Yes/No)? No

41 Now, continue grading the next solution step-by-step as follows.

43 Question: {}

44

45 Solution: {}

46

47 Expected Solution: {}
48

49 Teacher Verification:

21

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

J.5. GPQA Solution
1 Thir}k step—by—step to solve the following problem. Only include the letter
2 ?2?1103? C, or D) as your final response. End your answer with ’’Final Answer: The
3 final answer is X. I hope it is correct.’’, where X is your final answer.
g Problem: <Problem>
g Options: <Options>
g Answer:

J.6. GPQA Verification

Prompt used to generate verifications to GPQA solutions with GenRM-Base

1 You are a teacher expert in physics, biology, and chemistry. Grade the Solution,
verifying correctness step by step. At the end of the Solution verification ,
when you give your final grade, write it in the form ’Verification: Is the
answer correct (Yes/No)? X’, where X is either Yes or No.

Question: {}

Solution: {}

NN kW

Teacher Verification:

J.7. Thinking Models Solution Prompt

Prompt used to generate solutions from reasoning models

1 Problem: {}\n\
2 Mark your solution with \\boxed\nAnswer:

J.8. Thinking Models Verification Prompt

Prompt used to generate verifications from reasoning models as GenRM-Base

1 #xQuestion ixx {}

g #% Student Solution:sx {}

g # Math Solution Grading Instructions

g As a math teacher, your role is to grade student solutions following these
g standardized steps:

9 ## Verification Process

10 1. Perform a detailed verification by:
11 — Checking each step sequentially
12 — Verifying all calculations

22

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

13 — Validating mathematical properties and rules used
14 — Examining the logical flow between steps

15 — Confirming proper notation and mathematical writing
16

17 ## Error Documentation
18 2. For any errors found:

19 — Point out the specific location of the error
20 — Explain why it’s incorrect

21 — Show the correct approach

22 — Note if the error affected subsequent steps
23

24 ## Assessment Format
25 3. End your answer in this format:
26 "Verification: Is the answer correct (Yes/No)? X". Where X is Yes or No.

28 #x Verification :x=x
29 Alright , let’s verify the solution step by step.

K. Verification Example from GPT-40

Verification Example from GPT-40

1 Problem:

2 A street has 20 houses on each side, for a total of 40 houses. The addresses on
the south side of the street form an arithmetic sequence, as do the addresses on
the north side of the street. On the south side, the addresses are 4, 10, 16,
etc., and on the north side they are 3, 9, 15, etc. A sign painter paints house
numbers on a house for $\$1$ per digit. If he paints the appropriate house
number once on each of these 40 houses, how many dollars does he collect?

3

4 Solution:

5 There are 20 houses on each side, so the painter will paint a total of $40%
numbers. The house numbers on the south side are $4, 10, 16, 22, 28, 34, 40, 46,
52, 58, 64, 70, 76, 82, 88, 94, 100, 106, 112, 118% and the house numbers on
the north side are $3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87,
93, 99, 105, 111, 117$. Among the house numbers on the south side, the number of
digits in each number is as follows:

6 — 4 and 40 have 1 digit.

7 - 10, 22, 28, 34, 46, 52, 58, 64, 70, 76, 82, 88, 94, 100, 106, 112, 118 have 2
digits .

8§ - 16, 26, 36, 46, 56, 66, 76, 86, 96 have 2 digits.

9 - 58, 68, 78, 88, 98 have 2 digits.

10 - 64, 74, 84, 94 have 2 digits.

11 - 100, 110 have 3 digits.

12 Among the house numbers on the north side, the number of digits in each number
is as follows:

13 - 3 and 33 and 63 and 93 and 123 have 1 digit.

4 -9, 21, 39, 51, 69, 81, 99 have 1 digit.

15 - 15, 27, 45, 57, 75, 87, 105 have 2 digits.

16 - 23, 35, 47, 59, 71, 83, 95, 107 have 2 digits.
17 - 25, 37, 49, 61, 73, 85, 97 have 2 digits.

18 - 29, 41, 53, 65, 77, 89, 101, 113 have 2 digits.
19 - 43, 55, 67, 79, 91, 103, 115 have 2 digits.

20 - 55, 67, 79, 91, 103, 115 have 2 digits.

21— 119 has 3 digits.

22 Since there are 1 one—digit number, 7 two—digit numbers, and 1 three-digit
number among the house numbers on the south side, the total amount of money the
painter will collect is $(I\cdot 1)+(2\cdot 17)+(3\cdot 1)=\boxed{39}$ dollars.
Similarly , since there are 5 one—digit numbers, 7 two—-digit numbers, 1 three-—

23

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

digit number among the house numbers on the north side, the total amount of
money the painter will collect is $(1\cdot 5)+(2\cdot 7)+(3\cdot 1)=\boxed{22}$
dollars. Therefore, the total amount of money the painter will collect is
39+22=61 dollars.

23 Final Answer: The final answer is 61. I hope it is correct.

24

25

26

27 Verification: Let’s verify the student’s solution step by step against the
expected solution:

28

29—

30

31 ### *xStep 1: Problem Understanding s

32

33 The problem asks for the total amount of money collected by a sign painter to
paint house numbers on 40 houses, divided into 20 houses on the north and south
sides of the street. Each house has a unique address, determined by the
arithmetic sequence provided for each side. The painter charges $1 per digit
when painting a house number.

35 The problem clearly requires us to:

36 1. Identify the numbers on each side of the street.

37 2. Group these numbers by the number of digits (1-digit, 2-digit, or 3-digit).

38 3. Calculate the total cost per side of the street, then find the sum for both
sides .

40 The expected solution uses the arithmetic sequence formulas and organizes the
numbers by digit count. The student’s solution tries to achieve this goal but
deviates significantly in implementation.

41

42 -

43

44 ### +xStep 2: Address Listssx

45

46 #### «xSouth Side:sx=

47 — Numbers belong to the arithmetic sequence \(4, 10, 16, \dots, 118\).

48 — Common difference \(d = 6\).

49 - Using the \(n\)—-th term formula \(a_n = a + (n-1)d\), the \(20~{\text{th}}\)
term is:

50 \[

51 a_{20} =4 + 6(20-1) =4 + 6(19) =4 + 114 = 118.

52 \]

53 The numbers are confirmed to be \(4, 10, 16, \dots, 118\).

54

55 #### «xNorth Side:s=

56 — Numbers belong to the arithmetic sequence \(3, 9, 15, \dots, 117\).

57 — Common difference \(d = 6\).

58 — Using the \(n\)-th term formula \(a_n = a + (n-1)d\), the \(20"{\text{th}}\)
term is:

59 \[

60 a_{20} =3 + 6(20-1) =3 + 6(19) =3 + 114 = 117.

61 \]

62 The numbers are confirmed to be \(3, 9, 15, \dots, 117\).

63

64 The student constructs these lists correctly in their solution. #xStep 2 is
correct .

68 ### xxStep 3: Counting 1-digit, 2-digit, and 3—-digit Numbers::

24

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

108
109
110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

The student attempts to classify the numbers into groups based on digit count.
Let’s verify the classification for each side based on the expected solution:

sxSouth Side:s=

— #xl—-digit numbers=x: \(4\) (1 number).

— #*%2—digit numbers=*%: From \(10\) to \(94\), inclusive.

Using the \(n\)-th term formula for the first two-digit (\(10\)) and last two-—
digit (\(94\)):

\
10
\]
\[
94 = 4 + 6(n-1) \implies n = 16.

\]

So there are \(16 — 2 + 1 = 15\) two—-digit numbers.

— #%%3—digit numbers=*%: From \(100\) to \(118\), inclusive. There are \(20 - 16 =
4\) three—-digit numbers.

Il
\]

4 4+ 6(n—-1) \implies n

Thus:

— 1-digit: \(1\) number,

— 2-digits: \(15\) numbers,
— 3-digits: \(4\) numbers.

«xNorth Side:x=

— #x]l—digit numbers==x: \(3, 9\) (2 numbers).

— %%2—digit numbers=*=*: From \(15\) to \(99\), inclusive.

Using the \(n\)-th term formula for the first two-digit (\(15\)) and last two-—
digit (\(99\)):

\

15 =3 + 6(n-1) \implies n
\]

\

99 = 3 + 6(n-1) \implies n = 17.

\]

So there are \(17 - 3 + 1 = 15\) two-digit numbers.

— *%3—digit numbers=*%: From \(105\) to \(117\), inclusive. There are \(20 - 17 =
3\) three—-digit numbers.

]
%)

Thus:

— 1-digit: \(2\) numbers,
— 2—digits: \(15\) numbers,
— 3—digits: \(3\) numbers.

The student has errors in their count. For example:

— They incorrectly list certain numbers as having the wrong number of digits.
— They double-count or mislabel numbers. (For instance, \(4\) is listed as
having multiple digit counts.)

xStep 3 is incorrects due to significant misclassification.

=% Step 4: Cost Calculation =
Using the corrected counts:

=xSouth Side:x=

\[

\text{Cost} = (1 \cdot 1) + (2 \cdot 15) + (3 \cdot 4) =1 + 30 + 12 = 43.
\]

«xNorth Side:s=
\[

25

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

127
128
129
130
131
132
133
134
135

136
137
138
139
140
141
142
143
144

145
146

\text{Cost} = (1 \cdot 2) + (2 \cdot 15) + (3 \cdot 3) =2 + 30 + 9 = 41.
\]

=xTotal Cost:xx

\[

\text{Total} = 43 + 41 = 84.
\]

The student’s calculation is incorrect. They arrive at a total of \(61\), which

significantly underestimates the total due to their misclassification of numbers

#xStep 4 is incorrect** due to incorrect cost calculation.

=xStep 5: Final Verification and Grade==*

— The student correctly identified the arithmetic sequences.

— However, they made significant errors in counting the number of digits for
many house numbers on both the north and south sides. These errors carried over
into their cost calculation, leading to an incorrect total.

#x Verification: Is the answer correct (Yes/No)? Noxx

26

