
Feature Importance Random Search for
Hyperparameter Optimization of Data-Consistent

Model Inversion

Stephen Obonyo
Strathmore University

sobonyo@strathmore.edu

Isaiah Onando Mulang’
IBM Research

mulang.onando@ibm.com

Timothy Rumbell
IBM Research

thrumbel@us.ibm.com

Catherine Wanjiru
IBM Research

catherine.wanjiru@ibm.com

Viatcheslav Gurev
IBM Research

vgurev@us.ibm.com

Abstract

We consider hyperparameter optimization (HPO) of approaches that employ outputs
of mechanistic models as priors in hybrid modeling for data consistent inversion.
An implicit density estimator (DE) models a non-parametric distribution of model
input parameters, and the push forward of those generated samples produces a
model output distribution that should match a target distribution of observed data.
A rejection sampler then filters out “undesirable” samples through a discriminator
function. In a samples-generate-reject pipeline with the objective of fitting the
push-forward to the observed experimental outputs, several DEs can be employed
within the generator and discriminator components. However, the extensive evalu-
ation of these end-to-end inversion frameworks is still lacking. Specifically, this
data-consistent model inversion pipeline offers an extra challenge concerning opti-
mization of constituent models. Traditional HPO are often limited to single-model
scenarios and might not directly map to frameworks that optimize several models
to achieve a single loss. To overcome the time overhead due to summative opti-
mization of each component, and the expanded combinatorial search space, we
introduce a method that performs an initial random search to bootstrap a HPO that
applies weighted feature importance to gradually update the hyperparameter set,
periodically probing the pipeline to track the loss. Our experiments show reduced
number of time intensive pipeline runs but with the faster convergence.

1 Introduction
Hyperparameter optimization (HPO) is a daunting task for developers of intelligent and learning
systems [5]. Optimality of model parameters determine the level of performance, and speed of
training and inference [9]. In machine/deep learning (ML/DL), such hyperparameters include
number of neurons per model layer, learning rate, and batch size etc [6, 17]. HPO methods can be
classified into two types [6], namely: i) parallel search methods such as grid search [8, 10] and
random search [1], that consume high amounts of compute attempting to reduce optimization times
from several runs based on unique hyperparameter permutations; ii) sequential optimization methods,
such as Bayesian Optimization (BO) [11], which incorporate a series of runs to gradually update
subsequent runs with information from previous ones. Two inherent challenges in traditional HPO
methods exist. First, resource consumption due to the combinatorial search space, and second, HPO
predominately attempts to optimize a single model e.g in ML/DL [5].

In the domain of inverse modeling, ‘data-consistent model inversion’ (DCMI) refers to the setting
where a distribution of model inputs should be inferred from a distribution of observed data [13, 14].
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In DCMI for deterministic models, the push-forward model y = M(x) is a function known to relate
some underlying input parameters to some observed outputs. Let the latent parameters be X with an
assumed initial probability distribution PX and the observed properties be Y with an assumed target
distribution of observations QY . The goal of DCMI, then, is to sample model inputs proportional
to an approximate density qXg

(x) such that, after push-forward by y = M(x), model outputs
are proportional to a density q̂Yg

(y) that approximates QY . Previous DCMI approaches include
generative modeling using generative adversarial networks (GANs) to sample qXg

(x) [12, 14], and
rejection sampling using density estimators [2, 14]. A recently developed algorithm, sequential DCMI
(sDCMI, summarized in Appendix), combines aspects of these approaches, learning a non-parametric
model in the form of a set of samples that are iteratively refined via density estimation-based rejection
to approximate qXg

(x). This method is summarized by the ‘Pipeline’ in Figure 1, where the left
side shows the generative model that iteratively learns to samples an implicit density q̂Xg

to draw
parameter samples, and on the right a rejection method is employed by training density estimators
to guide the generated samples according to q̂Yg in a sample-reject pipeline [13, 3]. Searching for
the optimal hyperparameters in the sDCMI approach is challenging, as optimization is performed on
multiple models sequentially throughout training. This work proposes an approach that alleviates
the challenges of HPO based on sDCMI - described in the approach in Appendix Section A. Our
Contribution : We introduce a novel end-to-end HPO of data consistent inverse modeling that
applies an iterative feature importance based gradient update to guide random search.
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Figure 1: Approach: consists of two major components, an iterative feature importance update, and the sDCMI
modeling pipeline consisting of the density estimator in a perturbation kernel and the discriminator.

2 Background and Problem Formulation
The goal of DCMI is to sample input parameters ‘consistent’ with observed data, in that when a model
is simulated with the sampled parameters, the model outputs match the observations. In sDCMI, a
proposal distribution of inputs QXg

is sampled by a generative model Gθ that is trained to approximate
the distribution QX . Passing the samples through the model generates outputs, y = M(x) within
an output distribution QYg , which approximate the distribution of the observed outputs QY . An
additional constraint ‘regularizes’ the generated samples according to the prior distribution PX . The
sDCMI objective can be succinctly represented using

given PX , QY , y = M(x)

minimize Df (QXg ||PX)

subject to supp(Xg) ⊆ supp(X), Df (QYg
||QY ) = 0

where yg = M(xg) ∼ QYg
, xg ∼ QXg

.

(1)

In equation (1), Df (·||·) is an f-divergence measure such as Jensen-Shannon (JS) divergence. The
resulting distribution Y ∼ QYg is compared to the target observed output distribution Y ∼ QY , and
the divergence is optimized. Density estimator models (also parameterized) ϕθ(·) score the inputs
and outputs using density ratio estimation for evaluating the divergence measures in equation 1.

In this work we consider HPO on the incorporated DL/ML models Gθ(·) and ϕθ(·) in the sDCMI
framework. These DL/ML models can be implemented using various methods, including the
possibility of m models stacked together for boosting density estimation, and k models in the
discriminator, the total set of hyperparameters becomes: ΘT =

⋃m
g=1{θ ∈ Θ(g)} ⌢

⋃k
d{θ ∈
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Θ(d)}. The HPO is a minimization problem dependent on the combinatorial
(
ΘT

|ΘT |
)

illustrated in blue
box of Figure 1:

argmin
Θc∈( ΘT

|ΘT |)
Df (·) | Gθ(·), ϕθ(·),M(·) (2)

3 Approach: Feature Importance guided Random search

Our approach, illustrated in Figure 1, encapsulates the sDCMI pipeline within an iterative feature
importance guided random search. We follow the intuition reported in the literature [1] that
well guided random search should return optimal hyperparameters. The set of parameters in our
setting includes a combination of parameters for different pipeline components, i.e., Gθ(·) and ϕθ(·).
Algorithm 1 initializes a set of randomly selected hyperparameters Λ, that are passed through the
pipeline, Ψ to obtain the JS loss (line 3) between QY and QYg

. A set of K random trials through
Ψ generates the (hyperparameter configurations, JS loss) pairs to be used in weighting feature
importance. In the next step, batches of size bs are iteratively drawn from the generated pairs and
used to train a supervised function W (xtrain, ytrain) where xtrain are hyperparameters, and ytrain are
corresponding JS losses. W (e.g. a neural network or a linear regression model) learns incrementally
to produce feature importance I . To update Λ we scale I by a weight parameter α (Algorithm 1, lines
7-9). Periodically the Ψ is probed with a single trial of the instantaneous Λ to check the performance
of the Λ updates (i.e. if the pipeline JS loss is decreasing). All hyperparameters are normalised.

Algorithm 1 HPO with Feature Importance Weighting
1: procedure SDCMI_HPO(Ψ, N,M,K,α, bs, probe) ▷ Ψ, sDCMI pipeline
2: Λ← InitHypeparameters() ▷ initialise hyperparameters
3: JS← RunPipeline(Ψ,Λ, trials=1)
4: sampleParams, sampleJS← RunPipeline(Ψ, randomParams, trials=K)
5: for i← 0 to N do
6: xtrain, ytrain← random(sampleParams, bs), random(sampleJS, bs)
7: I ←W (xtrain, ytrain) ▷ W weighting Model
8: Λ← Λ + α(Λ× I)
9: if i % probe = 0 then

10: currentJS← RunPipeline(Ψ,Λ, trials=1) ▷ Run sDCMI Pipeline
11: if currentJS < JS then
12: JS← currentJS ▷ Λ∗ optimal hyperparams
13: Λ∗ ← Λ
14: return Λ∗

4 Experiments
Data. We use simulated data for both X and Y . X is 2-dimensional. The prior PX was set
according to (x1, x2 ∼ U(0, 2)) and was initially sampled through quasi Monte Carlo. The push
forward model (M(·)) is a 2-dimensional Rosenbrock function that generates a 1-dimensional y.
with a normal distribution target according to N (250, 10).

Setup. In the sDCMI pipeline, there are two key components: a generative model (acting as a
perturbation kernel), for which we use a Diffusion Model (DM) and discriminator(s) that consist
of DE(s) implemented using e.g. Gaussian mixture models GMM) or affine coupling normalizing
flow networks (AC). Throughout the experiments, the generative model was set to the DM, while
the discriminator density was varied between AC and GMM models giving two sets of pipeline
configurations: (i) DM-AC, (ii) DM-GMM. A listing of parameters of each model is given in Table 1.

Diffusion Models - DM Affine Coupling - AC Gaussian Mixtures - GMM
Forward diffusion steps - steps, number of
hidden layers - hdif., learning rate - lr, batch
size - bs, number of training epochs - epoch,
learning rate - lr and dropout rate - drop

number of layers - layers, hid-
den units size - hclas., learning
rate - lr, the batch size - bs and
dropout - drop

number of components -
comp, scale, delta and
the number of iterations -
n_iters

Table 1: Listing of hyperparameters.

Baselines. We consider three existing HPO search methods, Optuna, HyperOpt and BO. For each
method, 100 trials were run. Similarly, for our Algorithm, 100 trials we sampled from the sDCMI
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pipeline. For DM-AC and DM-GMM pipeline, the parameters of our Algorithm 1 were set as
follows: K=100, α=0.001, W a linear regression model based on SGD implementation where the
next iteration weight update are bootstrapped with the previous one, probe=100, N=10K. Figure 2
shows the results of the iteration runs.

Discriminator Density AC Discriminator GMM Discriminator
HPO method Ours bayes hyper optuna Ours bayes hyper optuna

Mean 0.0029 0.0609 0.0452 0.0609 0.0006 0.0802 0.0844 0.0865
Std. 0.0028 0.0683 0.0631 0.0685 0.0008 0.0772 0.0810 0.0819

Table 2: Average JS (onQYg ||QY ) of hyeperparameters over 100 trials for BO (bayes), Optuna (optuna) and
HyperOpt (hyper). DM-AC and DM-GMM pipeline are repeated 10 time to get the sample JS scores.

Figure 2: Row 1: DM-AC pipeline with 2-runs of the Algorithm 1. Row 2: DM-GMM pipeline. Row 3: The
QYg andQY fit based on the optimal hyperparameters from the DM-AC (row 1, column 2) and DM-GMM (row
2 , column 2) at iteration 800. Plots correspond to the results obtained from probing the pipeline.

drop. hdif. steps lr layers bs hclas. epoch scale delta comp. iter
DM-AC 0.38 7 13 0.005 4 908 7 15 - - - -
DM-GMM 0.43 18 19 0.009 - 857 - 19 0.39 0.012 38 1566

Table 3: Optimal DM-AC and DM-GMM hyperparameters. Abbreviations are as indicated in Table 1

Results. The JS losses start high initially and gradually decrease over iterations. While there a slow
convergence of the optimal hyperparameters our algorithm updates hyperparameters when the JS
loss from the pipeline probing is less than the current. As such, only the hyperparameters leading
to the global JS convergence are returned (Λ∗). We present a set of hyperparameters leading to the
best JS loss in Table 3 and compare our method with other baselines in Table 2. While the proposed
algorithm generate results comparable to the existing HPO methods, our approach record the lowest
JS values while learning on only 100 randomly sampled trials sampled from the sDCMI pipeline.
The majority of existing HPO baselines are designed and tested on a single model framework e.g. a
single DL model. However, in sDCMI setting there are a number of components which are part of of
the framework e.g. generative model, and density estimators used in discriminators. The selection of
a hyperparameter in a sub-component can influence the performance of another sub-component in
the same or a different sub-component. ML/DL-guided random search is a well established problem
solving methodology that records state-of-the-art results in problems in large search spaces such
as computer game playing [15, 16] and molecular modeling [7]. In this work, only a subset of
hyperparameters were studied. Including all the hyperparameters in the sDCMI pipeline is key in
fully optimizing the HPO pipeline.

5 Conclusion and Future Work
We have presented a feature-based weighting end-to-end HPO algorithm for sDCMI pipeline. With
100 trials, the iterative algorithm incrementally updates the set of hyperparameters based on the
learned feature weights. Subsequently, the pipeline is probed to evaluate the quality of the hyper-
parameter updates. Inclusion of the categorical hyperparameters and scaling the HPO with all the
hyperparameters in the sDCMI pipeline are key future research fronts.
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A Sequential Data-Consistent Model Inversion (sDCMI)

In this section we describe sDCMI, the pipeline which informs our HPO work. The sDCMI work is
currently under review. We will include the full reference once the work is published or archived.
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Figure 3: sDCMI Modelling Pipeline. Source : [Under Review]

In the pipeline, the samples X are initially drawn from the prior distribution PX , resulting in the
initial values of QXg

. Samples Y on the other hand are obtained by push forward of X through
function M leading to QYg

with a corresponding target distribution QY . QXg
samples are passed

to the generator module (only Diffusion Model is tested in our HPO work) which allows for the
exploration of the parameter space of the given input by adding Gaussian noise (perturbation) to the
output. This process leads to generation of additional data points which augment the input data to
get a set of output samples. Subsequently, the output is fitted by another density estimator ( in our
case we experiment with Affine Coupling and Gaussian Mixture Model), then followed by a rejection
process where points with greater density than the target (PX or QY ) are more likely to be removed.
The rejection is controlled by a rejection fraction parameter - set to 0.5 throughout in our HPO work.
This sample-perturbation-fit process is sequentially repeated for a number of iterations - set to 10
in the HPO experiments. While the primary objective is to optimize the divergence Df (QYg

||QY ),
ability to achieve similar performance on the input space - Df (QXg ||PX)) - is also key (secondary
objective).

B Feature Importance Partial Dependency Plots (PDPs)

We generated the Partial Dependency Plots (PDPs) by combining the result of all the trials: Optuna,
HyperOpt, Bayesian Optimization trials. The PDPs shows the marginal effect a variable has on
another [4]. These marginal effect plots are key in the processes on validating our algorithm outputs.
The plots are obtained by fitting a Gradient Boosted regressor model with the hyperparameters, the
Λ, as the input and the corresponding JS losses as the target. Subsequently, each hyperparameter
marginal effect is generated by keeping all other hyperparameter values constant while changing one
with the fitted model.

Some key observations from plot in Figure 4 is that (i) the diffusion steps (n_steps) greater than 20
leads no better performance but worse time and space complexity, (ii) a similar observation can also
be made architectures as poor performers, (iii) the lower learning rates (lr) while training the Diffusion
Model and the Affine Coupling discriminator are better performers, (iv) other hyperparameters values
do not have a strong effect on the JS loss, however, can affect the pipeline complexity e.g. longer
training epochs of the diffusion model.
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Figure 4: PDP of DM-AC

Figure 5: PDP of DM-GMM

Similar to the previous observations made in the DM-AC PDP 4, the DM-GMM also include some
general trends e.g. (i) the dropout ranging between 0.4 and 0.5 are better, (ii) many network layers
are bottleneck to the whole pipeline performance while a lot of training steps (epochs) seems to to
have no major effect, finally, (iii) lower learning rates are also still recording better performance just
as the previous HPO pipeline Figure 4.
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