
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ON THE PREDICTIVE POWER OF REPRESENTATION DIS-
PERSION IN LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We show that a language model’s ability to predict text is tightly linked to the
breadth of its embedding space: models that spread their contextual represen-
tations more widely tend to achieve lower perplexity. Concretely, we find that
representation dispersion—the average pairwise cosine distance among hidden
vectors—strongly and negatively correlates with perplexity across diverse model
families (LLaMA, Qwen, and others) and domains (Wikipedia, news, scientific
abstracts). Beyond illustrating this link, we show how dispersion can be leveraged
for a range of practical tasks—without requiring labeled data. First, measuring
dispersion on unlabeled text allows us to predict downstream accuracy in new
domains, offering a data-efficient tool for model selection. Next, we find that
identifying layers with higher dispersion pinpoints the best representations for
retrieval-based methods such as kNN-LM, bypassing exhaustive layer-by-layer
searches. Finally, we integrate a simple “push-away” objective into training, which
increases dispersion in both single-domain and cross-domain scenarios and directly
improves perplexity in each.

1 INTRODUCTION

Large language models can perform remarkably well on tasks ranging from text completion to code
generation. Yet their embedding geometry often exhibits signs of anisotropy or rank collapse, whereby
hidden states lie in a narrow cone or occupy a low-dimensional subspace (Ethayarajh, 2019; Gao
et al., 2019; Li et al., 2020). Although this geometry has been posited to limit expressive power, how
precisely it connects to auto-regressive text generation remains less clear.

In this paper, we present empirical evidence that a model’s ability to predict text is tightly linked to
the breadth of its embedding space. Intuitively, as illustrated in Figure 1, weaker models compress
contexts into tight clusters, whereas stronger models separate these contexts —even semantically
similar ones—more broadly. This broader geometry yields clearer distinctions in the latent space,
enabling sharper (lower-entropy) next-token predictions. Concretely, we quantify representation
dispersion at any chosen layer as the average pairwise cosine distance of its hidden vectors. Unless
specified otherwise, our empirical sections use the final layer, and we show that higher dispersion
consistently predicts lower perplexity (Figure 2).

Beyond revealing this fundamental link, representation dispersion offers practical benefits:

• Label-free diagnostics. Dispersion measured on unlabeled text predicts downstream accuracy
in new domains (§3.1).

• Model selection. Among multiple pretrained or fine-tuned variants, the model with larger
dispersion reliably performs better on domain-specific tasks such as code generation and math
reasoning (§3.2).

• Layer selection for retrieval augmentation. Although the first two applications exploit the
final hidden state, dispersion is equally informative inside the network. In kNN-LM, choosing
the hidden layer with the highest dispersion yields the best perplexity, providing an unsupervised
shortcut to sub-layer selection (§3.3).

• A training signal. Encouraging higher dispersion through an auxiliary “push-away” loss directly
improves perplexity for both single-domain and cross-domain scenarios (§3.4).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Each color (   ,   ,   )

indicates a semantic

cluster of contexts in

embedding space.

a better model

a weak model

Figure 1: Representation geometry in a weak model vs. a
better model. In a weak model (top), final-layer embeddings
for similar contexts are compressed into tight clusters, limiting
discriminative power. In a better model (bottom), embeddings
are widely dispersed—even within semantically related clus-
ters—leading to more confident next-token predictions.

3

Perplexity

1.0

0.8

0.6

0.4

0.2

1 2 4 5

R
e
p
r
e
s
e
n
t
a
t
io

n
 D

is
p
e
r
s
io

n

Figure 2: An Illustrative Em-
pirical Trend. Across mod-
els/datasets, higher dispersion
correlates with lower perplexity.

5 10 15 20 25
Mean Perplexity

0.68

0.70

0.72

0.74

0.76

0.78

0.80

Av
er

ag
e 

Co
sin

e 
Di

st
an

ce

Pearson
r = -0.80
p = 0.000

WikiText (Llama-3.2-3B)

5 10 15 20
Mean Perplexity

0.80

0.82

0.84

0.86

0.88

0.90

0.92
Pearson
r = -0.85
p = 0.000

WikiText (Llama-3.1-8B)

5 10 15 20
Mean Perplexity

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80 Pearson
r = -0.92
p = 0.000

News (Llama-3.2-3B)

5 10 15 20
Mean Perplexity

0.55

0.60

0.65

0.70

0.75
Pearson
r = -0.62
p = 0.000

Medical (Llama-3.2-3B)

Figure 3: Sequence-level perplexity vs. embedding dispersion across different domains and model
sizes. Each point represents a bin of text segments with the x-axis showing mean sequence-level
perplexity and the y-axis showing average pairwise cosine distance of final-layer embeddings.

Overall, we show that a model’s embedding geometry—captured by the simple statistic of average
pairwise distance—serves as a robust indicator of predictive quality. By quantifying and encouraging
this broader geometry, we gain both conceptual insight and practical benefits, and we hope this
perspective fosters new avenues for improving model robustness and interpretability.

2 EMPIRICAL ANALYSIS OF REPRESENTATION GEOMETRY

We begin by describing how we measure representation geometry and perplexity (§2.1). We then
present three key global observations that characterize how embedding dispersion evolves with
perplexity, across layers, and under fine-tuning (§2.2). Finally, we zoom in on semantic clusters
(§2.3) to examine how dispersion behaves among closely related contexts.

2.1 MEASUREMENT SETUP

Contextual Representations. Following standard autoregressive conventions, let a language model
with parameters θ assign probability to a token sequence (x1, x2, . . . , xN ) via pθ(x1, x2, . . . , xN ) =∏N

n=1 pθ
(
xn | x<n

)
, where x<n = (x1, . . . , xn−1). In contemporary Transformer-based models,

each partial sequence x<n is mapped to an internal context vector hn ∈ Rd by a function fθ(·).
The next-token distribution is then given by pθ

(
xn | x<n

)
= softmax

(
Wo hn

)
, where Wo ∈

R|V |×d projects the representation hn into the vocabulary space V . For measuring representation
dispersion, we focus on a chosen final-layer vector (e.g., hN for the full sequence), by default, as the
representation of each text sample.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

1.000 1.025 1.050 1.075 1.100
Mean Perplexity (Last Token)

0.65

0.70

0.75

0.80

0.85

Av
er

ag
e 

Co
sin

e 
Di

st
an

ce

Pearson
r = -0.89
p = 0.000

Context Length: 16 tokens

1.000 1.025 1.050 1.075 1.100
Mean Perplexity (Last Token)

0.65

0.70

0.75

0.80

0.85
Pearson
r = -0.70
p = 0.000

Context Length: 64 tokens

1.000 1.025 1.050 1.075 1.100
Mean Perplexity (Last Token)

0.65

0.70

0.75

0.80

0.85
Pearson
r = -0.64
p = 0.000

Context Length: 128 tokens

1.000 1.025 1.050 1.075 1.100
Mean Perplexity (Last Token)

0.65

0.70

0.75

0.80

0.85
Pearson
r = -0.55
p = 0.000

Context Length: 256 tokens

Figure 4: Last-token perplexity vs. embedding dispersion at varying context lengths using LLaMA-
3.2-1B. Each point represents a bin of text segments with the x-axis showing mean last-token
perplexity and the y-axis showing average pairwise distance.

Measuring Representation Dispersion. To measure how well the model separates text samples in
its embedding space, we first choose a particular layer or sub-layer whose representation we wish to
examine (e.g., the final hidden state, the output after the final attention block, or the second-to-last
block). Concretely, we sample N text segments from a dataset and pass each segment through
the model to extract the corresponding representation Ei ∈ Rd from the chosen sublayer, for
i = 1, . . . , N . We then compute the average pairwise cosine distance of these representations:

D =
1(
N
2

) ∑
1≤i<j≤N

[
1− Ei ·Ej

∥Ei∥ ∥Ej∥

]
. (1)

This quantity reflects how “spread out” the embeddings are, with higher values indicating greater
separation among representations.

2.2 GLOBAL OBSERVATIONS ON REPRESENTATION DISPERSION

In this section, we examine how the model’s representation space behaves across a broad sample
of text segments, highlighting how perplexity, layer depth, and fine-tuning each affect embedding
dispersion.

(1) Perplexity vs. Representation Dispersion. Our first finding connects a model’s sequence-level
perplexity to how spread out its contextual embeddings are.1 We randomly select 100,000 text
segments of 512 tokens, compute their perplexities, and also measure the average pairwise distance
of their final-layer embeddings. We sort by perplexity and group segments into bins, and for each bin
recording its mean perplexity and mean pairwise distance.

Figure 3 reveals a strong negative correlation: Segments with lower perplexity have more dispersed
embeddings, whereas those with higher perplexity show more compressed embeddings. This trend
appears across multiple model families (Llama, Phi, Mistral, Qwen) and diverse text domains (e.g.
Wikitext-103, CNN Daily News, PubMed summarization). Full visualizations are provided in
Section A.1.3.

We also verify that the relationship holds at a finer granularity by focusing on last-token perplexity,
shown in Figure 4. Across context lengths of 16, 64, 128, and 256 tokens, we observe the same
negative correlation trend. Intuitively, this negative correlation appears because contexts with more
confident next-token predictions (low perplexity) end up pushed into more distinct regions of the
embedding space, whereas harder-to-predict contexts remain more compressed.

1We define the sequence-level perplexity of a text segment x1:L of length L as:

ppl(x1:L) = exp

(
− 1

L

L∑
t=1

log pθ(xt | x<t)

)
,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1.00

0.95

0.90

0.85

0.80

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

20 40

Mean Perplexity

Before Pretraining

20 40

Mean Perplexity

After Pretraining

A
v
e
r
a
g

e
 C

o
s
in

e
 D

is
t
a
n

c
e

0.2

0.0

0.2

0.4

0.6

0.8

1 3 15 179

Layer

C
o
r
r
e
la

t
io

n
 C

o
e
f
f
ic

ie
n

t

0.30

0.08

0.10

-0.09

-0.13

-0.45

-0.32

-0.47

-0.72 -0.73

Correlation Coefficient Comparison 

Across Layers

Before Pretraining

After Pretraining

Network Layers

Layer 1

Layer 3

Layer 9

Layer 15

Layer 17

Figure 5: Layer-wise embedding separation in LLaMA-3.2-1B, shown across different perplexity
bins (left panel) and the corresponding correlation coefficients (right panel). Note that the negative
correlation between perplexity and embedding separation becomes more pronounced as we move to
deeper layers (see right panel).

(2) Layer-Wise Patterns. We next assess how this relationship unfolds across layers. Collecting
embeddings from multiple intermediate layers (e.g. Layers 1, 3, 9, 13, 17) and replicating the above
procedure, we find that the negative correlation strengthens in deeper layers (as illustrated in the right
panel of Figure 5). Early layers do not show a clear correlation, likely because they capture lower-level
lexical features rather than global predictive cues. Deeper layers exhibit more pronounced embedding
distance differences between easier-to-predict and harder-to-predict samples. Figure 5 illustrates this
layer-wise progression for a representative LLaMA-3.2-1B model. Additionally, comparing models
before and after pretraining indicates that the negative correlation emerges primarily after the model
has been trained to predict tokens, pointing to a learned representational structure.

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

10 20 30 40

Mean Perplexity

A
v
e
r
a
g

e
 C

o
s
in

e
 D

is
t
a
n

c
e

Full FT

LORA FT

NO FT

Figure 6: Effect of fine-Tuning
on embedding separation.

40 80 120 160 200 240 280 320 360

Checkpoint Step

0.0425

0.0450

0.0475

0.0500

Va
lu

e

Within-Cluster Mean

40 80 120 160 200 240 280 320 360

Checkpoint Step

0.72

0.74

0.76

0.78

0.80

Va
lu

e

Between-Cluster Mean

40 80 120 160 200 240 280 320 360

Checkpoint Step

2.05

2.10

2.15

Lo
ss

Training Loss

Figure 7: Clustering metrics and training loss across training.
We form 500 clusters of WikiText-103 contexts (each cluster con-
tains 100 semantically similar contexts that share the same 10-gram
continuation). During model training, both the within-cluster dis-
tance (left) and between-cluster distance (middle) consistently grow,
while training loss (right) falls.

(3) Fine-Tuning Effects. Finally, we examine how fine-tuning reshapes the embedding space. We
select the same model (LLaMA-3.2-1B) and apply either parameter-efficient (LoRA (Hu et al., 2021))
or full-parameter fine-tuning on WikiText-103. Compared to the pre-trained model, both approaches
increase the average embedding separation on WikiText-103 (Figure 6). Full fine-tuning exerts
a stronger effect, pushing text samples further apart overall; LoRA, which adapts only low-rank
modules, effects smaller but still notable changes. The choice of fine-tuning thus influences how
discriminative (i.e. “spread out”) the embeddings become in a specialized domain.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.3 DISPERSION WITHIN SEMANTIC CLUSTERS: A FINER-GRAINED ANALYSIS

A natural question is whether better models merely push semantically dissimilar contexts farther
apart, or also increase distances among contexts that are semantically close. If the latter did not
happen, then we could imagine a scenario where highly related examples remain tightly clustered,
but unrelated examples spread out, thereby inflating overall average distances. We therefore directly
measure dispersion among clusters of highly similar contexts to see whether their internal geometry
also expands over training.

Setup & Metrics. We collect 10-grams from the WikiText-103 training set that appear at least 100
times. For each such 10-gram, we retrieve 100 occurrences, each accompanied by a 100-token left
context, and treat these contexts as a semantically similar cluster. (Manual inspection confirmed that
these context sets do indeed relate to the same event, entity, or theme.) We construct a total of 500
such clusters. We then track the contextual embeddings produced by a LLAMA-3.2-1B model at
various checkpoints during training. Within each cluster, we compute the within-cluster distance as
the average (cosine) distance from each embedding to the centroid of that cluster. Likewise, we define
the between-cluster distance as the average (cosine) distance among the centroids of all clusters.
Thus, the latter measures how far clusters are from each other in the embedding space, while the
former measures how tightly each cluster is packed internally.

Results. Figure 7 shows that, as training proceeds and the loss decreases, both the average within-
cluster distance and between-cluster distance increase. Thus, the trend toward higher overall disper-
sion is not driven solely by pushing apart highly dissimilar contexts. Even very similar contexts—
which all share the same 10-gram continuation—become more spread out in the latent space as the
model learns, which indicates the model can effectively distinguish them despite the similarities. This
in-cluster expansion reinforces our hypothesis that better-performing models tend to produce broader
embedding geometries in all regions of the latent space, not just pushing away dissimilar examples.

3 APPLICATIONS

Having established a strong correlation between perplexity and embedding dispersion, we now
illustrate how to leverage this observation in various practical scenarios.

3.1 PREDICTING DOWNSTREAM PERFORMANCE WITHOUT LABELED DATA

In many real-world scenarios, one receives a large unlabeled query set and must decide, before
committing annotation or compute resources, (1) whether an off-the-shelf model will be sufficiently
accurate and (2) which specific examples it is likely to get wrong. A reliable label-free indicator
would enable rapid model validation, automatic justification of easy versus hard instances, and
targeted continued pre-training on precisely those queries that the model currently struggles with.
Because higher representation dispersion tracks lower perplexity (§2), we hypothesize that dispersion
alone can serve as such an indicator: if high dispersion coincides with correct predictions, then simply
measuring distances allows us to flag likely errors without ever looking at ground-truth labels.

Experimental protocol. To test this idea, we design a controlled experiment that varies the fraction
of correct answers while keeping the input distribution fixed: (1) Collect a pool of question-answer
pairs for a given dataset-model pair. (2) Partition the pool into correct and incorrect subsets by
comparing the model’s answer with the ground truth. (3) For each desired accuracy level (0%–100%
in 10% increments), sample 100 queries that contain the requisite mix of correct and incorrect
cases.(4) Extract the final-layer embeddings of these queries and compute their mean pairwise cosine
distance, averaging over 10 random seeds.

Results. Figure 8 plots mean pairwise distance against the fraction of correct predictions for several
LLaMA variants on ARC-CHALLENGE and MMLU. Across all models and datasets, accuracy rises
monotonically with dispersion: slices that the model answers correctly exhibit markedly broader
geometry than those it answers incorrectly. Practically, a practitioner could therefore sort an unlabeled
dataset by dispersion, inspect only the low-dispersion tail to uncover failure modes, or focus continued
training on those “hard” queries. Taken together, these findings establish representation dispersion as

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

020406080100
Fraction Correct (%)

0.04

0.06

0.08

0.10

0.12

0.14

M
ea

n 
Pa

irw
is

e 
D

is
ta

nc
e

ARC Challenge

020406080100
Fraction Correct (%)

0.04

0.06

0.08

0.10

0.12

0.14

M
ea

n 
Pa

irw
is

e 
D

is
ta

nc
e

MMLU

3.2-1B 3.2-3B 3.1-8B

Figure 8: Embedding distance vs. fraction correct. Each point corresponds to a fixed mixture of
correct/incorrect model predictions (x-axis). Error bars denote standard error over 10 random seeds.
Higher accuracy consistently aligns with larger mean pairwise distance.

a powerful, zero-label proxy for downstream accuracy and a principled tool for slice discovery and
targeted data augmentation.

3.2 REPRESENTATION DISPERSION FOR MODEL SELECTION

In practice, researchers and practitioners are often faced with choosing among numerous model
variants—ranging from different instruction-tuned checkpoints to parameter-efficient adaptations
or distilled models—while only having limited labeled data in the target domain. Exhaustively
evaluating every checkpoint is typically prohibitively expensive, both in terms of computation and
annotation resources. The tight link between representation dispersion and predictive accuracy
established in §2 offers an attractive alternative: by simply measuring how broadly a model separates
key tokens in its embedding space, one can obtain a geometric score that rapidly predicts downstream
performance.

Setup. To operationalize this idea, we focus on task-relevant tokens that carry significant signal
in the domain of interest, such as digits for mathematical reasoning, Python keywords for code
generation, or legal terms for contract analysis. Let T ⊂ V denote a small set of such domain-specific
tokens, and let T denote a reference set of common, everyday language tokens. We use the model’s
original output token embeddings—that is, the rows of the output projection matrix—as provided
after loading the model weights. This requires no forward passes or input data; all computations are
performed directly on these pre-trained embeddings. We compute average pairwise distances—either
cosine or Euclidean—among the embeddings of tokens within T , within T , and between T and T .

Motivated by our empirical findings, we propose a single “dispersion gap” metric that succinctly
captures both the distinctiveness of the domain-relevant tokens and their separation from generic
language. Specifically, we define

G = within(T ) + between
(
T , T

)
,

where within(T ) denotes the mean pairwise distance among the domain tokens, and between
(
T , T

)
is the mean distance between domain and reference tokens. Larger values of G indicate that the model
both differentiates between domain-critical tokens and separates them from everyday vocabulary—a
geometric pattern that, as Tables 3–4 show, strongly correlates with higher task accuracy.

This approach is computationally efficient and entirely label-free: evaluating G requires only reading
the model’s output embedding matrix and performing basic matrix operations on CPU, without
any forward passes or GPU computation. In our experiments, ranking models by their dispersion
gap consistently elevates the best-performing models in domains such as math and code, yielding
gains of up to 40 accuracy points over lower-ranked alternatives. Thus, the dispersion gap offers
a principled, data-efficient guideline for prioritizing model variants before more costly full-scale
evaluation, providing practitioners with a practical tool for rapid, geometry-driven model selection.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Qwen2.5 Qwen2.5-MathDistill-Qwen Qwen2.5 Qwen2.5-MathDistill-Qwen Qwen2.5 Distill-Qwen
0.0

0.5

1.0

1.5

2.0

2.5

Di
st

an
ce

1.5B Models 7B Models 14B Models
D--D
D--NM
Gap

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Accuracy (%)

Llama2 CodeLlama Llama2 CodeLlama
0

1

2

3

4

5

Eu
cli

de
an

 D
ist

an
ce

7B Models 13B Models
C--C
NC--NC
Dispersion Gap

15

20

25

30

35

Hu
m

an
Ev

al
 p

as
s@

1 
(%

)HumanEval
pass@1 (%)

Figure 9: Upper: Qwen on MATH. Blue bars show D–D (digit–digit) distances, orange bars
show D–NM (digit–non-math) distances, and green bars show their sum—the Dispersion Gap. The
black dashed line reports task accuracy (%). Lower: Llama/CodeLlama on HUMANEVAL. Blue
bars show C–C (code-keyword) distances, orange bars show NC–NC (non-code) distances, and
green bars again give the Dispersion Gap. The black dashed line reports PASS@1 (%). Bar heights
therefore convey the three dispersion statistics, while the line traces model performance, mirroring
the figure legends. A full table of the underlying values is provided in Section B.2.

Results. Figure 9 clearly demonstrates how the dispersion gap G aligns with downstream perfor-
mance. In the upper panel (Qwen on MATH), accuracy rises monotonically with the green “Gap”
bars both within each parameter scale (e.g. 1.5 B→ 7 B→ 14 B) and across fine-tuned variants (e.g.
QWEN2.5, QWEN2.5-MATH, DISTILL-QWEN). Spearman correlations between G and accuracy
exceed 0.95, and the dispersion gap perfectly ranks all nine checkpoints without a single mis-ordering.
The lower panel (Llama/CodeLlama on HUMANEVAL) shows the same pattern: CODELLAMA
consistently exhibits both a larger gap and a higher PASS@1 rate than its LLAMA2 counterpart at
both 7 B and 13 B scales, while the increase from 7 B to 13 B again boosts both metrics in lock-step.
Taken together, these results confirm that the dispersion gap serves as a robust, zero-label proxy for
real-world performance and can be relied upon to shortlist the strongest checkpoints before running
any expensive evaluations.

3.3 LAYER SELECTION FOR KNN-LM

Many retrieval-augmented language models build a datastore by using one of the sublayers in the final
transformer block as the vector key (Khandelwal et al., 2020; He et al., 2021; Alon et al., 2022; Li
et al., 2024). A central question in these methods is which internal representation of the transformer
to use as the “datastore key.” In this section, we focus on kNN-LM, which augments a standard
language model with a key-value memory of training examples. Specifically, at inference time, it
retrieves the nearest neighbors of the current hidden state from that memory and interpolates their
next-token distribution with the base LM’s distribution, often achieving lower perplexity on rare or
out-of-distribution tokens.

Recent evidence (Xu et al., 2023) suggests that taking the attention-layer output (instead of the
feed-forward layer output) often improves kNN-LM perplexity, but pinpointing the best layer can
require expensive end-to-end trials. We show that measuring how widely each layer “disperses” its
text embeddings (via average pairwise cosine distance) provides a lightweight, unsupervised way to
identify a layer likely to yield strong kNN-LM performance—without running the full interpolation
pipeline.

Background. Consider the standard Transformer block as used by GPT-2. Let h(l−1) ∈
Rn×d denote the hidden states from block l − 1. In block l, the hidden states first pass

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

N=10 N=50 N=100

Model Attn FFN Attn FFN Attn FFN

DISTILGPT2 0.83±0.02 0.33±0.05 0.83±0.01 0.30±0.02 0.82±0.01 0.30±0.01
GPT2-SMALL 0.83±0.02 0.24±0.06 0.83±0.00 0.24±0.03 0.83±0.00 0.24±0.01
GPT2-MEDIUM 0.66±0.03 0.19±0.02 0.67±0.01 0.21±0.02 0.67±0.01 0.21±0.01
GPT2-LARGE 0.80±0.04 0.68±0.06 0.79±0.01 0.66±0.02 0.80±0.01 0.68±0.03

Table 1: Representation dispersion (average pairwise cosine distance) of the final block’s attention
and feed-forward sub-layers for varying numbers of randomly sampled chunks N . Higher values
indicate more widely separated contextual embeddings.

through a multi-headed attention (MHA) sub-layer and residual connection: ĥ(l) = h(l−1) +

Dropout
(

MHA
(
LayerNorm(h(l−1))

))
. We then apply another residual connection around a position-

wise feed-forward network (FFN): h(l) = ĥ(l) + Dropout
(

FFN
(
LayerNorm(ĥ(l))

))
. Thus, each

block produces two intermediate sub-layer outputs: h(l)
att = ĥ(l) and h

(l)
ffn = h(l). Following Xu et al.

(2023), we compare using h
(L)
att versus h(L)

ffn from the final block L as the contextual key for kNN-LM.

Experimental Setup. We consider four members of the GPT-2 family—DISTILGPT2 (82 M
parameters), GPT2-SMALL (117 M), GPT2-MEDIUM (345 M), and GPT2-LARGE (774 M)—all
trained with the same tokenizer and a context length of 1 024. For each checkpoint we draw
N ∈ {10, 50, 100} non-overlapping 512-token chunks randomly from the WIKITEXT-103 validation
split. Sampling is repeated 10 times with different random seeds, and the identical chunk indices
are fed to both sub-layers so that any dispersion difference cannot be attributed to input variance.
For every chunk we extract the last-token hidden state produced by the final Transformer block’s (i)
attention sub-layer output h(L)

att and (ii) feed-forward sub-layer output h(L)
ffn . Given the resulting set

of N vectors {hi}Ni=1, we measure their representation dispersion as the average pairwise cosine
distance. We report the mean and standard deviation of dispersion across the 10 random repeats for
every ⟨model, N , sub-layer⟩ triple.

Results. Table 1 shows two practitioner-relevant patterns. First, the hidden states taken after the
attention sub-layer are always more widely spread than those taken after the feed-forward sub-layer
(e.g., 0.8045 vs. 0.6831 for GPT2-LARGE, 0.6593 vs. 0.1865 for GPT2-MEDIUM), making h

(L)
att the

natural choice of key for kNN-LM. Second, dispersion can be estimated with striking efficiency:
moving from 10 to 50 or 100 input chunks alters the mean by at most 1.5 % and never changes the
layer ranking, so profiling a model requires only about 5,000 tokens and a few milliseconds.

3.4 INCORPORATING REPRESENTATION DIVERGENCE INTO TRAINING

While typical cross-entropy training focuses purely on next-token prediction, several studies suggest
that explicitly encouraging embedding separation can improve generalization and robustness in
language modeling (Gunel et al., 2021; Jain et al., 2023). Inspired by these findings, we augment the
standard language-modeling loss with an auxiliary objective that pushes apart hidden-state vectors,
aiming to produce more discriminative representations.

Setup. We consider two scenarios: a single-domain setting, where we train GPT-2 small on
WikiText, and a cross-domain setting, where we train on WikiText plus Python code. In both cases,
let {hi}Bi=1 be the final-layer hidden-state vectors for all tokens in a batch (flattened across batch and
sequence). We normalize each vector to unit length, h̃i = hi/∥hi∥. To encourage wider separation,
we compute an average pairwise cosine distance d and then add an auxiliary loss −d to the standard
cross-entropy loss, weighted by a hyperparameter λ.

In the single-domain setting, davg is defined over all pairs in the same batch: davg =
1

B(B−1)

∑
i̸=j

[
1− h̃i · h̃j

]
. In the cross-domain setting, we instead compute d only across pairs

drawn from different domains (Wiki vs. code) to push embeddings from each domain further apart:

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

d = 1
|A||B|

∑
i∈A

∑
j∈B

[
1− h̃

(A)
i · h̃(B)

j

]
. The total loss in both settings is Ltotal = LCE + λLaux,

where λ controls the strength of the auxiliary “spread-out” loss.

Results. Table 2 reports test perplexities for various learning rates and auxiliary loss weights λ.
In the single-domain (WikiText) setting, introducing the auxiliary spread-out loss yields a slight
decrease in perplexity—typically 1–4 points—relative to the baseline, especially early in training. In
the cross-domain (WikiText+Code) setting, the auxiliary loss produces a much more pronounced
reduction in perplexity for both domains. For all learning rates, models trained with a moderate
value of λ achieve notably lower perplexity on both WikiText and code, suggesting that explicitly
pushing apart representations from distinct domains leads to more specialized and di scriminative
features. This demonstrates that our approach is particularly effective when bridging heterogeneous
data sources.

LR (a) Single-Domain (WikiText) (b) Cross-Domain (WikiText+Code)

λ Step = 500 Step = 1000 λ Step = 500 Step = 1000
Base +Aux Base +Aux Wiki Code Wiki Code

10−3 0.0 226.1 – 111.3 – 0.0 295.6 36.9 171.7 23.8
0.1 – 217.5 – 108.2 0.001 270.8 34.5 158.8 22.3

7× 10−4 0.0 195.0 – 96.7 – 0.0 304.4 35.4 175.7 22.8
0.1 – 193.8 – 93.6 0.01 255.2 31.9 150.2 20.8

5× 10−4 0.0 166.2 – 83.0 – 0.0 268.5 33.7 166.9 22.1
0.1 – 165.6 – 82.0 0.02 253.3 30.5 155.2 20.5

Table 2: Auxiliary spread-out loss improves perplexity in both single- and cross-domain settings.
Left: single-domain (WikiText) results; right: cross-domain (WikiText+Code) results. λ is the
auxiliary loss weight, chosen by validation for each learning rate. We report test-set perplexities at
500 and 1000 steps.

4 RELATED WORK

Geometric Analysis of Embeddings in Language Models. A growing body of work has examined
the geometry of hidden representations in large language models (LLMs). Early studies identified
an anisotropy problem, where embeddings collapse into a narrow cone and lose expressiveness at
deeper layers (Mu & Viswanath, 2018; Ethayarajh, 2019; Gao et al., 2019; Li et al., 2020; Noci et al.,
2022). Recent work uses intrinsic dimension (ID) estimators to trace how representation manifolds
evolve across layers (Valeriani et al., 2023), linking geometry to performance through, for example,
distinguishing human vs. machine text (Tulchinskii et al., 2023), predicting data compressibility
(Cheng et al., 2023), and revealing simplex-like structures for categorical concepts (Park et al., 2025).

The study most closely related to ours is Viswanathan et al. (2025), which also analyzes token-level
embedding distributions and observes cosine similarity rises when tokens in the prompt are shuffled.
However, their work remains largely descriptive. In contrast, we show how representation dispersion
can predict and improve perplexity and downstream accuracy, making geometric insights actionable
for model evaluation and selection.

5 CONCLUSION

In this work, we showed that representation dispersion serves as both a practical diagnostic and
training signal for language models. Moving forward, we aim to investigate how representation
dispersion interacts with other design choices—such as architectural variations or tokenization
strategies—and whether additional regularization signals might further strengthen model robustness
and interpretability. We hope these directions will inspire new ways to harness embedding geometry
for next-generation language modeling and related tasks.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

STATEMENT ON LLM USAGE

We acknowledge the use of Large Language Models (LLMs) to assist in the preparation of this
manuscript. Specifically, LLMs were utilized to improve grammar and clarity, aid in literature
discovery, and generate boilerplate code snippets for our experiments and testing scripts. The authors
have carefully reviewed and edited all LLM-generated outputs and take full responsibility for the
final content and scientific integrity of this work.

REFERENCES

Uri Alon, Frank Xu, Junxian He, Sudipta Sengupta, Dan Roth, and Graham Neubig. Neuro-
symbolic language modeling with automaton-augmented retrieval. In Chaudhuri, Kamalika
and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan
(ed.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 468–485. PMLR, 17–23 Jul 2022. URL https:
//proceedings.mlr.press/v162/alon22a.html.

Emily Cheng, Corentin Kervadec, and Marco Baroni. Bridging information-theoretic and geometric
compression in language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceed-
ings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 12397–
12420, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.emnlp-main.762. URL https://aclanthology.org/2023.emnlp-main.762/.

Kawin Ethayarajh. How contextual are contextualized word representations? comparing the geometry
of bert, elmo, and GPT-2 embeddings. In EMNLP-IJCNLP 2019, Hong Kong, China, pp. 55–65,
2019.

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tie-Yan Liu. Representation degeneration
problem in training natural language generation models. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, 2019.

Beliz Gunel, Jingfei Du, Alexis Conneau, and Ves Stoyanov. Supervised contrastive learning for pre-
trained language model fine-tuning, 2021. URL https://arxiv.org/abs/2011.01403.

Junxian He, Graham Neubig, and Taylor Berg-Kirkpatrick. Efficient nearest neighbor language
models. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih
(eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 5703–5714, Online and Punta Cana, Dominican Republic, November 2021. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.461. URL https:
//aclanthology.org/2021.emnlp-main.461.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models. CoRR, abs/2106.09685, 2021. URL
https://arxiv.org/abs/2106.09685.

Nihal Jain, Dejiao Zhang, Wasi Uddin Ahmad, Zijian Wang, Feng Nan, Xiaopeng Li, Ming Tan,
Ramesh Nallapati, Baishakhi Ray, Parminder Bhatia, Xiaofei Ma, and Bing Xiang. Contra-
CLM: Contrastive learning for causal language model. In Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 6436–6459, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.355. URL
https://aclanthology.org/2023.acl-long.355/.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
through Memorization: Nearest Neighbor Language Models. In International Conference on
Learning Representations (ICLR), 2020.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li. On the sentence
embeddings from pre-trained language models. In Bonnie Webber, Trevor Cohn, Yulan He, and
Yang Liu (eds.), Proceedings of the 2020 Conference on EMNLP 2020, Online, November 16-20,
2020, pp. 9119–9130, 2020.

10

https://proceedings.mlr.press/v162/alon22a.html
https://proceedings.mlr.press/v162/alon22a.html
https://aclanthology.org/2023.emnlp-main.762/
https://arxiv.org/abs/2011.01403
https://aclanthology.org/2021.emnlp-main.461
https://aclanthology.org/2021.emnlp-main.461
https://arxiv.org/abs/2106.09685
https://aclanthology.org/2023.acl-long.355/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yanhong Li, Karen Livescu, and Jiawei Zhou. Chunk-distilled language modeling, 2024. URL
https://arxiv.org/abs/2501.00343.

Jiaqi Mu and Pramod Viswanath. All-but-the-top: Simple and effective postprocessing for word
representations. In ICLR 2018, Vancouver, BC, Canada, 2018.

Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, and Aurelien
Lucchi. Signal propagation in transformers: Theoretical perspectives and the role of rank collapse.
Advances in Neural Information Processing Systems, 35:27198–27211, 2022.

Kiho Park, Yo Joong Choe, Yibo Jiang, and Victor Veitch. The geometry of categorical and
hierarchical concepts in large language models, 2025. URL https://arxiv.org/abs/
2406.01506.

Eduard Tulchinskii, Kristian Kuznetsov, Laida Kushnareva, Daniil Cherniavskii, Sergey Nikolenko,
Evgeny Burnaev, Serguei Barannikov, and Irina Piontkovskaya. Intrinsic dimension estimation for
robust detection of ai-generated texts. Advances in Neural Information Processing Systems, 36:
39257–39276, 2023.

Lucrezia Valeriani, Diego Doimo, Francesca Cuturello, Alessandro Laio, Alessio Ansuini, and
Alberto Cazzaniga. The geometry of hidden representations of large transformer models. Advances
in Neural Information Processing Systems, 36:51234–51252, 2023.

Karthik Viswanathan, Yuri Gardinazzi, Giada Panerai, Alberto Cazzaniga, and Matteo Biagetti. The
geometry of tokens in internal representations of large language models, 2025. URL https:
//openreview.net/forum?id=an3jH2qD2r.

Frank F. Xu, Uri Alon, and Graham Neubig. Why do nearest neighbor language models work? In
Proceedings of the 40th International Conference on Machine Learning, ICML’23. JMLR.org,
2023.

11

https://arxiv.org/abs/2501.00343
https://arxiv.org/abs/2406.01506
https://arxiv.org/abs/2406.01506
https://openreview.net/forum?id=an3jH2qD2r
https://openreview.net/forum?id=an3jH2qD2r


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Technical Appendices

ORGANIZATION OF CONTENTS

A Supplemental Materials for Representation Geometry Analysis 2

A.1 Details regarding Sequence-level Perplexity Experiments . . . . . . . . . . . . . . 2

A.1.1 Datasets and Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

A.1.2 Procedure for Mean-Perplexity vs. Dispersion Analysis . . . . . . . . . . . 2

A.1.3 Additional Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

A.2 Details regarding Fine-Tuning Effect Experiments . . . . . . . . . . . . . . . . . . 8

A.2.1 LoRA Fine-Tuned Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

A.2.2 Full-Parameter Fine-Tuned Model . . . . . . . . . . . . . . . . . . . . . . 8

A.3 Details regarding Dispersion Within Semantic Clusters Training Hyperparameters . 9

B Supplemental Materials for Applications of Representation Dispersion 10

B.1 Additional Results for Predicting Downstream Performance without Labeled Data . 10

B.2 Details Regarding Representation Dispersion for Model Selection . . . . . . . . . 13

B.3 Additional Results for Layer Selection for kNN-LM . . . . . . . . . . . . . . . . . 14

B.4 Training Details for Incorporating Representation Dispersion . . . . . . . . . . . . 15

C Limitations 16

1



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A SUPPLEMENTAL MATERIALS FOR REPRESENTATION GEOMETRY ANALYSIS

A.1 DETAILS REGARDING SEQUENCE-LEVEL PERPLEXITY EXPERIMENTS

A.1.1 DATASETS AND MODELS

In this section, we provide additional experimental details and visualizations that supplement our
main empirical analysis in §2. We study a range of standard language modeling datasets, including
the Salesforce/wikitext 2, abisee/cnn_dailymail 3, and ccdv/pubmed-summarization 4, covering text
segments in diverse domains.

For the models, our experiments encompass:

• Llama families: meta-llama/Llama-3.2-1B, meta-llama/Llama-3.2-3B,
meta-llama/Llama-3.1-8B

• Gemma families: google/gemma-2-2b, google/gemma-2-9b

• Mistral: mistralai/Mistral-7B-v0.1

• Phi: microsoft/phi-2

• Qwen families: Qwen/Qwen2.5-0.5B, Qwen/Qwen2.5-3B, Qwen/Qwen2.5-7B

We use the Hugging Face implementation of the above models. All models are standard decoder-only
Transformers, for which we collect final-layer embeddings on randomly selected text segments. In
line with Equation 1 of the main paper, we measure average pairwise cosine distance to quantify how
“spread out” their representations are.

A.1.2 PROCEDURE FOR MEAN-PERPLEXITY VS. DISPERSION ANALYSIS

Here, we outline the steps needed to produce a mean-perplexity vs. representation-dispersion plot:

Step 1: Randomly sample 100,000 segments (e.g., 512 tokens each) from the data.

Step 2: For each segment:

a) Compute its perplexity over the full sequence.
b) Record the final-layer hidden states for later analysis.

Step 3: Sort all segments by their computed perplexity.

Step 4: Group the sorted segments into bins (e.g., 100 segments per bin) and record each bin’s
mean perplexity.

Step 5: Perform uniform sampling in perplexity space on these bins to ensure coverage of
low-, mid-, and high-perplexity regions.

Step 6: For each uniformly sampled bin:

a) Retrieve the saved hidden states.
b) Calculate pairwise distances (e.g., average cosine distance) among the segment

embeddings.

Step 7: Produce the final mapping of mean perplexity to average pairwise distance.

Uniform Perplexity Sampling. Since random sampling of text segments often yields a distribution
heavily concentrated around moderate perplexities, we use a uniform sampling scheme to cover both
low- and high-perplexity “tails.” The pseudocode below highlights the procedure used in Step 5
(Algorithm 1):

2http://huggingface.co/datasets/Salesforce/wikitext
3https://huggingface.co/datasets/abisee/cnn_dailymail
4https://huggingface.co/datasets/ccdv/pubmed-summarization

2

http://huggingface.co/datasets/Salesforce/wikitext
https://huggingface.co/datasets/abisee/cnn_dailymail
https://huggingface.co/datasets/ccdv/pubmed-summarization


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 1 Uniform Perplexity Binning

Require: A sorted list of G perplexity bins {b1, . . . , bG} (with means m1 ≤ · · · ≤ mG)
Require: Desired number of bins K
Ensure: A set of K bins sampled uniformly in perplexity

1: mmin ← m1; mmax ← mG

2: Define targets

tk = mmin +
k − 1

K − 1
(mmax −mmin) for k = 1, . . . ,K

3: selected ← ∅
4: for k ← 1 to K do
5: find j s.t. mj is closest to tk
6: selected ← selected ∪ {j}
7: end for
8: if |selected | < K then
9: add extra bins from the sorted list until you have K

10: end if
11: return { bj : j ∈ selected}

This ensures we sample across the entire perplexity spectrum, capturing both rare, low-ppl segments
and rare, high-ppl segments. With these selected bins in hand, we can then compute the final-layer
embeddings and measure representation dispersion to obtain a mean-ppl vs. dispersion plot.

A.1.3 ADDITIONAL VISUALIZATIONS

Below, we present the full set of perplexity-versus-dispersion plots referenced in §2.2. For each
dataset and model, we group 100,000 text segments into perplexity bins and compute their average
pairwise representation distances. As described in the main text, we observe a negative correlation
between sequence-level perplexity and representation dispersion.

5 10 15 20 25
Mean Perplexity

0.60

0.62

0.64

0.66

0.68

Av
er

ag
e 

Co
sin

e 
Di

st
an

ce

Pearson
r = -0.60
p = 0.000

WikiText (Llama-3.2-1B)

5 10 15 20 25
Mean Perplexity

0.68

0.70

0.72

0.74

0.76

0.78

0.80 Pearson
r = -0.80
p = 0.000

WikiText (Llama-3.2-3B)

5 10 15 20 25
Mean Perplexity

0.80

0.82

0.84

0.86

0.88

0.90

0.92
Pearson
r = -0.85
p = 0.000

WikiText (Llama-3.1-8B)

Figure 10: Perplexity vs. Average Pairwise Cosine Distance on Wikitext-103 (Llama family).

50 100 150 200
Mean Perplexity

0.56

0.58

0.60

0.62

0.64

0.66

Av
er

ag
e 

Co
sin

e 
Di

st
an

ce

Pearson
r = -0.47
p = 0.000

WikiText (Gemma-2-2B)

50 100 150 200
Mean Perplexity

0.54

0.56

0.58

0.60

0.62

0.64 Pearson
r = -0.69
p = 0.000

WikiText (Gemma-2-9B)

Figure 11: Perplexity vs. Average Pairwise Cosine Distance on Wikitext-103 (Gemma family).

3



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

5 10 15 20 25
Mean Perplexity

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

Av
er

ag
e 

Co
sin

e 
Di

st
an

ce

Pearson
r = -0.62
p = 0.000

WikiText (Qwen2.5-0.5B)

5 10 15 20 25
Mean Perplexity

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70
Pearson
r = -0.85
p = 0.000

WikiText (Qwen2.5-3B)

5 10 15 20 25
Mean Perplexity

0.45

0.50

0.55

0.60

0.65

0.70

0.75
Pearson
r = -0.79
p = 0.000

WikiText (Qwen2.5-7B)

Figure 12: Perplexity vs. Average Pairwise Cosine Distance on Wikitext-103 (Qwen family).

5 10 15 20
Mean Perplexity

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

Av
er

ag
e 

Co
sin

e 
Di

st
an

ce

Pearson
r = -0.53
p = 0.000

WikiText (Mistral-7B-v0.1)

5 10 15 20
Mean Perplexity

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84 Pearson
r = -0.76
p = 0.000

WikiText (Phi-2)

Figure 13: Perplexity vs. Average Pairwise Cosine Distance on Wikitext-103 (Mistral) and Phi.

5 10 15
Mean Perplexity

0.56

0.58

0.60

0.62

0.64

0.66

0.68

Av
er

ag
e 

Co
sin

e 
Di

st
an

ce

Pearson
r = -0.59
p = 0.000

News (Llama-3.2-1B)

5 10 15
Mean Perplexity

0.50

0.55

0.60

0.65

0.70

0.75

0.80 Pearson
r = -0.89
p = 0.000

News (Llama-3.2-3B)

5 10 15
Mean Perplexity

0.60

0.65

0.70

0.75

0.80

0.85
Pearson
r = -0.54
p = 0.000

News (Llama-3.1-8B)

Figure 14: Perplexity vs. Average Pairwise Cosine Distance on CNN DailyMail (Llama family).

50 100 150
Mean Perplexity

0.50

0.55

0.60

0.65

0.70

Av
er

ag
e 

Co
sin

e 
Di

st
an

ce

Pearson
r = -0.84
p = 0.000

News (Gemma-2-2B)

50 100 150
Mean Perplexity

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875 Pearson
r = -0.76
p = 0.000

News (Gemma-2-9B)

Figure 15: Perplexity vs. Average Pairwise Cosine Distance on CNN DailyMail (Gemma family).

4



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

10 15 20 25
Mean Perplexity

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

Av
er

ag
e 

Co
sin

e 
Di

st
an

ce

Pearson
r = -0.79
p = 0.000

News (Qwen2.5-0.5B)

5.0 7.5 10.0 12.5 15.0
Mean Perplexity

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500 Pearson
r = -0.71
p = 0.000

News (Qwen2.5-3B)

4 6 8 10
Mean Perplexity

0.48

0.50

0.52

0.54

0.56

0.58

0.60 Pearson
r = -0.56
p = 0.000

News (Qwen2.5-7B)

Figure 16: Perplexity vs. Average Pairwise Cosine Distance on CNN DailyMail (Qwen family).

4 6 8
Mean Perplexity

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

Av
er

ag
e 

Co
sin

e 
Di

st
an

ce

Pearson
r = -0.67
p = 0.000

News (Mistral-7B-v0.1)

5 10 15
Mean Perplexity

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82
Pearson
r = -0.81
p = 0.000

News (Phi-2)

Figure 17: Perplexity vs. Average Pairwise Cosine Distance on CNN DailyMail (Mistral, Phi).

10 20
Mean Perplexity

0.45

0.50

0.55

0.60

0.65

Av
er

ag
e 

Co
sin

e 
Di

st
an

ce

Pearson
r = -0.68
p = 0.000

Medical (Llama-3.2-1B)

10 20 30
Mean Perplexity

0.50

0.55

0.60

0.65

0.70

0.75
Pearson
r = -0.71
p = 0.000

Medical (Llama-3.2-3B)

5 10 15 20
Mean Perplexity

0.66

0.68

0.70

0.72

0.74

0.76

0.78
Pearson
r = -0.25
p = 0.017

Medical (Llama-3.1-8B)

Figure 18: Perplexity vs. Average Pairwise Cosine Distance on PubMed Summarization (Llama
family).

0 50 100 150 200
Mean Perplexity

0.40

0.45

0.50

0.55

0.60

0.65

Av
er

ag
e 

Co
sin

e 
Di

st
an

ce

Pearson
r = -0.84
p = 0.000

Medical (Gemma-2-2B)

0 50 100 150
Mean Perplexity

0.45

0.50

0.55

0.60

0.65

0.70

0.75
Pearson
r = -0.93
p = 0.000

Medical (Gemma-2-9B)

Figure 19: Perplexity vs. Average Pairwise Cosine Distance on PubMed Summarization (Gemma
family).

5



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

5 10 15
Mean Perplexity

0.35

0.40

0.45

0.50

0.55

0.60

0.65
Av

er
ag

e 
Co

sin
e 

Di
st

an
ce

Pearson
r = -0.57
p = 0.000

Medical (Qwen2.5-0.5B)

2 4 6 8
Mean Perplexity

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70
Pearson
r = -0.69
p = 0.000

Medical (Qwen2.5-3B)

2 4 6
Mean Perplexity

0.35

0.40

0.45

0.50

0.55

0.60

0.65 Pearson
r = -0.56
p = 0.000

Medical (Qwen2.5-7B)

Figure 20: Perplexity vs. Average Pairwise Cosine Distance on PubMed Summarization (Qwen
family).

4 6 8 10
Mean Perplexity

0.74

0.76

0.78

0.80

0.82

0.84

Av
er

ag
e 

Co
sin

e 
Di

st
an

ce

Pearson
r = -0.52
p = 0.000

Medical (Mistral-7B-v0.1)

5 10
Mean Perplexity

0.58

0.60

0.62

0.64

0.66

0.68
Pearson
r = -0.50
p = 0.000

Medical (Phi-2)

Figure 21: Perplexity vs. Average Pairwise Cosine Distance on PubMed Summarization (Mistral,
Phi).

6



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

As shown in the figures, the observed negative correlation between sequence-level perplexity and
representation dispersion holds consistently across:

• Multiple model sizes and architectures (Llama, Gemma, Mistral, Phi, Qwen).
• Multiple data domains (Wikitext-103, CNN DailyMail, PubMed Summarization).

These findings support the main paper’s claim that lower-perplexity contexts tend to occupy more
“spread out” regions in the final-layer embedding space, while higher-perplexity (i.e., more challeng-
ing) contexts appear more compressed.

7



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.2 DETAILS REGARDING FINE-TUNING EFFECT EXPERIMENTS

In §2.2, we examined how fine-tuning influenced representation dispersion. Below are the hyperpa-
rameters for the two fine-tuned LLaMA-3.2-1B models used in our experiments. We fine-tuned both
checkpoints using the open-source LLaMA-Factory framework 5.

A.2.1 LORA FINE-TUNED MODEL

This model is a fine-tuned version of meta-llama/Llama-3.2-1B on the Wikitext-103 dataset.
It achieved the following on the evaluation set:

• Loss: 2.1764

Training Hyperparameters.

• learning_rate: 0.0001
• train_batch_size: 8
• eval_batch_size: 1
• seed: 42
• gradient_accumulation_steps: 8
• total_train_batch_size: 64
• optimizer: adamw_torch with β1 = 0.9, β2 = 0.999, ϵ = 1 × 10−8, no additional

arguments
• lr_scheduler_type: cosine
• lr_scheduler_warmup_ratio: 0.1
• num_epochs: 1.0

A.2.2 FULL-PARAMETER FINE-TUNED MODEL

This model is also a fine-tuned version of meta-llama/Llama-3.2-1B on the Wikitext-103
dataset. It achieved the following on the evaluation set:

• Loss: 2.1333

Training Hyperparameters.

• learning_rate: 1e-05
• train_batch_size: 2
• eval_batch_size: 1
• seed: 42
• distributed_type: multi-GPU
• num_devices: 2
• gradient_accumulation_steps: 16
• total_train_batch_size: 64
• total_eval_batch_size: 2
• optimizer: Adam with β1 = 0.9, β2 = 0.999, ϵ = 1× 10−8

• lr_scheduler_type: cosine
• lr_scheduler_warmup_ratio: 0.1
• num_epochs: 5.0

5https://github.com/hiyouga/LLaMA-Factory

8

https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.2-1B
https://github.com/hiyouga/LLaMA-Factory


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.3 DETAILS REGARDING DISPERSION WITHIN SEMANTIC CLUSTERS TRAINING
HYPERPARAMETERS

In §2.3, we examined how dispersion evolves within carefully constructed semantic clusters of text
segments that share the same 10-gram continuation. Below are the training hyperparameters for the
model used in this experiment:

• learning_rate: 1e-05
• train_batch_size: 10
• eval_batch_size: 1
• seed: 42
• distributed_type: multi-GPU
• num_devices: 8
• gradient_accumulation_steps: 8
• total_train_batch_size: 640
• total_eval_batch_size: 8
• optimizer: ADAMW_TORCH with β1 = 0.9, β2 = 0.999, ϵ = 1 × 10−8, no additional

arguments
• lr_scheduler_type: cosine
• lr_scheduler_warmup_ratio: 0.1
• num_epochs: 5.0

We used these hyperparameters to train the model from a checkpoint of
meta-llama/Llama-3.2-1B on WikiText-103, then tracked within-cluster and between-cluster
distances of the resulting contextual embeddings at several checkpoints during training. The model is
also fine-tuned using the open-source LLaMA-Factory framework.

9



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B SUPPLEMENTAL MATERIALS FOR APPLICATIONS OF REPRESENTATION
DISPERSION

B.1 ADDITIONAL RESULTS FOR PREDICTING DOWNSTREAM PERFORMANCE WITHOUT
LABELED DATA

Below we provide extended experimental results following the methodology of §3.1. Each figure
contains results for three models: Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-
8B-Instruct.

0 20 40 60 80 100
Fraction Correct (%)

0.040

0.045

0.050

0.055

0.060

M
ea

n 
Pa

irw
ise

 D
ist

an
ce

Llama-3.2-1B-Instruct

0 20 40 60 80 100
Fraction Correct (%)

0.09

0.10

0.11

0.12

0.13

0.14

Llama-3.2-3B-Instruct

0 20 40 60 80 100
Fraction Correct (%)

0.080

0.085

0.090

0.095

0.100

0.105

0.110

0.115

0.120
Llama-3.1-8B-Instruct

Figure 22: Downstream performance estimation on ARC Challenge (containing results for Llama-
3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-8B-Instruct).

0 20 40 60 80 100
Fraction Correct (%)

0.0425

0.0450

0.0475

0.0500

0.0525

0.0550

0.0575

0.0600

M
ea

n 
Pa

irw
ise

 D
ist

an
ce

Llama-3.2-1B-Instruct

0 20 40 60 80 100
Fraction Correct (%)

0.09

0.10

0.11

0.12

0.13

0.14

0.15

Llama-3.2-3B-Instruct

0 20 40 60 80 100
Fraction Correct (%)

0.08

0.09

0.10

0.11

0.12

0.13

0.14
Llama-3.1-8B-Instruct

Figure 23: Downstream performance estimation on MMLU (English) (containing results for Llama-
3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-8B-Instruct).

0 20 40 60 80 100
Fraction Correct (%)

0.040

0.042

0.044

0.046

0.048

0.050

M
ea

n 
Pa

irw
ise

 D
ist

an
ce

Llama-3.2-1B-Instruct

0 20 40 60 80 100
Fraction Correct (%)

0.09

0.10

0.11

0.12

0.13

0.14

Llama-3.2-3B-Instruct

0 20 40 60 80 100
Fraction Correct (%)

0.060

0.065

0.070

0.075

0.080

0.085

0.090

0.095

Llama-3.1-8B-Instruct

Figure 24: Downstream performance estimation on Multilingual MMLU (German) (containing
results for Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-8B-Instruct).

10



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Fraction Correct (%)

0.040

0.042

0.044

0.046

0.048

0.050

0.052

M
ea

n 
Pa

irw
ise

 D
ist

an
ce

Llama-3.2-1B-Instruct

0 20 40 60 80 100
Fraction Correct (%)

0.09

0.10

0.11

0.12

0.13

0.14

Llama-3.2-3B-Instruct

0 20 40 60 80 100
Fraction Correct (%)

0.065

0.070

0.075

0.080

0.085

0.090

0.095

0.100

0.105
Llama-3.1-8B-Instruct

Figure 25: Downstream performance estimation on Multilingual MMLU (Spanish) (containing results
for Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-8B-Instruct).

0 20 40 60 80 100
Fraction Correct (%)

0.038

0.040

0.042

0.044

0.046

M
ea

n 
Pa

irw
ise

 D
ist

an
ce

Llama-3.2-1B-Instruct

0 20 40 60 80 100
Fraction Correct (%)

0.09

0.10

0.11

0.12

0.13

Llama-3.2-3B-Instruct

0 20 40 60 80 100
Fraction Correct (%)

0.065

0.070

0.075

0.080

0.085

0.090

0.095

0.100
Llama-3.1-8B-Instruct

Figure 26: Downstream performance estimation on Multilingual MMLU (French) (containing results
for Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-8B-Instruct).

0 20 40 60 80 100
Fraction Correct (%)

0.043

0.044

0.045

0.046

0.047

0.048

0.049

0.050

M
ea

n 
Pa

irw
ise

 D
ist

an
ce

Llama-3.2-1B-Instruct

0 20 40 60 80 100
Fraction Correct (%)

0.065

0.070

0.075

0.080

0.085

0.090
Llama-3.2-3B-Instruct

0 20 40 60 80 100
Fraction Correct (%)

0.055

0.060

0.065

0.070

0.075
Llama-3.1-8B-Instruct

Figure 27: Downstream performance estimation on Multilingual MMLU (Hindi) (containing results
for Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-8B-Instruct).

0 20 40 60 80 100
Fraction Correct (%)

0.040

0.042

0.044

0.046

0.048

M
ea

n 
Pa

irw
ise

 D
ist

an
ce

Llama-3.2-1B-Instruct

0 20 40 60 80 100
Fraction Correct (%)

0.09

0.10

0.11

0.12

0.13

Llama-3.2-3B-Instruct

0 20 40 60 80 100
Fraction Correct (%)

0.06

0.07

0.08

0.09

0.10

Llama-3.1-8B-Instruct

Figure 28: Downstream performance estimation on Multilingual MMLU (Italian) (containing results
for Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-8B-Instruct).

11



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Fraction Correct (%)

0.040

0.042

0.044

0.046

0.048

0.050

M
ea

n 
Pa

irw
ise

 D
ist

an
ce

Llama-3.2-1B-Instruct

0 20 40 60 80 100
Fraction Correct (%)

0.09

0.10

0.11

0.12

0.13

0.14

Llama-3.2-3B-Instruct

0 20 40 60 80 100
Fraction Correct (%)

0.065

0.070

0.075

0.080

0.085

0.090

0.095

0.100

0.105
Llama-3.1-8B-Instruct

Figure 29: Downstream performance estimation on Multilingual MMLU (Portuguese) (containing
results for Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-8B-Instruct).

0 20 40 60 80 100
Fraction Correct (%)

0.0420

0.0425

0.0430

0.0435

0.0440

0.0445

0.0450

M
ea

n 
Pa

irw
ise

 D
ist

an
ce

Llama-3.2-1B-Instruct

0 20 40 60 80 100
Fraction Correct (%)

0.060

0.065

0.070

0.075

0.080

0.085

Llama-3.2-3B-Instruct

0 20 40 60 80 100
Fraction Correct (%)

0.0575

0.0600

0.0625

0.0650

0.0675

0.0700

0.0725

0.0750

0.0775
Llama-3.1-8B-Instruct

Figure 30: Downstream performance estimation on Multilingual MMLU (Thai) (containing results
for Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-8B-Instruct).

12



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B.2 DETAILS REGARDING REPRESENTATION DISPERSION FOR MODEL SELECTION

This appendix compiles the full numeric statistics that underpin the analyses in §3.2. We report
complete Euclidean and cosine distance figures for every model variant, together with their task-
specific accuracies, so that readers can perform fine-grained checks, reproduce our correlation
calculations, and explore alternative dispersion metrics. Table 3 and Table 4 complement the visual
summaries in Figure 9 by exposing each component of the Dispersion Gap in detail.

Table 3: Embedding Dispersion vs. MATH Performance (Qwen Variants). We show the average
Euclidean and Cosine distances among digit embeddings (D–D), among non-math tokens (NM–NM),
and between digits and non-math tokens (D–NM). We also list each model’s accuracy on MATH
(%). Larger D–D distances indicate that numeric tokens are placed more distinctly from each other in
embedding space, and similarly for NM–NM. A greater D–NM distance implies stronger separation
between numeric tokens and everyday text.

Model Euclidean Distances Cosine Distances MATH (%)
D–D NM–NM D–NM D–D NM–NM D–NM

Qwen2.5-1.5B 0.70 1.46 1.54 0.25 0.93 1.11 35.0
Qwen2.5-Math-1.5B 0.89 1.67 1.80 0.33 0.85 1.15 49.8
Distill-Qwen-1.5B 0.94 1.60 1.79 0.36 0.84 1.16 83.9

Qwen2.5-7B 0.45 0.93 1.05 0.18 0.95 1.09 49.8
Qwen2.5-Math-7B 0.69 1.47 1.54 0.27 0.91 1.14 55.4
Distill-Qwen-7B 0.72 1.45 1.55 0.28 0.91 1.15 92.8

Qwen2.5-14B 0.70 1.71 1.58 0.26 0.96 1.01 55.6
Distill-Qwen-14B 0.74 1.69 1.59 0.28 0.96 1.03 93.9

Table 4: Embedding Dispersion vs. HumanEval Performance (Llama2 vs. CodeLlama). We
compare the average Euclidean and Cosine distances among code tokens (C–C), among non-code
tokens (NC–NC), and between code and non-code (C–NC). We also list each model’s HumanEval
pass@1 (%).

Model Euclidean Distances Cosine Distances HumanEval (%)
C–C NC–NC C–NC C–C NC–NC C–NC

Llama2-7B 1.56 1.46 1.52 0.96 0.95 0.97 12.2
CodeLlama-7B 2.44 2.56 2.54 0.94 0.94 0.97 33.5

Llama2-13B 2.24 2.04 2.15 0.93 0.89 0.93 20.1
CodeLlama-13B 2.68 2.74 2.75 0.94 0.93 0.97 36.0

13



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B.3 ADDITIONAL RESULTS FOR LAYER SELECTION FOR KNN-LM

We present extended findings on sub-layer selection for kNN-LM. Figure 31 displays results for four
GPT-2 variants (distilgpt2, gpt2, gpt2-medium, gpt2-large). As in the main text, each
point represents a 512-token chunk of text, with its mean perplexity plotted against the sub-layer’s
average pairwise cosine distance (blue for the attention output, red for the feed-forward output).
Interestingly, the negative correlation is weaker for the attention output than for the feed-forward
output.

0 30 60 90 120
Mean Perplexity

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
g.

 P
ai

rw
is

e 
Co

si
ne

 D
is

ta
nc

e

 = 0.813

 = 0.340

DistilGPT-2

15 30 45
Mean Perplexity

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
g.

 P
ai

rw
is

e 
Co

si
ne

 D
is

ta
nc

e

 = 0.822

 = 0.265

GPT-2 Small

8 16 24 32
Mean Perplexity

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
g.

 P
ai

rw
is

e 
Co

si
ne

 D
is

ta
nc

e

 = 0.676

 = 0.230

GPT-2 Medium

6 12 18 24 30
Mean Perplexity

0.5

0.6

0.7

0.8

0.9

Av
g.

 P
ai

rw
is

e 
Co

si
ne

 D
is

ta
nc

e

 = 0.804

 = 0.697

GPT-2 Large

ATT (Attention Layer) FFN (Feed-Forward Layer) Trend Line

Figure 31: Mean perplexity vs. sub-layer average pairwise cosine distance for four GPT-2 variants
(distilgpt2, gpt2, gpt2-medium, gpt2-large). Each point is a 512-token chunk of text.

14



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

B.4 TRAINING DETAILS FOR INCORPORATING REPRESENTATION DISPERSION

All experiments in §3.4 were conducted on NVIDIA A100 80GB GPUs.

Single-Domain Setting. We train GPT2-SMALL from scratch on WikiText, using a batch size of 64
and a block size (sequence length) of 512. The auxiliary loss weight λ is tuned over the set:

{0.5, 0.2, 0.1, 0.07, 0.05, 0.02, 0.01, 0.007, 0.005, 0.002, 0.001}

We experiment with learning rates {1× 10−3, 7× 10−4, 5× 10−4}.

Cross-Domain Setting. For joint WikiText + Python code training, we similarly use GPT2-SMALL
(from scratch), a batch size of 128, and a block size of 256. The auxiliary loss weight λ and learning
rates are swept over the same sets as above:

• λ values: {0.5, 0.2, 0.1, 0.07, 0.05, 0.02, 0.01, 0.007, 0.005, 0.002, 0.001}
• Learning rates: {1× 10−3, 7× 10−4, 5× 10−4}

For both settings, we select λ by validation for each learning rate. All experiments use standard
AdamW optimizer settings unless otherwise specified.

15



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

C LIMITATIONS

While our findings underscore a strong empirical link between representation dispersion and model
performance, there are several limitations. First, our analyses focus on average pairwise cosine
distances of final-layer representations, which may not capture all nuanced aspects of embedding
geometry or model behavior. Second, although we observe consistent negative correlations between
dispersion and perplexity across several model families and domains, causality cannot be definitively
concluded; certain architectures or objectives may modulate this relationship in unforeseen ways.
Third, our experiments center primarily on English text from standard benchmarks and a limited set
of specialized domains (e.g. code, scientific abstracts). It remains unclear how well our observations
extend to other languages, modalities, or highly domain-specific corpora. Further research is needed
to fully understand these trade-offs and develop robust methods for controlling embedding geometry.

16


	Introduction
	Empirical Analysis of Representation Geometry
	Measurement Setup
	Global Observations on Representation Dispersion
	Dispersion Within Semantic Clusters: A Finer-Grained Analysis

	Applications
	Predicting Downstream Performance without Labeled Data
	Representation Dispersion for Model Selection
	Layer Selection for kNN-LM
	Incorporating Representation Divergence into Training

	Related Work
	Conclusion
	Supplemental Materials for Representation Geometry Analysis
	Details regarding Sequence-level Perplexity Experiments
	Datasets and Models
	Procedure for Mean-Perplexity vs. Dispersion Analysis
	Additional Visualizations

	Details regarding Fine-Tuning Effect Experiments
	LoRA Fine-Tuned Model
	Full-Parameter Fine-Tuned Model

	Details regarding Dispersion Within Semantic Clusters Training Hyperparameters

	Supplemental Materials for Applications of Representation Dispersion
	Additional Results for Predicting Downstream Performance without Labeled Data
	Details Regarding Representation Dispersion for Model Selection
	Additional Results for Layer Selection for kNN-LM
	Training Details for Incorporating Representation Dispersion

	Limitations

