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ABSTRACT

We show that a language model’s ability to predict text is tightly linked to the
breadth of its embedding space: models that spread their contextual represen-
tations more widely tend to achieve lower perplexity. Concretely, we find that
representation dispersion—the average pairwise cosine distance among hidden
vectors—strongly and negatively correlates with perplexity across diverse model
families (LLaMA, Qwen, and others) and domains (Wikipedia, news, scientific
abstracts). Beyond illustrating this link, we show how dispersion can be leveraged
for a range of practical tasks—without requiring labeled data. First, measuring
dispersion on unlabeled text allows us to predict downstream accuracy in new
domains, offering a data-efficient tool for model selection. Next, we find that
identifying layers with higher dispersion pinpoints the best representations for
retrieval-based methods such as kNN-LM, bypassing exhaustive layer-by-layer
searches. Finally, we integrate a simple “push-away” objective into training, which
increases dispersion in both single-domain and cross-domain scenarios and directly
improves perplexity in each.

1 INTRODUCTION

Large language models can perform remarkably well on tasks ranging from text completion to code
generation. Yet their embedding geometry often exhibits signs of anisotropy or rank collapse, whereby
hidden states lie in a narrow cone or occupy a low-dimensional subspace (Ethayarajh, 2019; Gao
et al., 2019; Li et al., 2020). Although this geometry has been posited to limit expressive power, how
precisely it connects to auto-regressive text generation remains less clear.

In this paper, we present empirical evidence that a model’s ability to predict text is tightly linked to
the breadth of its embedding space. Intuitively, as illustrated in Figure 1, weaker models compress
contexts into tight clusters, whereas stronger models separate these contexts —even semantically
similar ones—more broadly. This broader geometry yields clearer distinctions in the latent space,
enabling sharper (lower-entropy) next-token predictions. Concretely, we quantify representation
dispersion at any chosen layer as the average pairwise cosine distance of its hidden vectors. Unless
specified otherwise, our empirical sections use the final layer, and we show that higher dispersion
consistently predicts lower perplexity (Figure 2).

Beyond revealing this fundamental link, representation dispersion offers practical benefits:

• Label-free diagnostics. Dispersion measured on unlabeled text predicts downstream accuracy
in new domains (§3.1).

• Model selection. Among multiple pretrained or fine-tuned variants, the model with larger
dispersion reliably performs better on domain-specific tasks such as code generation and math
reasoning (§3.2).

• Layer selection for retrieval augmentation. Although the first two applications exploit the
final hidden state, dispersion is equally informative inside the network. In kNN-LM, choosing
the hidden layer with the highest dispersion yields the best perplexity, providing an unsupervised
shortcut to sub-layer selection (§3.3).

• A training signal. Encouraging higher dispersion through an auxiliary “push-away” loss directly
improves perplexity for both single-domain and cross-domain scenarios (§3.4).
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Each color (   ,   ,   )

indicates a semantic

cluster of contexts in

embedding space.

a better model

a weak model

Figure 1: Representation geometry in a weak model vs. a
better model. In a weak model (top), final-layer embeddings
for similar contexts are compressed into tight clusters, limiting
discriminative power. In a better model (bottom), embeddings
are widely dispersed—even within semantically related clus-
ters—leading to more confident next-token predictions.
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Figure 2: An Illustrative Em-
pirical Trend. Across mod-
els/datasets, higher dispersion
correlates with lower perplexity.
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Figure 3: Sequence-level perplexity vs. embedding dispersion across different domains and model
sizes. Each point represents a bin of text segments with the x-axis showing mean sequence-level
perplexity and the y-axis showing average pairwise cosine distance of final-layer embeddings.

Overall, we show that a model’s embedding geometry—captured by the simple statistic of average
pairwise distance—serves as a robust indicator of predictive quality. By quantifying and encouraging
this broader geometry, we gain both conceptual insight and practical benefits, and we hope this
perspective fosters new avenues for improving model robustness and interpretability.

2 EMPIRICAL ANALYSIS OF REPRESENTATION GEOMETRY

We begin by describing how we measure representation geometry and perplexity (§2.1). We then
present three key global observations that characterize how embedding dispersion evolves with
perplexity, across layers, and under fine-tuning (§2.2). Finally, we zoom in on semantic clusters
(§2.3) to examine how dispersion behaves among closely related contexts.

2.1 MEASUREMENT SETUP

Contextual Representations. Following standard autoregressive conventions, let a language model
with parameters θ assign probability to a token sequence (x1, x2, . . . , xN ) via pθ(x1, x2, . . . , xN ) =∏N

n=1 pθ
(
xn | x<n

)
, where x<n = (x1, . . . , xn−1). In contemporary Transformer-based models,

each partial sequence x<n is mapped to an internal context vector hn ∈ Rd by a function fθ(·).
The next-token distribution is then given by pθ

(
xn | x<n

)
= softmax

(
Wo hn

)
, where Wo ∈

R|V |×d projects the representation hn into the vocabulary space V . For measuring representation
dispersion, we focus on a chosen final-layer vector (e.g., hN for the full sequence), by default, as the
representation of each text sample.
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Figure 4: Last-token perplexity vs. embedding dispersion at varying context lengths using LLaMA-
3.2-1B. Each point represents a bin of text segments with the x-axis showing mean last-token
perplexity and the y-axis showing average pairwise distance.

Measuring Representation Dispersion. To measure how well the model separates text samples in
its embedding space, we first choose a particular layer or sub-layer whose representation we wish to
examine (e.g., the final hidden state, the output after the final attention block, or the second-to-last
block). Concretely, we sample N text segments from a dataset and pass each segment through
the model to extract the corresponding representation Ei ∈ Rd from the chosen sublayer, for
i = 1, . . . , N . We then compute the average pairwise cosine distance of these representations:

D =
1(
N
2

) ∑
1≤i<j≤N

[
1− Ei ·Ej

∥Ei∥ ∥Ej∥

]
. (1)

This quantity reflects how “spread out” the embeddings are, with higher values indicating greater
separation among representations.

2.2 GLOBAL OBSERVATIONS ON REPRESENTATION DISPERSION

In this section, we examine how the model’s representation space behaves across a broad sample
of text segments, highlighting how perplexity, layer depth, and fine-tuning each affect embedding
dispersion.

(1) Perplexity vs. Representation Dispersion. Our first finding connects a model’s sequence-level
perplexity to how spread out its contextual embeddings are.1 We randomly select 100,000 text
segments of 512 tokens, compute their perplexities, and also measure the average pairwise distance
of their final-layer embeddings. We sort by perplexity and group segments into bins, and for each bin
recording its mean perplexity and mean pairwise distance.

Figure 3 reveals a strong negative correlation: Segments with lower perplexity have more dispersed
embeddings, whereas those with higher perplexity show more compressed embeddings. This trend
appears across multiple model families (Llama, Phi, Mistral, Qwen) and diverse text domains (e.g.
Wikitext-103, CNN Daily News, PubMed summarization). Full visualizations are provided in
Section A.1.3.

We also verify that the relationship holds at a finer granularity by focusing on last-token perplexity,
shown in Figure 4. Across context lengths of 16, 64, 128, and 256 tokens, we observe the same
negative correlation trend. Intuitively, this negative correlation appears because contexts with more
confident next-token predictions (low perplexity) end up pushed into more distinct regions of the
embedding space, whereas harder-to-predict contexts remain more compressed.

1We define the sequence-level perplexity of a text segment x1:L of length L as:

ppl(x1:L) = exp

(
− 1

L

L∑
t=1

log pθ(xt | x<t)

)
,

3
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Figure 5: Layer-wise embedding separation in LLaMA-3.2-1B, shown across different perplexity
bins (left panel) and the corresponding correlation coefficients (right panel). Note that the negative
correlation between perplexity and embedding separation becomes more pronounced as we move to
deeper layers (see right panel).

(2) Layer-Wise Patterns. We next assess how this relationship unfolds across layers. Collecting
embeddings from multiple intermediate layers (e.g. Layers 1, 3, 9, 13, 17) and replicating the above
procedure, we find that the negative correlation strengthens in deeper layers (as illustrated in the right
panel of Figure 5). Early layers do not show a clear correlation, likely because they capture lower-level
lexical features rather than global predictive cues. Deeper layers exhibit more pronounced embedding
distance differences between easier-to-predict and harder-to-predict samples. Figure 5 illustrates this
layer-wise progression for a representative LLaMA-3.2-1B model. Additionally, comparing models
before and after pretraining indicates that the negative correlation emerges primarily after the model
has been trained to predict tokens, pointing to a learned representational structure.
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Figure 6: Effect of fine-Tuning
on embedding separation.
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Figure 7: Clustering metrics and training loss across training.
We form 500 clusters of WikiText-103 contexts (each cluster con-
tains 100 semantically similar contexts that share the same 10-gram
continuation). During model training, both the within-cluster dis-
tance (left) and between-cluster distance (middle) consistently grow,
while training loss (right) falls.

(3) Fine-Tuning Effects. Finally, we examine how fine-tuning reshapes the embedding space. We
select the same model (LLaMA-3.2-1B) and apply either parameter-efficient (LoRA (Hu et al., 2021))
or full-parameter fine-tuning on WikiText-103. Compared to the pre-trained model, both approaches
increase the average embedding separation on WikiText-103 (Figure 6). Full fine-tuning exerts
a stronger effect, pushing text samples further apart overall; LoRA, which adapts only low-rank
modules, effects smaller but still notable changes. The choice of fine-tuning thus influences how
discriminative (i.e. “spread out”) the embeddings become in a specialized domain.
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2.3 DISPERSION WITHIN SEMANTIC CLUSTERS: A FINER-GRAINED ANALYSIS

A natural question is whether better models merely push semantically dissimilar contexts farther
apart, or also increase distances among contexts that are semantically close. If the latter did not
happen, then we could imagine a scenario where highly related examples remain tightly clustered,
but unrelated examples spread out, thereby inflating overall average distances. We therefore directly
measure dispersion among clusters of highly similar contexts to see whether their internal geometry
also expands over training.

Setup & Metrics. We collect 10-grams from the WikiText-103 training set that appear at least 100
times. For each such 10-gram, we retrieve 100 occurrences, each accompanied by a 100-token left
context, and treat these contexts as a semantically similar cluster. (Manual inspection confirmed that
these context sets do indeed relate to the same event, entity, or theme.) We construct a total of 500
such clusters. We then track the contextual embeddings produced by a LLAMA-3.2-1B model at
various checkpoints during training. Within each cluster, we compute the within-cluster distance as
the average (cosine) distance from each embedding to the centroid of that cluster. Likewise, we define
the between-cluster distance as the average (cosine) distance among the centroids of all clusters.
Thus, the latter measures how far clusters are from each other in the embedding space, while the
former measures how tightly each cluster is packed internally.

Results. Figure 7 shows that, as training proceeds and the loss decreases, both the average within-
cluster distance and between-cluster distance increase. Thus, the trend toward higher overall disper-
sion is not driven solely by pushing apart highly dissimilar contexts. Even very similar contexts—
which all share the same 10-gram continuation—become more spread out in the latent space as the
model learns, which indicates the model can effectively distinguish them despite the similarities. This
in-cluster expansion reinforces our hypothesis that better-performing models tend to produce broader
embedding geometries in all regions of the latent space, not just pushing away dissimilar examples.

3 APPLICATIONS

Having established a strong correlation between perplexity and embedding dispersion, we now
illustrate how to leverage this observation in various practical scenarios.

3.1 PREDICTING DOWNSTREAM PERFORMANCE WITHOUT LABELED DATA

In many real-world scenarios, one receives a large unlabeled query set and must decide, before
committing annotation or compute resources, (1) whether an off-the-shelf model will be sufficiently
accurate and (2) which specific examples it is likely to get wrong. A reliable label-free indicator
would enable rapid model validation, automatic justification of easy versus hard instances, and
targeted continued pre-training on precisely those queries that the model currently struggles with.
Because higher representation dispersion tracks lower perplexity (§2), we hypothesize that dispersion
alone can serve as such an indicator: if high dispersion coincides with correct predictions, then simply
measuring distances allows us to flag likely errors without ever looking at ground-truth labels.

Experimental protocol. To test this idea, we design a controlled experiment that varies the fraction
of correct answers while keeping the input distribution fixed: (1) Collect a pool of question-answer
pairs for a given dataset-model pair. (2) Partition the pool into correct and incorrect subsets by
comparing the model’s answer with the ground truth. (3) For each desired accuracy level (0%–100%
in 10% increments), sample 100 queries that contain the requisite mix of correct and incorrect
cases.(4) Extract the final-layer embeddings of these queries and compute their mean pairwise cosine
distance, averaging over 10 random seeds.

Results. Figure 8 plots mean pairwise distance against the fraction of correct predictions for several
LLaMA variants on ARC-CHALLENGE and MMLU. Across all models and datasets, accuracy rises
monotonically with dispersion: slices that the model answers correctly exhibit markedly broader
geometry than those it answers incorrectly. Practically, a practitioner could therefore sort an unlabeled
dataset by dispersion, inspect only the low-dispersion tail to uncover failure modes, or focus continued
training on those “hard” queries. Taken together, these findings establish representation dispersion as

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

020406080100
Fraction Correct (%)

0.04

0.06

0.08

0.10

0.12

0.14

M
ea

n 
Pa

irw
is

e 
D

is
ta

nc
e

ARC Challenge

020406080100
Fraction Correct (%)

0.04

0.06

0.08

0.10

0.12

0.14

M
ea

n 
Pa

irw
is

e 
D

is
ta

nc
e

MMLU

3.2-1B 3.2-3B 3.1-8B

Figure 8: Embedding distance vs. fraction correct. Each point corresponds to a fixed mixture of
correct/incorrect model predictions (x-axis). Error bars denote standard error over 10 random seeds.
Higher accuracy consistently aligns with larger mean pairwise distance.

a powerful, zero-label proxy for downstream accuracy and a principled tool for slice discovery and
targeted data augmentation.

3.2 REPRESENTATION DISPERSION FOR MODEL SELECTION

In practice, researchers and practitioners are often faced with choosing among numerous model
variants—ranging from different instruction-tuned checkpoints to parameter-efficient adaptations
or distilled models—while only having limited labeled data in the target domain. Exhaustively
evaluating every checkpoint is typically prohibitively expensive, both in terms of computation and
annotation resources. The tight link between representation dispersion and predictive accuracy
established in §2 offers an attractive alternative: by simply measuring how broadly a model separates
key tokens in its embedding space, one can obtain a geometric score that rapidly predicts downstream
performance.

Setup. To operationalize this idea, we focus on task-relevant tokens that carry significant signal
in the domain of interest, such as digits for mathematical reasoning, Python keywords for code
generation, or legal terms for contract analysis. Let T ⊂ V denote a small set of such domain-specific
tokens, and let T denote a reference set of common, everyday language tokens. We use the model’s
original output token embeddings—that is, the rows of the output projection matrix—as provided
after loading the model weights. This requires no forward passes or input data; all computations are
performed directly on these pre-trained embeddings. We compute average pairwise distances—either
cosine or Euclidean—among the embeddings of tokens within T , within T , and between T and T .

Motivated by our empirical findings, we propose a single “dispersion gap” metric that succinctly
captures both the distinctiveness of the domain-relevant tokens and their separation from generic
language. Specifically, we define

G = within(T ) + between
(
T , T

)
,

where within(T ) denotes the mean pairwise distance among the domain tokens, and between
(
T , T

)
is the mean distance between domain and reference tokens. Larger values of G indicate that the model
both differentiates between domain-critical tokens and separates them from everyday vocabulary—a
geometric pattern that, as Tables 3–4 show, strongly correlates with higher task accuracy.

This approach is computationally efficient and entirely label-free: evaluating G requires only reading
the model’s output embedding matrix and performing basic matrix operations on CPU, without
any forward passes or GPU computation. In our experiments, ranking models by their dispersion
gap consistently elevates the best-performing models in domains such as math and code, yielding
gains of up to 40 accuracy points over lower-ranked alternatives. Thus, the dispersion gap offers
a principled, data-efficient guideline for prioritizing model variants before more costly full-scale
evaluation, providing practitioners with a practical tool for rapid, geometry-driven model selection.
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Figure 9: Upper: Qwen on MATH. Blue bars show D–D (digit–digit) distances, orange bars
show D–NM (digit–non-math) distances, and green bars show their sum—the Dispersion Gap. The
black dashed line reports task accuracy (%). Lower: Llama/CodeLlama on HUMANEVAL. Blue
bars show C–C (code-keyword) distances, orange bars show NC–NC (non-code) distances, and
green bars again give the Dispersion Gap. The black dashed line reports PASS@1 (%). Bar heights
therefore convey the three dispersion statistics, while the line traces model performance, mirroring
the figure legends. A full table of the underlying values is provided in Section B.2.

Results. Figure 9 clearly demonstrates how the dispersion gap G aligns with downstream perfor-
mance. In the upper panel (Qwen on MATH), accuracy rises monotonically with the green “Gap”
bars both within each parameter scale (e.g. 1.5 B→ 7 B→ 14 B) and across fine-tuned variants (e.g.
QWEN2.5, QWEN2.5-MATH, DISTILL-QWEN). Spearman correlations between G and accuracy
exceed 0.95, and the dispersion gap perfectly ranks all nine checkpoints without a single mis-ordering.
The lower panel (Llama/CodeLlama on HUMANEVAL) shows the same pattern: CODELLAMA
consistently exhibits both a larger gap and a higher PASS@1 rate than its LLAMA2 counterpart at
both 7 B and 13 B scales, while the increase from 7 B to 13 B again boosts both metrics in lock-step.
Taken together, these results confirm that the dispersion gap serves as a robust, zero-label proxy for
real-world performance and can be relied upon to shortlist the strongest checkpoints before running
any expensive evaluations.

3.3 LAYER SELECTION FOR KNN-LM

Many retrieval-augmented language models build a datastore by using one of the sublayers in the final
transformer block as the vector key (Khandelwal et al., 2020; He et al., 2021; Alon et al., 2022; Li
et al., 2024). A central question in these methods is which internal representation of the transformer
to use as the “datastore key.” In this section, we focus on kNN-LM, which augments a standard
language model with a key-value memory of training examples. Specifically, at inference time, it
retrieves the nearest neighbors of the current hidden state from that memory and interpolates their
next-token distribution with the base LM’s distribution, often achieving lower perplexity on rare or
out-of-distribution tokens.

Recent evidence (Xu et al., 2023) suggests that taking the attention-layer output (instead of the
feed-forward layer output) often improves kNN-LM perplexity, but pinpointing the best layer can
require expensive end-to-end trials. We show that measuring how widely each layer “disperses” its
text embeddings (via average pairwise cosine distance) provides a lightweight, unsupervised way to
identify a layer likely to yield strong kNN-LM performance—without running the full interpolation
pipeline.

Background. Consider the standard Transformer block as used by GPT-2. Let h(l−1) ∈
Rn×d denote the hidden states from block l − 1. In block l, the hidden states first pass

7
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N=10 N=50 N=100

Model Attn FFN Attn FFN Attn FFN

DISTILGPT2 0.83±0.02 0.33±0.05 0.83±0.01 0.30±0.02 0.82±0.01 0.30±0.01
GPT2-SMALL 0.83±0.02 0.24±0.06 0.83±0.00 0.24±0.03 0.83±0.00 0.24±0.01
GPT2-MEDIUM 0.66±0.03 0.19±0.02 0.67±0.01 0.21±0.02 0.67±0.01 0.21±0.01
GPT2-LARGE 0.80±0.04 0.68±0.06 0.79±0.01 0.66±0.02 0.80±0.01 0.68±0.03

Table 1: Representation dispersion (average pairwise cosine distance) of the final block’s attention
and feed-forward sub-layers for varying numbers of randomly sampled chunks N . Higher values
indicate more widely separated contextual embeddings.

through a multi-headed attention (MHA) sub-layer and residual connection: ĥ(l) = h(l−1) +

Dropout
(

MHA
(
LayerNorm(h(l−1))

))
. We then apply another residual connection around a position-

wise feed-forward network (FFN): h(l) = ĥ(l) + Dropout
(

FFN
(
LayerNorm(ĥ(l))

))
. Thus, each

block produces two intermediate sub-layer outputs: h(l)
att = ĥ(l) and h

(l)
ffn = h(l). Following Xu et al.

(2023), we compare using h
(L)
att versus h(L)

ffn from the final block L as the contextual key for kNN-LM.

Experimental Setup. We consider four members of the GPT-2 family—DISTILGPT2 (82 M
parameters), GPT2-SMALL (117 M), GPT2-MEDIUM (345 M), and GPT2-LARGE (774 M)—all
trained with the same tokenizer and a context length of 1 024. For each checkpoint we draw
N ∈ {10, 50, 100} non-overlapping 512-token chunks randomly from the WIKITEXT-103 validation
split. Sampling is repeated 10 times with different random seeds, and the identical chunk indices
are fed to both sub-layers so that any dispersion difference cannot be attributed to input variance.
For every chunk we extract the last-token hidden state produced by the final Transformer block’s (i)
attention sub-layer output h(L)

att and (ii) feed-forward sub-layer output h(L)
ffn . Given the resulting set

of N vectors {hi}Ni=1, we measure their representation dispersion as the average pairwise cosine
distance. We report the mean and standard deviation of dispersion across the 10 random repeats for
every ⟨model, N , sub-layer⟩ triple.

Results. Table 1 shows two practitioner-relevant patterns. First, the hidden states taken after the
attention sub-layer are always more widely spread than those taken after the feed-forward sub-layer
(e.g., 0.8045 vs. 0.6831 for GPT2-LARGE, 0.6593 vs. 0.1865 for GPT2-MEDIUM), making h

(L)
att the

natural choice of key for kNN-LM. Second, dispersion can be estimated with striking efficiency:
moving from 10 to 50 or 100 input chunks alters the mean by at most 1.5 % and never changes the
layer ranking, so profiling a model requires only about 5,000 tokens and a few milliseconds.

3.4 INCORPORATING REPRESENTATION DIVERGENCE INTO TRAINING

While typical cross-entropy training focuses purely on next-token prediction, several studies suggest
that explicitly encouraging embedding separation can improve generalization and robustness in
language modeling (Gunel et al., 2021; Jain et al., 2023). Inspired by these findings, we augment the
standard language-modeling loss with an auxiliary objective that pushes apart hidden-state vectors,
aiming to produce more discriminative representations.

Setup. We consider two scenarios: a single-domain setting, where we train GPT-2 small on
WikiText, and a cross-domain setting, where we train on WikiText plus Python code. In both cases,
let {hi}Bi=1 be the final-layer hidden-state vectors for all tokens in a batch (flattened across batch and
sequence). We normalize each vector to unit length, h̃i = hi/∥hi∥. To encourage wider separation,
we compute an average pairwise cosine distance d and then add an auxiliary loss −d to the standard
cross-entropy loss, weighted by a hyperparameter λ.

In the single-domain setting, davg is defined over all pairs in the same batch: davg =
1

B(B−1)

∑
i̸=j

[
1− h̃i · h̃j

]
. In the cross-domain setting, we instead compute d only across pairs

drawn from different domains (Wiki vs. code) to push embeddings from each domain further apart:

8
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d = 1
|A||B|

∑
i∈A

∑
j∈B

[
1− h̃

(A)
i · h̃(B)

j

]
. The total loss in both settings is Ltotal = LCE + λLaux,

where λ controls the strength of the auxiliary “spread-out” loss.

Results. Table 2 reports test perplexities for various learning rates and auxiliary loss weights λ.
In the single-domain (WikiText) setting, introducing the auxiliary spread-out loss yields a slight
decrease in perplexity—typically 1–4 points—relative to the baseline, especially early in training. In
the cross-domain (WikiText+Code) setting, the auxiliary loss produces a much more pronounced
reduction in perplexity for both domains. For all learning rates, models trained with a moderate
value of λ achieve notably lower perplexity on both WikiText and code, suggesting that explicitly
pushing apart representations from distinct domains leads to more specialized and di scriminative
features. This demonstrates that our approach is particularly effective when bridging heterogeneous
data sources.

LR (a) Single-Domain (WikiText) (b) Cross-Domain (WikiText+Code)

λ Step = 500 Step = 1000 λ Step = 500 Step = 1000
Base +Aux Base +Aux Wiki Code Wiki Code

10−3 0.0 226.1 – 111.3 – 0.0 295.6 36.9 171.7 23.8
0.1 – 217.5 – 108.2 0.001 270.8 34.5 158.8 22.3

7× 10−4 0.0 195.0 – 96.7 – 0.0 304.4 35.4 175.7 22.8
0.1 – 193.8 – 93.6 0.01 255.2 31.9 150.2 20.8

5× 10−4 0.0 166.2 – 83.0 – 0.0 268.5 33.7 166.9 22.1
0.1 – 165.6 – 82.0 0.02 253.3 30.5 155.2 20.5

Table 2: Auxiliary spread-out loss improves perplexity in both single- and cross-domain settings.
Left: single-domain (WikiText) results; right: cross-domain (WikiText+Code) results. λ is the
auxiliary loss weight, chosen by validation for each learning rate. We report test-set perplexities at
500 and 1000 steps.

4 RELATED WORK

Geometric Analysis of Embeddings in Language Models. A growing body of work has examined
the geometry of hidden representations in large language models (LLMs). Early studies identified
an anisotropy problem, where embeddings collapse into a narrow cone and lose expressiveness at
deeper layers (Mu & Viswanath, 2018; Ethayarajh, 2019; Gao et al., 2019; Li et al., 2020; Noci et al.,
2022). Recent work uses intrinsic dimension (ID) estimators to trace how representation manifolds
evolve across layers (Valeriani et al., 2023), linking geometry to performance through, for example,
distinguishing human vs. machine text (Tulchinskii et al., 2023), predicting data compressibility
(Cheng et al., 2023), and revealing simplex-like structures for categorical concepts (Park et al., 2025).

The study most closely related to ours is Viswanathan et al. (2025), which also analyzes token-level
embedding distributions and observes cosine similarity rises when tokens in the prompt are shuffled.
However, their work remains largely descriptive. In contrast, we show how representation dispersion
can predict and improve perplexity and downstream accuracy, making geometric insights actionable
for model evaluation and selection.

5 CONCLUSION

In this work, we showed that representation dispersion serves as both a practical diagnostic and
training signal for language models. Moving forward, we aim to investigate how representation
dispersion interacts with other design choices—such as architectural variations or tokenization
strategies—and whether additional regularization signals might further strengthen model robustness
and interpretability. We hope these directions will inspire new ways to harness embedding geometry
for next-generation language modeling and related tasks.
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We acknowledge the use of Large Language Models (LLMs) to assist in the preparation of this
manuscript. Specifically, LLMs were utilized to improve grammar and clarity, aid in literature
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final content and scientific integrity of this work.
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A SUPPLEMENTAL MATERIALS FOR REPRESENTATION GEOMETRY ANALYSIS

A.1 DETAILS REGARDING SEQUENCE-LEVEL PERPLEXITY EXPERIMENTS

A.1.1 DATASETS AND MODELS

In this section, we provide additional experimental details and visualizations that supplement our
main empirical analysis in §2. We study a range of standard language modeling datasets, including
the Salesforce/wikitext 2, abisee/cnn_dailymail 3, and ccdv/pubmed-summarization 4, covering text
segments in diverse domains.

For the models, our experiments encompass:

• Llama families: meta-llama/Llama-3.2-1B, meta-llama/Llama-3.2-3B,
meta-llama/Llama-3.1-8B

• Gemma families: google/gemma-2-2b, google/gemma-2-9b

• Mistral: mistralai/Mistral-7B-v0.1

• Phi: microsoft/phi-2

• Qwen families: Qwen/Qwen2.5-0.5B, Qwen/Qwen2.5-3B, Qwen/Qwen2.5-7B

We use the Hugging Face implementation of the above models. All models are standard decoder-only
Transformers, for which we collect final-layer embeddings on randomly selected text segments. In
line with Equation 1 of the main paper, we measure average pairwise cosine distance to quantify how
“spread out” their representations are.

A.1.2 PROCEDURE FOR MEAN-PERPLEXITY VS. DISPERSION ANALYSIS

Here, we outline the steps needed to produce a mean-perplexity vs. representation-dispersion plot:

Step 1: Randomly sample 100,000 segments (e.g., 512 tokens each) from the data.

Step 2: For each segment:

a) Compute its perplexity over the full sequence.
b) Record the final-layer hidden states for later analysis.

Step 3: Sort all segments by their computed perplexity.

Step 4: Group the sorted segments into bins (e.g., 100 segments per bin) and record each bin’s
mean perplexity.

Step 5: Perform uniform sampling in perplexity space on these bins to ensure coverage of
low-, mid-, and high-perplexity regions.

Step 6: For each uniformly sampled bin:

a) Retrieve the saved hidden states.
b) Calculate pairwise distances (e.g., average cosine distance) among the segment

embeddings.

Step 7: Produce the final mapping of mean perplexity to average pairwise distance.

Uniform Perplexity Sampling. Since random sampling of text segments often yields a distribution
heavily concentrated around moderate perplexities, we use a uniform sampling scheme to cover both
low- and high-perplexity “tails.” The pseudocode below highlights the procedure used in Step 5
(Algorithm 1):

2http://huggingface.co/datasets/Salesforce/wikitext
3https://huggingface.co/datasets/abisee/cnn_dailymail
4https://huggingface.co/datasets/ccdv/pubmed-summarization

2
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Algorithm 1 Uniform Perplexity Binning

Require: A sorted list of G perplexity bins {b1, . . . , bG} (with means m1 ≤ · · · ≤ mG)
Require: Desired number of bins K
Ensure: A set of K bins sampled uniformly in perplexity

1: mmin ← m1; mmax ← mG

2: Define targets

tk = mmin +
k − 1

K − 1
(mmax −mmin) for k = 1, . . . ,K

3: selected ← ∅
4: for k ← 1 to K do
5: find j s.t. mj is closest to tk
6: selected ← selected ∪ {j}
7: end for
8: if |selected | < K then
9: add extra bins from the sorted list until you have K

10: end if
11: return { bj : j ∈ selected}

This ensures we sample across the entire perplexity spectrum, capturing both rare, low-ppl segments
and rare, high-ppl segments. With these selected bins in hand, we can then compute the final-layer
embeddings and measure representation dispersion to obtain a mean-ppl vs. dispersion plot.

A.1.3 ADDITIONAL VISUALIZATIONS

Below, we present the full set of perplexity-versus-dispersion plots referenced in §2.2. For each
dataset and model, we group 100,000 text segments into perplexity bins and compute their average
pairwise representation distances. As described in the main text, we observe a negative correlation
between sequence-level perplexity and representation dispersion.
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Figure 10: Perplexity vs. Average Pairwise Cosine Distance on Wikitext-103 (Llama family).
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Figure 11: Perplexity vs. Average Pairwise Cosine Distance on Wikitext-103 (Gemma family).
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Figure 12: Perplexity vs. Average Pairwise Cosine Distance on Wikitext-103 (Qwen family).
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Figure 13: Perplexity vs. Average Pairwise Cosine Distance on Wikitext-103 (Mistral) and Phi.
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Figure 14: Perplexity vs. Average Pairwise Cosine Distance on CNN DailyMail (Llama family).
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Figure 15: Perplexity vs. Average Pairwise Cosine Distance on CNN DailyMail (Gemma family).
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Figure 16: Perplexity vs. Average Pairwise Cosine Distance on CNN DailyMail (Qwen family).
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Figure 17: Perplexity vs. Average Pairwise Cosine Distance on CNN DailyMail (Mistral, Phi).
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Figure 18: Perplexity vs. Average Pairwise Cosine Distance on PubMed Summarization (Llama
family).
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Figure 19: Perplexity vs. Average Pairwise Cosine Distance on PubMed Summarization (Gemma
family).
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Figure 20: Perplexity vs. Average Pairwise Cosine Distance on PubMed Summarization (Qwen
family).
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Figure 21: Perplexity vs. Average Pairwise Cosine Distance on PubMed Summarization (Mistral,
Phi).
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As shown in the figures, the observed negative correlation between sequence-level perplexity and
representation dispersion holds consistently across:

• Multiple model sizes and architectures (Llama, Gemma, Mistral, Phi, Qwen).
• Multiple data domains (Wikitext-103, CNN DailyMail, PubMed Summarization).

These findings support the main paper’s claim that lower-perplexity contexts tend to occupy more
“spread out” regions in the final-layer embedding space, while higher-perplexity (i.e., more challeng-
ing) contexts appear more compressed.
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A.2 DETAILS REGARDING FINE-TUNING EFFECT EXPERIMENTS

In §2.2, we examined how fine-tuning influenced representation dispersion. Below are the hyperpa-
rameters for the two fine-tuned LLaMA-3.2-1B models used in our experiments. We fine-tuned both
checkpoints using the open-source LLaMA-Factory framework 5.

A.2.1 LORA FINE-TUNED MODEL

This model is a fine-tuned version of meta-llama/Llama-3.2-1B on the Wikitext-103 dataset.
It achieved the following on the evaluation set:

• Loss: 2.1764

Training Hyperparameters.

• learning_rate: 0.0001
• train_batch_size: 8
• eval_batch_size: 1
• seed: 42
• gradient_accumulation_steps: 8
• total_train_batch_size: 64
• optimizer: adamw_torch with β1 = 0.9, β2 = 0.999, ϵ = 1 × 10−8, no additional

arguments
• lr_scheduler_type: cosine
• lr_scheduler_warmup_ratio: 0.1
• num_epochs: 1.0

A.2.2 FULL-PARAMETER FINE-TUNED MODEL

This model is also a fine-tuned version of meta-llama/Llama-3.2-1B on the Wikitext-103
dataset. It achieved the following on the evaluation set:

• Loss: 2.1333

Training Hyperparameters.

• learning_rate: 1e-05
• train_batch_size: 2
• eval_batch_size: 1
• seed: 42
• distributed_type: multi-GPU
• num_devices: 2
• gradient_accumulation_steps: 16
• total_train_batch_size: 64
• total_eval_batch_size: 2
• optimizer: Adam with β1 = 0.9, β2 = 0.999, ϵ = 1× 10−8

• lr_scheduler_type: cosine
• lr_scheduler_warmup_ratio: 0.1
• num_epochs: 5.0

5https://github.com/hiyouga/LLaMA-Factory
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A.3 DETAILS REGARDING DISPERSION WITHIN SEMANTIC CLUSTERS TRAINING
HYPERPARAMETERS

In §2.3, we examined how dispersion evolves within carefully constructed semantic clusters of text
segments that share the same 10-gram continuation. Below are the training hyperparameters for the
model used in this experiment:

• learning_rate: 1e-05
• train_batch_size: 10
• eval_batch_size: 1
• seed: 42
• distributed_type: multi-GPU
• num_devices: 8
• gradient_accumulation_steps: 8
• total_train_batch_size: 640
• total_eval_batch_size: 8
• optimizer: ADAMW_TORCH with β1 = 0.9, β2 = 0.999, ϵ = 1 × 10−8, no additional

arguments
• lr_scheduler_type: cosine
• lr_scheduler_warmup_ratio: 0.1
• num_epochs: 5.0

We used these hyperparameters to train the model from a checkpoint of
meta-llama/Llama-3.2-1B on WikiText-103, then tracked within-cluster and between-cluster
distances of the resulting contextual embeddings at several checkpoints during training. The model is
also fine-tuned using the open-source LLaMA-Factory framework.
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B SUPPLEMENTAL MATERIALS FOR APPLICATIONS OF REPRESENTATION
DISPERSION

B.1 ADDITIONAL RESULTS FOR PREDICTING DOWNSTREAM PERFORMANCE WITHOUT
LABELED DATA

Below we provide extended experimental results following the methodology of §3.1. Each figure
contains results for three models: Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-
8B-Instruct.
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Figure 22: Downstream performance estimation on ARC Challenge (containing results for Llama-
3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-8B-Instruct).
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Figure 23: Downstream performance estimation on MMLU (English) (containing results for Llama-
3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-8B-Instruct).
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Figure 24: Downstream performance estimation on Multilingual MMLU (German) (containing
results for Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-8B-Instruct).
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Figure 25: Downstream performance estimation on Multilingual MMLU (Spanish) (containing results
for Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-8B-Instruct).

0 20 40 60 80 100
Fraction Correct (%)

0.038

0.040

0.042

0.044

0.046

M
ea

n 
Pa

irw
ise

 D
ist

an
ce

Llama-3.2-1B-Instruct

0 20 40 60 80 100
Fraction Correct (%)

0.09

0.10

0.11

0.12

0.13

Llama-3.2-3B-Instruct

0 20 40 60 80 100
Fraction Correct (%)

0.065

0.070

0.075

0.080

0.085

0.090

0.095

0.100
Llama-3.1-8B-Instruct

Figure 26: Downstream performance estimation on Multilingual MMLU (French) (containing results
for Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-8B-Instruct).
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Figure 27: Downstream performance estimation on Multilingual MMLU (Hindi) (containing results
for Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-8B-Instruct).
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Figure 28: Downstream performance estimation on Multilingual MMLU (Italian) (containing results
for Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-8B-Instruct).
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Figure 29: Downstream performance estimation on Multilingual MMLU (Portuguese) (containing
results for Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-8B-Instruct).
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Figure 30: Downstream performance estimation on Multilingual MMLU (Thai) (containing results
for Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-8B-Instruct).

12



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B.2 DETAILS REGARDING REPRESENTATION DISPERSION FOR MODEL SELECTION

This appendix compiles the full numeric statistics that underpin the analyses in §3.2. We report
complete Euclidean and cosine distance figures for every model variant, together with their task-
specific accuracies, so that readers can perform fine-grained checks, reproduce our correlation
calculations, and explore alternative dispersion metrics. Table 3 and Table 4 complement the visual
summaries in Figure 9 by exposing each component of the Dispersion Gap in detail.

Table 3: Embedding Dispersion vs. MATH Performance (Qwen Variants). We show the average
Euclidean and Cosine distances among digit embeddings (D–D), among non-math tokens (NM–NM),
and between digits and non-math tokens (D–NM). We also list each model’s accuracy on MATH
(%). Larger D–D distances indicate that numeric tokens are placed more distinctly from each other in
embedding space, and similarly for NM–NM. A greater D–NM distance implies stronger separation
between numeric tokens and everyday text.

Model Euclidean Distances Cosine Distances MATH (%)
D–D NM–NM D–NM D–D NM–NM D–NM

Qwen2.5-1.5B 0.70 1.46 1.54 0.25 0.93 1.11 35.0
Qwen2.5-Math-1.5B 0.89 1.67 1.80 0.33 0.85 1.15 49.8
Distill-Qwen-1.5B 0.94 1.60 1.79 0.36 0.84 1.16 83.9

Qwen2.5-7B 0.45 0.93 1.05 0.18 0.95 1.09 49.8
Qwen2.5-Math-7B 0.69 1.47 1.54 0.27 0.91 1.14 55.4
Distill-Qwen-7B 0.72 1.45 1.55 0.28 0.91 1.15 92.8

Qwen2.5-14B 0.70 1.71 1.58 0.26 0.96 1.01 55.6
Distill-Qwen-14B 0.74 1.69 1.59 0.28 0.96 1.03 93.9

Table 4: Embedding Dispersion vs. HumanEval Performance (Llama2 vs. CodeLlama). We
compare the average Euclidean and Cosine distances among code tokens (C–C), among non-code
tokens (NC–NC), and between code and non-code (C–NC). We also list each model’s HumanEval
pass@1 (%).

Model Euclidean Distances Cosine Distances HumanEval (%)
C–C NC–NC C–NC C–C NC–NC C–NC

Llama2-7B 1.56 1.46 1.52 0.96 0.95 0.97 12.2
CodeLlama-7B 2.44 2.56 2.54 0.94 0.94 0.97 33.5

Llama2-13B 2.24 2.04 2.15 0.93 0.89 0.93 20.1
CodeLlama-13B 2.68 2.74 2.75 0.94 0.93 0.97 36.0
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B.3 ADDITIONAL RESULTS FOR LAYER SELECTION FOR KNN-LM

We present extended findings on sub-layer selection for kNN-LM. Figure 31 displays results for four
GPT-2 variants (distilgpt2, gpt2, gpt2-medium, gpt2-large). As in the main text, each
point represents a 512-token chunk of text, with its mean perplexity plotted against the sub-layer’s
average pairwise cosine distance (blue for the attention output, red for the feed-forward output).
Interestingly, the negative correlation is weaker for the attention output than for the feed-forward
output.
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Figure 31: Mean perplexity vs. sub-layer average pairwise cosine distance for four GPT-2 variants
(distilgpt2, gpt2, gpt2-medium, gpt2-large). Each point is a 512-token chunk of text.
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B.4 TRAINING DETAILS FOR INCORPORATING REPRESENTATION DISPERSION

All experiments in §3.4 were conducted on NVIDIA A100 80GB GPUs.

Single-Domain Setting. We train GPT2-SMALL from scratch on WikiText, using a batch size of 64
and a block size (sequence length) of 512. The auxiliary loss weight λ is tuned over the set:

{0.5, 0.2, 0.1, 0.07, 0.05, 0.02, 0.01, 0.007, 0.005, 0.002, 0.001}

We experiment with learning rates {1× 10−3, 7× 10−4, 5× 10−4}.

Cross-Domain Setting. For joint WikiText + Python code training, we similarly use GPT2-SMALL
(from scratch), a batch size of 128, and a block size of 256. The auxiliary loss weight λ and learning
rates are swept over the same sets as above:

• λ values: {0.5, 0.2, 0.1, 0.07, 0.05, 0.02, 0.01, 0.007, 0.005, 0.002, 0.001}
• Learning rates: {1× 10−3, 7× 10−4, 5× 10−4}

For both settings, we select λ by validation for each learning rate. All experiments use standard
AdamW optimizer settings unless otherwise specified.
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C LIMITATIONS

While our findings underscore a strong empirical link between representation dispersion and model
performance, there are several limitations. First, our analyses focus on average pairwise cosine
distances of final-layer representations, which may not capture all nuanced aspects of embedding
geometry or model behavior. Second, although we observe consistent negative correlations between
dispersion and perplexity across several model families and domains, causality cannot be definitively
concluded; certain architectures or objectives may modulate this relationship in unforeseen ways.
Third, our experiments center primarily on English text from standard benchmarks and a limited set
of specialized domains (e.g. code, scientific abstracts). It remains unclear how well our observations
extend to other languages, modalities, or highly domain-specific corpora. Further research is needed
to fully understand these trade-offs and develop robust methods for controlling embedding geometry.
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