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Abstract

Predicting and reasoning about the future lie at the heart of many time-series ques-
tions. For example, goal-conditioned reinforcement learning can be viewed as
learning representations to predict which states are likely to be visited in the fu-
ture. While prior methods have used contrastive predictive coding to model time
series data, learning representations that encode long-term dependencies usually
requires large amounts of data. In this paper, we introduce a temporal difference
version of contrastive predictive coding that stitches together pieces of different
time series data to decrease the amount of data required to learn predictions of fu-
ture events. We apply this representation learning method to derive an off-policy
algorithm for goal-conditioned RL. Experiments demonstrate that, compared with
prior RL methods, ours achieves 2× median improvement in success rates and
can better cope with stochastic environments. In tabular settings, we show that
our method is about 20× more sample efficient than the successor representation
and 1500× more sample efficient than the standard (Monte Carlo) version of con-
trastive predictive coding.
Code: https://github.com/chongyi-zheng/td_infonce
Website: https://chongyi-zheng.github.io/td_infonce

1 Introduction

random states

Figure 1: TD InfoNCE is a nonparametric version
of the successor representation. (Top) The distances
between learned representations indicate the probabil-
ity of transitioning to a set of randomly-sampled states.
(Bottom) We update these representations so they as-
sign high likelihood to (a) the next state and (b) states
likely to be visited after the next state. See Sec. 2 for
details.

Learning representations is important for mod-
eling high-dimensional time series data. Many
applications of time-series modeling require
representations that not only contain informa-
tion about the contents of a particular observa-
tion, but also about how one observation relates
to others that co-occur in time. Acquiring rep-
resentations that encode temporal information
is challenging, especially when attempting to
capture long-term temporal dynamics: the fre-
quency of long-term events may decrease with
the time scale, meaning that learning longer-
horizon dependencies requires larger quantities
of data.

In this paper, we study contrastive represen-
tation learning on time series data – positive
examples co-occur nearby in time, so the dis-
tances between learned representations should
encode the likelihood of transiting from one
representation to another. Building on prior
work that uses the InfoNCE [79, 67] loss to
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learn representations of time-series data effectively, we will aim to build a temporal difference ver-
sion of this loss. Doing so may allow us to optimize this objective with fewer samples, may enable
us to stitch together pieces of different time series data, and may enable us to perform counterfactual
reasoning – we should be able to estimate which representations we would have learned, if we had
collected data in a different way. After a careful derivation, our resulting method can be interpreted
as a non-parametric form of the successor representation [15], as shown in Fig. 1.

The main contribution of this paper is a temporal difference estimator for InfoNCE. We then apply
this estimator to develop a new algorithm for goal-conditioned RL. Experiments on both state-based
and image-based benchmarks show that our algorithm outperforms prior methods, especially on the
most challenging tasks. Additional experiments demonstrate that our method can handle stochastic-
ity in the environment more effectively than prior methods. We also demonstrate that our algorithm
can be effectively applied in the offline setting. Additional tabular experiments demonstrate that TD
InfoNCE is up to 1500× more sample efficient than the standard Monte Carlo version of the loss
and that it can effectively stitch together pieces of data.

2 Temporal Difference InfoNCE

In this section, we derive a new loss for estimating the discounted state occupancy measure for
a fixed policy. This loss will be a temporal difference variant of the InfoNCE loss. We will use
temporal difference InfoNCE (TD InfoNCE) to refer to our loss function. See Appendix B for the
complete derivation.

In the off-policy setting, we aim to estimate the discounted state occupancy measure of the policy π
given a dataset of transitions D = {(s, a, s′)i}Di=1 collected by another behavioral policy β(a | s).
This setting is challenging because we do not obtain samples from the discounted state occupancy
measure of the target policy π. Addressing this challenge involves two steps: (i) expanding the MC
estimator (Eq. 10) via the recursive relationship of the discounted state occupancy measure (Eq. 8),
and (ii) estimating the expectation over the discounted state occupancy measure via importance
sampling. We first use the identity from Eq. 8 to express the MC InfoNCE loss as the sum of a
next-state term and a future-state term:
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While this estimate is similar to a TD target for Q-Learning [91, 28], the second term requires
sampling from the discounted state occupancy measure of policy π. To avoid this sampling, we next
replace the expectation over pπ(st+ | s′, a′) in L2(f) by an importance weight,

L2(f) = Es′∼p(s′|s,a),a′∼π(a′|s′)
s
(1)
t+∼p(st+)

[
pπ(s

(1)
t+ | s′, a′)
p(s

(1)
t+ )

log
ef(s,a,s

(1)
t+ )∑N

i=1 e
f(s,a,s

(i)
t+)

]
.

If we could estimate the importance weight, then we could easily estimate this term by sampling
from p(st+). We will estimate this importance weight by rearranging the expression for the optimal
critic (Eq. 11) and substituting our estimate for the normalizing constant c(s, a) (Eq. 6):
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This weight accounts for the effect of the discounted state occupancy measure of the target policy.
Additionally, it corresponds to the categorical classifier that InfoNCE produces (without constant
N ). Taken together, we can now substitute the importance weight in L2(f) with our estimate in
Eq. 2, yielding a temporal difference (TD) InfoNCE estimator
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where ⌊·⌋sg indicates the gradient of the importance weight should not affect the gradient of the
entire objective. As shown in Fig. 1, we can interpret the first term as pulling together the repre-
sentations of the current state-action pair ϕ(s, a) and the next state ψ(s′); the second term pulls the
representations at the current step ϕ(s, a) similar to the (weighted) predictions from the future state
ψ(st+). Importantly, the TD InfoNCE estimator is equivalent to the MC InfoNCE estimator for the
optimal critic function: LTD InfoNCE(f

⋆) = LMC InfoNCE(f
⋆).

Goal-conditioned policy learning. The TD InfoNCE method provides a way for estimating the
discounted state occupancy measure. This section shows how this estimator can be used to derive
a new algorithm for goal-conditioned RL. This algorithm will alternate between (1) estimating the
occupancy measure using the TD InfoNCE objective and (2) optimizing the policy to maximize the
likelihood of the desired goal under the estimated occupancy measure. Pseudo-code is shown in
Algorithm 1, additional details are in Appendix B.3, and code is available online.1

While our TD InfoNCE loss in Sec. B.2 estimates the discounted state occupancy measure for policy
π(a | s), we can extend it to the goal-conditioned setting by replacing π(a | s) with π(a | s, g)
and f(s, a, st+) with f(s, a, g, st+), resulting in a goal-conditioned TD InfoNCE estimator. This
goal-conditioned TD InfoNCE objective estimates the discounted state occupancy measure of any
future state for a goal-conditioned policy commanding any goal. Recalling that the discounted state
occupancy measure corresponds to the Q function [24], the policy objective is to select actions that
maximize the likelihood of the commanded goal:
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In practice, we optimize both the critic function and the policy for one gradient step iteratively, using
our estimated f in place of f⋆.

3 Experiments

We ran a wide range of experiments comparing goal-conditioned TD InfoNCE to prior goal-
conditioned RL approaches on both online and offline GCRL benchmarks. Our findings include:

Evaluation on online GCRL benchmarks. TD InfoNCE matches or outperforms baselines on
all Fetch manipulation tasks [69], both for state and image observations (Fig. 2a and Appendix
Fig. 5). On those more challenging tasks (pick & place (state / image) and slide (state
/ image)), TD InfoNCE achieves a 2× median improvement relative to the strongest baseline.
On the most challenging tasks, image-based pick & place and slide, TD InfoNCE is the only
method achieving non-negligible success rates. See Appendix F.1 for details.

Handling stochastic environments. TD InfoNCE continues achieving high success rates in en-
vironments with stochastic noise, while the performance of QRL decreases significantly (Appendix
Fig. 2b). See Appendix F.1 for details.

1https://github.com/chongyi-zheng/td_infonce
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Figure 2: Evaluation on online GCRL benchmarks. (Left) TD InfoNCE performs similarly to or outper-
forms all baselines on both state-based and image-based tasks. (Right) On stochastic versions of the state-based
tasks, TD InfoNCE outperforms the strongest baseline (QRL). Appendix Fig. 5 shows the learning curves.

Dataset TD InfoNCE Contrastive RL

Figure 3: Stitching trajectories in a dataset. The
behavioral policy collects “Z” style trajectories. Un-
like the Monte Carlo method (contrastive RL) , our
TD InfoNCE successfully “stitches” these trajecto-
ries together, navigating between pairs of (start ✖,
goal ★) states unseen in the training trajectories. Ap-
pendix Fig. 7 shows additional examples.

Dataset TD InfoNCE Contrastive RL

Figure 4: Searching for shortcuts in skewed
datasets. (Left) Conditioned on different initial states
✖ and goals ★, we collect datasets with 95% long
paths (dark) and 5% short paths (light). (Center) TD
InfoNCE infers the shortest path, (Right) while con-
trastive RL fails to find this path. Appendix Fig. 8
shows additional examples.

Evaluation on offline D4RL benchmark. We also study whether the good performance of TD
InfoNCE transfers to the setting without any interaction with the environment (i.e., offline RL). We
evaluate on AntMaze tasks from the D4RL benchmark [27]. The results in Appendix Table 1 show
that TD InfoNCE outperforms most baselines on most tasks. See Appendix F.2 for details.

Accuracy of the estimated discounted state occupancy measure. TD methods achieve lower er-
rors than the Monte Carlo method, while TD InfoNCE converges faster than C-Learning (Appendix
Fig. 6). Additional, TD InfoNCE is 1500×more sample efficient (6.5×103 vs 107 transitions) than
its Monte Carlo counterpart. Compared with the only other TD method applicable in continuous set-
tings (C-learning), TD InfoNCE can achieve a comparable loss with 130× less data (7.7×104 vs 107
transitions). Even compared with the strongest baseline (successor representations), TD InfoNCE
can achieve a comparable error rate with almost 20× fewer samples (5.2× 105 vs 107 transitions).
See Appendix F.3 for details.

Off-policy reasoning. We next study whether the resulting goal-conditioned policy is capable
of performing dynamic programming with offline data, comparing TD InfoNCE to contrastive RL
(i.e., Monte Carlo InfoNCE). Fig. 3 shows that TD InfoNCE successfully stitches together pieces of
different trajectories to find a route between unseen (state, goal) pairs. Fig. 4 shows that TD InfoNCE
can perform off-policy reasoning, finding a path that is shorter than the average path demonstrated
in the dataset. See Appendix F.4 for details.

Representation interpolation. Prior work has shown that representations from self-supervised
learning can reflect the geometry of the underlying data [88, 3]. We study this property for
the representations learned by TD InfoNCE, interpolating between the learned representations of
29-dimensional observations from the offline AntMaze medium-play-v2 task. Results in Ap-
pendix G.3 suggest that the learned representations are structured so that linear interpolation cor-
responds to planning a path from one state to another.
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A Related Work

This paper will study the problem of self-supervised RL, building upon prior methods on goal-
condition RL, contrastive representation learning, and methods for predicting future state visitations.
Our analysis will draw a connection between these prior methods, a connection which will ultimately
result in a new algorithm for goal-conditioned RL. We discuss connections with unsupervised skill
learning and mutual information in Appendix D.

Goal-conditioned reinforcement learning. Prior work has proposed many frameworks for learn-
ing goal-conditioned policies, including conditional supervised learning [16, 32, 36, 19, 54, 65, 81],
actor-critic methods [2, 59, 10], semi-parametric planning [68, 25, 26, 22, 62, 36], and distance
metric learning [89, 83, 64, 18]. These methods have demonstrated impressive results on a range
of tasks, including real-world robotic tasks [55, 78, 95]. While some methods require manually-
specified reward functions or distance functions, our work builds upon a self-supervised interpreta-
tion of goal-conditioned RL that casts this problem as predicting which states are likely to be visited
in the future [23, 24, 7].

Contrastive representation learning. Contrastive learning methods have become a key tool for
learning representations in computer vision and NLP [14, 76, 79, 66, 88, 67, 87, 92, 40, 71, 12, 84,
30]. These methods assign similar representations to positive examples and dissimilar representa-
tions to negative examples or outdated embeddings [35]. The two main contrastive losses are based
on binary classification (“NCE”) ranking loss (“InfoNCE”) [56]. Modern contrastive learning meth-
ods typically employ the ranking-based objective to learn representations of images [12, 84, 41, 93],
text [53, 44, 71] and sequential data [63, 77]. Prior works have also provided theoretical analysis for
these methods from the perspective of mutual information maximization [52, 70], noise contrastive
estimation [37, 56, 86, 3], and the geometry of the learned representations [88]. In the realm of RL,
prior works have demonstrated that contrastive methods can provide effective reward functions and
auxiliary learning objectives [50, 49, 39, 13, 60, 61], and can also be used to formulate the goal-
reaching problem in an entirely self-supervised manner [55, 18, 23, 24]. Our method will extend
these results by building a temporal difference version of the “ranking”-based contrastive loss; this
loss will enable us to use data from one policy to estimate which states a different policy will visit.

Temporal difference learning and successor representation. Another line of work studies using
temporal difference learning to predict states visited in the future, building upon successor represen-
tations and successor features [15, 5, 4, 7]. While learning successor representation using temporal
difference bears a similarity to the typical Q-Learning algorithm [91, 28, 58] in the tabular setting,
directly estimating this quantity is difficult with continuous states and actions [43, 5, 85, 7]. To lift
this limitation, we will follow prior work [24, 23, 85] in predicting the successor representation indi-
rectly: rather than learning a representation whose coordinates correspond to visitation probabilities,
we will learn state representations such that their inner product corresponds to a visitation probabil-
ity. Unlike prior methods, we will show how the common InfoNCE objective can be estimated in
a temporal difference fashion, opening the door to off-policy reasoning and enabling our method to
reuse historical data to improve data efficiency.

B Derivation of TD InfoNCE

We start by introducing notation and prior approaches to the contrastive representation learning and
the goal-conditioned RL problems. We then propose a new self-supervised actor-critic algorithm
that we will use in our analysis.

B.1 Preliminaries

We first review prior work in contrastive representation learning and goal-conditioned RL. Our
method will use ideas from both.

Contrastive representation via InfoNCE. Contrastive representation learning aims to learn a rep-
resentation space, pushing representations of positive examples together and pushing representations
of negative examples away. InfoNCE (also known as contrastive predictive coding) [79, 45, 67, 41]
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is a widely used contrastive loss, which builds upon noise contrastive estimation (NCE) [37, 56].
Given the distribution of data pX (x), pY(y) over data x ∈ X , y ∈ Y and the conditional distribution
of positive pairs pY|X (y|x) over X × Y , InfoNCE loss is defined as

LInfoNCE(f) ≜ Ex∼pX (x),y(1)∼pY|X (y|x)
y(2:N)∼pY(y)

[
log

ef(x,y
(1))∑N

i=1 e
f(x,y(i))

]
, (5)

where f : X × Y 7→ R is a parametric function. Following prior work [24, 88, 85], we choose to
parameterize f(·, ·) via the inner product of representations of data f(x, y) = ϕ(x)⊤ψ(y), where
ϕ(·) andψ(·) map data to ℓ2 normalized vectors of dimension d. We will call f the critic function and
ϕ and ψ the contrastive representations. The Bayes-optimal critic for the InfoNCE loss satisfies [70,
56, 67]

exp (f⋆(x, y)) =
p(y | x)
p(y)c(x)

,

where c(·) is an arbitrary function. We can estimate this arbitrary function using the optimal critic
f⋆ by sampling multiple negative pairs from the data distribution:

Ep(y) [exp (f⋆(x, y))] =
∫

�
��p(y)
p(y | x)
�

��p(y)c(x)
dy =

1

c(x)

∫
p(y | x)dy︸ ︷︷ ︸

=1

=
1

c(x)
. (6)

Reinforcement learning and goal-conditioned RL. We will consider a Markov decision process
defined by states s ∈ S, actions a ∈ A, rewards r : S × A × S 7→ R. Using ∆(·) denotes
the probability simplex, we define an initial state distribution p0 : S 7→ ∆(S), discount factor
γ ∈ (0, 1], and dynamics p : S × A 7→ ∆(S). Given a policy π : S 7→ ∆(A), we will use
pπt (st+ | s, a) to denote the probability density of reaching state st+ after exactly t steps, starting at
state s and action a and then following the policy π(a | s). We can then define the discounted state
occupancy measure [42, 94, 23, 24, 95] starting from state s and action a as

pπ(st+ | s, a) ≜ (1− γ)
∞∑
t=1

γt−1pπt (st+ | s, a). (7)

Prior work [15] have shown that this discounted state occupancy measure follows a recursive rela-
tionship between the density at the current time step and the future time steps:

pπ(st+ | s, a) = (1− γ)p(s′ = st+ | s, a) + γEs′∼p(s′|s,a)
a′∼π(a′|s′)

[pπ(st+ | s′, a′)] . (8)

For goal-conditioned RL, we define goals g ∈ S in the same space as states and consider a goal-
conditioned policy π(a | s, g) and the corresponding goal-conditioned discounted state occupancy
measure pπ(st+ | s, a, g). For evaluation, we will sample goals from a distribution pg : S 7→ ∆(S).
Following prior work [23, 74], we define the objective of the goal-reaching policy as maximizing
the probability of reaching desired goals under its discounted state occupancy measure while com-
manding the same goals:

max
π(·|·,·)

Epg(g),p0(s),π(a|s,g) [p
π(st+ = g | s, a, g)] . (9)

In tabular settings, this objective is the same as maximizing expected returns using a sparse reward
function r(s, a, s′, g) = (1 − γ)δ(s′ = g) [24]. Below, we review two strategies for estimating the
discounted state occupancy measure. Our proposed method (Sec. B.2) will combine the strengths of
these methods while lifting their respective limitations.

Contrastive RL and C-Learning. Our focus will be on using contrastive representation learning
to build a new goal-conditioned RL algorithm, following a template set in prior work [24, 23].
These contrastive RL methods are closely related to the successor representation [15]: they aim to
learn representations whose inner products correspond to the likelihoods of reaching future states.
Like the successor representation, representations from these contrastive RL methods can then be
used to represent the Q function for any reward function [57]. Prior work [24] has shown how
both NCE and the InfoNCE losses can be used to derive Monte Carlo algorithms for estimating the
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discounted state occupancy measure. We review the Monte Carlo InfoNCE loss below. Given a
policy π(a | s), consider learning contrastive representations for a state and action pair x = (s, a)
and a potential future state y = st+. We define the data distribution to be the joint distribution of
state-action pairs pX (x) = p(s, a) and the marginal distribution of future states pY(y) = p(st+),
representing either the distribution of a replay buffer (online) or the distribution of a dataset (offline).
The conditional distribution of positive pairs is set to the discounted state occupancy measure for
policy π, pY|X (y | x) = pπ(st+ | s, a), resulting in a Monte Carlo (MC) estimator

LMC InfoNCE(f) = E
(s,a)∼p(s,a),s(1)t+∼pπ(st+|s,a)

s
(2:N)
t+ ∼p(st+)

[
log

ef(s,a,s
(1)
t+ )∑N

i=1 e
f(s,a,s

(i)
t+)

]
(10)

and an optimal critic function satisfying

exp(f⋆(s, a, st+)) =
pπ(st+ | s, a)
p(st+)c(s, a)

. (11)

This loss estimates the discounted state occupancy measure in a Monte Carlo manner. While con-
ceptually simple, computing this estimator requires sampling future states from the discounted state
occupancy measure of the policy π, i.e., on-policy data. Such an estimate is potentially sample
inefficient because collecting samples for different policies is expensive. That is, we cannot share
experiences collected by one policy with the learning of the discounted state occupancy measure of
another policy.

In the same way that temporal difference (TD) algorithms tend to be more sample efficient than
Monte Carlo algorithms for reward maximization [82], we expect that TD contrastive methods are
more sample efficient at estimating probability ratios than their Monte Carlo counterparts. Given
that the InfoNCE tends to outperform the NCE objective in other machine learning disciplines,
we conjecture that our TD InfoNCE objective will outperform the TD NCE objective [23] (see
experiments in Sec. 3).

B.2 Temporal Difference InfoNCE

In this section, we derive a new loss for estimating the discounted state occupancy measure for
a fixed policy. This loss will be a temporal difference variant of the InfoNCE loss. We will use
temporal difference InfoNCE (TD InfoNCE) to refer to our loss function.

In the off-policy setting, we aim to estimate the discounted state occupancy measure of the policy π
given a dataset of transitions D = {(s, a, s′)i}Di=1 collected by another behavioral policy β(a | s).
This setting is challenging because we do not obtain samples from the discounted state occupancy
measure of the target policy π. Addressing this challenge involves two steps: (i) expanding the MC
estimator (Eq. 10) via the recursive relationship of the discounted state occupancy measure (Eq. 8),
and (ii) estimating the expectation over the discounted state occupancy measure via importance
sampling. We first use the identity from Eq. 8 to express the MC InfoNCE loss as the sum of a
next-state term and a future-state term:

E (s,a)∼p(s,a)
s
(2:N)
t+ ∼p(st+)

[
(1− γ)E

s
(1)
t+∼p(s′|s,a)

[
log

ef(s,a,s
(1)
t+ )∑N

i=1 e
f(s,a,s

(i)
t+)

]
︸ ︷︷ ︸

L1(f)

+ γ Es′∼p(s′|s,a),a′∼π(a′|s′)
s
(1)
t+∼pπ(st+|s′,a′)

[
log

ef(s,a,s
(1)
t+ )∑N

i=1 e
f(s,a,s

(i)
t+)

]
︸ ︷︷ ︸

L2(f)

]
.

While this estimate is similar to a TD target for Q-Learning [91, 28], the second term requires
sampling from the discounted state occupancy measure of policy π. To avoid this sampling, we next
replace the expectation over pπ(st+ | s′, a′) in L2(f) by an importance weight,

L2(f) = Es′∼p(s′|s,a),a′∼π(a′|s′)
s
(1)
t+∼p(st+)

[
pπ(s

(1)
t+ | s′, a′)
p(s

(1)
t+ )

log
ef(s,a,s

(1)
t+ )∑N

i=1 e
f(s,a,s

(i)
t+)

]
.
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Algorithm 1 Temporal Difference InfoNCE

1: Input contrastive representations ϕθ and ψθ, target representations ϕθ̄ and ψθ̄, and goal-
conditioned policy πω .

2: for each iteration do
3: Sample {(s(i)t , a

(i)
t , s

(i)
t+1, g

(i), s
(i)
t+)}Ni=1 ∼ replay buffer / dataset, a(i) ∼ π(a | s(i)t , g(i)).

4: Compute Fnext, Ffuture, Fgoal using ϕθ and ψθ.
5: Compute F̄w using ϕθ̄ and ψθ̄.
6: W ← N · stop grad

(
SOFTMAX(F̄w)

)
7: L(θ)← (1− γ)CE(logits = Fnext, labels = IN ) + γCE(logits = Ffuture, labels =W )
8: L(ω)← CE(logits = Fgoal, labels = IN )
9: Update θ, ω by taking gradients of L(θ),L(ω).

10: Update θ̄ using an exponential moving average.
11: Return ϕθ, ψθ, and πω .

If we could estimate the importance weight, then we could easily estimate this term by sampling
from p(st+). We will estimate this importance weight by rearranging the expression for the optimal
critic (Eq. 11) and substituting our estimate for the normalizing constant c(s, a) (Eq. 6):

pπ(s
(1)
t+ | s, a)
p(s

(1)
t+ )

= c(s, a) · exp
(
f⋆(s, a, s

(1)
t+ )

)
=

ef
⋆(s,a,s

(1)
t+ )

Ep(st+)

[
ef⋆(s,a,st+)

] . (12)

We will use w(s, a, s(1:N)
t+ ) to denote our estimate of this, using f in place of f⋆ and using a finite-

sample estimate of the expectation in the denominator:

w(s, a, s
(1:N)
t+ ) ≜

ef(s,a,s
(1)
t+ )

1
N

∑N
i=1 e

f(s,a,s
(i)
t+)

This weight accounts for the effect of the discounted state occupancy measure of the target policy.
Additionally, it corresponds to the categorical classifier that InfoNCE produces (without constant
N ). Taken together, we can now substitute the importance weight in L2(f) with our estimate in
Eq. 2, yielding a temporal difference (TD) InfoNCE estimator

LTD InfoNCE(f) ≜ E (s,a)∼p(s,a)
s
(2:N)
t+ ∼p(st+)

[
(1− γ)E

s
(1)
t+∼p(s′|s,a)

[
log

ef(s,a,s
(1)
t+ )∑N

i=1 e
f(s,a,s

(i)
t+)

]

+γEs′∼p(s′|s,a)
a′∼π(a′|s′)
s
(1)
t+∼p(st+)

[
⌊w(s′, a′, s(1:N)

t+ )⌋sg log
ef(s,a,s

(1)
t+ )∑N

i=1 e
f(s,a,s

(i)
t+)

] ,
where ⌊·⌋sg indicates the gradient of the importance weight should not affect the gradient of the
entire objective. As shown in Fig. 1, we can interpret the first term as pulling together the repre-
sentations of the current state-action pair ϕ(s, a) and the next state ψ(s′); the second term pulls the
representations at the current step ϕ(s, a) similar to the (weighted) predictions from the future state
ψ(st+). Importantly, the TD InfoNCE estimator is equivalent to the MC InfoNCE estimator for the
optimal critic function: LTD InfoNCE(f

⋆) = LMC InfoNCE(f
⋆).

Convergence and connections. In Appendix C, we prove that optimizing a variant of the TD In-
foNCE objective is equivalent to perform one step policy evaluation with a new Bellman operator;
thus, repeatedly optimizing this objective yields the correct discounted state occupancy measure.
This analysis considers the tabular setting and assumes that the denominators of the softmax func-
tions and w in Eq. 3 are computed using an exact expectation. We discuss the differences between
TD InfoNCE and C-learning [23] (a temporal difference estimator of the NCE objective) in Ap-
pendix G.2. Appendix E discusses how TD InfoNCE corresponds to a nonparametric variant of the
successor representation.

B.3 The Complete Algorithm for Goal-Conditioned RL

The complete algorithm of TD InfoNCE (Algorithm 1) alters between estimating the discounted
state occupancy measure of the current goal-conditioned policy via contrastive learning (Eq. 3)
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and updating the policy using the actor loss (Eq. 4), while collecting more data. Given a batch
of N transitions of {(s(i)t , a

(i)
t , s

(i)
t+1, g

(i), s
(i)
t+)}Ni=1 sampled from p(st, at, g), p(st+1 | st, at), and

p(st+), we can first compute the critic function for different combinations of goal-conditioned state-
action pairs and future states by computing their contrastive representations ϕ(st, at, g), ψ(st+), and
ψ(st+), and then construct two critic matrices Fnext, Ffuture ∈ RN×N using those representations:

Fnext[i, j] = ϕ(s
(i)
t , a

(i)
t , g(i))⊤ψ(s

(j)
t+1), Ffuture[i, j] = ϕ(s

(i)
t , a

(i)
t , g(i))⊤ψ(s

(j)
t+ )

Note that the inner product parameterization of the critic function f(st, at, g, st+) =
ϕ(st, at, g)

⊤ψ(st+) helps compute these matrices efficiently. Using these critic matrices, we rewrite
the TD InfoNCE estimate as a sum of two cross entropy losses. The first cross entropy loss involves
predicting which of the N next states s(1:N)

t+1 is the correct next state for the corresponding goal-
conditioned state and action pair:

(1− γ)CE(logits = Fnext, labels = IN ),

where CE(logits = Fnext, labels = IN ) = −
∑N
i=1

∑N
j=1 IN [i, j] · log SOFTMAX(Fnext)[i, j],

SOFTMAX(·) denotes row-wise softmax normalization, and IN is a N dimensional identity ma-
trix. For the second cross entropy term, we first sample a batch of N actions from the target policy
at the next time step, a(1:N)

t+1 ∼ π(at+1 | st+1, g), and then estimate the importance weight matrix
W ∈ RN×N that serves as labels as

Fw[i, j] = ϕ(s
(i)
t+1, a

(i)
t+1, g

(i))⊤ψ(s
(j)
t+ ),W = N · SOFTMAX(Fw).

Thus, the second cross entropy loss takes as inputs the critic Ffuture and the importance weight W :

γCE(logits = Ffuture, labels =W ). (13)

Regarding the policy objective (Eq. 4), it can also be rewritten as the cross entropy between a critic
matrix Fgoal with Fgoal[i, j] = ϕ(s

(i)
t , a(i), g(i))⊤ψ(g(j)), where a(i) ∼ π(a | s(i)t , g(i)), and the

identity matrix IN :

CE(logits = Fgoal, labels = IN )

In practice, we use neural networks with parameters θ = {θϕ, θψ} to parameterize (normalized)
contrastive representations ϕ and ψ and use a neural network with parameters ω to parameterize the
goal-conditioned policy π and optimize them using gradient descent.

C Theoretical Analysis

Our convergence proof will focus on the tabular setting with known p(s′ | s, a) and p(st+), and
follows the fitted Q-iteration strategy [28, 20, 6]: at each iteration, an optimization problem will
be solved exactly to yield the next estimate of the discounted state occupancy measure. One key
step in the proof is to employ a preserved invariant; we will define the classifier derived from the
TD InfoNCE objective (Eq. 3) and show that this classifier always represents a valid probability
distribution (over future states). We then construct a variant of the TD InfoNCE objective using this
classifier and prove that optimizing this objective is exactly equivalent to perform policy evaluation,
resulting in the convergence to the discounted state occupancy measure.

Definition of the classifier. We start by defining the classifier derived from the TD InfoNCE as

C(s, a, st+) ≜
p(st+)e

f(s,a,st+)

Ep(s′t+)

[
ef(s,a,s

′
t+)

] =
p(st+)e

f(s,a,st+)∑
s′t+∈S p(st+)e

f(s,a,s′t+)
, (14)

suggesting that C(s, a, ·) is a valid distribution over future states: C(s, a, ·) ∈ ∆(S).

A variant of TD InfoNCE. Our definition of the classifier (Eq. 14) allows us to rewrite the im-
portance weight w(s, a, st+) and softmax functions in LTD InfoNCE (Eq. 3) as Monte Carlo estimates
of the classifier using samples of s(1:N)

t+ ,

w(s, a, s
(1:N)
t+ ) =

ef(s,a,s
(1)
t+ )

1
N

∑N
i=1 e

f(s,a,s
(i)
t+)
≈ C(s, a, st+)

p(st+)
.
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Thus, we construct a variant of the TD InfoNCE objective using C:

L̄TD InfoNCE(C) ≜ Ep(s,a)
[
(1− γ)Ep(s′=st+|s,a) [logC(s, a, st+)]

+γEp(s′|s,a),π(a′|s′)
p(st+)

[
⌊C(s′, a′, st+)⌋sg

p(st+)
logC(s, a, st+)

]]
.

This objective is similar to LTD InfoNCE, but differs in that (a) softmax functions are replaced by
C(s, a, st+) up to constant 1

N ·p(st+) and (b) w(s′, a′, s(1:N)
t+ ) is replaced by C(s′,a′,st+)

p(st+) . Formally,
LTD InfoNCE(C) is a nested Monte Carlo estimator of L̄TD InfoNCE [72, 33] and we leave the analysis
of the gap between them as future works. We now find the solution of L̄TD InfoNCE(C) analyti-
cally by rewriting it using the cross entropy and ignore the stop gradient operator to reduce clutter:
L̄TD InfoNCE(C) =

Ep(s,a)

[
(1− γ)Ep(s′=st+|s,a) [logC(s, a, st+)] + γEp(s′|s,a),π(a′|s′,g)

C(s′,a′,st+)

[logC(s, a, st+)]

]
= −Ep(s,a) [(1− γ)CE (p(s′ = · | s, a), C(s, a, ·))

+γCE
(
Ep(s′|s,a),π(a′|s′) [C(s′, a′, ·)] , C(s, a, ·)

)]
= −Ep(s,a)

[
CE

(
C(s, a, ·), (1− γ)p(s′ = · | s, a) + γEp(s′|s,a),π(a′|s′) [C(s′, a′, ·))

]]
, (15)

where the cross entropy for p, q ∈ ∆(X ) is defined as

CE(p(·), q(·)) = −Ep(x)[log q(x)] = −
∑
x∈X

p(x) log q(x),

with the minimizer q⋆ = argminq∈∆(X ) CE(p(·), q(·)) = p. Note that p(s′ = · | s, a) ∈ ∆(S)
and Ep(s′|s,a)π(a′|s′)[C(s′, a′, ·)] ∈ ∆(S) in Eq. 15 indicate that their convex combination is also a
distribution in ∆(S). This objective suggests a update for the classifier given any (s, a, st+):

C(s, a, st+)← (1− γ)p(s′ = st+ | s, a) + γEp(s′|s,a)π(a′|s′)[C(s′, a′, st+)], (16)
which bears a resemblance to the standard Bellman equation.

InfoNCE Bellman operator. We define the InfoNCE Bellman operator for any function
Q(s, a, st+) : S ×A× S 7→ R with policy π(a | s) as

TInfoNCEQ(s, a, st+) ≜ (1− γ)p(s′ = st+ | s, a) + γEp(s′|s,a)π(a′|s′,g)[Q(s′, a′, st+)], (17)

and write the update of the classifier as C(s, a, st+) ← TInfoNCEC(s, a, st+). Like the standard
Bellman operator, this InfoNCE Bellman operator is a γ-contraction. Unlike the standard Bellman
operator, TInfoNCE replaces the reward function with the discounted probability of the future state
being the next state (1− γ)p(s′ = st+ | s, a) and applies to a function depending on a state-action
pair and a future state (s, a, st+).

Proof of convergence. Using the same proof of convergence for policy evaluation with the stan-
dard Bellman equation [82, 1], we conclude that repeatedly applying TGC InfoNCE to C results in
convergence to a unique C⋆ regardless of initialization,

C⋆(s, a, st+) = (1− γ)p(s′ = st+ | s, a) + γEp(s′|s,a)π(a′|s′)[C⋆(s′, a′, st+)].
Since C⋆(s, a, st+) and pπ(st+ | s, a) satisfy the same identity (Eq. 8), we have C⋆(s, a, st+) =
pπ(st+ | s, a), i.e., the classifier of the TD InfoNCE estimator converges to the discounted state
occupancy measure. To recover f⋆ from C⋆, we note that f⋆ satisfies

f⋆(s, a, st+) = logC⋆(s, a, st+)− log p(st+) + logEp(s′t+)[exp(f
⋆(s, a, s′t+))]

= log pπ(st+ | s, a)− log p(st+) + logEp(s′t+)[exp(f
⋆(s, a, s′t+))]

by definition. Since the (expected) softmax function is invariant to translation, we can write
f⋆(s, a, st+) = log pπ(st+ | s, a) − log p(st+) − log c(s, a), where c(s, a) is an arbitrary func-
tion that does not depend on st+ 2. Thus, we conclude that TD InfoNCE objective converges to the
same solution as that of MC InfoNCE (Eq. 11), i.e. L̄TD InfoNCE(f

⋆) = LMC InfoNCE(f
⋆).

2Technically, f⋆ should be a set of functions satisfying

f : e
f(s,a,st+)

Ep(s′
t+

)

[
e
f(s,a,s′

t+
)
] =

C⋆(s,a,st+)

p(st+)

 .
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It is worth noting that the same proof applies to the goal-conditioned TD InfoNCE objective. After
finding an exact estimate of the discounted state occupancy measure of a goal-conditioned policy
π(a | s, g), maximizing the policy objective (Eq. 4) is equivalent to doing policy improvement. We
can apply the same proof as in the Lemma 5 of [23] to conclude that π(a | s, g) converges to the
optimal goal-conditioned policy π⋆(a | s, g).

D Connection with mutual information and skill learning.

The theoretical analysis in Appendix C has shown that the TD InfoNCE estimator has the same
effect as the MC InfoNCE estimator. As the (MC) InfoNCE objective corresponds to a lower bound
on mutual information [70], we can interpret our goal-conditioned RL method as having both the
actor and the critic jointly optimize a lower bound on mutual information. This perspective high-
lights the close connection between unsupervised skill learning algorithms [21, 9, 90, 34], and goal-
conditioned RL, a connection previously noted in Choi et al. [13]. Seen as an unsupervised skill
learning algorithm, goal-conditioned RL lifts one of the primary limitations of prior methods: it can
be unclear which skill will produce which behavior. In contrast, goal-conditioned RL methods learn
skills that are defined as optimizing the likelihood of reaching particular goal states.

E Connection with Successor Representations

In settings with tabular states, the successor representation [15] is a canonical method for estimating
the discounted state occupancy measure (Eq. 7). The successor representation has strong ties to
cognitive science [31] and has been used to accelerate modern RL methods [5, 85].

Successor representation Mπ : S × A 7→ ∆(S) is a long-horizon, policy dependent model that
estimates the discounted state occupancy measure for every s ∈ S via the recursive relationship
(Eq. 8). Given a policy π(a | s), the successor representation satisfies

Mπ(s, a)← (1− γ)ONEHOT|S|(s
′) + γMπ(s′, a′), (18)

where s′ ∼ p(s′ | s, a) and a′ ∼ π(a′ | s′). Comparing this update to the TD InfoNCE update
shown in Fig. 1 and Eq. 16, we see that this successor representation update is a special case of
TD InfoNCE where (a) every state is used instead of randomly-sampling the states, and (b) the
probabilities are encoded directed in a matrix M , rather than encoding the probabilities as the inner
product between two learned vectors.

This connection is useful because it highlights how and why the learned representations can be used
to solve fully-general reinforcement learning tasks. In the same way that the successor representation
can be used to express the value function of a reward (Mπ(s, a)⊤r(·)), the representations learned
by TD InfoNCE can be used to recover value functions:

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtr(st, at)

]
= r(s, a) +

γ

1− γ
Epπ(st+|s,a),π(at+|st+)[r(st+, at+)]

= r(s, a) +
γ

1− γ
Ep(st+),π(at+|st+)

[
ef

⋆(s,a,st+)

1
N

∑N
i=1 e

f⋆(s,a,s
(i)
t+)

r(st+, at+)

]
.

F Experimental Details

F.1 Online Goal-conditioned RL Experiments

We compare TD InfoNCE to four baselines on an online GCRL benchmark [69] containing four
manipulation tasks for the Fetch robot. The observations and goals of those tasks can be either a
state of the robot and objects or a 64 × 64 RGB image. We will evaluate using both versions. The
first baseline, Quasimetric Reinforcement Learning (QRL) [89], is a state-of-the-art approach that
uses quasimetric models to learn the optimal goal-conditioned value functions and the corresponding
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Figure 5: Evaluation on online GCRL benchmarks. TD InfoNCE matches or outperforms all
baselines on both state-based and image-based tasks.

policies. The second baseline is contrastive RL [24], which estimates the discounted state occupancy
measure using LMC InfoNCE (Eq. 10). Our third baseline is the goal-conditioned behavioral cloning
(GCBC) [16, 19, 32, 54, 81, 80]. We also include a comparison with an off-the-shelf actor-critic
algorithm augmented with hindsight relabeling [2, 51, 73, 75] to learn a goal-conditioned policy
(DDPG + HER).

Results in Fig. 5 show that TD InfoNCE matches or outperforms other baselines on all tasks, both
for state and image observations. On those more challenging tasks (pick & place (state /
image) and slide (state / image)), TD InfoNCE achieves a 2×median improvement relative
to the strongest baseline. On the most challenging tasks, image-based pick & place and slide,
TD InfoNCE is the only method achieving non-negligible success rates. We speculate this observa-
tion is because TD InfoNCE estimates the discounted state occupancy measure more accurately, a
hypothesis we will investigate in Appendix. F.3.

Among those baselines, QRL is the strongest one. Unlike TD InfoNCE, the derivation of QRL
assumes the dynamics are deterministic. This difference motivates us to study whether TD InfoNCE
continues achieving high success rates in environments with stochastic noise. To study this, we
compare TD InfoNCE to QRL on a variant of the Fetch benchmark where observations are corrupted
with probability 0.1. As shown in Fig. 2b, TD InfoNCE maintains high success rates while the
performance of QRL decreases significantly, suggesting that TD InfoNCE can better cope with
stochasticity in the environment.

F.2 Offline Goal-conditioned RL Experiments

Similar to prior works [24, 89], we adopt an additional goal-conditioned behavioral cloning regu-
larization to prevent the policy from sampling out-of-distribution actions [29, 48, 47] during policy
optimization (Eq.9):

argmax
π(·|·,·)

E (s,aorig,g)∼p(s,aorig,g)

a∼π(a|s,g),s(1:N)
t+ ∼p(st+)

[
(1− λ) · log ef(s,a,g,st+=g)∑N

i=1 e
f(s,a,g,s

(i)
t+)

+ λ · ∥a− aorig∥22

]
,

where λ is the coefficient for regularization. Note that we use a supervised loss based on the mean
squared error instead of the maximum likelihood estimate of aorig under policy π used in prior works.
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Table 1: Evaluation on offline D4RL AntMaze benchmarks.

TD InfoNCE QRL Contrastive RL GCBC DT IQL TD3 + BC

umaze-v2 85.8 ± 0.9 77.2± 2.3 79.8± 1.4 65.4 65.6 87.5 78.6
umaze-diverse-v2 92.1 ± 1.1 79.4± 1.5 77.6± 2.8 60.9 51.2 62.2 71.4
medium-play-v2 87.5 ± 1.2 74.9± 1.9 72.6± 2.9 58.1 1.0 71.2 10.6

medium-diverse-v2 82.3 ± 2.8 73.1± 1.1 71.5± 1.3 67.3 0.6 70.0 3.0
large-play-v2 47.3± 2.9 52.3 ± 3.2 48.6± 4.4 32.4 0.0 39.6 0.2

large-diverse-v2 56.2 ± 3.8 50.9± 4.6 54.1 ± 5.5 36.9 0.2 47.5 0.0
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Figure 6: Estimating the discounted state occupancy measure in a tabular setting. (Left) Temporal
difference methods have lower errors than the Monte Carlo method. Also note that our TD InfoNCE converges
as fast as the best baseline (successor representation). (Right) TD InfoNCE is more data efficient than other
methods. Using a dataset of size 10M, TD InfoNCE achieves an error rate 25% lower than the best baseline;
TD InfoNCE also matches the performance of C-learning with 130× less data.

We compare TD InfoNCE to the state-of-the-art QRL [89] and its Monte Carlo counterpart (con-
trastive RL [24]). We also compare to the pure goal-conditioned behavioral cloning implemented
in [19] as well as a recent baseline that predicts optimal actions via sequence modeling using a
transformer (DT [11]). Our last two baselines are offline actor-critic methods trained via TD learn-
ing: TD3 + BC [29] and IQL [46], not involving goal-conditioned relabeling. We use the result for
baselines except QRL from [24].

As shown in Table 1, TD InfoNCE matches or outperforms all baselines on 5 / 6 tasks. On tasks
(medium-play-v2 and medium-diverse-v2), TD InfoNCE achieves a +13% improvement over
contrastive RL, showing the advantage of temporal difference learning over the Monte Carlo ap-
proach with a fixed dataset. We conjecture that this benefit comes from the dynamic programming
property of the TD method and will investigate this property further in later experiments (Sec. F.4).
Additionally, TD InfoNCE performs 1.4× better than GCBC and retains a 3.8× higher scores than
DT on average, where these baselines use (autoregressive) supervised losses instead of TD learning.
These results suggest that TD InfoNCE is also a competitive goal-conditioned RL algorithm in the
offline setting.

F.3 Accuracy of the estimated discounted state occupancy measure

This section tests the hypothesis that our TD InfoNCE loss will be more accurate and sample efficient
than alternative Monte Carlo methods (namely, contrastive RL [24]) in predicting the discounted
state occupancy measure. We will use the tabular setting so that we can get a ground truth estimate.
We compare TD InfoNCE to three baselines. Successor representations [15] can also be learned
in a TD manner, though can be challenging to apply beyond tabular settings. C-learning is similar
to TD InfoNCE in that it uses a temporal difference method to optimize a contrastive loss, but
differs in using a binary cross entropy loss instead of a softmax cross entropy loss. Contrastive
RL is the MC counterpart of TD InfoNCE. We design a 5 × 5 gridworld with 125 states and 5
actions (up, down, left, right, and no-op) and collect 100K transitions using a uniform random
policy, µ(a | s) = UNIF(A). We evaluate each method by measuring the absolute error between the
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Figure 7: Stitching trajectories in a dataset. The behavioral policy collects “Z” style trajectories.
Unlike the Monte Carlo method (contrastive RL) , our TD InfoNCE successfully “stitches” these
trajectories together, navigating between pairs of (start ✖, goal ★) states unseen in the training
trajectories.

predicted probability p̂ and the ground truth probability pµ, averaging over all pairs of (s, a, st+):

1

|S||A||S|
∑

s,a,st+

|p̂(st+ | s, a)− pµ(st+ | s, a)|.

For the three TD methods, we compute the TD target in a SARSA manner [82]. For those methods
estimating a probability ratio, we convert the prediction to a probability by multiplying by the em-
pirical state marginal. Results in Fig. 6 show that TD methods achieve lower errors than the Monte
Carlo method, while TD InfoNCE converges faster than C-Learning. Appendix G.1 discusses why
all methods plateau above zero.

Our next experiments studies sample efficiency. We hypothesize that the softmax in the TD InfoNCE
loss may provide more learning signal than alternative methods, allowing it to achieve lower error
on a fixed budget of data. To test this hypothesis, we run experiments with dataset sizes from 1K to
10M on the same gridworld, comparing TD InfoNCE to the same set of baselines. We report results
in Fig. 6 with errors showing one standard deviation after training for 50K gradient steps for each
approach. These results suggest that methods based on temporal difference learning predict more
accurately than Monte Carlo method when provided with the same amount of data. Compared with
its Monte Carlo counterpart, TD InfoNCE is 1500× more sample efficient (6.5× 103 vs 107 transi-
tions). Compared with the only other TD method applicable in continuous settings (C-learning), TD
InfoNCE can achieve a comparable loss with 130× less data (7.7 × 104 vs 107 transitions). Even
compared with the strongest baseline (successor representations), which makes assumptions (tabular
MDPs) that our method avoids, TD InfoNCE can achieve a comparable error rate with almost 20×
fewer samples (5.2× 105 vs 107 transitions).

F.4 Off-Policy Reasoning Experiments

The explicit temporal difference update (Eq. 3) in TD InfoNCE is similar to the standard Bellman
backup, motivating us to study whether the resulting goal-conditioned policy is capable of perform-
ing dynamic programming with offline data. To answer these questions, we conduct two experiments
on the same gridworld environment as in Sec. F.3, comparing TD InfoNCE to contrastive RL (i.e.,
Monte Carlo InfoNCE).

Stitching trajectories. The first set of experiments investigate whether TD InfoNCE successfully
stitches pieces of trajectories in a dataset to find complete paths between (start, goal) pairs unseen
together in the dataset. We collect a dataset with size 20K consisting of ”Z” style trajectories moving
in diagonal and off-diagonal directions (Fig. 7), while evaluating the learned policy on reaching goals
on the same edge as starting states after training both methods for 50K gradient steps. Figure 7
shows that TD InfoNCE succeeds in stitching parts of trajectory in the dataset, moving along ”C”
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Figure 8: Searching for shortcuts in skewed datasets. (Left) Conditioned on different initial states
✖ and goals ★, we collect datasets with 95% long paths (dark) and 5% short paths (light). (Center)
TD InfoNCE infers the shortest path, (Right) while contrastive RL fails to find this path.

style paths towards goals, while contrastive RL fails to do so. These results justify our hypothesis
that TD InfoNCE performs dynamic programming and contrastive RL instead naively follows the
behavior defined by the data.

Searching for shortcuts. Our second set of experiments aim to compare the performance of TD
InfoNCE against contrastive RL on searching shortcuts in skewed datasets. To study this, we col-
lect different datasets of size 20K with trajectories conditioned on the same pair of initial state and
goal, with 95% of the time along a long path and 5% of the time along a short path. Using these
skewed datasets, we again train both methods for 50K gradient steps and then evaluate the policy
performance on reaching the same goal starting from the same state. We show the goal-conditioned
policies learned by the two approaches in Fig. 8. The observation that TD InfoNCE learns to take
shortcuts even though those data are rarely seen, while contrastive RL follows the long paths domi-
nating the entire dataset, demonstrates the advantage of temporal difference learning over its Monte
Carlo counterpart in improving data efficiency.

F.5 Implementations and Hyperparameters

We implement TD InfoNCE, contrastive RL, and C-Learning using JAX [8] building upon the offi-
cial codebase of contrastive RL3. For baselines QRL, GCBC, and DDPG + HER, we use implemen-
tation provided by the author of QRL4. We summarize hyperparameters for TD InfoNCE in Table 2.
Whenever possible, we used the same hyperparameters as contrastive RL [24]. Since TD InfoNCE
computes the loss with N2 negative examples, we increase the capacity of the goal-conditioned

3https://github.com/google-research/google-research/tree/master/contrastive rl
4https://github.com/quasimetric-learning/quasimetric-rl
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Table 2: Hyperparameters for TD InfoNCE.

Hyperparameters Values

actor learning rate 5× 10−5

critic learning rate 3× 10−4

using ℓ2 normalized representations yes

hidden layers sizes (for both actor and representations) (512, 512, 512, 512)

contrastive representation dimensions 16

Table 3: Changes to hyperparameters for offline RL experiments. (Table 1)

Hyperparameters Values

batch size (on large- tasks) 256→ 1024

hidden layers sizes (for both actor and rep-
resentations on large- tasks)

(512, 512, 512, 512)→ (1024, 1024, 1024, 1024)

behavioral cloning regularizer coefficient λ 0.1

goals for actor loss random states→ future states

state-action encoder and the future state encoder to 4 layers MLP with 512 units in each layer ap-
plying ReLU activations. We find that a ℓ2 normalized representation space is important for TD
InfoNCE. For offline RL experiments, we make some changes to hyperparameters (Table 3).

G Additional Experiments

G.1 Predicting the discounted state occupancy measure

Our experiments estimating the discounted state occupancy measure in the tabular setting (Sec. F.3)
observed a small “irreducible” error. To test the correctness of our implementation, we applied the
successor representation with a known model (Fig. 9), finding that its error does go to zero. This
gives us confidence that our implementation of the successor representation baseline is correct, and
suggests that the error observed in Fig. 6 arises from sampling the transitions (rather than having a
known model).

G.2 Understanding the Differences between TD InfoNCE and C-Learning

While conceptually similar, our method is a temporal difference estimator building upon InfoNCE
whereas C-learning instead bases on the NCE objective [37]. There are mainly three distinctions
between TD InfoNCE and C-Learning: (a) C-Learning uses a binary cross entropy loss, while TD
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Figure 11: Visualizing representation interpolation. Using spherical interpolation of representa-
tions (Left) or linear interpolation of softmax features (Right), TD InfoNCE learns representations
that capture not only the content of states, but also the causal relationships.

InfoNCE uses a categorical cross entropy loss. (b) C-Learning uses importance weights of the form
exp(f(s, a, g)); if these weights are self-normalized [17, 38], they corresponds to the softmax im-
portance weights in our objectives (Eq. 2). (c) For the same batch of N transitions, TD InfoNCE
updates representations of N2 negative examples (Eq. 13), while C-Learning only involves N neg-
ative examples. We ablate these decisions in Fig. 10, finding that differences (b) and (c) have little
effect. Thus, we attribute the better performance of TD InfoNCE to its use of the categorical cross
entropy loss.

G.3 Representation Interpolation

Prior works have shown that representations learned by self-supervised learning incorporate struc-
ture of the data [88, 3], motivating us to study whether the representations acquired by TD InfoNCE
contain task-specific information. To answer this question, we visualize representations learned by
TD InfoNCE via interpolating in the latent space following prior work [95]. We choose to interpolate
representations learned on the offline AntMaze medium-play-v2 task and compare a parametric in-
terpolation method against a non-parametric variant. Importantly, the states and goals of this task
are 29 dimensions and we visualize them in 2D from a top-down view.

Parametric interpolation. Given a pair of start state and goal (s0, g), we compute the normalized
representations ϕ(s0, ano-op, g) and ϕ(g, ano-op, g), where ano-op is an action taking no operation.
Applying spherical linear interpolation to both of them results in blended representations,

sin(1− α)η
sin η

ϕ(s0, ano-op, g) +
sinαη

sin η
ϕ(g, ano-op, a),

where α ∈ [0, 1] is the interpolation coefficient and η is the angle subtended by the arc between
ϕ(s0, ano-op, g) and ϕ(g, ano-op, g). These interpolated representations can be used to find the spher-
ical nearest neighbors in a set of representations of validation states {ϕ(sval, ano-op, g)} and we call
this method parametric interpolation.

Non-parametric interpolation. We can also sample another set of random states and using
their representations {ϕ(s(i)rand, ano-op, g)}Si=1 as anchors to construct a softmax feature for a state
s, feat(s; g, {srand}) =

SOFTMAX
([
ϕ(s, ano-op, g)

⊤ϕ(s
(1)
rand, ano-op, g), · · · , ϕ(s, ano-op, g)

⊤ϕ(s
(S)
rand, ano-op, g)

])
.
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We compute the softmax features for representations of start and goal states and then construct the
linear interpolated features,

αfeat(s0; g, {srand}) + (1− α)feat(g; g, {srand}).

Those softmax features of interpolated representations are used to find the ℓ2 nearest neighbors in a
softmax feature validation set. We call this method non-parametric interpolation.

Results in Fig. 11 suggest that when interpolating the representations using both methods, the in-
termediate representations correspond to sequences of states that the optimal policy should visit
when reaching desired goals. Therefore, we conjecture that TD InfoNCE encodes causality in its
representations while the policy learns to arrange them in a temporally correct order.
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