
Is it Really Negative? Evaluating Natural Language Video Localization
Performance on Multiple Reliable Videos Pool

Anonymous ACL submission

Abstract

With the explosion of multimedia content in001
recent years, Video Corpus Moment Retrieval002
(VCMR), which aims to detect a video moment003
that matches a given natural language query004
from multiple videos, has become a critical005
problem. However, existing VCMR studies006
have a significant limitation since they have007
regarded all videos not paired with a specific008
query as negative, neglecting the possibility of009
including false negatives when constructing the010
negative video set. In this paper, we propose an011
MVMR (Massive Videos Moment Retrieval)012
task that aims to localize video frames within013
a massive video set, mitigating the possibil-014
ity of falsely distinguishing positive and neg-015
ative videos. For this task, we suggest an016
automatic dataset construction framework by017
employing textual and visual semantic match-018
ing evaluation methods on the existing video019
moment search datasets and introduce three020
MVMR datasets. To solve MVMR task, we021
further propose a strong method, CroCs, which022
employs cross-directional contrastive learning023
that selectively identifies the reliable and infor-024
mative negatives, enhancing the robustness of025
a model on MVMR task. Experimental results026
on the introduced datasets reveal that existing027
video moment search models are easily dis-028
tracted by negative video frames, whereas our029
model shows significant performance.1030

1 Introduction031

Enabled by the increased accessibility of video-032

sharing platforms along with the advancement of033

networking and storage technology, a vast num-034

ber of new content is available on the web daily.035

With this huge number of contents, Natural Lan-036

guage Video Localization (NLVL) task, searching037

for a video moment suitable for a given query, has038

emerged as an essential problem (Anne Hendricks039

et al., 2017; Gao et al., 2017). However, this line of040

1We have opened an anonymous GitHub page to make our
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Figure 1: MVMR vs. VCMR. In existing VCMR stud-
ies, only a single golden positive video moment is iden-
tified as positive, while entire videos not paired with a
specific query are regarded as negative. Our proposed
MVMR filters positive video moments for a query from
the whole video set; thus, it covers more practical and
generalized use cases with reliable settings. v+i and v−j
mean a positive and a negative video, respectively.

research narrows down the task to an impractical 041

setting by targeting the search over a single video; 042

thus, it bears limitations in retrieving relevant infor- 043

mation over whole media pools. Therefore, Video 044

Corpus Moment Retrieval (VCMR) task that re- 045

trieves a correct positive moment among numerous 046

negative videos has emerged (Escorcia et al., 2019; 047

Lei et al., 2020; Ma and Ngo, 2022; Jung et al., 048

2022). Nonetheless, VCMR also has significant 049

limitations as it merely extends NLVL datasets by 050

categorizing all unpaired moments for a specific 051

text query as negative. This assumption diverges 052

from the practical setting of video moment search 053

where multiple positive videos exist in whole media 054

collections. Furthermore, existing VCMR studies 055

have overlooked the potential presence of false- 056

negative videos within the unpaired video set when 057

constructing video retrieval pools for a specific 058

query. As a result, evaluating the performance of 059

NLVL models using an existing VCMR framework 060

may lead to unreliable results. For example, in 061

TACoS test dataset, it is noteworthy that the num- 062

ber of videos with queries exactly matching the 063
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text "The person gets out a knife." amounts to 60%064

of all the videos. It is a significant problem since065

more videos will likely be incorrectly classified as066

negatives when expanding the matching criteria to067

include broader semantic similarities.068

To bridge these gaps, we propose an MVMR069

(Massive Videos Moment Retrieval) task, which070

expands the search coverage to a massive video set071

that can include any number of positive videos as072

shown in Figure 1. Specifically, given a query073

q with a positive videos v+1 , ..., v
+
k and a nega-074

tive videos v−1 , ..., v
−
n−k, the MVMR task aims to075

detect temporal moments in the positive videos076

that matches the query from a massive video set077

V +,−
q = {v+1 , ..., v

+
k , v

−
1 , ..., v

−
n−k}. Furthermore,078

we propose simple and effective methods to con-079

struct a practical MVMR dataset by leveraging pub-080

licly available NLVL datasets. A critical challenge081

in converting an NLVL dataset into an MVMR082

dataset is accurately defining positive and negative083

videos for each query. However, manually per-084

forming this task by humans is exceedingly labor-085

intensive due to the massive volume of videos that086

need to be evaluated for each query. To address087

this issue, we propose an automated framework088

for MVMR dataset construction. This framework089

employs textual and visual semantic matching eval-090

uation methods to define MVMR positive and neg-091

ative videos while mitigating the danger of false092

categorization. Specifically, we examine the simi-093

larity between a target query and all videos in an094

NLVL dataset using SimCSE (Gao et al., 2021)095

and EMScore (Shi et al., 2022) models to define a096

massive video set. To this end, we construct three097

MVMR datasets, and we confirm that three sam-098

ples of the introduced datasets contain only 1.5%,099

0.2%, and 3.5% falsely defined videos, showing100

that our approach successfully creates a practical101

benchmark dataset from human evaluation.102

To tackle MVMR task, we also introduce a novel103

negative sample training method, Cross-directional104

Hard and Reliable Negative Contrastive Learning105

(CroCs). Specifically, CroCs adopts two training106

mechanisms: (1) weakly-supervised potential neg-107

ative learning by assessing the similarity between108

queries, and (2) hard-negative learning by utilizing109

the relevance score between queries and moments110

predicted by a model, which helps find challeng-111

ing negative samples. We demonstrate the per-112

formance of strong baseline models, including a113

state-of-the-art model, to compare with our model114

in the new scenario (MVMR). The experimental 115

results show that the performance of baseline mod- 116

els significantly degrades on the new task. For 117

example, the state-of-the-art model, MMN, shows 118

average 29.7% degradation on R@1(IOU0.5) for 119

all MVMR datasets, revealing the difficulty of the 120

MVMR task. In contrast, our CroCs outperforms 121

baseline models significantly in the MVMR setting, 122

and this result proves that informative negative sam- 123

ples enhance the performance of the MVMR task. 124

Moreover, we solve the MVMR task in a more 125

practical scenario by adopting a pipeline with a 126

video retrieval model, revealing that CroCs also 127

outperforms the strong baseline. 128

2 Backgrounds 129

2.1 Natural Language Video Localization 130

Natural language video localization (NLVL), which 131

aims to detect a specific moment in a video that 132

matches a given text query, is one of the most 133

challenging problems in the video-language multi- 134

modal domain (Zhang et al., 2020b,a; Nan et al., 135

2021; Gao and Xu, 2021; Liu et al., 2021; Wang 136

et al., 2022). Therefore, the NLVL task has been ex- 137

plored extensively, with numerous effective meth- 138

ods emerging. Some novel approaches have re- 139

garded the problem as question-answering (QA) 140

tasks (Seo et al., 2018; Joshi et al., 2020), by lever- 141

aging a QA model to encode a multi-modal repre- 142

sentation and then predicting the frames that corre- 143

spond to the start and end of the moment that match 144

a query (Ghosh et al., 2019; Zhang et al., 2020a). 145

However, NLVL studies operate within an imprac- 146

tical framework, focusing on searching within a 147

single video. Consequently, they have limitations 148

in retrieving relevant information across the whole 149

media repositories. 150

2.2 Video Corpus Moment Retrieval 151

Existing studies (Escorcia et al., 2019; Lei et al., 152

2020; Ma and Ngo, 2022; Jung et al., 2022) have 153

tried to extend the NLVL to search on multiple 154

video pools, naming it the Video Corpus Moment 155

Retrieval (VCMR) task, which focuses on retriev- 156

ing a moment from multiple videos for a given 157

query. However, the VCMR simply extends the 158

NLVL task by designating only one matched posi- 159

tive video moment for a target query as a positive, 160

while labeling all unmatched videos as negative 161

videos. This approach deviates from the practical 162

scenario of the video moment search since multiple 163

2



Dataset # Queries / # Videos Avg Len (sec) Avg # Moments Avg # Max Positive /
Moment / Video per Query Query Len # Retrieval Pool

Charades-STA 3720 / 1334 7.83 / 29.48 1 6.24 1 / 1
ActivityNet 17031 / 4885 40.25 / 118.20 1 12.02 1 / 1
TACoS 4083 / 25 31.87 / 367.15 1 8.53 1 / 1

MVMRCharades-STA 3716 / 1334 7.83 / 29.48 3.07 6.23 5 / 50
MVMRActivityNet 16941 / 4885 40.32 / 118.20 1.11 12.03 5 / 50
MVMRTACoS 2055 / 25 28.55 / 367.15 2.24 7.31 5 / 5

Table 1: Summary of datasets. Remarkably, the queries of MVMRCharades-STA and MVMRTACoS generally include
multiple positive moments, and it proves that existing VCMR studies are exposed to the risk of false negatives.

positive videos can be present for a target query.164

Moreover, existing VCMR studies have failed to165

consider the possibility of false-negative when con-166

structing the negative video set for a specific query,167

which poses a significant reliability issue.168

3 Problem Definition169

MVMR task evaluates video moment retrieval170

models under an MVMR dataset with k positive171

videos and n − k negative videos for each query.172

Given a positive video set V +
q = {v+1 , ..., v

+
k } and173

a negative video set V −
q = {v−1 , ..., v

−
n−k}, the174

MVMR task aims to localize a moment (xs, xe) of175

a specific video v that matches the query from mas-176

sive video set V +,−
q = {v+1 , ..., v

+
k , v

−
1 , ..., v

−
n−k},177

where xs and xe mean start and end points of the178

moment, respectively. In MVMR task, we aim to179

retrieve an optimal positive moment (x∗s, x
∗
e) that180

matches semantically with the text query q. We181

derive confidence scores of moments for the whole182

n massive videos and select the moment with the183

highest score as a prediction.184

4 MVMR Dataset Construction185

Our MVMR setting automatically reconstructs an186

NLVL dataset by expanding it to associate each187

query with multiple positive and negative moments.188

The paired positive and negative videos are care-189

fully selected with semantic similarity check tech-190

niques. In the following, we detail our process191

for constructing an MVMR dataset and present the192

analyses of the three constructed MVMR datasets.193

4.1 Semantic Similarity Check194

This section examines the similarity between a tar-195

get query q and a video v using semantic text em-196

bedding and video captioning evaluation models.197

Query Similarity-based Check. NLVL datasets198

consist of video set V = {v1, ..., vl} and paired199

query set Qv = {q1, ..., qm} for each video v,200

where l and m is the number of videos and text201

queries included in a dataset, respectively. Since 202

each text query semantically describes the paired 203

moment, we use queries to obtain semantic infor- 204

mation about the paired video. For example, sup- 205

pose that a video v is paired with a query q, "The 206

person gets out a knife", in a moment (xs, xe). 207

Since a target query q̂, "The person takes out a 208

knife", is highly similar to the query q, q̂ is associ- 209

ated with the moment (xs, xe) of the video v. We 210

use a semantic text embedding model, SimCSE 211

(Gao et al., 2021), to distinguish positive and neg- 212

ative videos for each query. Specifically, we first 213

obtain embeddings eq̂ and eq1 , ..., eqm for the tar- 214

get text query q̂ and all video text queries q1, ..., qm 215

using SimCSE, respectively. We calculate cosine 216

similarity ste(q̂, qi) between eq̂ and eqi to quantify 217

the semantic matching, and select the maximum 218

similarity among ste(q̂, q1), ..., ste(q̂, qm) to use it 219

as the query-video matching score ste(q̂, v) of the 220

target query q̂ and the video v. We select max ag- 221

gregation to obtain ste(q̂, v) since the video should 222

be regarded as a positive video, even if only one 223

similar query to a target query exists in a video. 224

Query-video Similarity-based Check. Queries 225

associated with a video may describe the video lim- 226

itedly since they may not cover all of its context. 227

Therefore, we examine a visual semantic matching 228

between a query and a video to filter positive and 229

negative videos. We use EMScore (Shi et al., 2022), 230

a video captioning evaluation model, to quantify 231

the visual semantic similarity stv, used as a com- 232

plementary filtering method on videos primarily 233

filtered through the query similarity ste. 234

4.2 Distinguishing Positive and Negative 235

This section describes constructing positive and 236

negative video sets using the calculated query- 237

video similarity, ste and stv. Positive candidates 238

are distinguished by primarily excluding videos 239

ste(q, v) < t+te, where t+te is a hyper-parameter. We 240

further exclude videos that have lower similarity 241
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Query: person closes the door.                                                                               [Common keywords] Positive set: door, close Negative set: picture, drink, run, … 

32.8s 33.1s

Golden positive Filtered as positive # 1

30.3s

Filtered as negative # 1 

30.7s

Original query: ‘person closing the door.’, 

                  ‘person begins to undress.’, …

Original query: ‘person lies down on the bed to review the pictures.’, 

                  ‘taking the picture the person lies back in the bed.’

Original query: ‘another person comes running throwing open the door.’

Moment: 26.2s ~ 31.3s Filtered as positive # 2 Moment: 25.2s ~ 30.0s

Filtered as negative # 2 Filtered as negative # 3 

Original query: ‘a person runs to the doorway of the pantry.’,

                   ‘person closes the door.’, …

30.3s Original query: ‘person drinking from a glass of water.’ 30.5s

…

…

Moment: 14.2s ~ 23.0s

Figure 2: Examples of constructed MVMR datasets. We visualize positive and negative video sets for the query
“person closes the door" of the MVMRCharades-STA. A green solid box means a golden positive moment, and blue
solid boxes show moments assigned to videos classified as positive. The underlined queries mean the most similar
query described in Section 4.1 (max aggregation).

than the mean stv of all golden positive query-video242

pairs (q, v∗) for all queries. We construct final243

MVMR positives by randomly sampling k videos244

from this filtered set of positive candidates. Nega-245

tive candidates are defined by excluding videos246

with ste(q, v) > t−te, where t−te is also a hyper-247

parameter. We additionally exclude videos that248

have higher similarity than the mean stv of query-249

video pairs (q, v−), which are primarily filtered as250

negatives using ste. Like MVMR positives, we251

construct final MVMR negatives by randomly sam-252

pling (n− k) videos from this set of negative can-253

didates. From this process, a total of n videos254

retrieval pool V +,−
q = {v+1 , ..., v

+
k , v

−
1 , ..., v

−
n−k}255

is obtained for each query.256

5 MVMR Dataset Analysis257

5.1 MVMR Settings.258

This section describes the used NLVL datasets and259

detailed settings to derive MVMR positive and neg-260

ative candidates using SimCSE and EMScore.261

NLVL Datasets. We extend widely-used262

NLVL datasets (Charades-STA (Gao et al.,263

2017), ActivityNet (Krishna et al., 2017), and264

TACoS (Regneri et al., 2013)) to construct265

three MVMR evaluation datasets, and name the266

constructed datasets as MVMR{$DATASOURCE}.267

Each NLVL dataset consists of multiple videos268

with query-moment pairs. The details of each269

NLVL dataset are shown in Appendix A.270

Filtering Settings. We use STS16 dataset271

(Agirre et al., 2016) to empirically validate vary-272

ing SimCSE filtering hyper-parameters, t+te and273

t−te. The dataset provides text pairs and human-274

annotated similarity scores (five-point Likert scale);275

two texts are regarded as similar when the score276

is higher than 3. We analyze the distribution of277

SimCSE and human annotated scores for all text 278

pairs in the dataset, and select t+te = 0.9 to derive 279

MVMR positive candidates since it is regarded as 280

the best threshold to distinguish similar queries. 281

We also select t−te = 0.5 to filter MVMR nega- 282

tive candidates. The distribution of SimCSE and 283

human-annotated scores are shown in Appendix B. 284

5.2 MVMR Analysis 285

We set a video retrieval pool as n, containing at 286

most k positive videos for each query. If the num- 287

ber of MVMR positive candidates derived for each 288

query is less than k, we include all positive candi- 289

dates as positive samples. Also, if the total number 290

of MVMR positive and MVMR negative candi- 291

dates for a query is less than n, the query is ex- 292

cluded from the final MVMR dataset. 293

Datasets Statistic. We set the number of videos 294

in the MVMRCharades-STA and the MVMRActivityNet 295

retrieval pools as n = 50, and the maximum num- 296

ber of positive moments per query k is set to 5. The 297

former consists of 3,716 queries for 1,334 videos, 298

each containing an average of 3.07 positive mo- 299

ments. The latter contains 16,941 queries for 4,885 300

videos, each including an average of 1.11 posi- 301

tive videos. We set the number of videos for the 302

MVMRTACoS and the maximum number of posi- 303

tive moments per query as 5 and 5, respectively, 304

since TACoS test set contains only 25 videos. It in- 305

cludes 2,055 queries for 25 videos, each containing 306

an average of 2.24 positive videos. The summary 307

of the MVMR datasets is shown in Table 1. 308

Dataset Quality. Figure 2 shows filtered posi- 309

tive and negative examples for a query of the con- 310

structed MVMRCharades-STA dataset. The figure in- 311

dicates that similar videos to a query are correctly 312

classified as positive. Appendix D shows more 313

examples of collected positives and negatives for 314
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(a) SimCSE Similarity Distribution (b) SimCSE Similarity Histogram (c) EMScore Similarity Distribution

Figure 3: Qualitative Analysis for Filtering Methods. We visualize the derived similarity scores of SimCSE
and EMScore to verify the constructed MVMR datasets. We use T-SNE to reduce the dimension of each query
embedding for displaying each query (dot) of SimCSE Similarity Distribution.

three MVMR datasets.315

Figure 4 shows the keyword cohesiveness of pos-316

itive and negative sets about the MVMRCharades-STA317

and MVMRActivityNet datasets. We quantify the co-318

hesiveness of the MVMR positive and negative sets319

by examining the original queries paired with all320

videos in each set. If paired queries are similar, the321

video set is regarded as well-clustered. Therefore,322

we measure the ratio of whether a word in an origi-323

nal query is included in an original query set of all324

other videos (co-occurrence ratio) for the positive325

set and the negative set, respectively. Consequently,326

similar words are observed more frequently in the327

positive than negative set, revealing the cohesive-328

ness of the MVMR positive set.329
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Figure 4: Cohesiveness of the Positive and Negative
sets. The X and Y axes mean the word co-occurrence
ratio and its frequency, respectively. The closer the
word’s co-occurrence ratio approaches 1.0, the more
cohesive it is.

Human Evaluation. We recruit crowd workers330

and ask them to examine 100 queries manually331

and their paired videos (by our method) and an-332

swer whether they are correctly labeled. Over-333

all, we analyze 4,900, 4,900, and 400 videos for334

Charades-STA, ActivityNet, and TACoS, respec-335

tively, since each MVMR dataset consists of 49,336

49, and 4 newly added videos (either positive or337

negative samples). The original video (i.e., golden338

positive sample) is excluded from this investiga-339

tion. From human evaluation, we confirm that the340

newly introduced dataset contains only 1.5%, 0.2%,341

and 3.5% falsely categorized videos for the three342

datasets, respectively. TACoS exhibits a relatively343

higher query-relevant video ratio than the other two344

datasets since its test set includes only 25 videos345

and consists of considerably similar cooking activi- 346

ties within the kitchen. 347

Analysis on Semantic Filtering Methods. We 348

visualize the scores derived using SimCSE and EM- 349

Score to analyze our MVMR datasets qualitatively. 350

Figure 3-(a) displays SimCSE embeddings of all 351

queries in each dataset, illustrating the similarity 352

between all queries and a specific target query, "per- 353

son turn a light on." (left) and "He is using a push 354

mower to mow the grass." (right). The figure of 355

TACoS can also be found in Appendix B. The fig- 356

ures show that queries exhibit well-defined clusters 357

for Charades-STA and TACoS, revealing the ef- 358

fectiveness of our query similarity-based filtering. 359

These results are also supported by Figure 3-(b) 360

SimCSE score histogram, showing that Charades- 361

STA and TACoS have many similar queries. Fig- 362

ure 3-(c) illustrates histograms of EMScore similar- 363

ity between queries and videos. The red and blue 364

histograms correspond to the EMScore distribution 365

of positive and negative samples, respectively. For 366

the ActivityNet, EMScore effectively distinguishes 367

positives and negatives. This success is attributed 368

to that ActivityNet includes detailed queries and 369

videos with diverse features. According to the find- 370

ings presented in this section, the filtering method’s 371

efficacy varies depending on the dataset’s character- 372

istics. Consequently, a combination of two filtering 373

methods (i.g., SimCSE and EMScore) should be 374

employed in a complementary manner to ensure 375

the construction of a reliable MVMR dataset. 376

6 Methods: CroCs 377

This section introduces a novel contrastive learning 378

method, CroCs, which stands for Cross-directional 379

Hard and Reliable Negative Contrastive Learning, 380

to solve the MVMR task. A key challenge in 381

solving the MVMR task is distinguishing positives 382

from multiple negative distractors. Therefore, we 383

select MMN (Wang et al., 2022) since it is the opti- 384

mal baseline model for the MVMR task as it uses 385
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Figure 5: CroCs Overview. We adopt informative negative contrastive learning to solve the MVMR task. The dots
and triangles are the features of moments and texts. The blue dash lines are matched moment-text pairs to be pulled
in, while the red dash lines are negative samples of intra/inter-video to be pushed away. The yellow and orange dash
lines are unmatched moment-text pairs, but not to train by filtering out since they are easy and false-negatives.

contrastive learning to distinguish negative sam-386

ples from positives effectively. We use the MMN387

as the backbone of our model and enhance its abil-388

ity by applying CroCs in training procedures to389

solve the challenge in the MVMR task. MMN has390

limitations in neglecting the potential presence of391

false-negative video moments since it regards all392

randomly selected in-batch samples as negatives393

in contrastive learning. Furthermore, it overlooks394

the importance gap among negative samples. Our395

CroCs solves these two limitations of the MMN by396

adopting two contrastive learning procedures: (1)397

Weakly-supervised potential negative learning and398

(2) Informative hard-negative learning.399

6.1 Weakly-supervised Contrastive Learning400

A critical consideration in the contrastive learn-401

ing framework is the potential presence of false-402

negatives. This issue arises when all videos, except403

for the golden video, are categorized as negative404

training samples. To mitigate this concern, we405

propose excluding false-negative videos to refine406

the contrastive learning process. Specifically, we407

adopt the SimCSE filtering to identify and exclude408

false-negative videos as follows:409

V −
tr (q) = {v|ste(q, v) < ttr}, ∀v ∈ V (1)410

where V −
tr (q) is a negative sample set of a spe-411

cific query q to use during the contrastive learning412

procedure. ste(q, v) is query-video similarity de-413

scribed in Section 4.1. ttr is a hyper-parameter for414

SimCSE score filtering. If a specific video shows415

a value of ste(q, v) above the threshold ttr for tar-416

get query q, we classify v as false-negative for q.417

Therefore, we exclude v in negative samples of418

contrastive learning for q.419

6.2 Hard-negatives Contrastive Learning420

Easy or false-negatives may distract a model from421

learning proper knowledge during the training pro-422

cess. Inspired by recent progress in using hard- 423

negative sampling for the document retrieval task 424

(Zhou et al., 2022), we categorize negatives accord- 425

ing to the matching score between a target query 426

and negative moments as follows: (1) Negatives 427

that are clearly irrelevant and have low matching 428

scores should be sampled less frequently (Easy- 429

negative); (2) Negatives that are highly relevant 430

and have high matching scores should also be sam- 431

pled less frequently (False-negative); (3) Nega- 432

tives that are uncertain and have matching scores 433

similar to true-positives should be sampled more 434

frequently since they provide useful information 435

(Hard-negative). Based on these criteria, we distin- 436

guish hard-negative samples and adopt a retraining 437

process for a model already trained on a specific 438

dataset using only hard-negative samples. We de- 439

fine the negative moments and query sampling dis- 440

tribution as follows: 441

p
′
(m|q) ∝ exp (−(r(q,m) − r(q,m

+
))

2
), ∀m ∈ M

−
q

p
′
(q|m) ∝ exp (−(r(q,m) − r(q

+
,m))

2
), ∀q ∈ Q

−
m

(2) 442

where r(q,m) is a matching score between a query 443

and a moment calculated using the already trained 444

video moment retrieval model, and r(q,m+) and 445

r(q+,m) is mean matching scores for all golden 446

positive moments and queries, respectively. M−
q 447

and Q−
m is potential negative candidates for a query 448

q and a moment m, respectively. p′(m|q) means 449

the probability that moment m is sampled as nega- 450

tive when given query q. Therefore, negative candi- 451

date moments with a close distance to the average 452

matching score of golden query-moment pairs have 453

a high sampling probability. Likewise, p′(q|m) 454

means the probability that query q is sampled as 455

negative when given moment m. We also reformu- 456

late p′(m|q) to p′(v|q) for computational efficiency 457

in a sampling procedure as follows: 458

r(q, v) = max ({r(q,m1), ..., r(q,ml)}), ∀mi ∈ v

p
′
(v|q) ∝ exp (−(r(q, v) − r(q, v

+
))

2
), ∀v ∈ V

−
q

(3) 459
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460
p′(q|v) can be formulated similarly by calculat-461

ing r about positive queries for each video.462

6.3 Reliable Mutual Matching Network463

This section describes a model architecture to apply464

the proposed contrastive learning method, CroCs.465

We adopt a bi-encoder architecture with a late466

modality fusion by an inner product in the joint467

visual-text representational space following the468

baseline MMN. By adopting a bi-encoder archi-469

tecture, we can efficiently search for moments with470

pre-calculated video moment representations given471

a user query. Our whole model architecture is472

shown in Figure 5. Our model represents each473

query and video moment using query and video474

encoders to two joint visual-text spaces (IoU and475

mutual matching spaces). From the joint visual-text476

space, we compute the matching score between the477

query and video moment representations and select478

the best video moment. The details of the model479

architecture are described in the appendix C.1.480

We select the binary cross entropy and con-481

trastive learning losses and train our model fol-482

lowing two steps: (1) the first training step us-483

ing the two loss functions (binary cross entropy484

and contrastive learning losses) filtering out false-485

negatives described in Section 6.1; (2) the second486

training step using two loss functions with only487

hard-negatives described in Section 6.2. To cal-488

culate the similarity between the text and video489

moment features projected in the IoU space, we490

compute the cosine similarity siou. To adjust the491

range of the final prediction, we multiply the cosine492

similarity by a factor of 10, following the MMN.493

This amplification results in the final prediction494

pioui = σ(10 · sioui ), where σ represents the sig-495

moid function. The binary cross-entropy loss is496

then calculated as follows:497

Lbce = −
1

C

C∑
i=1

(yi log p
iou
i + (1 − yi) log (1 − p

iou
i )) (4)498

499 where pioui is the confidence score of each moment,500

and C is the total number of valid candidates. We501

calculate Lbce for positive and true-negative sam-502

ples derived in Section 6.1.503

We use the cross-directional contrastive learning504

loss to effectively train the model using the informa-505

tive negatives derived from the methods described506

in Section 6.1 and 6.2. The mutual matching con-507

trastive learning loss considering the informative508

negative samples selection process is as follows:509

p
∗
(qi|m) =

exp((fqT
i fm − ψ)/τm)

exp((fqT
i fm − ψ)/τm) +

∑
j∈I−

m
exp(fqT

j fm/τm)

p
∗
(mi|q) =

exp((fmT
i fq − ψ)/τq)

exp((fmT
i fq − ψ)/τq) +

∑
j∈I−

q
exp(fmT

j fq/τq)

Lrmm = −(
N∑

i=1

(log p
∗
(im|qi)) +

N∑
i=1

(log p
∗
(iq|mi)))

(5) 510

where qi and mi are corresponding positive query 511

and moment for each moment and query, respec- 512

tively. fm and f q are the moment and query fea- 513

tures in the joint visual-text space. τq and τm are 514

temperatures. I− means the indices of informative 515

negatives derived using our sampling methods. 516

The final loss, denoted as L, is formulated as 517

a linear combination of the binary cross-entropy 518

loss and the reliable mutual matching loss. The 519

matching score s, for a specific moment given the 520

text query, is obtained by multiplying the iou score 521

siou with the reliable mutual matching score srmm. 522

The reliable mutual matching score is calculated 523

for the features in the mutual matching space in the 524

same way as the iou score. 525

L = Lbce + λLrmm, s = siou · srmm (6) 526

7 Experiments 527

7.1 Experimental Settings 528

This section describes the experimental settings of 529

the CroCs and other baselines. More details are 530

shown in Appendix C. 531

Implementation Details. We use standard off- 532

the-shelf video feature extractors without any fine- 533

tuning: VGG (Simonyan and Zisserman, 2015) fea- 534

ture for Charades-STA; C3D (Tran et al., 2015) fea- 535

ture for ActivityNet and TACoS following (Wang 536

et al., 2022). We set the filtering hyper-parameter 537

as ttr = 0.9 for the weakly-supervised contrastive 538

learning. We choose the number of the CroCs hard 539

negative samples to calculate p′(q|v) as 100, 200, 540

and 100 and p′(v|q) as 50, 100, and 5 for Charades- 541

STA, ActivityNet, and TACoS, respectively. These 542

hyper-parameters are chosen from varying parame- 543

ter setting experiments as shown in Figure 8. In the 544

hard-negative fine-tuning stage, the learning rates 545

are degraded by multiplying 0.1. 546

Baselines. We first select the state-of-the-art 547

model, MMN (Wang et al., 2022), as a strong base- 548

line. As the MVMR task can be formulated as 549

an open-domain question answering (QA) task, 550

we further choose two types of QA models that 551
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Dataset Model R@1 R@1 R@1 R@5 R@5 R@5 R@20 R@20 R@20 R@50 R@50 R@50
IOU0.3 IOU0.5 IOU0.7 IOU0.3 IOU0.5 IOU0.7 IOU0.3 IOU0.5 IOU0.7 IOU0.3 IOU0.5 IOU0.7

MVMRCharades-STA

CET 3.96 2.96 (41.77) 2.02 (21.80) 15.34 11.79 (61.10) 6.97 (40.91) 39.85 32.21 19.91 59.58 50.54 33.88
BET 4.57 2.99 (38.25) 1.94 (20.73) 14.26 10.98 (61.29) 7.00 (39.27) 31.05 25.11 16.55 45.88 37.86 26.08
MMN 13.99 12.78 (47.18) 8.40 (27.47) 37.86 33.29 (83.71) 22.36 (56.96) 64.80 57.83 41.71 80.11 73.09 56.75

CroCs† 18.38 16.31 (47.55) 10.76 (27.80) 43.86 39.05 (83.63) 26.99 (58.28) 69.48 62.89 46.39 82.88 76.08 60.28
CroCs 19.27 17.38 (48.06) 11.44 (27.53) 43.54 39.02 (83.82) 27.91 (57.66) 68.08 60.98 46.39 82.99 76.29 60.76

MVMRActivityNet

CET 1.26 (63.68) 0.90 (46.52) 0.56 (27.81) 2.81 (83.23) 2.32 (72.84) 1.75 (58.34) 5.41 4.73 3.87 8.97 8.02 6.56
BET 1.56 (62.82) 1.16 (44.84) 0.76 (26.73) 3.02 (84.97) 2.55 (74.74) 2.03 (60.27) 5.30 4.64 3.80 8.13 7.10 5.88
MMN 13.82 (64.72) 10.71 (47.93) 6.93 (29.16) 31.54 (87.10) 25.04 (79.39) 16.55 (64.68) 54.79 44.50 30.62 73.08 62.09 45.76

CroCs† 16.46 (63.44) 12.68 (47.17) 7.87 (28.64) 36.03 (86.07) 28.47 (77.43) 18.16 (62.06) 57.91 46.52 31.12 73.82 62.12 44.89
CroCs 20.63 (64.25) 15.58 (47.82) 9.51 (28.52) 44.13 (86.34) 34.70 (78.40) 22.40 (63.45) 67.01 55.58 38.55 79.91 70.02 53.20

MVMRTACoS

CET 8.95 (37.25) 5.79 (25.0) 3.89 26.18 (60.25) 18.88 (46.50) 12.17 54.84 42.53 23.70 - - -
BET 8.22 (30.37) 5.30 (18.0) 2.97 29.46 (60.96) 14.84 (44.61) 8.32 55.67 39.76 21.51 - - -
MMN 10.56 (39.20) 8.61 (26.27) 5.60 36.16 (62.11) 25.84 (47.42) 15.47 58.20 43.89 23.80 - - -

CroCs† 13.43 (38.97) 10.75 (27.62) 6.76 36.45 (61.51) 27.01 (47.46) 15.28 58.30 44.38 25.16 - - -
CroCs 13.24 (38.44) 10.75 (27.39) 7.30 39.22 (61.98) 29.68 (47.31) 16.50 60.05 44.77 24.62 - - -

Table 2: Experimental Results on MVMR datasets. Bolded and under-lined results indicate the 1st and 2nd

best performance, respectively. CroCs† is the model using only reliable true-negatives filtering (§6.1). CroCs uses
both of two reliable negatives filtering method (§6.1 and §6.2). The values in parentheses are the results from the
NLVL task. We train all the baselines as three trials and report the averaged NLVL and the MVMR scores.

employ a cross-encoder architecture (i.e., Cross-552

Encoder Transformer) and a dual-encoder architec-553

ture (i.e., Bi-Encoder Transformer), respectively.554

These architectures are widely adopted in existing555

NLVL tasks (Zhang et al., 2020b; Gao and Xu,556

2021) due to the closeness of the two tasks.557

Evaluation Metrics. We evaluate baselines by558

calculating Rank n@m. It is defined as the per-559

centage of queries having at least one correctly560

retrieved moment, i.e., IoU ≥ m, in the top-n de-561

rived moments. The existing NLVL studies have562

reported the results of m ∈ {0.3, 0.5, 0.7} with563

n ∈ {1, 5} (Wang et al., 2022). But, since our564

MVMR setting searches for massive videos, we re-565

port the extended results as m ∈ {0.3, 0.5, 0.7}566

with n ∈ {1, 5, 20, 50} for Charades-STA and567

AcitivityNet and m ∈ {0.3, 0.5, 0.7} with n ∈568

{1, 5, 20} for TACoS. We use the same metrics in569

the previous study (Wang et al., 2022) to report the570

NLVL scores (parentheses).571

7.2 MVMR Results572

MVMR Performance. We evaluate the perfor-573

mance of CroCs and the baseline models on the574

introduced MVMR datasets. Table 2 shows that575

all the baseline models undergo significant perfor-576

mance degradation in the MVMR task. Surpris-577

ingly, although CET and BET show quite strong578

performance on the NLVL task, their performance579

on the MVMR task notably drops. These outcomes580

indicate that the current NLVL task performance581

alone is not enough to verify that a model is well-582

trained. We reveal that CroCs outperforms all other583

baselines on MVMR task, and this suggests that our584

model correctly discriminates features of negative585

and positive moments. Experiments show that the586

models on Charades-STA and TACoS significantly 587

improve performance from the weakly-supervised 588

learning since similar queries exist frequently in 589

these datasets and the possibility of false-negatives 590

is high. However, the performance of ActivityNet 591

is attributed to the hard-negative learning since it 592

includes various and complex text queries. 593

MVMR Settings with Video Retrieval. The 594

practical usage scenario for the MVMR should 595

include video retrieval. Therefore, We also con- 596

duct MVMR experiments with a video retrieval 597

model, PRMR model (Dong et al., 2022), shown 598

as Table 3. We construct a pipeline to filter top-5 599

logit videos from our MVMR retrieval pool using 600

the PRMR model and solve MVMR task. We use 601

the publicly deployed PRMR model on Charades- 602

STA and ActivityNet datasets. These experiments 603

prove that video retrieval models are helpful to in- 604

crease MVMR performance, and CroCs still shows 605

superior performance than MMN in this pipeline. 606

Model R@1 IOU0.3 R@1 IOU0.5 R@5 IOU0.3 R@5 IOU0.5
MMNCharades-STA 32.15 27.10 65.97 57.66
CroCsCharades-STA 36.64 29.27 68.06 59.78

MMNActivityNet 32.39 25.04 66.84 55.03
CroCsActivityNet 39.25 29.59 71.54 60.02

Table 3: MVMR Experiments with Video Retrieval.

8 Conclusion 607

In this paper, we propose the Massive Videos Mo- 608

ment Retrieval (MVMR) task, which aims to de- 609

tect a moment for a natural language query from 610

a massive video set. To stimulate the research, 611

we propose a simple automatic method to con- 612

struct reliable MVMR datasets and build three 613

MVMR datasets using existing NLVL datasets. We 614

introduce a robust training method called CroCs 615

to distinguish positives from negative distractors 616

effectively in solving MVMR task. 617
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Limitations618

Our dataset construction framework automatically619

defines positive and negative sets using semantic620

similarity evaluation. Unlike the existing VCMR621

framework, which overlooks the risk of labeling622

errors in its automated dataset construction process,623

our MVMR framework introduces some filtering624

methods to mitigate labeling errors. However, our625

method still faces limitations due to its reliance on626

automatic labeling, which fundamentally carries a627

risk of labeling inaccuracies. To eliminate the risk628

of labeling errors thoroughly, a constructed dataset629

should be reviewed manually through complete630

enumeration.631
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A Datasets Details783

Charades-STA is an extended dataset of action784

recognition and localization dataset Charades (Sig-785

urdsson et al., 2016) by (Gao et al., 2017) for video786

moment retrieval. It is comprised of 5,338 videos787

and 12,408 query-moment pairs in the training set,788

and 1,334 videos and 3,720 query-moment pairs in789

the test set. We report evaluation results on test set790

in our experiments.791

ActivityNet-Captions is constructed on Activi-792

tyNet v1.3 dataset (Heilbron et al., 2015), where793

included videos cover various complex human ac-794

tions. It is originally designed for video captioning,795

and recently used into video moment retrieval. It796

contains 37,417, 17,505, and 17,031 query-moment797

pairs for training, validation, and testing respec-798

tively. We report the evaluation result on val_2 set799

following the setting of the MMN paper (Wang800

et al., 2022).801

TACoS includes 127 videos selected from the802

MPII-Cooking dataset. It consists of 18,818 query-803

moment pairs of various cooking activities in the804

kitchen annotated by (Regneri et al., 2013). It (Gao805

et al., 2017) consists of 10,146, 4,589, and 4,083806

query-moment pairs for training, validation and807

testing, respectively. We report evaluation results808

on test set in our experiments.809

B Analysis on Filter Methods810

We construct reliable MVMR datasets using Sim-811

CSE and EMScore. The visualizations of the simi-812

larity scores derived by SimCSE and EMScore is813

shown as Figure 7. For the SimCSE distribution,814

we select target queries of "person turn a light on",815

"The person peels a kiwi", and "He is using a push816

mower to mow the grass" for the Charades-STA,817

TACoS, and ActivityNet, respectively.818

Figure 6 shows the distribution of SimCSE819

and human-annotated STS16(Agirre et al., 2016)820

dataset scores. STS16 dataset provides text pairs821

and annotated similarity scores (five-point Likert822

scale). In the dataset, two texts are regarded as823

similar when the score is higher than 3. We visu-824

alize the distribution of SimCSE and human an-825

notated scores for all text pairs in the dataset, and826

select t+te = 0.9 and t−te = 0.5 as thresholds for827

the SimCSE filtering to derive MVMR positive and828

negative candidates, respectively. STS16 dataset829

includes text pairs that are challenging to distin-830

guish. However, the three datasets utilized in our831

experiment do not demand similarity measurement 832

at such a complex level. Consequently, we can reli- 833

ably discern the similarity between queries using 834

the provided thresholds. 835
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Figure 6: The distribution of SimCSE and Human-
annotated Scores. The X and Y axes mean the human-
annotated and the SimCSE scores, respectively. The
width of each graph corresponds to the number of sam-
ples.

C Implementation Details 836

We use standard off-the-shelf video feature extrac- 837

tors without any fine-tuning. We use VGG (Si- 838

monyan and Zisserman, 2015) feature for Charades- 839

STA and C3D (Tran et al., 2015) feature for Ac- 840

tivityNet and TACoS following the previous work 841

(Wang et al., 2022). We train CroCs and MMN 842

on 1 NVIDIA RTX A6000 GPU and early stop by 843

averaging scores of all evaluation metrics. 844

C.1 CroCs 845

We implement CroCs by following MMN’s model 846

architecture. CroCs represents each query and 847

video moment using query and video encoders to 848

a joint visual-text space. From the joint visual- 849

text space, CroCs computes the similarity between 850

the query and video moment representations and 851

selects the best-matched video moment. 852

Query and Video Encoders. We choose Distil- 853

BERT (Sanh et al., 2019) for the text query encoder 854

following MMN since it is a lightweight model 855

showing significant performance. We calculate 856

the representation of each query f q ∈ Rd using 857

the global average pooling over all tokens. We 858

adopt the approach of encoding the input video as a 859

2D temporal moment feature map, inspired by 2D- 860

TAN (Zhang et al., 2020b) and MMN. To achieve 861

this, we segment the input video into video clips de- 862

noted as {ci}lc/ki=1 , where each clip ci consists of k 863

frames. lc means the total number of frames in the 864

video. The clip-level representations are extracted 865

11
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Figure 7: The Visulization of the SimCSE and EMScore Similarity Distribution.

using a pre-trained visual model (e.g., C3D). By866

sampling a fixed length with a stride of lc
k·N , we ob-867

tain N clip-level features. These features are then868

passed through an FC layer to reduce the dimen-869

sionality, resulting in the features {fvi }Ni=1, where870

fvi ∈ Rd. Utilizing these features, we construct a871

2D temporal moment feature map F ∈ RN×N×d872

by employing max-pooling as the moment-level873

feature aggregation method following the baseline874

(Wang et al., 2022). Additionally, we generate a875

2D feature map F ′ of the same size by passing F876

to 2D Convolution, allowing the representation of877

moment relations as employed in MMN.878

Joint Visual-Text Space. Initially, we apply879

layer normalization to both the video moments and880

text features. Subsequently, we utilize a linear pro-881

jection layer and a 1×1 convolution layer to project882

the text and video in the same embedding space,883

respectively. The projected features are then em-884

ployed in two distinct representational spaces: the885

IoU space and the mutual matching space. These886

spaces serve as the basis for computing the binary887

cross-entropy loss and the contrastive learning loss,888

respectively.889

Hyperparameter Settings. Our convolution net-890

work for deriving 2D features is exactly the same891

as MMN, including the number of sampled clips892

N , the number of 2D conv layers L, kernel size,893

and channels. We set the dimension of the joint894

feature visual-text space d = 256, and tempera- 895

tures τm = τq = 0.1. We utilize the pre-trained 896

HuggingFace implementation of DistilBERT (Wolf 897

et al., 2019). We set margin ψ as 0.4, 0.3, and 898

0.1 for Charades-STA, ActivityNet, and TACoS, 899

respectively. We use AdamW (Loshchilov and Hut- 900

ter, 2017) optimizer with learning rate of 1× 10−4, 901

8 × 10−4, 1.5 × 10−3 for Charades-STA, Activi- 902

tyNet, and TACoS, respectively. We set λ as 0.05 903

for Charades-STA and TACoS and 0.1 for Activi- 904

tyNet. We set the reliable true-negatives filtering 905

threshold ttr = 0.9. We set the number of hard- 906

negative samples to calculate p′(q|v) as 100, 200, 907

and 100 and p′(v|q) as 50, 100, and 5 for Charades- 908

STA, ActivityNet, and TACoS, respectively. The 909

experimental results for various hyper-parameters 910

for the hard-negative sampling are shown in Fig- 911

ure 8. 912

C.2 Baselines 913

MMN (Wang et al., 2022) adopts a dual-modal 914

encoding design to get video clip and text represen- 915

tations. We utilized the publicly deployed code2 916

to implement our own MMN model for our ex- 917

periment using exactly the same hyper-parameters 918

setting. 919

Cross-Encoder Transformer (CET) is a cross- 920

modal encoding model implemented based on a 921

2https://github.com/MCG-NJU/MMN
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Figure 8: Evaluation results for various hyper-parameters. We search various hyper-parameters for the hard
negative sampling. We measure R@1 (IoU>m), where m∈ {0.3, 0.5, 0.7} to find the best hyper-parameters. In
this figure, each (x, y) means the number of negative samples. x and y mean a number of negative samples for
p′(v|q) (query-to-video) and p′(q|v) (query-to-video), respectively. Consequently, we select the number of the
CM-ANS samples to calculate p′(q|v) as 100, 200, and 100 and p′(v|q) as 50, 100, and 5 for Charades-STA,
ActivityNet, and TACoS, respectively.

6-layered transformer architecture. It is designed to922

predict the start and end points of a video moment923

by utilizing a model architecture, which is used924

in the QA task. We concatenate the pre-extracted925

video clip features and the text features derived926

from the Distil-BERT to use as an input of the927

transformer. To concatenate two extracted features,928

we should equalize the dimensions of two features929

with a linear layer as follows:930

H̄v = HvW v

H̄q = HqW q (7)931

where Hv ∈ Rlv ,dv , Hq ∈ Rlq ,dq , W v ∈ Rdv ,d,932

W q ∈ Rdq ,d. Hv is the pre-extracted video clip fea-933

tures and Hq is the features extracted using Distil-934

BERT. And then, we derive the representation of935

each video clip feature from the last layer of the936

transformer-encoder as follows:937

Hv,q = TransformerEnc(H̄v ⊕ H̄q) (8)938

where Hv,q ∈ Rlvq ,d, lvq = lv + lq. We utilize939

only the representation part of video features, and940

the 3-layered MLPs and Sigmoid follow them to941

predict the start and end positions of the moment,942

respectively, as follows:943

ps = Sigmoid(MLPs(H
v,q
1:lv

))

pe = Sigmoid(MLPe(H
v,q
1:lv

))
(9)944

where ps and pe ∈ Rlv . We also introduce the945

interpolation labels ysi , yei to utilize abundant infor-946

mation of moment labels as follows:947

ysi =

{
( xe−i
x∗
e−x∗

s+1)
k if x∗s ≤ i ≤ x∗e

0 otherwise

yei =

{
( i−xs
x∗
e−x∗

s+1)
k if x∗s ≤ i ≤ x∗e

0 otherwise
(10) 948

We finally use the binary cross-entropy to cal- 949

culate a loss for the pair of (psi , y
s
i ) and (pei , y

e
i ) as 950

follows: 951

Ls = BCE(ps, ys)

Le = BCE(pe, ye)
(11) 952

where BCE means the binary cross-entropy. The 953

final loss to train the CET model is defined as fol- 954

lows: 955

L =
Ls + Le

2
(12) 956

We use k = 10 and d = 512 as a hyperparameter 957

and AdamW optimizer with learning rate 1e-3. 958

Bi-Encoder Transformer (BET) is a dual- 959

modal encoding model that encodes text and video 960

clip features independently. The pre-extracted 961

video clip features are encoded using a 6-layered 962

transformer, and text features are encoded using 963

the Distil-BERT, followed by the average-pooling 964

function and 3-layered MLPs. 965

H̃v = TransformerEnc(H̄v) (13) 966

H̃s =MLPs(Pool(H̄
q))

H̃e =MLPe(Pool(H̄
q))

(14) 967
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Where H̃v ∈ Rd, H̃s ∈ Rd and H̃e ∈ Rd. Pool968

means the average pooling. We calculate the cosine969

similarity between the encoded video clip represen-970

tations and the encoded start and end representa-971

tions to predict a moment.972

ps = Sigmoid(r ∗ cosine(H̃v, H̃s))

pe = Sigmoid(r ∗ cosine(H̃v, H̃e))
(15)973

We use the interpolation labels and the binary974

cross-entropy loss for the BET, similar to CET. We975

use r = 10 and d = 512 as a hyperparameter and976

AdamW optimizer with learning rate 1e-3.977

D Examples of False Negative Videos978

Illustrative instances of constructed979

MVMR datasets can be found in Figure 9.980

This figure shows video instances that have981

been identified as similar to a specific target982

query. The target queries correspond to queries of983

Charades-STA, ActivityNet, and TACoS datasets,984

sequentially.985

E Human Evaluation for the constructed986

MVMR Datasets987

We conduct a human evaluation on our constructed988

MVMR datasets to reveal that our method construct989

MVMR datasets effectively. We recruit crowd990

workers fluent in English through the university’s991

online community. The recruited annotators were992

provided with a detailed description of task defini-993

tions, instructions. An example of a sheet we use to994

conduct a human evaluation is shown in Figure 10.995
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Query: A woman brushes and styles her hair.          

222.54s 211.2s

Golden positive Filtered as positive # 1

166.0s

Filtered as negative # 1 

49.6s

Original query: ‘a woman hair is being sprayed by another woman.’, 

                  ‘then the woman's hair gets brushed.’, …

Original query: ‘A male chef appears in a kitchen standing…’,

          ‘The man then grabs the knife and starts…’, …

Original query: ‘A man is seen with his arm up and waves…’,

          ‘He then climbs up on a beam and begins…’, …

Moment: 1.1s ~ 86.7s Filtered as positive # 2 Moment: 11.6s ~ 14.1s

Filtered as negative # 2 Filtered as negative # 3 

Original query: ‘A woman is brushing her hair.’,

                   ‘She starts braiding her hair behind her head.’, …

129.0s Original query: ‘A man is playing a game inside a court.’,

         ‘He talks to the camera bout the game.’, …

125.5s

…

…

Moment: 121.4s ~ 211.2s

Query: person closes the door

32.8s 33.1s

Golden positive Filtered as positive # 1

30.3s

Filtered as negative # 1 

30.7s

Original query: ‘person closing the door.’, 

                  ‘person begins to undress.’, …

Original query: ‘person lies down on the bed to review the pictures.’, 

                  ‘taking the picture the person lies back in the bed.’

Original query: ‘another person comes running throwing open the door.’

Moment: 26.2s ~ 31.3s Filtered as positive # 2 Moment: 25.2s ~ 30.0s

Filtered as negative # 2 Filtered as negative # 3 

Original query: ‘a person runs to the doorway of the pantry.’,

                   ‘person closes the door.’, …

30.3s Original query: ‘person drinking from a glass of water.’ 30.5s

…

…

Moment: 14.2s ~ 23.0s

Query: The person washed and dried their hands

186.8s 89.5s

Golden positive Filtered as positive # 1

249.8s

Filtered as negative # 1 

Original query: ‘The person washes his hands with water…’, 

                  ‘The person got the cutting board out.’, …

Original query: ‘He took out a second smaller glass’, 

                  ‘He cracked egg.’, …

Moment: 131.8s ~ 136.5s Filtered as positive # 2 Moment: 234.7s ~ 241.7s

Filtered as negative # 2 

Original query: ‘The person washes her hands.’,

                   ‘She took out kiwi’, …

82.1s Original query: ‘He took out mango’,

          ‘He cut mango in half’, …

372.5s

…

Moment: 36.9s ~ 48.2s

Figure 9: Examples of constructed MVMR datasets. We visualize positive and negative video sets for the query
“person closes the door" of three constructed datasets. A green solid box means a golden positive moment, and blue
solid boxes show moments assigned to videos classified as positive. The underlined queries mean the most similar
query described in Section 4.1 (max aggregation).

Figure 10: Human Evaluation Sheet Example.
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