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MA4DIV: Multi-Agent Reinforcement Learning for Search Result
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Abstract
Search result diversification (SRD), which aims to ensure that doc-

uments in a ranking list cover a broad range of subtopics, is a

significant and widely studied problem in Information Retrieval

and Web Search. Existing methods primarily utilize a paradigm of

"greedy selection", i.e., selecting one document with the highest

diversity score at a time or optimize an approximation of the ob-

jective function. These approaches tend to be inefficient and are

easily trapped in a suboptimal state. To address these challenges, we

introduceMulti-Agent reinforcement learning (MARL) for search

result DIVersity, which calledMA4DIV 1
. In this approach, each

document is an agent and the search result diversification is mod-

eled as a cooperative task among multiple agents. By modeling

the SRD ranking problem as a cooperative MARL problem, this

approach allows for directly optimizing the diversity metrics, such

as 𝛼-NDCG, while achieving high training efficiency. We conducted

experiments on public TREC datasets and a larger scale dataset in

the industrial setting. The experiemnts show that MA4DIV achieves

substantial improvements in both effectiveness and efficiency than

existing baselines, especially on the industrial dataset.

CCS Concepts
• Information systems→ Information retrieval diversity.

Keywords
Search Result Diversification; Learning to Rank; Multi-Agent Co-
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1 Introduction
How to provide diverse search results to users is an important yet

complicated problem in information retrieval. The search result

diversification (SRD) [1] means that for a user’s search query, we

need to provide search results that cover a wide range of subtopics

to meet the requirements of different users who may have multiple

1
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interpretations or intentions. Many diversity-aware metrics, such

as 𝛼-NDCG [7], ERR-IA [4], S-recall [49], have been proposed to

evaluate the effectiveness of search result diversification. Since the

diversity of a given document is affected by the documents that

precede it, optimizing some of the diversity metrics is NP-Hard [3].

Therefore, search result diversification has become an important

and challenging research topic.

Existing works on SRD can primarily be categorized into three

main approaches:

Greedy Selection Approaches The typical search result di-

versification methods use "greedy selection" to sequentially select

documents to build a diversified ranking list in a step-by-step man-

ner. At each step, the ranking model selects the best document for

the current ranking position according to the additional utility it

can bring to the whole ranking list. Different methods use different

criteria in the greedy selection. Maximal marginal relevance (MMR)

[2] algorithm proposes maximal marginal, and takes the maximum

document distance as the utility. xQuAD [28] is another widely

used diverse ranking model which defines the utility to explicitly

account for relationship between documents and the possible sub-

queries. In recent years, many methods based on machine learning

[19, 21, 25, 44, 54] have been proposed to solve the search result

diversification task.

Single-Agent Reinforcement Learning Approaches
While the greedy selection approaches only consider the my-

opic utility brought by each document, RL approaches can better

models the current state (i.e., the documents examined by the user)

and future expected reward. Xia et al. [42] propose the MDP-DIV

framework to model the search result diversification ranking as

Markov Decision Process (MDP) [23], and uses a reinforcement

learning algorithm [38] to optimize the ranking model. While MDP-

DIV still use a "greedy selection" to select next candidate result, it

can easily lead to sub-optimal ranking list.M
2
Div [11] introduces

Monte Carlo Tree Search (MCTS) [8] for high-quality exploration.

This method helps to alleviate the problem of being stuck in a

sub-optimal solution at a cost of increasing training and inference

time.

Simultaneous Scoring and Ranking Approaches Some

recent studies propose to simultaneously score all candidate docu-

ments and obtain the whole ranking list by sorting these scores in a

descending order. This paradigm can greatly improve the inference

efficiency as the documents can be scored in parallel. In particular,

DALETOR [45] and MO4SRD [48] propose a differentiable proxy

for the non-differentiable diversity metric 𝛼-NDCG [7], which en-

ables a gradient-based optimization for the diversity metric. Other

methods [9, 17, 24, 30, 31] optimize the diversity of ranking list

based on list-pairwise loss fuction [39]. However, although both

the differentiable approximation of the optimization objective and

the list-pairwise loss function are good approximations to the true

optimization objective, such as alpha-NDCG, they are still not equal

to the true optimization objective. Therefore, the solution may still

1
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be biased and sub-optimal. In Appendix A, we further explain why

existing methods lead to suboptimal diversity ranking results.

To summarize, although the problem of search result diversifica-

tion has been extensively investigated, existing methods still have

some limitations in terms of the effectiveness and efficiency. From

the perspective of effectiveness, the Greedy Selection Approaches

(e.g. [2, 28]) and the Simultaneous Scoring and Ranking Approaches

(e.g [17, 31, 45, 48]) may be sub-optimal in optimizing the end diver-

sity metric, such as 𝛼-NDCG and ERR-IA. From the perspective of

efficiency, those Single-Agent Reinforcement Learning Approaches

face a intrinsic challenge of exploring a huge space of all possible

rankings, which inevitably leads to sub-optimal solution [42] and

high time-complexity in both training and inference [11].

In this paper, in order to alleviate the problems of existing meth-

ods mentioned above, we propose to formalize the diverse ranking

as a multi-agent cooperation process. Since Multi-Agent reinforce-
ment learning (MARL) algorithm is used to optimize the DIVersity
ranking model, we call this new method MA4DIV. Specifically, by
treating each document as an independent agent within a coopera-

tive multi-agent setting, we simulate a fully cooperative multi-agent

task. In this setup, each agent (document) makes action selections

based on observations that include the features of both the query

and the documents, aiming to maximize a shared reward function

that is directly related to the diversity evaluation metrics of search

results. Furthermore, MA4DIV employs value decomposition [27]

to optimize global diversity directly by the structures of mixing

network and hypernetworks during training.

The advantages of our MA4DIV over existing works include:

• Compared to "greedy selection" paradigm, MA4DIV simul-

taneously predicts the ranking scores of all documents,

which can improve the efficiency of ranking process.

• The ranking scores of all documents and a ranked docu-

ments list with diversity can be obtained in one time step.

Therefore, MA4DIV has higher exploration efficiency than

Single-Agent Reinforcement Learning algorithms, such as

MDP-DIV, which must go through an entire episode to

explore a diversity ranking list.

• The training of the MA4DIV model does not require any

approximations of different diversity metrics, as it can di-

rectly optimize the diversity metrics as rewards during

multi-agent reinforcement learning process.

In order to demonstrate the effectiveness and efficiency ofMA4DIV,

we conducted experiments on TREC benchmark datasets and a

new industrial dataset. The experimental results on TREC datasets

showed that, MA4DIV achieved the state-of-the-art performance

on some evaluation metrics, and training time was significantly

shorter than baselines. Considering the small number of queries

in TREC dataset (only 198 valid queries), we built a larger diver-

sity dataset based on the real search engine data, which is called

DU-DIV. On the DU-DIV dataset, MA4DIV achieved the state-of-

the-art performance on all evaluation metrics, and demonstrated

a substantial improvement in exploration efficiency and training

efficiency.

2 Related Works
2.1 Search Result Diversification
Carbonell et al. [2] introduced the maximal marginal relevance

criterion, which uses a linear combination of query-document rel-

evance and document novelty to determine the document to be

selected. An extension of this concept, the probabilistic latent MMR

model [13] was proposed by Guo and Sanner. Approaches such as

xQuAD [28] directly model different aspects of a query, estimating

utility based on the relevance of retrieved documents to identified

sub-queries or aspects. Hu et al. [16] proposed a utility function

that leverages hierarchical intents of queries, aiming to maximize

diversity in the hierarchical structure. Other researchers, like He

et al. [14], have proposed combining implicit and explicit topic

representations to create better diverse rankings, while Gollapudi

et al. [12] proposed an axiomatic approach to result diversification.

Machine learning techniques have also been applied to construct

diverse ranking models, often adhering to the sequential document

selection or greedy sequential decision-making framework. Several

researchers have defined utility as a linear combination of hand-

crafted relevance and novelty features [40, 44, 54]. In [41], novelty

can be modeled using deep learning models such as neural tensor

networks. Radlinski et al. [26] propose to learn a diverse ranking

of documents directly based on users’ clicking behavior.

Reinforcement learning algorithms also are proposed to improve

the effectiveness of "greedy selection" paradigm in search result

diversification. MDP-DIV [42] consider the diverse ranking process

as a Markov Decision Process (MDP). In MDP-DIV, agent select one

document in one time step, so a ranked list can be obtained after

an episode. And the episode reward can be any metrics, such as 𝛼-

DCG. While Feng et al. [11] think that "greedy selection" paradigm

is easily lead to local optimum, so M
2
Div is proposed to introduce

Monte Carlo Tree Search (MCTS) into MDP ranking process. In this

way,M
2
Div does alleviate the problem that tend to fall into local

optimum by conducting high-quality exploration, but also brings

expensive training and inference costs.

There are some methods based on score-and-sort paradigm.

DALETOR [45] and MO4SRD [48] are proposed to derive differ-

entiable diversification-aware losses which are approximation of

different diversity metrics, such as 𝛼-NDCG. Other methods, such

as DSSA [17], DESA [24], Graph4DIV [30], KEDIV [31], CL4DIV

[9], use list-pairwise loss function [39] to optimize the diversity of

the ranking list.

2.2 Reinforcement Learning for IR
Xu et al. [37] formulate a ranking process as an MDP and train the

ranking model with a policy gradient algorithm of REINFORCE

[38]. Singh et al. [29] propose PG Rank algorithm to enhance the

fairness of ranking process with reinforcement learning methods.

PPG [43] uses pairwise comparisons of two sampled document list

with in a same query, which makes an unbiased and low variance

policy gradient estimations. Yao et al. [46] model the interactions

between search engine and users with a hierarchical Markov Deci-

sion Process, which improves the personalized search performance.

RLIRank [53] implement a learning to rank (LTR) model for each it-

eration of the dynamic search process. Zou et al. [55] formulate the

ranking process as a multi-agent Markov Decision Process, where

2
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the interactions among documents are considered in the ranking

process. However, Zou et al. [55] conduct the single-agent rein-

forcement learning algorithm REINFORCE to optimize the ranking

model.

2.3 Multi-Agent Reinforcement Learning
Value decomposition [5, 6, 27, 32, 35, 36] andActor-Critic [20, 47, 50–

52] are two typical branches of multi-agent reinforcement learning

(MARL). Among these, QMIX [27] is the algorithm that first obtains

the global utility function by nonlinear combination of individual

utility functions, which can assign the global reward to each agent

implicitly and nonlinearly. In this paper, we conduct the framework

of QMIX as a reference to optimize the diverse ranking process.

3 Background
3.1 Co-MARL
In this work, we consider the process of diversity ranking as a fully

cooperative multi-agent reinforcement learning (Co-MARL) task,

which is formally defined as a tuple𝐺 = ⟨S,A, 𝑟 ,Z,O, 𝑛,𝛾⟩. 𝑠 ∈ S
is the state of the environment. Each agent 𝑖 ∈ G ≡ {1, . . . , 𝑛}
chooses an action 𝑎𝑖 ∈ 𝐴 which forms the joint action a ∈ A ≡
𝐴𝑛 . The reward function which is modeled as 𝑟 (𝑠, a) : S × A is

shared by all agents and the discount factor is 𝛾 ∈ [0, 1). In our

diversified search task, it follows fully observable settings, where

agents have access to the state. Instead, it samples observations

𝑧 ∈ Z according to observation function O(𝑠, 𝑖) : S × A → Z. In

our algorithm, the joint policy 𝝅 is based on action-value function

𝑄𝜋𝑡𝑜𝑡 (𝑠𝑡 , a𝑡 ) = E𝑠𝑡+1:∞,a𝑡+1:∞ [∑∞
𝑘=0

𝛾𝑘𝑟𝑡+𝑘 |𝑠𝑡 , a𝑡 ]. The final goal is
to get the optimal action-value function 𝑄∗

.

3.2 General Format of Test Set for Diversified
Search

Suppose there is a given query q which is associated with a set of

candidate documents D = {d1, . . . , dn} ∈ D, where query q and

each document di are represented as 𝐿-dimensional preliminary

representations, i.e., the 𝐿-dimensional vector given by the BERT

model [10], and D is the set of all candidate documents. Our ob-

jective is to sort the documents in the candidate set D in such a

way that the documents ranked higher cover as many subtopics as

possible, thereby improving the diversity evaluation metrics.

To compute the diversity metrics introduced above, we need

to collect a test collection with relevance labels at the subtopic

level. Therefore, a test collection with 𝑁 labeled queries can be

formulated as:

{(𝑞𝑘 , 𝐷𝑘 ), 𝐽𝑘 }𝑁
𝑘=1

where 𝐽𝑘 is a binary matrix with 𝑛 ×𝑚 dimensions. 𝐽𝑘 (𝑖, 𝑙) = 1

means that document di covers the 𝑙-th subtopic in the given query

𝑞𝑘 and 𝐽𝑘 (𝑖, 𝑙) = 0 otherwise.

4 The MA4DIV Model
In this section, we first describe how to formulate the search results

diversification problem as a Co-MARL by introducing the basic

elements in the MA4DIV framework. Then, we present the architec-

ture of the MA4DIV framework, as shown in Figure 1, and elaborate

the implementation of the Agent Network, Ranking Process, and

Mixing Network. Finally, we will give an algorithm to train the

MA4DIV.

4.1 Essential Elements of MA4DIV
In Section 3.1, we define the process of diversity ranking as a Co-

MARL. Next, we introduce the essential elements of Co-MARL

specified to our MA4DIV:

Agents G: We model each document 𝑖 ∈ {1, . . . , 𝑛} as agent

𝑖 ∈ G ≡ {1, . . . , 𝑛}. In the setting of multi-agent cooperation, each

document implements the ranking process by cooperating with

each other.

State S: State signifies global information and holds a pivotal

role in multi-agent cooperation. It is through the utilization of state

S that effective collaboration between agents (documents) can be

established, resulting in a diverse and high-quality ranking list.

State is defined 𝒔 as:

𝒔 = {q,D} (1)

From Equation (1) we can see that state 𝒔 contains informa-

tion for the given query q and information for all documents

D = {d1, . . . , dn}.
Observation O: Observation represents the information that

each agent receives. Each agent makes decisions based on its re-

spective observation 𝒐𝒊 . The definition of 𝒐𝒊 is shown as Equation

(2).

𝒐𝒊 = {q,D, di} (2)

where q is embedding vector of the given query,D = {d1, . . . , dn}
represents the embedding vectors of all documents and di is em-

bedding vector of document 𝑖 to make 𝒐𝒊 be personalized to each

agent.

Actions A: The action space 𝑎𝑖 ∈ A of each agent is corre-

sponding to a set of integer ranking scores 𝑠𝑖 ∈ {1, . . . , |A|}, |A| is
the dimension of the action space. When making decisions, agent 𝑖

will select an action 𝑎𝑖 from A. And the action 𝑎𝑖 corresponds to

a ranking score 𝑠𝑖 , which will serve as the basis for agent 𝑖 (docu-

ment 𝑖) to assess the level of diversity to itself, and thus, be used in

generating the final ranking list.

Upon the selection of joint-action a = {𝑎1, . . . , 𝑎𝑛} by all agents

based on joint-observation o = {𝒐1, . . . , 𝒐𝒏}, the ranking scores

of candidate documents list D = {d1, . . . , dn} can be obtained as

scores = {𝑠1, . . . , 𝑠𝑛}. By sorting all documents according to scores,
a ranked document list by diversity level can be achieved, called

Dranked.
Reward R: The reward function should guide the parameter

updates of the model to achieve diversity of ranked documents. In

search result diversification, there are some evaluationmetrics, such

as 𝛼-NDCG, are used to evaluate the diversity of a ranked document

list. So it’s natural to consider these metrics as reward functions. In

this paper, we define the reward function as 𝛼-NDCG@k:

R (Dranked) = 𝛼-𝑁𝐷𝐶𝐺@𝑘 (3)

Episode E: In typical MDP, an episode contains multiple deci-

sion steps. So the objective function is cumulative rewards in an

episode with a discount factor 𝛾 , defined as:

3
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𝐺𝑡 =

𝑛−1−𝑡∑︁
𝑘=0

𝛾𝑘R𝑡+𝑘+1 (4)

where 𝑛 is the step number in an episode.

However, the episode in MA4DIV contains only one step. Since

the complete ranked document list can be obtained in one time

step, the reward can then be calculated for end-to-end training.

Therefore, instead of implementing a multi-step decision through

a state transition function, an episode can contain only one step.

And the final objective function of MA4DIV can be written as:

𝐺 = R = 𝛼-𝑁𝐷𝐶𝐺@𝑘 (5)

4.2 Agent Network
In Figure 1, the green modules represent the Agent Network for an

agent 𝑖 , which share parameters with each other. On the left side

of Figure 1 is the detailed structure of the Agent Network. It can

be seen that we concatenate {q, di, ei}, which is precisely obtained

from the observation for agent 𝑖 defined in Equation (2). And ei is
a vector with high-level cross feature between document 𝑖 and all

other documents, computed by Multi-Head Self-Attention (MHSA)

module. The detail of MHSA and the reason why we use MHSA

can be found in Appendix C. Finally, the features of all documents

D = {d1, . . . , dn} is reshaped to output ei as Equation (6):

{e1, . . . , ei, . . . , en} = MHSA({d1, . . . , dn}) (6)

Then, the action-values 𝑄
𝑎𝑚
𝑖

,𝑚 ∈ {1, . . . , |A|} are calculated

according to Equation (7). Specifically, 𝑄
𝑎𝑚
𝑖

= 𝑄 (𝒐𝒊, 𝑎𝑚) repre-
sents the expected reward of taking a specific action 𝑎𝑚 in a given

observation 𝒐𝒊 for agent 𝑖 , which is defined in Equation (8).

{𝑄𝑎1
𝑖
, . . . , 𝑄

𝑎𝑚
𝑖

, . . . , 𝑄
𝑎 |A|
𝑖

} = MLP ({q, di, ei}) (7)

𝑄
𝑎𝑚
𝑖

= 𝑄 (𝒐𝒊, 𝑎𝑚)
= E[R|𝒐 = 𝒐𝒊, 𝑎 = 𝑎𝑚]
= MLP(𝒐𝒊) and 𝑚 ∈ {1, . . . , |A|}

(8)

In reinforcement learning (RL), a popular approach to select

the action-value is the 𝜀-greedy policy, which is used to balance

exploration and exploitation during the learning process.

Specifically, with a probability of 1 − 𝜀, the agent 𝑖 chooses the

action-value 𝑄
𝑎∗
𝑖

which has the highest estimated value (max𝑄
𝑎𝑚
𝑖

)

for the current observation 𝒐𝒊 , and the corresponding chosen action
is 𝑎∗

𝑖
= argmax𝑎𝑚 𝑄

𝑎𝑚
𝑖

,∀𝑚 ∈ {1, . . . , |A|}. This is the exploitation
part, where the agent makes the best decision based on the cur-

rent model. On the other hand, with a probability of 𝜀, the agent

𝑖 chooses an action-value uniformly at random from |A| action-
values. This is the exploration part, where the agents try to discover

new permutations of the candidate documents set. Mathematically,

this process can be written as Equation (9):

𝑄
𝑎∗
𝑖

=

{
max𝑄

𝑎𝑚
𝑖

,∀𝑚 ∈ {1, . . . , |A|} with 𝑝=1-𝜀

random 𝑄
𝑎𝑚
𝑖

,∀𝑚 ∈ {1, . . . , |A|} with 𝑝=𝜀
(9)

In the training process, the value of 𝜀 is often initially set to a

high value (e.g., 1.0), and gradually decayed to a low value (e.g.,

0.05) over training steps 𝑡 (𝜀 (𝑡) = max(0.05, 1 − 𝑡
𝑇
)), allowing the

agent to explore the environment extensively at the beginning, and

then exploit more as its knowledge increases. In the testing process,

we set 𝜀 = 0 to get the optimal policy.

In this way, the 𝜀-greedy policy used in MA4DIV helps to bal-

ance the trade-off between exploration and exploitation, which

promotes to explore more different ranking permutation. And it’s

more conducive to update the parameters of the Agent Network.

4.3 Ranking Process
In the ranking process, the agents receive a query q and the associ-

ated documentsD = {d1, . . . , dn}. As shown in Figure 1, each agent

𝑖 select its own action-value 𝑄
𝑎∗
𝑖

and the corresponding action 𝑎∗
𝑖

according to Equation (9). Because the action space A is defined

as integer ranking scores, that is, each action 𝑎𝑚 corresponds to

a ranking score. So the ranking scores of all documents can be

obtained as scores = {𝑠1, . . . , 𝑠𝑛}. Finally, a ranked document list

Dranked is obtained based on the descending order of scores.
We show the pseudo-code of ranking process in Algorithm 1.

Algorithm 1: The Ranking Process of MA4DIV

1 Inputs: Give the query q and documents D = {d1, . . . , dn}.
2 Select Actions: Each agent 𝑖 select action-value 𝑄

𝑎∗
𝑖

to get

{𝑄𝑎∗
1
, . . . , 𝑄

𝑎∗
𝑖
, . . . , 𝑄

𝑎∗
𝑛 } based on Equation (9), and the

corresponding joint-action a∗ = {𝑎∗
1
, . . . , 𝑎∗

𝑖
, . . . , 𝑎∗𝑛}.

3 Getting Scores: Obtain the scores = {𝑠1, . . . , 𝑠𝑖 , . . . , 𝑠𝑛}
corresponding to the joint-action a∗.

4 Sorting: Sort the candidate documents in D based on scores.
5 Output: Get a ranked document list Dranked.

4.4 Value-Decomposition for MA4DIV
After the ranking process, the reward R is obtained according to

Equation (3) based on Dranked. Obviously, R is a scalar while there

are𝑛 action-values {𝑄𝑎∗
1
, . . . , 𝑄

𝑎∗
𝑛 } for all agents.R is the evaluation

of the global ranking effect, while 𝑄
𝑎∗
𝑖

is related to the score of a

single document. Therefore, we cannot use R to directly update the

action-value functions of all agents.

The MARL algorithms based on value decomposition, such as

[27, 32, 35], consider that there is the global utility function 𝑄∗
𝑡𝑜𝑡

can be decomposed into the action-value functions 𝑄
𝑎∗
𝑖

of all indi-

vidual agents. 𝑄∗
𝑡𝑜𝑡 represents the action-value utility of the joint-

action a∗ = {𝑎∗
1
, . . . , 𝑎∗𝑛} under the joint-observation information

o = {𝒐1, . . . , 𝒐𝒏}, and is also a scalar value. The monotonic decom-

position relation can be expressed as Equation (10):

argmax

a
𝑄∗
𝑡𝑜𝑡 (o, a) =

©­­«
argmax𝑎1 𝑄1 (𝒐1, 𝑎1)

.

.

.

argmax𝑎𝑛 𝑄𝑛 (𝒐𝒏, 𝑎𝑛)

ª®®¬ (10)

In online ranking process, all agents adopt a greedy strategy

to score documents, which is consistent with the maximization

operation on the right side of Equation (10). So we just need to learn

how to maximize𝑄∗
𝑡𝑜𝑡 . Since𝑄

∗
𝑡𝑜𝑡 is a global utility function and R

is also used to measure the global ranking effect, we can maximize

4
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Figure 1: The Framework of MA4DIV.

𝑄∗
𝑡𝑜𝑡 with R, thus maximizing the utility of each individual agent

(𝑄
𝑎∗
𝑖
). The specific loss function will be introduced in the following

Section 4.6 (Equation (14)).

Furthermore, QMIX [27] proposes a sufficient but not necessary

realization to satisfy Equation (10). Monotonicity can be enforced

by a constraint condition on the relationship of partial derivative

between 𝑄∗
𝑡𝑜𝑡 and 𝑄

𝑎∗
𝑖
:

𝜕𝑄∗
𝑡𝑜𝑡

𝜕𝑄
𝑎∗
𝑖

≥ 0, ∀𝑖 ∈ G ≡ {1, . . . , 𝑛} (11)

Additionally, in Equation (10) and (11), it is established that𝑄
𝑎∗
𝑖

=

max𝑄𝑖 (𝒐𝒊, 𝑎𝑚), 𝑎𝑖∗ = argmax𝑎𝑚 𝑄𝑖 (𝒐𝒊, 𝑎𝑚),∀𝑚 ∈ {1, . . . , |A|}.

4.5 Mixing & Hyper Network Structure
To convert the individual action-value functions𝑄

𝑎∗
𝑖

into the global

utility function 𝑄∗
𝑡𝑜𝑡 and ensure compliance with Equation (11), an

architecture consisting of a mixing network and a set of hypernet-

works are designed. The right part of Figure 1 illustrates the detail

structure.

Mixing network, a fully connected network, utilizes the action-
values {𝑄𝑎∗

1
, . . . , 𝑄

𝑎∗
𝑛 } from the agent network as inputs, and then,

monotonically combines these inputs to generate 𝑄∗
𝑡𝑜𝑡 . The calcu-

lation process is shown as:

𝑄∗
𝑡𝑜𝑡 = W2 · Elu

(
W1 · [𝑄𝑎∗

1
, . . . , 𝑄

𝑎∗
𝑛 ] + B1

)
+ 𝐵2 (12)

Hypernetworks, several fully connected networks, play a role

in generating mixing network weights. Firstly, each hypernetwork

takes global state 𝒔 as input and generate the vectors of W1, B1,
W2, 𝐵2 respectively. Then, the vectors are reshaped into matrices

of appropriate size as parameters for the mixing network. Lastly, to

achieve the monotonicity constraint of Equation (11), W1, W2 are
limited to non-negative by an absolute activation function. How-

ever, biases B1, 𝐵2 do not need to be set to non-negative because

biases has nothing to do with the partial derivatives between 𝑄∗
𝑡𝑜𝑡

and 𝑄
𝑎∗
𝑖
. The hypernetworks operate as follows:

W1 = Reshape
(��FCW1 (𝒔)

��) ,B1 = Reshape
(
FCB1 (𝒔)

)
W2 = Reshape

(��FCW2 (𝒔)
��) , 𝐵2 = Reshape

(
FCB2 (𝒔)

) (13)

4.6 Training Process of MA4DIV
In this section, we introduce the complete training process for

MA4DIV. The parameters of models are Θ = {𝜃,𝜓, 𝜙} where 𝜃

represents the parameters of agent network, 𝜓 and 𝜙 are the pa-

rameters of mixing network and hypernetworks respectively. The

model parameters Θ is updated on 𝑁 training data with the form

of {(𝑞𝑘 , 𝐷𝑘 ), 𝐽𝑘 }𝑁
𝑘=1

mentioned in Section 3.2.

Algorithm 2: The Training Process of MA4DIV

1 Initialize: The parameters of network Θ = {𝜃,𝜓, 𝜙}, replay
bufferM.

2 Inputs: Training data {(𝑞𝑘 , 𝐷𝑘 ), 𝐽𝑘 }𝑁
𝑘=1

.

3 for 𝑒𝑝𝑜𝑐ℎ = 1 to 𝑁_𝑒𝑝𝑜𝑐ℎ do
4 // generate data

5 for 𝑖 = 1 to 𝑁 do
6 Current training data: q = 𝑞𝑖 , D = 𝐷𝑖 , with subtopic

labels 𝐽 𝑖 .

7 Rollout an episode following Algorithm 1.
8 Collect a tuple T = (o, 𝒔, a,R) during this episode.
9 Store the tuple T inM.

10 // update models

11 for 𝑢𝑝𝑑𝑎𝑡𝑒 = 1 to 𝑁_𝑢𝑝𝑑𝑎𝑡𝑒 do
12 Sample a random minibatch 𝒃 fromM.

13 Calculate 𝑦𝑡𝑜𝑡 and loss L for all sampled data from

𝒃 based on Equation (15) and (14).

14 Update the parameters of networks Θ by gradient

descent.

15 Ouput: A well-trained ranking model with parameters Θ.

Algorithm 2 shows the training pseudo-code. At the beginning,

parameters Θ are initialized randomly and the replay bufferM is

5
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set to ∅. A whole training epoch consists of two parts. The first

part is the stage of data generation. Given data q = 𝑞𝑖 , D = 𝐷𝑖 ,

with subtopic labels 𝐽 𝑖 , tuple T in the episode is obtained based

on the definition in Equation (1, 2, 3). Then, store the tuple T in

replay buffer. Each epoch can generate a kind of permutation of all

documents {𝐷𝑘 }𝑁
𝑘=1

in all training data. The second part is updating

models with parameters Θ for 𝑁_𝑢𝑝𝑑𝑎𝑡𝑒 times. And the update is

performed by sampling data through a mini-batch approach from

M. The whole network is trained end-to-end by minimizing the

Temporal Difference (TD) [33] loss shown in Equation (14) which

is widely used in MARL to maximize 𝑄𝑡𝑜𝑡 .

L𝑇𝐷 =

𝑏∑︁
𝑖=1

(
𝑦𝑡𝑜𝑡𝑖 −𝑄𝑡𝑜𝑡 (o, a, 𝒔;Θ)

)
2

(14)

𝑦𝑡𝑜𝑡 = R + 𝛾 max

𝑎′
𝑄𝑡𝑜𝑡 (o′, a′, 𝒔′;Θ′) = R (15)

In Equation (14), 𝑏 is the batch size of sampled data from replay

buffer. In Equation (15), 𝑄𝑡𝑜𝑡 (o′, a′, 𝒔′;Θ′) is calculated based on

information of the next time step, i.e., o′, a′, 𝒔′, in typical MDP

which contains multiple decision steps. However, we define that

MA4DIV only have one time step for an episode, so o′, a′, 𝒔′ do not
exist and 𝑄𝑡𝑜𝑡 (o′, a′, 𝒔′;Θ′) equals to 0, that is 𝑦𝑡𝑜𝑡 = R.

5 Experiments
Our experiments mainly focus on next research questions:

(RQ.1) How does MA4DIV perform on the TREC Web Track

datasets when compared to existing diversified search baselines?

(RQ.2) How does MA4DIV perform on a larger scale industrial

dataset compared to the baselines?

(RQ.3) How efficient is MA4DIV in training and inference pro-

cess?

5.1 Datasets and Experimental Settings
We conduct experiments to address above research questions on

two datasets, the public TREC 2009∼2012 Web Track datasets and

the industrial DU-DIV dataset. The details of these two datasets are

shown in Table 1.

TREC 2009∼2012 Web Track datasets are publicly available and

Xia et al. [42] first uses them for training and evaluating diversified

search models. Almost all the following works, such asM
2
Div [11],

DALETOR [45], MO4SRD [48], etc., conduct experiments on these

datasets. As a widely used test collection for diversified search, the

TREC Web track datasets only contains 198 queries, and previous

studies often use Doc2vec [18] to obtain the document embeddings

on this dataset. In this work, to ensure a fair and meaningful com-

parison with existing work, we first compare MA4DIVwith existing

baselines on the this relatively small dataset. Then, we further con-

duct extensive experiments on a new and larger scale diversity

dataset called DU-DIV, which is constructed based on real user data

in industrial search engine. More details of datasets can be seen in

Appendix D.

We conduct 5-fold cross-validation experiments on the reshaped

TREC dataset with the same subset split based on unique queries

as in [11]. In the DU-DIV dataset, we randomly sample 80% of 4473

unique queries and their associated document lists to the training

set, and the left 20% to the test set. The code framework of MA4DIV

Table 1: Comparisons of datasets TREC and DU-DIV.

Dataset TREC DU-DIV

Source TREC 2009∼2012 Web Track Real search engine

No. of Queries 198 4473

No. of Documents/Query average 211 docs/query 15 docs/query

No. of Subtopics maximum 7 subtopics/doc total 50 subtopics

Representation Doc2vec [18] BERT [10]

is based on PyMARL2 framework [15], which is a open-source code

framework for multi-agent reinforcement learning. More detail

settings of experiments are shown in Appendix E.

We compare MA4DIV with several state-of-the-art baselines in

search result diversification, including:

MMR [2]: a heuristic approach which select document according

to maximal marginal relevance.

xQuAD [28]: a representative approach that explicitly models

different aspects underlying the query in the form of subqueries.

MDP-DIV [42]: a single-agent reinforcement learning approach

which model the diverse ranking process as MDP.

M2Div [11]: a single-agent reinforcement learning approach

which utilizes Monte Carlo Tree Search to enhance ranking policy.

DALETOR [45]: a method for approximating evaluation metrics

that optimizes an approximate and differentiable objective function.

MO4SRD [48]: another method to make evaluation metrics dif-

ferentiable and optimize the approximating evaluation metrics.

5.2 Experimental Results
Table 2 and 3 report the performances of all baselines and our

MA4DIV in terms of the six diversity performance metrics, in-

cluding 𝛼-NDCG@5, 𝛼-NDCG@10, ERR-IA@5, ERR-IA@10, S-

recall@5, S-recall@10 on the TREC web track datasets and the

DU-DIV dataset respectively. The detail of evaluation metrics can

be found in Appendix B. We highlight the top three algorithms on

each metric by darkening the background color of the numbers.

5.2.1 The Results on TREC web track datasets. In Table 2,M
2
Div

and MO4SRD have the best performance in term of 𝛼-NDCG, our

MA4DIV performs worse than these two algorithms but better

than the others. Moreover, MA4DIV takes the lead in both ERR-IA

and S-recall metrics, with MO4SRD also exhibiting strong perfor-

mance in S-recall metric. Considering multiple evaluation metrics

comprehensively, MA4DIV,M
2
Div and MO4SRD are the best three

algorithms on the TREC web track datasets. (answer to RQ.1)
As mentioned in Table 1, TREC web track datasets have only

198 unique queries, deep learning methods are prone to overfitting

on this dataset. Figure 2 shows the training curve of MA4DIV

on the TREC web track datasets. We can see, after about the 11

iterations, MA4DIV achieves the best performance on the test data,

and the subsequent iterations fall into overfitting the relatively

small training set. However, the evaluation metric 𝛼-NDCG@10 on

the training set grows to more than 0.8. These results indicate that:

(1) Our MA4DIV is capable to effectively optimize the diversity

metric 𝛼-NDCG@10. (2) It could easily overfit the relatively small

training set of the TREC web track dataset, which only contains

198 unique queries. (3) MA4DIV has the potential to perform better

in the search result diversification task when given a larger dataset.
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Table 2: Performance comparison of baselines and MA4DIV on TREC web track datasets. The best result in each metric is bold
and the top-3 results are shaded. "*" indicates the difference between the baseline and M4DIV (ours) is statistically significant.

Method 𝛼-NDCG@5 𝛼-NDCG@10 ERR-IA@5 ERR-IA@10 S-recall@5 S-recall@10

MMR 0.4273* 0.5059* 0.2015* 0.2153* 0.6058* 0.7848*

xQuAD 0.4451* 0.5296* 0.2108* 0.2243* 0.5994* 0.7887*

MDP-DIV 0.4987* 0.5663* 0.2662 0.2865 0.6310* 0.7853*

M
2
Div 0.5144* 0.5798* 0.2338* 0.2448* 0.6593 0.8028

DALETOR 0.5008 0.5703 0.2237* 0.2355* 0.6451* 0.8012

MO4SRD 0.5135* 0.5815* 0.2280* 0.2396* 0.6576 0.8074
MA4DIV (ours) 0.5056 0.5724 0.2680 0.2882 0.6600 0.8070

Table 3: Performance comparison of baselines and MA4DIV on DU-DIV dataset. The best result in each metric is bold and the
top-3 results are shaded. "*" indicates the difference between the baseline and M4DIV (ours) is statistically significant.

Method 𝛼-NDCG@5 𝛼-NDCG@10 ERR-IA@5 ERR-IA@10 S-recall@5 S-recall@10

MMR 0.7416* 0.8171* 0.7583* 0.8100* 0.6062* 0.8481*

xQuAD 0.7075* 0.8277* 0.7745* 0.8201* 0.5670* 0.8520*

MDP-DIV 0.8101* 0.8623 0.7694* 0.8204* 0.6389* 0.8590*

M
2
Div 0.8089* 0.8610* 0.7633* 0.8142* 0.6468 0.8608*

DALETOR 0.7981* 0.8543* 0.7450* 0.7955* 0.6447* 0.8550*

MO4SRD 0.7989* 0.8553* 0.7467* 0.7969* 0.6432* 0.8556*

MA4DIV (ours) 0.8187 0.8702 0.7836 0.8342 0.6534 0.8699

Figure 2: Training curves of MA4DIV on TREC web track
datasets.

Therefore, we construct a larger diversity dataset called DU-

DIV from a real industrial search engine. And then we show the

experiments on DU-DIV dataset.

5.2.2 The Results on DU-DIV dataset. Table 3 shows results in dif-

ferent evaluation metrics on the DU-DIV dataset. MA4DIV achieves

state-of-the-art performances on all six evaluation metrics. Heuris-

tic algorithms, MMR and xQuAD, perform poorly on 𝛼-NDCG.

Comparing to single-agent reinforcement learning methods, MDP-

DIV andM
2
Div, MA4DIV has a better performance on evaluation

metrics which demonstrate that MA4DIV can improve the diver-

sity of search results. MA4DIV also outperforms DALETOR and

MO4SRD which optimize the approximate value of the evaluation

metrics. This verifies that directly optimizing the evaluation metrics

is indeed better than optimizing the approximation of the evaluation

metrics. All these results demonstrate that the proposed MA4DIV

method outperforms existing search result diversification methods

on an industrial scale dataset (answering RQ.2).
Interestingly, we notice that MDP-DIV, which does not perform

well on the TREC web track datasets, is the second best perform-

ing algorithm on the DU-DIV dataset, following our MA4DIV in

terms of 𝛼-NDCG@5 and 𝛼-NDCG@10. In MDP-DIV, the reward

function is defined as: 𝑅(𝑠𝑡 , 𝑎𝑡 ) = 𝛼-𝐷𝐶𝐺 [𝑡 +1] −𝛼-𝐷𝐶𝐺 [𝑡], where
𝛼-𝐷𝐶𝐺 [𝑡] is the discounted cumulative gain at the 𝑡-th ranking

position. And the objective function of MDP-DIV is to maximize the

cumulative rewards in one episode, that is 𝐺𝑡 =
∑𝑛−1−𝑡
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1.
Consider that Xia et al. [42] sets𝛾=1 and 𝛼-𝐷𝐶𝐺 [𝑡]=0, the objective
function can be rewritten as 𝐺𝑡 = 𝛼-𝐷𝐶𝐺 [𝑛], which is different

from 𝛼-𝑁𝐷𝐶𝐺 with just a normalization factor. In addition, the

objective function of our MA4DIV defined in Equation (5) is equal

to 𝛼-𝑁𝐷𝐶𝐺 . Similar to MA4DIV, MDP-DIV also directly optimizes

one of the end evaluation metrics in SRD. Therefore, this provides

a theoretical analysis for MDP-DIV to be able to outperform other

baselines.

5.3 Comparison and Analysis of Efficiency
5.3.1 Training Time on TREC web track datasets. To highlight the

efficiency of our MA4DIV, we also compare several algorithms from

the perspective of training time. Table 4 shows the comparison of

training time taken by different algorithms to achieve their optimal

performance on the TREC web track datasets. To ensure a fair

comparison, all the algorithms in Table 4 run on the same machine.

We can see thatM
2
Div takes over a day to reach optimal perfor-

mance. This is becauseM
2
Div utilizes Monte Carlo Tree Search for

policy enhancement, which is highly time-consuming. The time

taken by MDP-DIV and MO4SRD is close and significantly less than

M
2
Div. MA4DIV takes the shortest time, only 20∼25 minutes. This

is due to the efficient exploration ability of using a multi-agent to

7
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Table 4: The comparison of the training time taken by differ-
ent algorithms to achieve the optimal value of metrics.

Method Training Time

MDP-DIV 5∼6 hours
MO4SRD 6∼7 hours
M

2
Div 1 day +

MA4DIV (ours) 20∼25 mins

Figure 3: Training curves of MA4DIV and MDP-DIV on DU-
DIV dataset.

model the ranking process, in which a permutation of the given

documents set (𝑛 documents) can be obtained at one time step.

The single agent reinforcement learning algorithm MDP-DIV can

only explore a permutation of the given documents after a whole

episode which contains 𝑛 time steps. This is the main reason why

the training time of MA4DIV is significantly shorter than MDP-DIV.

In MO4SRD, the complexity of calculating all approximate ranking

positions 𝑟𝑖 in 𝛼-𝐷𝐶𝐺 is O(𝑛2) and the complexity of calculating

all 𝑐𝑙𝑖 approximations is O(𝑛2𝑚), which are time-consuming parts.

While MA4DIV directly optimizes 𝛼-𝑁𝐷𝐶𝐺 without complex ap-

proximations, which takes significantly less time.

In summary, the training time of MA4DIV is significantly shorter

than that of other baselines, which demonstrate its training effi-

ciency and answers RQ.3.

5.3.2 Iteration Times on DU-DIV dataset. As the optimization goals

of MA4DIV and MDP-DIV are essentially the same (we discussed

in the analysis of the results on DU-DIV dataset), we are interested

in comparing the learning efficiency of the proposed multi-agent

RL approach and the existing single-agent RL method.

Figure 3 shows the training curves of MA4DIV and MDP-DIV

on the DU-DIV dataset. We conduct the experiments of these two

algorithmswith the same learning rate which is set to 1×10−5. From
the curves, we can see that, after 250 iterations,𝛼-NDCGofMA4DIV

basically converges to about 0.87. However, 𝛼-NDCG of MDP-DIV

still fails to reach the optimal value at around 6000 iterations. This

indicates that MA4DIV has higher exploration and exploitation

efficiency compared with MDP-DIV, which also answers RQ.3.
The main reason for the results just mentioned is as follows:

MDP-DIV adopts an on-policy RL method to optimize the cumula-

tive rewards. A feature of on-policy RL is that the currently sampled

data is discarded after it is utilized. While MA4DIV is a off-policy

Table 5: The inference complexity of different diversified
search algorithms. 𝑛 is the number of candidate documents.

Method Inference Complexity

Heuristic Approaches 𝑂 (𝑛)
Single-Agent RL Approaches 𝑂 (𝑛)

Approximate Metric Approaches 𝑂 (1)
MA4DIV (ours) 𝑂 (1)

RL method. From 9-th line and 12-th line of Algorithm 2, we can
see that the sampled data is stored in replay bufferM, then update

the model multiple times in minibatch approach. In addition, each

data stored in replay bufferM may be sampled multiple times to

update the ranking model. Therefore, the data utilization efficiency

of MA4DIV is higher than that of MDP-DIV, which is the main

reason why MA4DIV converges significantly faster.

5.3.3 Analysis of Inference Complexity. Table 5 shows the inference
complexity of different approaches. We can see that the Heuristic

Approaches, including MMR [2] and xQuAD [28], have to perform

inference process in 𝑂 (𝑛). And 𝑛 is the number of candidate docu-

ments. In addition, Single-Agent RL Approaches, such as MDP-DIV

[42], also has a 𝑂 (𝑛) inference complexity. These two approaches

can only select one document in one time step, so the inference

complexity is equal to the number of candidate documents.

Because DALETOR [45] and MO4SRD [48] optimize the approx-

imation of evaluation metrics and can score for all candidate docu-

ments at once, these approaches have 𝑂 (1) inference complexity.

In our MA4DIV, the ranking scores {𝑠1, . . . , 𝑠𝑛} can be obtained in

one time step, so MA4DIV also has the lowest inference complexity

with 𝑂 (1).
The Section 5.3 shows that MA4DIV have the shorter training

time on the TRECweb track datasets, the faster convergence rate on

the DU-DIV dataset and the lowest inference complexity. And these

advantages jointly demonstrate that MA4DIV has high efficiency

in training and inference process, which answers RQ.3.

6 Conclusions and Future Work
In this paper we have proposed a novel method for search result

diversification using MARL, called MA4DIV. To alleviate the sub-

optimal problem and improve the efficiency of training, we consider

each document as an agent and model the diversity ranking process

as a multi-agent cooperative task. We conduct experiments on the

TREC web track dataset to prove the effectiveness and potential of

ourMA4DIV. Furthermore, we construct a larger scale dataset called

DU-DIV using the real data from industrial search engine. And

MA4DIV achieve state-of-the-art performance and high learning

efficiency on the DU-DIV dataset.

A major contribution of this paper is to introduce a multi-agent

reinforcement learning framework for the ranking optimization

task. We argue that modeling ranking process in the multi-agent

setting can be used not only to optimize the diversity of search

results, but also to optimize other ranking tasks, such as relevance

ranking and fairness ranking. Therefore, in future work, we will

try to propose a general ranking framework base on multi-agent

reinforcement learning and apply it to a variety of ranking tasks.
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Appendix

A Why do existing methods lead to suboptimal
diversity ranking?

A.1 Why the "greedy selection" approach leads
to suboptimality.

In the task of Search Result Diversification, the “greedy selection”

methods [2, 11, 28, 42] typically refer to selecting the document

that can provide the most additional information at each step when

generating a diversified result list, i.e., making a locally optimal

choice. However, this method is prone to suboptimal rankings for

the following reasons:

• Local Optimality Instead of Global Optimality: The greedy
selection method chooses the document most beneficial to the

current ranking at each step, but this method only considers

the optimal solution for the current step, not the global opti-

mality of the entire ranking list. Hence, although each step is a

locally optimal choice, the final result may not be the best overall

ranking.

• Lack of Holistic Perspective: As the greedy selection is per-

formed step by step, it does not take into account all possible

combinations of documents and their overall effects. This might

result in missing out on document combinations that could pro-

vide broader topic coverage.

• Ignoring Interactions Among Documents: Greedy selection

often does not fully consider the interrelationships among doc-

uments. For instance, some documents might be highly related

in content, and their consecutive appearance might reduce user

satisfaction and the diversity of the results.

• Mismatch BetweenObjective Function and EvaluationMet-
rics: The objective function used in the training of the greedy

selection method may not match the metrics used in the final

evaluation. This inconsistency could lead to optimising for a tar-

get in the training process that does not match the performance

needing evaluation.

• Lack of Flexibility: Greedy selection methods are usually not

flexible; once the ranking order is determined, it is difficult to

adjust. If the selected documents are not optimal, i.e., there is

an error in the ranking compared to the optimal one, then the

documents chosen based on the currently selected documents

will result in cumulative errors.

A.2 Why optimizing an approximation of the
objective function leads to suboptimality.

Methods of optimizing the approximation of the objective func-

tion [45, 48] can often achieve parallel inference (faster than the

serial selection of “greedy selection”), but may result in suboptimal

ranking results due to the following issues:

• Mismatch BetweenObjective Function and EvaluationMet-
rics: There is a mismatch between the optimization objective

used in the training process and the evaluation metrics used in

the final assessment, which may prevent the model from accu-

rately learning to achieve the best diversification effect.

• Low Exploration Efficiency: Such methods are less capable

of exploring different document ranking combinations. When

facedwith the challenge of exploring asmany different document

ranking combinations as possible in a vast combination space, it

leads to an increase in the time complexity of training and makes

it difficult to find the global optimum.

B Diversity Evaluation Metrics
In this section, we introduce three diversity evaluation metrics,

namely 𝛼-NDCG [7], ERR-IA [4] and S-recall [49]. The basic setting

is that there are 𝑛 documents in a query, and each document may

cover 1 to𝑚 subtopics.

B.1 𝛼-𝑁𝐷𝐶𝐺

Firstly, the 𝛼 discounted cumulative gain (𝛼-𝐷𝐶𝐺) is defined as

Equation (16).

𝛼-𝐷𝐶𝐺 =

𝑛∑︁
𝑖=1

𝑚∑︁
𝑙=1

𝑦𝑖𝑙 (1 − 𝛼)𝑐𝑙𝑖
𝑙𝑜𝑔2 (1 + 𝑟𝑖 )

(16)

𝑦𝑖𝑙 = 1means that subtopic 𝑙 is covered by document 𝑖 and𝑦𝑖𝑙 = 0

is the opposite. 𝛼 is a parameter between 0 to 1, which quantifies

the probability of a reader getting the information about a specific

subtopic from a relevant document. 𝑟𝑖 is the ranking position of

document 𝑖 , and 𝑐𝑙𝑖 is the number of times that the subtopic 𝑙 being

covered by the documents on the prior positions to 𝑟𝑖 . Specifically,

𝑐𝑙𝑖 is defined as 𝑐𝑙𝑖 =
∑
𝑗 :𝑟 𝑗 ≤𝑟𝑖 𝑦 𝑗𝑙 .

Then, dividing the 𝛼-𝐷𝐶𝐺 of a given documents list by the

𝛼-𝐷𝐶𝐺𝑖𝑑𝑒𝑎𝑙 of an ideal ranking list yields the normalized 𝛼-𝑁𝐷𝐶𝐺 ,

𝛼-𝑁𝐷𝐶𝐺 =
𝛼-𝐷𝐶𝐺

𝛼-𝐷𝐶𝐺𝑖𝑑𝑒𝑎𝑙
(17)

Themetric of top𝑘 documents in a given list, called𝛼−𝑁𝐷𝐶𝐺@𝑘 ,

is usually used to measure the diversity of the documents list.

B.2 𝐸𝑅𝑅-𝐼𝐴
The 𝐸𝑅𝑅-𝐼𝐴 is defined in Equation (18).

𝐸𝑅𝑅-𝐼𝐴 =

𝑛∑︁
𝑖=1

1

𝑟𝑖

𝑚∑︁
𝑙=1

1

𝑚

©­«
∏
𝑗 :𝑟 𝑗 ≤𝑟𝑖

(1 − 2
𝑦 𝑗𝑙 − 1

2
𝑦𝑚𝑎𝑥
𝑙

)ª®¬ 2
𝑦 𝑗𝑙 − 1

2
𝑦𝑚𝑎𝑥
𝑙

(18)

If 𝑦𝑖𝑙 is a binary label (𝑦𝑖𝑙 = 0 or 1), the Equation (18) can be

rewritten as Equation (19).

𝐸𝑅𝑅-𝐼𝐴 =

𝑛∑︁
𝑖=1

1

𝑟𝑖

𝑚∑︁
𝑙=1

1

𝑚

𝑦𝑖𝑙

2
𝑐𝑙𝑖+1 (19)

Similar to 𝛼-𝑁𝐷𝐶𝐺@𝑘 , 𝐸𝑅𝑅-𝐼𝐴@𝑘 is also often used in practice.

B.3 𝑆-𝑟𝑒𝑐𝑎𝑙𝑙
The 𝑆-𝑟𝑒𝑐𝑎𝑙𝑙 is always defined on top 𝑘 documents of a ranked list,

i.e.,

𝑆-𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 =

���∪𝑘𝑖=1𝑠𝑢𝑏𝑡𝑜𝑝𝑖𝑐𝑠 (𝑑𝑖 )�����∪𝑛
𝑖=1

𝑠𝑢𝑏𝑡𝑜𝑝𝑖𝑐𝑠 (𝑑𝑖 )
�� (20)

Obviously, 𝑆-𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 represents the proportion of subtopics

number recalled in the first top 𝑘 documents to the number of

subtopics contained in the whole document list.
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C The Detail of MHSA
C.1 The structure of MHSA
The MHSA module is an essential component in Transformer [34]

and its variants. Given an input matrix X ∈ R𝑛×𝐿 , where 𝑛 and

𝐿 denote the number of documents in candidiate document set

D and the embedding vector dimension of di. MHSA computes a

weighted sum of all the input tokens for each token. The weight

(also called attention score) between two tokens is calculated using

their similarity.

Specifically, MHSA first linearly projects the input matrix into

query Q, key K, and value V matrices, i.e., Q = XW𝑄 , K = XW𝐾 ,

and V = XW𝑉 , where W𝑄 , W𝐾 , and W𝑉 are learnable weight

matrices with dimensions 𝐿 × 𝑑𝑘 , 𝐿 × 𝑑𝑘 , and 𝐿 × 𝑑𝑣 respectively,

and𝑑𝑘 and𝑑𝑣 are the dimensions of keys/values. Then, the attention

score between each two tokens is computed asAs = softmax(QK
𝑇

√
𝑑𝑘

).
The output of MHSA is O = AsV, with O ∈ R𝑛×𝑑𝑣 .

MHSA further enhances the model capacity by applying the

above process multiple times in parallel, which is called multi-head

mechanism. Suppose there are ℎ heads, the output after multi-head

is O = [O1;O2; · · · ;Oℎ]W𝑂 , where [·] denotes concatenation, and
O𝑖 and W𝑂 are the output of the 𝑖-th head and a learnable weight

matrix with dimensions ℎ · 𝑑𝑣 × 𝑑 , respectively.

C.2 The reason for using MHSA
Why do we employ the MHSA module to obtain ei rather than
using other networks like MLP to compute the cross features of all

documents directly? The main reason is as follows:

According to [22], the ranking model should satisfy the permuta-

tion invariance property which is described as following Definition:

Definition 1 (Permutation Invariance).

The target ranking for a given set is the same regardless of the
order of documents in the set. In other words, no matter how exchange
the positions of 𝑑𝑖 and 𝑑 𝑗 in inputs information, it will not affect the
final ranking result.

A method to construct a ranking model in accordance with Per-

mutation Invariance involves initially attributing scores to the doc-

uments via a permutation equivariant scoring function, followed by

ordering based on these scores. Pang et al. [22] also proved that the

multi-head attention block is permutation equivariant. Therefore,

the MHSA module is used to compute higher-level cross feature

vectors between documents.

D The Introduction of Datasets
We conduct experiments to address above research questions on

two datasets, TREC 2009∼2012 Web Track datasets and DU-DIV

dataset. TREC 2009∼2012 Web Track datasets are publicly avail-

able and Xia et al. [42] first uses them for training and evaluating

diversified search models. Almost all the following works, such

as M
2
Div [11], DALETOR [45], MO4SRD [48], etc., conduct ex-

periments on these datasets. As a widely used test collection for

diversified search, the TREC Web track dataset only contains 198

queries, and previous studies often use Doc2vec [18] to obtain the

document embeddings on this dataset. In this work, to ensure a fair

and meaningful comparison with existing work, we first compare

MA4DIV with existing baselines on the this relatively small dataset.

Then, we further conduct extensive experiments on a new and

larger scale diversity dataset called DU-DIV, which is constructed

based on real user data in industrial search engine. The Figure 4

shows the average number of subtopics of the 15 documents with

ideal ranking permutation in the DU-DIV dataset.

Figure 4: Average number of subtopics across the 15 doc-
uments in the DU-DIV dataset. The abscissa from 1 to 15
represents positions 1 to 15 in the ideal permutation, and the
ordinate is the average of the number of subtopics contained
in the documents of the corresponding position.

More details of these two datasets are shown in Table 6. The

DU-DIV dataset has 4473 queries, far more than the TREC datasets.

The documents in the DU-DIV dataset are the top-15 documents

retrieved by the industrial search engine for each query, which

makes this dataset particularly useful for the diversified ranking

task in which we need to rerank these top documents for diver-

sity. In the TREC web track datasets, each document contains a

maximum of 7 subtopics. In the DU-DIV dataset, we predefined 50

subtopics, such as law, healthcare, education, etc. Each document

corresponds to one or more of the predefined subtopics. Moreover,

while previous studies on the TREC web track dataset often use the

Doc2vec model to represent queries and documents in vector with

𝐿=100 dimensions, the DU-DIV dataset utilizes the more powerful

model BERT [10] to encode queries and documents into vectors

with 𝐿=1024 dimensions.

E Experimental Settings
Considering that TREC datasets contain only 198 queries, this is

prone to overfitting for existing deep learning models. In addition,

the average number of documents related to each query is about

211, but a large number of these documents do not contain any

subtopics. Therefore, we reshape TREC dataset. That is, from each

of the original document lists in TREC (198 lists in total, with an

average of 211 documents per query), we subsample 30 documents

at a time to form a new document list. This process runs multiple

times over a document list associated with the same query, resulting

in a reshaped dataset with a total of 6,232 document lists (198 unique

queries). And it’s crucial to ensure that an appropriate number of the

30 documents sampled contain at least one subtopic. Figure 5 shows
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Table 6: Comparisons of datasets TREC and DU-DIV.

Dataset TREC DU-DIV

Source TREC 2009∼2012 Web Track Real search engine

No. of Queries 198 4473

No. of Documents per Query average 211 docs/query 15 docs/query

No. of Subtopics maximum 7 subtopics/doc total 50 subtopics

Representation Doc2vec [18] BERT [10]

Table 7: Hyperparemeters of MA4DIV on different dataset.

Dataset |A| 𝐿 𝐻 𝑧

TREC 30 1 4 64

DU-DIV 15 1 4 256

the number of documents with subtopics in these 6,232 document

lists. We can see that there are 1,053, 1,717, and 1,980 document

lists with 16 ∼ 20, 21 ∼ 25, 26 ∼ 30 documents containing any

subtopics, and 758 document lists with 1 ∼ 5 documents containing

any subtopics. This means that after our sampling, most document

lists contain a rich number of subtopics, and some document lists

have a small number of subtopics. Overall, this ensures that the

data is comprehensive.

Figure 5: This figure illustrates the relationship between the
quantity of newly sampled document lists and the count of
documents that include any subtopics present in the sampled
list.

We conduct 5-fold cross-validation experiments on the reshaped

TREC dataset with the same subset split based on unique queries

as in [11]. In the DU-DIV dataset, we randomly sample 80% of 4473

unique queries and their associated document lists to the training

set, and the left 20% to the test set.

The code framework of MA4DIV is based on PyMARL2 frame-

work [15], which is a open-source code framework for multi-agent

reinforcement learning. The key hyperparameters of MA4DIV on

two datasets are shown in Table 7. |A| is the dimension of action

space, i.e. the number of discrete scores (1, . . . , |A|). 𝐿, 𝐻 and z

respectively represent the number of MHSA block, attention heads

and attention embedding dimensions of MHSA.

We reproduce the code of DALETOR and MO4SRD, and ensure

that these two algorithms have the same parameter scale of MHSA

structure as our MA4DIV in Table 7, that is, the 𝐿 = 1 and 𝐻 = 4, 𝑧

is 64 and 256 respectively on two datasets.
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