OPENDATABENCH: REAL-WORLD BENCHMARK FOR TABLE INSIGHT GENERATION AND QUESTION ANSWERING OVER OPEN DATA

Anonymous authorsPaper under double-blind review

ABSTRACT

The promise of Large Language Models (LLMs) for data analysis is hindered by benchmarks that inadequately reflect real-world complexities, including multiple large tables and external knowledge. Moreover, they mainly focus on fact retrieval via Question Answering (QA) and overlook the critical task of exploratory insight generation. To address these gaps, we introduce OpenDataBench, a benchmark built from governmental open data capturing these practical challenges. It features two types of tasks: multifaceted Table QA tasks that require answering complex decomposable questions with either text or graphs, and Table Insight tasks that challenge models to generate expert-level findings from exploratory data analysis. We evaluate state-of-the-art LLMs and our proposed agentic solution on OpenDataBench. Our experimental results indicate that even top-performing models struggle with both tasks. This highlights a significant gap between current model capabilities and the demands of realistic data analysis. OpenDataBench serves as a rigorous benchmark for advancing research on LLM-driven data analysis systems capable of addressing both reactive question answering and proactive insight discovery. Code and sample data are available at https://anonymous.4open.science/r/opendatabench-8AFA/.

1 Introduction

The ability to reason over structured data is a cornerstone of modern data science and a long-standing challenge in artificial intelligence. With the advent of Large Language Models (LLMs), we have witnessed a paradigm shift in how humans interact with complex information (OpenAI et al., 2024a; Team et al., 2023; Qwen et al., 2025; DeepSeek-AI et al., 2025). These models have led to the development of sophisticated agents designed to democratize data analysis, promising a future where any user can pose natural language questions to a dataset and receive accurate answers (Hu et al., 2024; Su et al., 2024; Wang et al., 2024). The ultimate vision is an autonomous system that not only retrieves information but also uncovers the knowledge hidden within raw data.

However, a significant gap persists between this vision and reality, as the benchmarks lack real-world complexity. While datasets like WikiTableQuestions (Pasupat & Liang, 2015) and Spider (Yu et al., 2018) propelled research in semantic parsing and text-to-SQL, their controlled environments use small-scale tables. They largely neglect practical challenges such as massive table scales, the need to merge multiple tables, and the essential role of metadata and external knowledge. Beyond these data limitations, existing benchmarks have focused primarily on direct fact retrieval (Wu et al., 2025b; Hu et al., 2024). Tasks like QA and text-to-SQL are about retrieving information in response to a query, while missing the capability of proactive insight discovery that data analysts exhibit. Consequently, this discovery-oriented skill remains largely unevaluated, as few benchmarks have formalized insight generation as a primary task (Sahu et al., 2025; Seo et al., 2025).

To bridge these notable gaps in both data realism and task scope, we introduce *OpenDataBench*, a comprehensive benchmark sourced from public repositories like Data.gov. Our benchmark features two complementary tasks: Table Question Answering (*Table QA*) and Table Insight Generation (*Table Insight*), as illustrated in Figure 1. The Table QA task assesses factual reasoning over decomposable questions that explicitly include multiple sub-questions, requiring models to produce

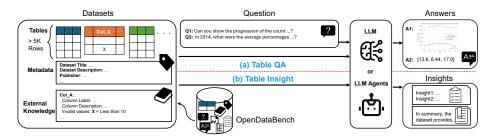


Figure 1: OpenDataBench evaluates LLMs and agents on two table reasoning tasks using large, multi-table datasets supplemented with metadata and external knowledge. (a) The *Table QA* task requires models to answer simple or decomposable questions with textual or visual answers. (b) In contrast, the *Table Insight* task challenges models to perform open-ended exploratory analysis, proactively generating a list of insights and a summary without a specific user query.

answers either in text or in visualizations. In contrast, the Table Insight task challenges models to perform expert-level insight derivation, requiring in-depth analysis and the discovery of trends.

For the Table QA task, we use LLMs, aided by a novel table serialization, to generate a diverse corpus of QA pairs that are then meticulously verified by human annotators. For the Table Insight task, we address the challenge of subjectivity by using the expert-authored reports accompanying datasets as a ground truth. This process yields a benchmark that surpasses existing alternatives by holistically combining the complex Table QA and Table Insight with the diverse data complexities, such as large-scale, multi-tabular datasets that require external knowledge, as detailed in Table 1.

We propose two novel agentic solutions: an *Answer Agent* with fail-safe modules for Table QA, and an *Insight Agent* for Table Insight employing a graph-based exploration process for diverse insight generation. Through comprehensive evaluation, our proposed agents outperform state-of-the-art LLMs and existing agents on both tasks in OpenDataBench. Finally, we provide a detailed qualitative analysis to offer the community clear guidance on key areas for future improvement.

In summary, our paper makes the following four contributions:

- We introduce *OpenDataBench*, featuring tasks for both multifaceted Question Answering and Insight Generation with ground-truths annotated by domain experts. These tasks handle large, multi-tabular, and heterogeneous datasets representing complexity in real-world scenarios.
- We propose two novel agentic solutions: an *Answer Agent* with the task-specific agentic assistance and an *Insight Agent* that uses a graph-based exploration process to generate diverse insights while ensuring correctness by incorporating the Answer Agent.
- Comprehensive evaluation of state-of-the-art models reveals a crucial performance gap, as even top models achieve low accuracy. This underscores the benchmark's difficulty and its alignment with actual challenges.
- We provide a detailed qualitative analysis that categorizes common failure points, offering a clear guide for the community to focus on key areas for model improvement.

2 Overview of OpenDataBench

OpenDataBench is a new benchmark designed to evaluate tabular reasoning in realistic scenarios. The data is derived from governmental open data portals (e.g., Data.gov, Data.gov.uk), which host publicly available datasets from official institutions. Datasets on these portals reflect real-world complexity, consisting of a single or multiple tables containing a large number of records, and rich contextual information. This context is provided through metadata, such as textual descriptions of the dataset, and often supplemented with external knowledge like data dictionaries. The benchmark is designed to evaluate performance on two core data science tasks: Table QA and Table Insight.

Table QA: This task requires models and agents to answer simple or decomposable questions with multiple sub-questions. The answers are provided in text or visualizations.

Table Insight: This task challenges models and agents to perform exploratory analysis, generating substantive insights directly from the tabular data without an explicit user query.

Benchmark	Insight	QA		Dataset Characteristics			S
	"	Decomposable QA	Visualization	Large-table	Multiple Tables	Metadata	External Knowledge
		Existing Benchma	arks for Table Q	uestion and An	swering		
WTQ (Pasupat & Liang, 2015)	X	X	Х	X	Х	Х	Х
OTT-QA (Chen et al., 2021)	X	X	X	X	✓	✓	✓
FeTaQA (Nan et al., 2022)	X	X	X	X	X	✓	×
TableBench (Wu et al., 2025b)	X	X	✓	×	X	×	X
MMQA (Wu et al., 2025a)	X	×	×	x	✓	×	×
		Existing Bench	ımarks for Table	Insight Genera	ation		
InsightBench (Sahu et al., 2025)	· /	X	Х	X	√	×	Х
MT-RAIG (Seo et al., 2025)	/	×	×	×	✓	✓	X
OpenDataBench	/	✓	1	/	✓	✓	✓

Table 1: Comparison of existing Table QA and Table Insight benchmarks with respect to task coverage and dataset characteristics.

2.1 BENCHMARK CONSTRUCTION

The construction of OpenDataBench involved a three-stage process as shown in Figure 2: 1) curating datasets from open data portals through a systematic filtering process, 2) annotating QA pairs via a human-in-the-loop, and 3) compiling ground-truth insights by leveraging professional reports.

2.1.1 Data Curation

Given the vast and decentralized nature of open data available online, a systematic collection and filtering process was imperative. Our process began by identifying 53 open data platforms with English as the primary language (a complete list is provided in the Table 5). We downloaded all available datasets from these platforms and then applied a series of filtering criteria including at least one of the tabular files covering over 5,000 records and metadata with description to understand the context of the dataset. A more detailed filtering procedure is outlined in the Appendix B.1.2.

2.1.2 Annotation of Question and Answer Pairs

To construct a high-quality, complex, and challenging set of QA pairs at scale while mitigating the need for resource-intensive manual annotation, we designed a four-stage generation pipeline that leverages LLMs with human-in-the-loop verification. Inspired by prior work (Wu et al., 2025b), this approach ensures both diversity and correctness. The procedure is detailed below.

- 1. Question Generation: The initial stage focused on generating a diverse pool of candidate questions. To guide the output of the LLM, we first defined a set of question types as presented in Appendix B.2.1. These types encompassed not only simple queries but also complex decomposable questions. The prompt contains the table contents, the title and description of the dataset from the metadata, external knowledge when available, and the designated question type. Generating diverse and meaningful questions with LLMs requires providing them with a representative view of the table contents and value distributions. While prior works mainly focus on smaller datasets such that the entire table or the first several rows could be embedded into the prompt (Wu et al., 2025b), we cannot apply similar approaches to tables with millions of records in our benchmark as it exceeds the limits of LLM context window. To address this challenge, we propose a technique called Feature type-specific table serialization, which creates a compact yet informative summary of a table by representing each column according to its data type. For instance, instead of listing all values in a categorical column, we provide only the set of unique categories. This serialization is a core component of our workflow, and a detailed description of the logic for various feature types is presented in Appendix B.2.2. To mitigate model-specific biases in the generated questions, we employed an ensemble of four high-performance LLMs: GPT-40, GPT-40-mini (OpenAI et al., 2024b), Gemini 2.0 Flash (DeepMind, 2024), and Gemini 1.5 Pro (Team & et al, 2024).
- 2. Question Scoring: Following generation, the candidate questions underwent an automated scoring and selection phase. Each question was evaluated against four qualitative criteria: relevance to the dataset, its potential to yield insightful or actionable information, sufficient analytical complexity with novelty, and clarity expressed in natural language. In an approach to quality filtering, we tasked each of the four aforementioned LLMs with acting as a judge, selecting its top-5 preferred questions from the generated pool based on the above criteria for each dataset. A score from 5 (highest) to 1 (lowest) was assigned to these selections. The scores from all four models

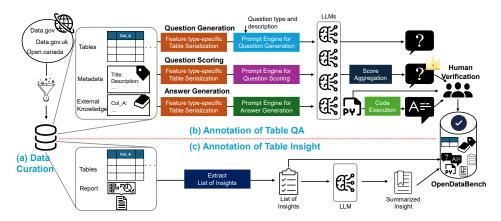


Figure 2: Overview of the three-stage construction process of OpenDataBench were then aggregated for each question, resulting in a maximum possible score of 20. Based on this aggregated score, we selected the top-10 questions to proceed to the next stage.

- 3. **Answer Generation**: For each of the top-10 questions per dataset, an LLM was prompted to generate Python code that produces the correct answer. After executing the code from all four models, we measured the answer consensus to filter out questions that yielded unanimous agreement across all four LLMs. Such instances were deemed to indicate a low level of analytical complexity, making them unsuitable for a benchmark to challenge state-of-the-art models.
- 4. **Human Verification**: The remaining candidate QA pairs were subjected to a human verification and refinement process. Using a custom-developed annotation GUI as shown in Figure 7, human annotators with expertise in data analysis reviewed each component. Their tasks included: (1) revising the natural language question for clarity and precision; (2) validating, debugging, and refining the Python code for correctness and efficiency; and (3) verifying the final answer derived from the code. During this stage, annotators also filtered out questions for qualitative reasons, such as not being insightful, being too ambiguous to permit a definitive answer, or requiring external knowledge that was unavailable. This human-in-the-loop process yielded a curated set of 211 high-quality QA pairs with 178 datasets. Furthermore, all the questions were rephrased by separating the output format (e.g. bar chart, list of tuples) from the question, enhancing the naturalness, and paraphrasing the column names mentioned in the questions. As a final quality control measure, a second group of annotators with much experience in data science, who were not involved in the initial revision phase, performed a concluding review by using the different annotation GUI as presented in Figure 8. This step was designed to validate the quality and logical soundness of the final QA pairs, with a particular focus on ensuring the Python code was robust and accurately addressed the corresponding question.

2.1.3 Annotation of Insight

Establishing a ground truth for insight generation is inherently more complex than for question answering. The subjective nature of what constitutes a meaningful finding makes achieving consensus difficult, posing a significant challenge for both automated generation and evaluation. To address this limitation, we adopted official reports that accompany the open datasets. These human-authored documents contain the key findings and conclusions originally derived by specialists. Our process involved curating six datasets (Table 7) that included such reports. We then systematically extracted the principal findings from each document, synthesized them into a standardized set of declarative sentences, and converted the set of sentences into a summary via Gemini 2.5 Flash (Comanici & et al, 2025). The set of insights and the summary together form the ground-truth corpus for our insight generation task.

2.2 BENCHMARK STATISTICS

Dataset Statistics: A statistical overview of the datasets in OpenDataBench is presented in Table 2. The benchmark comprises 178 unique datasets, featuring tables with an average of approximately 210K rows and 18 columns. The scale of the data is substantial, with the largest table containing

Figure 3: Distributions of (a) number of tables per dataset, (b) format of external knowledge, and (c) number of sub-questions

up to 11.9M rows and 213 columns that exceed those found in most existing table QA benchmarks. The distribution of original open data websites is presented in Table 6. Figure 3 (a) illustrates the distribution of tables per dataset; notably, over 36% of the datasets are multi-tabular, with five tables as the most frequent configuration. Furthermore, as shown in Figure 3 (b), over 57% of the datasets are accompanied by external knowledge to aid data interpretation, provided in various formats (e.g. PDF, XLSX). These characteristics—including large, multi-table schemas and the integration of external knowledge—underscore the alignment with realistic data analysis scenarios.

Task Statistics: Table 2 provides a statistical summary of tasks in the benchmark. The Table QA task includes 211 question sets, which are categorized into 95 simple questions and 116 decomposable questions. When these decomposable questions are broken down into their constituent parts, the benchmark contains a total of 414 individual questions. The distribution of subquestions per question set is detailed in Figure 3 (c), which shows that over 55% of all question sets include multiple sub-questions. For the Table Insight task, a curated subset of six datasets, each accompanied by a report from domain experts, is designated for insight generation evaluation.

Table 2: Statistics of datasets & tasks

Properties	Value
#Datasets	178
#Average Rows #Max Rows	210K 11.9M
#Average Columns	11.9M 18.4
#Max Columns	213
#Datasets for Table QA	173
#Datasets for Table Insight	6
#Simple Questions	95
#Decomposable Questions	116
#Individual Questions	414

3 EXPERIMENTAL SETUP

Our benchmark evaluates performance on two distinct tasks: *Table QA* and *Table Insight*. For Table QA, models receive a user question that specifies the desired output format (text or visualization). In decomposable questions, the preceding conversational history is also provided. The goal is to produce a precise textual or visual answer. The Table Insight task challenges models to generate a list of findings and a summary directly from the given files. Implementation details, including model configurations, hyperparameters, and settings for fair comparison are available in Appendix C.1.

3.1 EVALUATION COMPARISONS FOR TABLE QA

We evaluate a range of baselines, from general-purpose LLMs to specialized agents.

LLM: We evaluate a diverse set of LLMs to investigate the capability of table reasoning. We selected open-source models from several categories: general-purpose (Llama 3.1 (Grattafiori et al., 2024), DeepSeek-R1 (DeepSeek-AI et al., 2025), and Qwen3 (Yang et al., 2025)), code generation-specific (Devstral (MistralAI, accessed July 10, 2025) and Qwen3-Coder (Qwen, accessed July 22, 2025)), and table-specific (TableGPT2 (Su et al., 2024)). We also include high-performance closed-source models, namely GPT-40 (OpenAI et al., 2024b) and Gemini-2.5 Flash (Comanici & et al., 2025).

Answer Agent (Ours): We propose the Answer Agent, designed to robustly generate Python code for answering questions. The agent is composed of the following components shown in Figure 4 (a).

• Feature type-specific table serialization: This module first processes the raw tables using the table serialization based on feature types as detailed in Appendix B.2.2. The resulting structured, textual representation of the data is then utilized as input for the subsequent modules.

Figure 4: Architecture of (a) Answer Agent and (b) Insight Agent

- Coding: With the serialized table, metadata, external knowledge, and the input question, this module generates Python code to produce an answer. It incorporates a self-correction mechanism: if code execution fails, a subsequent LLM is called to revise the code based on the error message.
- Reflection: This module addresses cases where successfully executed code produces semantically incorrect outputs (e.g., a visualization with no data points or calculation resulting in NaN). A Vision-Language Model (VLM) or Multimodal Large Language Model (MLLM) is employed to analyze visual outputs, while an LLM analyzes text-based results. If an issue is detected, the module triggers a revision loop to refine the code logic.

We also performed preliminary experiments with the specialized table agents as baselines, including InfiAgent-DABench (Hu et al., 2024) and tablegpt-agent (Su et al., 2024); however, their performance on our benchmark was near-zero due to the complexity of our benchmark, so they were excluded from the final comparison.

3.2 EVALUATION COMPARISONS FOR TABLE INSIGHT

For the Table Insight task, we evaluate the following baseline agents. We employ only closed-source LLMs in these agents, given the relatively low performance of open-source models on Table QA.

AgentPoirot (Sahu et al., 2025): This agent is designed for goal-oriented insight generation. It operates by first extracting the data schema and then generating a set of high-level questions. For each question, it generates an answer, interprets it, and recursively poses follow-up questions to dive deeper, and finally summarizes the obtained insights. This process follows a tree-like exploration structure (Figure 9 (a)), where each branch represents a deep dive into a specific analytical path.

Insight Agent (Ours): We propose the Insight Agent shown in Figure 4 (b), a novel framework that iteratively generates questions, produces answers, and derive insights. The agent begins by generating high-level questions, which are then processed by our Answer Agent to obtain correct answers. Insights are subsequently synthesized from multiple QA pairs. These initial insights then seed the generation of new follow-up questions by combining multiple insights, continuing the cycle, ending by the summarization. Unlike AgentPoirot's tree-structured approach, the Insight Agent employs a directed acyclic graph (DAG)-based approach as explained in Figure 9 (b), as the generation of new questions and insights selects and aggregates the context from all previously generated information instead of single insight or QA pair in the previous depth, as explained in Appendix C.2.

3.3 EVALUATION METRICS

To assess the performance of agents and LLMs on our benchmark, we compare their outputs against the ground-truth references. Distinct evaluation protocols are employed for Table QA and Table Insight tasks.

Table QA: The QA task is evaluated on accuracy under two settings: *Whole*, where all sub-questions in a decomposable question must be correct, and *Individual*, which measures sub-question-level accuracy. Correctness is determined by the modality of the answer. Text-based answers are judged by Exact Match (EM). Visualizations are evaluated using an MLLM-as-a-judge protocol, where four MLLMs (GPT-4o, GPT-4o-mini, Gemini 2.5 Flash, and Gemini 2.5 Pro (Comanici & et al, 2025)) assess the semantic equivalence between the predicted and ground-truth outputs. The judges are provided both the rendered images and their source code, and a prediction is deemed correct upon a majority consensus, requiring positive assessments from at least three of the four models.

Table Insight: To evaluate the quality of generated insights, we adopt the methodology from Insight-Bench (Sahu et al., 2025) computing LLaMA-3-Eval scores. We employ GPT-40 as the evaluator that is close to the original G-Eval method (Liu et al., 2023). The evaluation is conducted at two levels of granularity:

• Summary-level G-Eval: This metric assesses the holistic quality of the entire set of generated insights by comparing it against the complete ground-truth summary.

 • Insight-level G-Eval: This metric provides a more fine-grained analysis. It measures the semantic alignment between each individual ground-truth insight and the most relevant insight from the predicted set, with the final score being the average of these individual comparisons.

4 EVALUATION RESULTS

4.1 QUANTITATIVE EVALUATION RESULTS

The main results for the Table QA and Table Insight tasks are presented in Table 3, where *w/o Answer Agent* means that the LLM is executed once based on the first 10 rows of the tables instead of the specific serialization. For the Table QA task, our Answer Agent consistently outperforms the base LLMs. With Gemini 2.5 Flash, for instance, it achieves relative improvements of approximately 27% in the Whole setting and 25% in the Individual setting. This suggests that a structured agentic framework is crucial, as standalone LLM reasoning is insufficient for such complex tasks. Despite these gains, the top absolute score in the Whole setting remains below 0.4, highlighting the difficulty of the benchmark. Among the open-source models, Qwen3-30B achieves the highest score in the Whole setting, while Devstral-small performs best in the Individual setting. However, their performance still lags behind that of the closed-source models. Notably, TableGPT2-7B, a model specialized for tabular data, scores below 0.1 even when paired with our Answer Agent.

In the Table Insight task, our Insight Agent outperforms the AgentPoirot baseline, achieving relative improvements of 11% (insight-level) and 13% (summary-level) with Gemini 2.5 Flash. This superiority holds at the dataset level (Table 9), where our agent wins on a majority of datasets for both insight-level (5 out of 6) and summary-level (4 out of 6) scores. However, the absolute scores remain low even with the top-performing model, indicating substantial challenges remain in automated insight generation.

4.2 QUALITATIVE ANALYSIS

4.2.1 ERROR ANALYSIS OF TABLE QA

We conducted an error analysis on the incorrect answers (the Individual setting) from Gemini 2.5 Flash with Answer Agent, with the results categorized in Figure 5.

The most prevalent issue, Condition Filter Error (32.4%), occurs when the model fails to apply implicit conditions not explicitly stated in the question. A common example involves datasets with aggregated and disaggregated data (e.g., population counts for 'male',

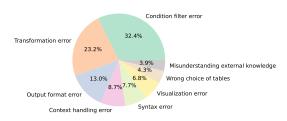


Figure 5: Error distribution with Answer Agent

'female', and 'total'); models often fail to apply appropriate filters to avoid double-counting, leading to incorrect calculations. The second most frequent category is **Transformation Error** (23.2%), which involves failures in data wrangling and type conversion. Common mistakes include parsing-related failures various datetime formats (e.g. day-first format) by using pandas.to_datetime method or neglecting to convert numerical strings (e.g., "1,234,567") into integer or float types. To mitigate these errors, the more comprehensive yet efficient view of tables (e.g. exploratory data analysis results) is required in addition to the feature type-based representations for future work.

Errors also arise from the inherent complexity of the tasks. Context Handling Errors (8.7%) occur in decomposable questions where the model incorrectly uses the output from a flawed previous turn

LLM	I	Tabl	e QA			Table	Insight	
	w/o An	swer Agent	w/ Ans	wer Agent	Age	ntPoirot	Insig	ht Agent
	Whole	Individual	Whole	Individual	Insight	Summary	Insight	Summary
			Closed-s	ource LLMs				
Gemini 2.5 Flash	0.310	0.401	0.393	0.502	0.283	0.359	0.315	0.405
GPT-4o	0.242	0.333	0.270	0.391	0.292	0.345	0.319	0.399
	Open-source LLMs							
Qwen3-30B	0.134	0.216	0.199	0.309				
Qwen3-Coder-30B	0.123	0.191	0.186	0.280				
Devstral-Small	0.152	0.221	0.186	0.316				
DeepSeek-R1-14B	0.038	0.061	0.095	0.140				
Llama3.1-8B	0.019	0.017	0.019	0.034				
TableGPT2-7B	0.057	0.088	0.066	0.109				

Table 3: Main results of Table QA and Table Insight with LLMs and specific agents. w/o Answer Agent is without the agentic support.

though the generated logic is correct in most cases. **Visualization Errors** (6.8%) typically involve incorrect axis ranges, such as a timeline that does not match the period specified in the question. Finally, the complexity of the benchmark's data structure leads to specific errors. These include **Wrong Choice of Tables** (4.3%) in multi-table scenarios. This error occurs when the generated code fails to select the correct table from a multi-table dataset based on information provided in the metadata. For example, a dataset may contain separate tables for annual statistics, with the year covered by each table specified only in the metadata. An error arises if a question pertains to a specific year, but the model fails to refer to the metadata and consequently queries the wrong table. **Misunderstanding External Knowledge** (3.9%), where the model fails to correctly apply information from provided data dictionaries to interpret the data.

4.2.2 FINE-GRAINED ANALYSIS OF TABLE INSIGHT

While the G-Eval score provides a single value to measure the alignment between predicted and target insights, we conduct a more fine-grained analysis to understand specific model capabilities. We decompose the evaluation into four distinct perspectives: **Topic Relevance** (*Does the predicted insight address the same topic as the target?*), **Narrative Alignment** (*Does the prediction make the same core argument or conclusion as the target?*), **Qualitative Details Match** (*Does the prediction mention the same specific names or entities as the target?*), and **Quantitative Details Match** (*Does the prediction mention the same specific quantitative values as the target?*). For each of the 280 pairs ¹, we prompted GPT-40 to score the prediction on each perspective using a 1–5 scale. The score distributions for both Insight Agent and AgentPoirot are presented in Figure 6.

The results show that both agents perform relatively well on Topic Relevance, the highest-level criterion. However, for Qualitative Details Match and Narrative Alignment, both agents struggle to achieve high scores, though our Insight Agent outperforms AgentPoirot in these scores. This indicates our agent is more capable of drawing correct conclusions and referencing specific entities, a finding supported by the qualitative examples in Table 11. Finally, both agents fail on Quantitative Details Match, with none of the predicted insights scoring 3 or higher. This highlights an essential area for future work: improving the ability of agents to accurately calculate and present specific numerical values in their generated insights.

4.3 ABLATION STUDY

To assess the contribution of each Answer Agent module, we conducted an ablation study against a naive baseline using the first 10 table rows (Table 4). We incrementally added the proposed serialization and the Reflection mod-

Table 4: Ablation Study of Answer Agent

Settings	Gemini 2.5 Flash	GPT-40
Baseline	0.310	0.242
+ Serialization	0.360	0.257
+ Serialization + Reflection	0.379	0.267
+ Serialization + Reflection + Self-correction (Answer Agent)	0.393	0.270

ule, evaluating each setting on the Table QA task (Whole setting). The results show stepwise perfor-

 $^{^{1}5}$ executions \times 56 GT insights (10 per 5 datasets, 6 for 1 dataset)

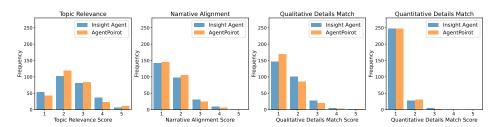


Figure 6: Comparison of insight perspective distributions between Insight Agent and AgentPoirot. mance improvements: the proposed serialization ensures correct table values, avoiding the baseline's guessed values, while the Reflection module captures implicit conditions ignored by the baseline.

5 RELATED WORKS

Benchmarks for Table Question and Answering. Research in table-based question answering has been largely driven by a series of influential benchmarks. Early work such as WikiTableQuestions (Pasupat & Liang, 2015) established the task of answering natural language questions over Wikipedia tables. While foundational, this benchmark is limited to single tables and relatively simple questions. Although benchmarks like HybridQA (Chen et al., 2020), FeTaQA (Nan et al., 2022), and OTT-QA (Chen et al., 2021) introduced tasks requiring more complicated reasoning, they still focus on small-scale Wikipedia tables. The subsequent development of text-to-SQL benchmarks marked a significant leap in complexity. Spider (Yu et al., 2018) and BIRD (Li et al., 2023) became the standards requiring models to generate complex SQL queries. More recently, developments in LLMs have enabled models to generate coherent Python code, leading to the construction of benchmarks that assess data analysis capabilities (Wu et al., 2025b; Hu et al., 2024). While these benchmarks were instrumental in advancing table reasoning capabilities, they do not comprehensively capture the challenges of real-world data analysis. The datasets are typically well-structured and moderate in scale. They often lack key practical characteristics, such as rich metadata and supplementary external knowledge. Furthermore, many do not address the large multi-tabular datasets. OpenDataBench comprehensively targets these limitations by incorporating all of these features: large tables, multi-table schemas, metadata, and extenral knowledge.

Benchmarks for Table Insight Generation. Automated insight generation is a nascent and challenging area to benchmark, as the subjective nature of an "insight" complicates objective evaluation (Zhang & Elhamod, 2025; Majumder et al., 2024). Recent work like InsightBench (Sahu et al., 2025) has advanced this area by using LLM-based evaluation to score findings from table data with small variations (ServiceNow tables). However, this approach has limitations: its underlying datasets lack the diversity and actual scale of public data, and its proposed agent, AgentPoirot, employs a tree-based exploration without the reflection component, which can constrain the diversity and correctness of its findings. In contrast, OpenDataBench provides a benchmark with diverse and large-scale tables. Furthermore, our proposed agent architecture is explicitly designed to improve correctness and diversity through integrated verification modules and a more flexible DAG-based exploration process.

6 Conclusion

To address the critical lack of realism in existing benchmarks, we introduced *OpenDataBench*, a new benchmark built from open data. It features large, multi-tabular datasets, and incorporates external knowledge, and formalizes two key tasks: complex Question Answering (with decomposable questions and visualizations) and a novel Insight Generation task grounded in reports by domain specialists. Our extensive evaluation reveals that even state-of-the-art models struggle with low QA accuracy. While our proposed *Answer Agent* and *Insight Agent* improve upon baselines, their performance still highlights the difficulty of these tasks. A detailed qualitative analysis provides a clear roadmap for future research. Future efforts should focus on both addressing these identified issues and efficiently scaling the benchmark's size to ensure more robust evaluations. We believe Open-DataBench will serve as a catalyst steering research toward building more robust agents capable of handling real-world data complexities.

REPRODUCIBILITY STATEMENT

We provide code, sampled datasets, and software dependencies in the anonymous GitHub repository. Implementation details (infrastructure, hyperparameters, LLM models, and fair-comparison settings) and evaluation protocols are described in Section 3, Appendix C.1 and source codes. Prompts for benchmark construction and agents are provided in Appendix E. The benchmark construction procedure and list of data sources are given in Section 2.1 and Appendix B.

REFERENCES

486

487 488

489

490

491

492

493 494

495

496

497

498 499

500

501

502

504

505

506 507

508

509

510

511

512

513 514

515

516

517

519

521

522

523

524

525

526

527

528

529

530

531

532

534

536

538

- Lei Chen, Xuanle Zhao, Zhixiong Zeng, Jing Huang, Yufeng Zhong, and Lin Ma. Chart-r1: Chain-of-thought supervision and reinforcement for advanced chart reasoner, 2025. URL https://arxiv.org/abs/2507.15509.
- Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong, Hong Wang, and William Yang Wang. HybridQA: A dataset of multi-hop question answering over tabular and textual data. In *Findings of the Association for Computational Linguistics: EMNLP 2020*, pp. 1026–1036, 2020. URL https://aclanthology.org/2020.findings-emnlp.91/.
- Wenhu Chen, Ming-Wei Chang, Eva Schlinger, William Yang Wang, and William W. Cohen. Open question answering over tables and text. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=MmCRswl1UYl.
- Gheorghe Comanici and et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multi-modality, long context, and next generation agentic capabilities, 2025. URL https://arxiv.org/abs/2507.06261.
- Google DeepMind. Introducing gemini 2.0: our new ai model for the agentic era. Blog Post, December 2024. URL https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/. Accessed: May 30, 2025.
- DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

541

542

543 544

546

547

548

549

550

551

552

553

554

558

559

561

562

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

588

592

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,

595

596

597

598

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626 627

628

629

630 631

632

633

634

635

636

637

638

639

640

641 642

644

645

646

647

Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli Ma, Guoyin Wang, Xuwu Wang, Jing Su, Jingjing Xu, Ming Zhu, Yao Cheng, Jianbo Yuan, Jiwei Li, Kun Kuang, Yang Yang, Hongxia Yang, and Fei Wu. Infiagent-dabench: evaluating agents on data analysis tasks. In *Proceedings of the 41st International Conference on Machine Learning*, 2024.

Jinyang Li, Binyuan Hui, GE QU, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin Chang, Fei Huang, Reynold Cheng, and Yongbin Li. Can LLM already serve as a database interface? a BIg bench for large-scale database grounded text-to-SQLs. In *Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2023. URL https://openreview.net/forum?id=dI4wzAE6uV.

Lei Liu, So Hasegawa, Shailaja Keyur Sampat, Maria Xenochristou, Wei-Peng Chen, Takashi Kato, Taisei Kakibuchi, and Tatsuya Asai. Autodw: Automatic data wrangling leveraging large language models. In *Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering*, pp. 2041–2052, 2024.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: NLG evaluation using gpt-4 with better human alignment. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 2511–2522, 2023. URL https://aclanthology.org/2023.emnlp-main.153/.

Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi Mishra, Abhijeetsingh Meena, Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark.

649

650

651 652

653

654

655

656

657

658

659

661

662

663

667

668

669

670

671

672

673

674

675

676

677

679

680

684

685

686

687

688

689

690

691

692

693

696

697

699

Discoverybench: Towards data-driven discovery with large language models, 2024. URL https://arxiv.org/abs/2407.01725.

Mistral AI, accessed July 10, 2025. URL https://mistral.ai/news/devstral-2507.

Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victoria Lin, Neha Verma, Rui Zhang, Wojciech Kryściński, Hailey Schoelkopf, Riley Kong, Xiangru Tang, Mutethia Mutuma, Ben Rosand, Isabel Trindade, Renusree Bandaru, Jacob Cunningham, Caiming Xiong, Dragomir Radev, and Dragomir Radev. FeTaQA: Free-form table question answering. *Transactions of the Association for Computational Linguistics*, 10:35–49, 2022. URL https://aclanthology.org/2022.tacl-1.3/.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O'Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024a. URL https://arxiv.org/abs/2303.08774.

703

704

705

706

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

OpenAI, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian, Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo Lugaresi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim, Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler, Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki, Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay, Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow, Eric Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Khorasani, Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel Goh, Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming Bao, Haitang Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun, Hendrik Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won Chung, Ian Kivlichan, Ian O'Connell, Ian O'Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James Lennon, Jamie Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beutler, Joe Landers, Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay, Jonathan Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang, Justyn Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren Workman, Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian Weng, Lindsay McCallum, Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kondraciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall, Marvin Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya Shetty, Mayank Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong, Mia Glaese, Mianna Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael Wu, Michael Wang, Michelle Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Temudo de Castro, Mikhail Pavlov, Miles Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho Soto, Natalia Gimelshein, Natalie Cone, Natalie Staudacher, Natalie Summers, Natan LaFontaine, Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen Campbell-Moore, Patrick Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan, Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi, Xia,

Sonia Phene, Spencer Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan, Thomas Cunninghman, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas Shadwell, Tianhao Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra, Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury Malkov. Gpt-4o system card, 2024b. URL https://arxiv.org/abs/2410,21276.

- Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables. In *Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 1470–1480, 2015. URL https://aclanthology.org/P15-1142/.
- Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
- Gaurav Sahu, Abhay Puri, Juan A. Rodriguez, Amirhossein Abaskohi, Mohammad Chegini, Alexandre Drouin, Perouz Taslakian, Valentina Zantedeschi, Alexandre Lacoste, David Vázquez, Nicolas Chapados, Christopher Pal, Sai Rajeswar, and Issam H. Laradji. Insightbench: Evaluating business analytics agents through multi-step insight generation. In *ICLR*, 2025. URL https://openreview.net/forum?id=ZGqd0cbBvm.
- Kwangwook Seo, Donguk Kwon, and Dongha Lee. MT-RAIG: Novel benchmark and evaluation framework for retrieval-augmented insight generation over multiple tables. In *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 23142–23172, 2025. URL https://aclanthology.org/2025.acl-long.1128/.
- Aofeng Su, Aowen Wang, Chao Ye, Chen Zhou, Ga Zhang, Gang Chen, Guangcheng Zhu, Haobo Wang, Haokai Xu, Hao Chen, Haoze Li, Haoxuan Lan, Jiaming Tian, Jing Yuan, Junbo Zhao, Junlin Zhou, Kaizhe Shou, Liangyu Zha, Lin Long, Liyao Li, Pengzuo Wu, Qi Zhang, Qingyi Huang, Saisai Yang, Tao Zhang, Wentao Ye, Wufang Zhu, Xiaomeng Hu, Xijun Gu, Xinjie Sun, Xiang Li, Yuhang Yang, and Zhiqing Xiao. Tablegpt2: A large multimodal model with tabular data integration, 2024. URL https://arxiv.org/abs/2411.02059.
- Gemini Team and et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context, 2024. URL https://arxiv.org/abs/2403.05530.
- Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
- Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin Eisenschlos, Vincent Perot, Zifeng Wang, Lesly Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee, and Tomas Pfister. Chain-of-table: Evolving tables in the reasoning chain for table understanding. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=4L0xnS4GQM.
- Wes McKinney. Data Structures for Statistical Computing in Python. In *Proceedings of the 9th Python in Science Conference*, pp. 56 61, 2010.
- Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick

 von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface's transformers: State-of-the-art natural language processing, 2020. URL https://arxiv.org/abs/1910.03771.

- Jian Wu, Linyi Yang, Dongyuan Li, Yuliang Ji, Manabu Okumura, and Yue Zhang. MMQA: Evaluating LLMs with multi-table multi-hop complex questions. In *The Thirteenth International Conference on Learning Representations*, 2025a. URL https://openreview.net/forum?id=GGlpykXDCa.
- Xianjie Wu, Jian Yang, Linzheng Chai, Ge Zhang, Jiaheng Liu, Xeron Du, Di Liang, Daixin Shu, Xianfu Cheng, Tianzhen Sun, et al. Tablebench: A comprehensive and complex benchmark for table question answering. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 25497–25506, 2025b.
- An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.
- Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 3911–3921, 2018. URL https://aclanthology.org/D18-1425/.
- Ran Zhang and Mohannad Elhamod. Data-to-dashboard: Multi-agent llm framework for insightful visualization in enterprise analytics, 2025. URL https://arxiv.org/abs/2505.23695.

A USE OF LARGE LANGUAGE MODELS

We used Large Language Model (LLM) for the grammar correction and the words refinement to enhance the quality of the paper.

B BENCHMARK CONSTRUCTION

The complete benchmark will be publicly released with the camera-ready version.

B.1 DATA CURATION

B.1.1 DATA COLLECTION

Table 5 lists 53 websites, from which we downloaded all datasets along with their metadata via APIs (e.g., CKAN API ²).

B.1.2 DATA FILTERING

All downloaded datasets were subjected to a rigorous filtering and curation process to select those most suitable for real-world data analytics tasks. This process involved three main stages: dataset filtering, external knowledge identification, and metadata standardization. First, data filtering is conducted based on the following conditions:

- The dataset had to contain at least one CSV file that was correctly formatted and readable by the pandas.read_csv method. Files that were HTML or XML in content despite having a .csv suffix were excluded.
- At least one CSV file within the dataset was required to have more than 5,000 rows. Additionally, tables with five or more blankc columns were discarded.
- Each dataset needed to be accompanied by a textual description. The license was also required to permit redistribution; for datasets from Data.gov where the license was often unspecified in the metadata, we performed manual verification on the source webpage.
- ArcGIS-based datasets, which are primarily geospatial, were excluded from our analysis.

Following the filtering stage, we systematically searched for external knowledge (e.g., data dictionaries) within each dataset using a set of heuristic rules:

- First, an automated search was performed for files with names containing "data dictionary" or "datadictionary".
- Next, a platform-specific rule was applied for Data.gov datasets. We observed that when a JSON
 file is provided alongside CSV, XML, and RDF files, it often contains column-level descriptions.
 In such cases, the JSON file was designated as external knowledge.
- If these automated heuristics failed, we performed a manual inspection of the dataset's contents to locate any other supplementary documentation that could serve as a data dictionary.

Finally, the original metadata for each curated dataset was processed and standardized. This step created a concise metadata format specific to our benchmark by removing redundant or irrelevant information from the source. The following is an example of the specific metadata from *Indiana Arrest Data* of *Indiana Data Hub*.

Converted Metadata

```
"identifier": "d39f6598-efbb-40a7-a694-6a9b8d2dc2dc"
"dataset_title": "INDIANA ARREST DATA"
```

https://github.com/ckan/ckanapi

```
918
       "dataset_description": "This dataset is the underlying data of the
919
          Indiana Arrests Dashboard which displays counts of individuals
920
          arrested, arrests, charges by offense category, dispositions, country
921
           and time period in Indiana beginning in 2008 through the present
          year. \r\n\r\nArrest data comes from the Criminal History Repository
922
          System (CHRIS). Data feeding into the CHRIS system comes from three
923
          main sources. Arrest data comes from the LiveScan system, which is
924
          used for fingerprinting and capturing other pertinent information at
925
          the time of the arrest. Criminal disposition data are maintained by
          prosecutors in ProsLink system, and by the courts in the Odyssey
          system. \r\n\r\nData Notes:\r\n\r\n1. Arrest data are sent to ISP
927
          soon after the arrest occurs, but disposition data have a lag of
928
          approximately seven months as the case makes its way through the
929
          legal system. \r\n\r\n2. Text descriptions of the original offenses
930
          are provided by the arresting officer when the offender is arrested.
          Later, the prosecutor's office or court provides a text description
931
          of the filed offense, along with the Indiana Code title, article,
932
          chapter, and section (e.g.35-48-4-6). The filed offense may be
933
          amended later. \r\n\r\n3. Arrest County is determined by the location
934
           of the booking agency. If the booking agency is missing, then the
935
          arresting agency is used. \r\n\r\n4. The count of individuals/arrests
936
          /charges by offense category can add up to more than the grand total
          because one individual/arrest/charge can fall into multiple
937
          categories (e.g. DUI is counted in the \"Drug\" and \"Traffic\"
938
          categories. \r \n \ Arrest categories and subcategories are
939
          determined based on keywords found in a free text description of the
940
          offense. About 7% of offenses have a description that has not yet
          been categorized."
941
       "publisher": "Indiana State Police"
942
       "landingPage": "Indiana State Police"
943
       "license": "Creative Commons Attribution"
944
       "distribution": [{"file_name": "data9.csv",
945
                    "file_title": "ARREST DATA 2022 Q3",
                    "file_description": null,
946
                    "downloadURL": "https://hub.mph.in.gov/dataset/d39f6598-efbb
947
                        -40a7-a694-6a9b8d2dc2dc/resource/00cd698d-e26b-458a-861b
948
                        -4c355b77ab20/download/isp_arrest_data_2022_q3.csv",
949
                    "accessURL": "https://hub.mph.in.gov/dataset/d39f6598-efbb
950
                        -40a7-a694-6a9b8d2dc2dc/resource/00cd698d-e26b-458a-861b
                        -4c355b77ab20/download/isp_arrest_data_2022_q3.csv"},
951
                    {"file_name": "data37.csv",
952
                    "file_title": "ARREST DATA 2015 Q3",
953
                    "file_description": null,
954
                    "downloadURL": "https://hub.mph.in.gov/dataset/d39f6598-efbb
955
                        -40a7-a694-6a9b8d2dc2dc/resource/8b2b54fe-363a-46f7-9c3b
                        -197cce01616f/download/isp_arrest_data_2015_q3.csv",
956
                    "accessURL": "https://hub.mph.in.gov/dataset/d39f6598-efbb
957
                        -40a7-a694-6a9b8d2dc2dc/resource/8b2b54fe-363a-46f7-9c3b
958
                        -197cce01616f/download/isp_arrest_data_2015_q3.csv"},
959
                    {"file_name": "data20.csv",
                    "file_title": "ARREST DATA 2019 Q4",
960
                    "file_description": null,
961
                    "downloadURL": "https://hub.mph.in.gov/dataset/d39f6598-efbb
962
                        -40a7-a694-6a9b8d2dc2dc/resource/bd011a33-0652-4ad7-8d90
963
                        -6c1019d6385c/download/isp_arrest_data_2019_q4.csv",
964
                    "accessURL": "https://hub.mph.in.gov/dataset/d39f6598-efbb
965
                        -40a7-a694-6a9b8d2dc2dc/resource/bd011a33-0652-4ad7-8d90
                        -6c1019d6385c/download/isp_arrest_data_2019_q4.csv"},
966
                    {"file_name": "data15.csv",
967
                    "file_title": "ARREST DATA 2021 Q1",
968
                    "file_description": null,
969
                    "downloadURL": "https://hub.mph.in.gov/dataset/d39f6598-efbb
970
                        -40a7-a694-6a9b8d2dc2dc/resource/9c7960c6-417b-45e6-9ace
971
                        -b75958dd91de/download/isp_arrest_data_2021_q1.csv",
```

B.2 Data Annotation

B.2.1 QUESTION TYPES

During question generation, specific question types are provided to the LLM to guide the formulation of questions. We use the following eight question types, with each type's name and description supplied to the LLM. *Multi-turn Follow-up* and *Multi-turn Insight Generation* correspond to decomposable questions.

- Aggregation: Questions involving aggregated answers based on the statistical operations, such as mean, sum or mode
- Ranking: Questions involving answers based on the ranking
- Counting: Questions involving answers based on counting something
- Multi-hop Lookup: Question involving extracting single cell value from the table based on multiple reasoning steps
- Multi-hop Numerical Reasoning: Questions involving numerical answers based on multiple reasoning steps
- Complex Data Transformation: Question involving complex data transformation, such as aggregation or filtering across multiple dimensions, creating new columns, filtering with context-dependent logic, resolving entity references across rows, or merging multiple tables
- Multi-turn Follow-up: Question involving multi-turn follow-up questions that build on previous answers or context from table data, requiring the model to maintain state and context across multiple interactions
- Multi-turn Insight Generation: Question involving multi-turn insight generation that requires the model to generate insights or summaries based on previous answers or context from table data, requiring the model to maintain state and context across multiple interactions. Questions in the intermediate turn ask to provide not only text-based answer but also text-based complicated statistical information (e.g. correlation) and visualization

B.2.2 FEATURE TYPE-SPECIFIC TABLE SERIALIZATION

Our serialization process generates a compact textual representation of a table by summarizing its global properties and providing detailed, feature type-aware information for each column. The serialized text begins with the dimensions of the tables (number of rows and columns), followed by a per-column breakdown. For each column, the serialization includes: the inferred feature type, the Pandas data type (Wes McKinney, 2010), the percentage of NaN values, and a feature-specific textual summary. The primary feature type is determined by a Feature Type Inference (FTI) model (Liu et al., 2024), which is based on a trained Random Forest Classifier. This model classifies each column into one of 11 types: Numerical, Categorical, Datetime, Sentence, URL, Embedded Number, List, Ignorable ID, Numbers with Unit, Numbers with Sign, Range of Numbers, or Formatted ID. The Pandas data type is inferred using the built-in pandas.api.types.infer_dtype function. While its output would overlap with the feature types, we include it because its ability to

1030 Table 5: List of Open Data Websites

Websites	URL
Data.gov	https://data.gov/
California Open Data Portal	https://data.ca.gov/
Hawaii Open Data	https://opendata.hawaii.gov/
Analyze Boston	https://data.boston.gov/
City of Houston Open Data	https://data.houstontx.gov/
The Indiana Data Hub	https://hub.mph.in.gov/
Milwaukee Open Data	https://data.milwaukee.gov/
Open Data SA	https://data.sanantonio.gov/
Pompano Beach Open Data	https://data.pompanobeachfl.gov/
America's Education data	https://data.ed.gov/
Energy Data eXchange	https://edx.netl.doe.gov/
California Health and Human Services Open Data Portal	https://data.chhs.ca.gov/
California Natural Resources Agency Open Data	https://data.cnra.ca.gov/
U.S. Small Business Administration Open Data	https://data.sba.gov/
Ireland's Open Data Portal	https://data.gov.ie/
Dublinked: Open Data for the Dublin Region	https://data.smartdublin.ie/
Tusla Data Catalogue	https://datacatalog.tusla.ie/
DAFM Data Portal	https://opendata.agriculture.gov.ie/
	https://opendata.agriculture.gov.le/
Central Bank of Ireland's Open Data Portal	± ±
Data.gov.au The Central Resource for SEED in NSW	https://data.gov.au/
	https://www.seed.nsw.gov.au/
Data.NSW	https://data.nsw.gov.au/
NTG Open Data Portal	https://data.nt.gov.au/
Data.SA	https://data.sa.gov.au/
Ballarat Open Data	https://ballaratopendata.org.au/
DATA VIC	https://www.data.vic.gov.au/
Data WA	https://www.data.wa.gov.au/
Queensland Government Publications Portal	https://www.publications.qld.gov.au/
Transport Open Data	https://opendata.transport.nsw.gov.au/
openAFRICA	https://open.africa/
Data.gov.hk	https://data.gov.hk/en/
Data.gov.uk	https://www.data.gov.uk/
UK Data Service	https://statistics.ukdataservice.ac.uk
London Datastore	https://data.london.gov.uk/
Open Data NI	https://admin.opendatani.gov.uk/
ENTSO-E	https://docs.entsoe.eu/
Journal Data Archive	https://journaldata.zbw.eu/
Data.openstate.eu	https://data.openstate.eu/
OPERANDUM	https://data-catalogue.
	operandum-project.eu/
Dataportal.ponderful.eu	https://dataportal.ponderful.eu/
OpenCity	https://opencity.in/
New Zealand's Biological Heritage Data Repository	https://data.bioheritage.nz/
Datastore.landcareresearch.co.nz	https://datastore.landcareresearch.co.nz/
Open.canada	https://search.open.canada.ca/opendata
Open Govermental Portal in Alberta	https://www.alberta.ca/ open-government-program
Data.gov.bc.ca	https://catalogue.data.gov.bc.ca/
Niagara's Open Data Catalogue	https://niagaraopendata.ca/
Ontario Data Catalogue	https://data.ontario.ca/
Données Québec	https://www.donneesquebec.ca/
Surrey's Open Data	https://data.surrey.ca/
City of Toronto's Open Data Portal	https://open.toronto.ca/
Data.sustain.ubc.ca	https://data.sustain.ubc.ca/
Columbia Basin Water Hub	https://data.cbwaterhub.ca

1081

1082

1083 1084

1085

1086

1087

1088

1089

1090 1091

1092

1094 1095

1096

1097

1098

1099

1100

1101

11021103

1104 1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

identify mixed types (e.g., columns containing both strings and integers) serves as a key signal for potential data quality issues that would require wrangling.

The feature type-specific summary is constructed according to the inferred feature type, as follows:

- Numerical: The minimum and maximum values in the column are included.
- Categorical: If the column contains 20 or fewer unique categories, all are listed. Otherwise, a random sample of 20 unique categories is provided.
- Datetime: The earliest and latest date or time values are included.
- URL: No sample values are included. This is a deliberate choice to conserve context length, as full URLs are token-intensive and typically have low semantic value for general data analysis tasks.
- All Other Types: For all other feature types, a random sample of 10 unique values is included to provide a representative snapshot of the column's contents.

The example of the serialized text is provided in the following from *E-bike Field Study* of *Data.gov*.

Text Example by Feature type-specific Table Serialization

```
1st table
Dataset title: Comma Separated Values File
Dataset description: None
Headers and values:
Number of columns: 21
Number of rows: 408363
Feature type, pandas type, ratio of missing values, and feature type-
   specific information is given for each column as below.
date (feature type: Datetime) (pandas type: string) (ratio of missing
   values: 0%): Start date is 2022-04-27 23:42:29.834000+00:00, and end
   date is 2022-09-23 18:31:05.502000+00:00.
lat (feature type: Numerical) (pandas type: floating) (ratio of missing
   values: 0%): Value range is [42.447303, 42.461437200000006].
lon (feature type: Numerical) (pandas type: floating) (ratio of missing
   values: 0%): Value range is [-71.3243906, -71.2562746].
spd (feature type: Numerical) (pandas type: floating) (ratio of missing
   values: 0%): Value range is [0.0, 23.82500000000003].
blind_turn (feature type: Categorical) (pandas type: integer) (ratio of
   missing values: 0%): All categories are [0, 1].
constrained_tunnel (feature type: Categorical) (pandas type: integer) (
   ratio of missing values: 0%): All categories are [0, 1].
narrow (feature type: Categorical) (pandas type: integer) (ratio of
   missing values: 0%): All categories are [0, 1].
slow_sign (feature type: Categorical) (pandas type: integer) (ratio of
   missing values: 0%): All categories are [0, 1].
trail_hazards (feature type: Categorical) (pandas type: integer) (ratio
   of missing values: 0%): All categories are [0, 1].
trail_junction (feature type: Categorical) (pandas type: integer) (ratio
   of missing values: 0%): All categories are [0, 1].
vehicle_conflict_point (feature type: Categorical) (pandas type: integer)
     (ratio of missing values: 0%): All categories are [0, 1].
walk bike_sign (feature type: Categorical) (pandas type: integer) (ratio
   of missing values: 0%): All categories are [0, 1].
eb (feature type: Categorical) (pandas type: integer) (ratio of missing
   values: 0%): All categories are [0, 1].
uphill (feature type: Categorical) (pandas type: integer) (ratio of
   missing values: 0%): All categories are [0, 1].
downhill (feature type: Categorical) (pandas type: integer) (ratio of
   missing values: 0%): All categories are [0, 1].
passing (feature type: Categorical) (pandas type: integer) (ratio of
   missing values: 0%): All categories are [0, 1].
participantid (feature type: Numerical) (pandas type: integer) (ratio of
   missing values: 0%): Value range is [1, 37].
```

```
age (feature type: Numerical) (pandas type: integer) (ratio of missing values: 0%): Value range is [27, 65].

sex (feature type: Categorical) (pandas type: string) (ratio of missing values: 0%): All categories are [female, male].

bike_type (feature type: Categorical) (pandas type: string) (ratio of missing values: 0%): All categories are [conventional, electric].

ebike_class (feature type: Categorical) (pandas type: floating) (ratio of missing values: 56%): All categories are [1.0, 2.0, 3.0].
```

B.2.3 HUMAN VERIFICATION

Figure 7 shows the annotation GUI, built with Streamlit ³, for revising questions and the Python code used to generate answers. Annotators can refer to the LLM-generated answers and code, as well as the underlying tables, metadata, and external knowledge. Figure 8 presents the GUI for reviewing revised QA pairs, where annotators select one of three options—*Good*, *Ambiguous*, or *Wrong Answer*—and may leave comments for the latter two. In total, we obtained 211 datasets, with their original website distribution shown in Table 6. Six of these datasets (Table 7) are used for the Table Insight task.

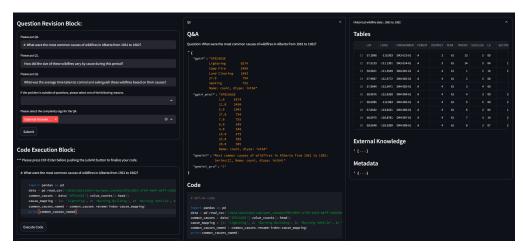


Figure 7: Annotation GUI for revising questions and answers

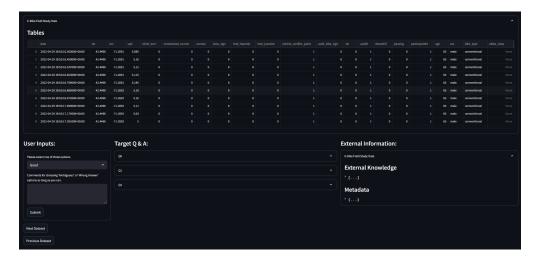


Figure 8: Annotation GUI for checking the revised QA pairs

³https://github.com/streamlit/streamlit

Table 6: Distribution of Open Data Websites in OpenDataBench

Websites	Count
Open.canada	63
Data.gov	35
California Open Data Portal	27
Open Govermental Portal in Alberta	7
Data.gov.uk	6
Analyze Boston	5
Ontario Data Catalogue	4
The Indiana Data Hub	4
Data.SA	4
Surrey's Open Data	4
Open Data NI	4
The Central Resource for SEED in NSW	2
Pompano Beach Open Data	2
Data.NSW	2
U.S. Small Business Administration Open Data	1
Hawaii Open Data	1
City of Houston Open Data	1
openAFRICA	1
City of Toronto's Open Data Portal	1
Milwaukee Open Data	1
OpenCity	1
DATA VIC	1
Columbia Basin Water Hub	1

Table 7: Datasets for Table Insight

Website **Domain** Dataset **Boston Buildings Inventory** Analyze Boston Real Estate Number of Weight Loss Surgeries Performed in Cali-Data.gov Healthcare fornia Hospital Cross-Canada Survey of Radon Concentrations in Open.canada Environment Homes Fixed gear sentinel fisheries program - northern Gulf of Open.canada Marine Biology St. Lawrence Canadian Health Measures Survey (CHMS) Human Environment Open.canada Biomonitoring Data for Environmental Chemicals Results from the 2023 Staffing and Non-Partisanship Open.canada Demographics Survey

C EXPERIMENTAL SETUP

C.1 IMPLEMENTATION DETAILS

The proposed Answer Agent requires a VLM or a MLLM within its Reflection Module to validate visual outputs. For experiments involving closed-source models, we utilized their native multimodal capabilities across all modules. For the open-source agent configurations, we paired various LLMs with a specialized VLM, Chart-R1-7B (Chen et al., 2025) 4, which was used in the Reflection module. Chart-R1 was selected due to its high performance on chart comprehension tasks. All results for the QA task were obtained with the model temperature set to 0.0 to promote deterministic outputs. All open-source models are sourced from the HuggingFace's transformers library (Wolf et al., 2020), and experiments were conducted using 2 × 48 GB NVIDIA L40S GPUs. Table 8 lists the API names of closed-source models and the HuggingFace model names of open-source models.

Table 8: List of LLM model names in the experiments

Model Name	API name or Huggingface model name
GPT-40	gpt-4o-2024-08-06
GPT-4o-mini	gpt-4o-mini-2024-07-18
Gemini 2.5 Flash	gemini-2.5-flash
Gemini 2.5 Pro	gemini-2.5-pro
Devstral-Small	mistralai/Devstral-Small-2507
Qwen3-30B	Qwen/Qwen3-30B-A3B-Instruct-2507
Qwen3-Coder-30B	Qwen/Qwen3-Coder-30B-A3B-Instruct
DeepSeek-R1-14B	deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
Llama3.1-8B	meta-llama/Llama-3.1-8B-Instruct
TableGPT2-7B	tablegpt/TableGPT2-7B

Due to the higher potential for output variability in open-ended generative tasks, each experiment for the Table Insight task was executed five times per model. We report the average score across these runs to ensure the stability of our results. Our proposed Insight Agent was configured to generate three initial high-level questions and perform four iterations of its question-answer-insight cycle, resulting in 12 insights. To ensure a fair comparison, the AgentPoirot baseline was configured with parameters that also yielded 12 insights. Furthermore, the summarizing LLM in Insight Agent is instructed to generate the same number of tokens as the summarized sentences from AgentPoirot for a fair comparison. These experiments were also conducted with the temperature set to 0.0.

C.2 INSIGHT AGENT

The Insight Agent operates through an iterative cycle: it generates questions, answers them using the proposed Answer Agent, and then synthesizes insights from the resulting QA pairs as shown in Figure 4. The insights generated in one step are then used to inform the question generation in the next, creating a continuous exploratory process. This process is governed by a Directed Acyclic Graph (DAG) structure, as illustrated in Figure 9 (b). The graph consists of alternating layers of Question-Answer (QA) nodes and Insight nodes. A new Insight node is generated by synthesizing information from one or more preceding QA nodes, and conversely, a new QA node is generated by drawing upon one or more preceding Insight nodes. Crucially, a new node can be connected to parent nodes from any previous iteration, not just the immediately preceding one. This DAG structure facilitates the aggregation of multiple lines of inquiry, enabling the generation of more diversified and comprehensive insights compared to a simpler tree-based exploration as in Figure 9 (a), where insights from different depths and branches are not connected. The decision of which nodes to aggregate is determined by the reasoning capabilities of LLM; to guide this process, our prompt explicitly instructs the model to consider synthesizing information from multiple parent nodes when possible.

⁴https://huggingface.co/DocTron/Chart-R1

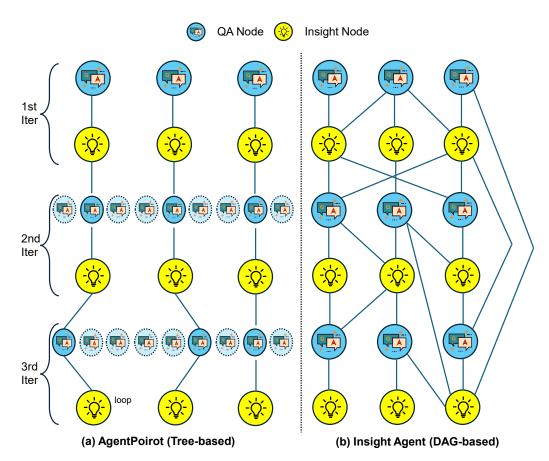


Figure 9: Insight generaion process by (a) tree-based process used in AgentPoirot, where each question is selected by LLM from the question candidates and (b) directed acyclic graph-based process used in Insight Agent

D RESULTS

D.1 DETAILS OF TABLE INSIGHT RESULTS

Table 9 shows the dataset-level comparison between AgentPoirot and Insight Agent in terms of the insight-level and summary-level score, and Table 11 presents the notable apple-to-apple comparison among target insight, the most relevant insight from Insight Agent, and one from AgentPoirot, showing the score respectively.

D.2 ABLATION STUDIES

Generalizability of Insight Agent: To verify that the proposed Insight Agent is unbiased, we evaluated it on existing table insight generation benchmarks using InsightBench (Sahu et al., 2025). Both agents use Gemini 2.5 Flash as the LLM, and we adopt the same evaluation metrics as in the main experiments, namely G-Eval based on GPT-4o. As shown in Table 10, the Insight Agent outperforms AgentPoirot on both insight-level and summary-level scores.

Dataset	Insight AgentPoirot	Insight-level AgentPoirot Insight Agent		Summary-level AgentPoirot Insight Agent	
Cross-Canada Survey of Radon Concentrations in Homes	0.331	0.470	0.424	0.564	
Boston Buildings Inventory	0.235	0.296	0.386	0.452	
Fixed gear sentinel fisheries program - northern Gulf of St. Lawrence	0.138	0.174	0.175	0.219	
Number of Weight Loss Surg- eries Performed in California Hospital	0.332	0.368	0.457	0.442	
Canadian Health Measures Survey (CHMS) Human Biomonitoring Data for Envi- ronmental Chemicals	0.347	0.363	0.481	0.462	
Results from the 2023 Staffing and Non-Partisanship Survey	0.315	0.220	0.232	0.290	
#Winners	1	5	2	4	

Table 9: Dataset-level Table Insight score comparison.

Table 10: Evaluation on InsightBench

Benchmark	AgentPoirot			ht Agent
	Insight Summary		Insight	Summary
InsightBench	0.3269	0.3197	0.3275	0.3565

E PROMPTS

In this section, we show the prompts for each stage or module in the benchmark construction, Answer Agent and Insight Agent.

Prompt1: Prompt for question generation in benchmark construction

You are a top question generator for the tabular data. Given single or multiple tabular data, your task is to generate the high-quality insightful question. The question must be answered by using the given single or multiple tabular data. Please follow the tips below.

- The question is utilized to retrieve corresponding tabular data from data lake, so the question should be de-contextualized enough to search the suitable table among tons of data. Data lake has a variety of datasets covering a lot of years and locations, so please try to specify the specific years and location in the question if available by referring to data origin, data title, data description, whatever.
- Do not include ID-like words and codes in the question, and do not contain dataset name in the question because human usually do not know the dataset names.
- The question should be the one human tends to ask naturally when they are interested in the tabular data to get insights deepening human understanding.
- Specify answer format and include it in the question. For example, if the question asks top 5 areas of something, the format should be the list. If the questions asks how does one compare to the other, the percentage would be the ideal format.

```
1404
      - If you are given multiple tabular data, please generate the question
1405
          involving as many tables as possible.
1406
      - If the question type involves multi-turn QA, please list the questions
1407
          in the order of asking in the output format by linking via '/', such
          as 'What is --- ? / What is --- ? ...'.
1408
      - The output format is JSON format where key is question like {
1409
          output_format} without code syntax block, and keys and values should
1410
          be enclosed with double quotes. Please follow the format and do not
1411
          add redundant explanation. You should not include line breaks in JSON
1412
           format.
1413
      The type of the question is '{question_key}', and the description of the
1414
          question type is '{question_description}'. Following is the
1415
          information of tabular data.
1416
      Data Origin: {data_source}
1417
      Data publisher: {publisher}
1418
      Data source: {dataset_title}
1419
      Data source description: {dataset_description}
1420
1421
      Following is the information for tables.
1422
      {serialized_table_information}
1423
      Following is the external knowledge on the tabular information. Please
1424
          use the knowledge to make the ID-like or ambiguous words clear.
1425
      {extenral_knowledge}
1426
```

Prompt2: Prompt for question scoring in the benchmark construction

```
1427
1428
      Your task is to select and rank the questions generated from tabular data
1429
          . Given tabular data and list of questions with indices, you must
1430
          select the best 5 questions and answer the list of indices of these
1431
          questions in the ranking order.
1432
      You are required to select and rank based on the following perspectives:
1433
      - Relevance to the dataset: Directly grounded in the corresponding data
1434
      - Actionability and insightfulness: Lead to concrete insights or
1435
          decisions, not just descriptive stats
1436
      - Complexity and depth: Require multiple columns or more nuanced
1437
          reasoning
      - Clarity and specificity: Clear and unambiguous. Be mindful about the
1438
          output format. If there are possible various output formats based on
1439
          the question, the question is very bad.
1440
      - Novelty or non-obviousness: Unexpected relationships or challenging
1441
          assumptions
1442
      - Naturalness: The question should be natural for humans, and it is not
          appropriate if the question has a tone nobody asks in that way.
1443
      - De-contextualized: The question must be clear enough to retrieve the
1444
          target data from among tons of data, so it should include specific
1445
          datetime and location. This is the highest priority for the question,
1446
           the question without this point is bad.
1447
      - No ID like words: The question must not include ID-like words and codes
           (e.g. Region ID 5, Device ID 1229).
1448
      - No quoting: The question should avoid quoting column names or cell
1449
          values verbatim (e.g., avoid phrases like indicator named '...' or
1450
          value for category named '...')
1451
      Following is the list of questions.
1452
      {questions}
1453
1454
      Following is the information of tabular data.
1455
      Data Origin: {data_source}
1456
      Data publisher: {publisher}
1457
      Data source: {dataset_title}
      Data source description: {dataset_description}
```

```
1458
1459
      Following is the information for tables.
1460
      {serialized_table_information}
1461
      Following is the external knowledge on the tabular information. Please
1462
          use the knowledge to make the ID-like or ambiguous words clear
1463
      {external_knowledge}
1464
1465
      The output format is JSON format where keys are question and code like {
1466
          output_format} without code syntax block. You should not include line
           breaks in JSON format. Please follow the format and do not add
1467
          redundant explanation. You should not include line breaks in JSON
1468
          format.
1469
```

Prompt3: Prompt for answer generation in the benchmark construction

```
You are a top data analysis for the tabular data. Given a tabular data and question related to the table, your task is to generate the Python code to answer the question with the use of methods in Pandas. The question must be answered by using the given tabular data.
```

- If the answer aims to generate the image files (e.g. chart, graph, or figure), please set the output file name as 'output_[index].png', where 'index' is the index of single or multiple files, and please do not include output file names except for in the savefig function. Also, please follow the tips below. Create a clear and easy-to-read graph for human when the task is visualization, and try to use legend as long as the number of labels is not large. When you call 'savefig' function, you must set the following parameter: "bbox_inches='tight'".
- The output format is JSON format where keys is code like {output_format } without code syntax block when generating Python code, and keys and values should be enclosed with double quotes. Please follow the format and do not add redundant explanation. You should not include line breaks in JSON format. In the Python code, the dataframe is tentatively read from 'data_[index].csv', where 'index' is the index of the table starting from 1. Also, please include print statement for the final answer in the last line.

```
Question: {question}

Data Origin: {data_source}
Data publisher: {publisher}
Data source: {dataset_title}
Data source description: {dataset_description}
Dataset title: {file_title}
Dataset description: {file_description}

{serialized_table_information}

Following is the external knowledge on the tabu
```

Following is the external knowledge on the tabular information. Please use the knowledge to make the ID-like or ambiguous words clear. {extenral_knowledge}

Prompt4: Prompt for coding module in Answer Agent

```
You are a top data analysis for the tabular data. Given a tabular data and question related to the table, your task is to generate the Python code to answer the question with the use of methods in Pandas. The question must be answered by using the given tabular data.
```

- If the answer aims to generate the image files (e.g. chart, graph, or figure), please set the output file name as 'output_[index].png', where 'index' is the index of single or multiple files, and please do

```
1512
           not include output file names except for in the savefig function.
1513
          Also, please follow the tips below. Create a clear and easy-to-read
1514
          graph for human when the task is visualization, and try to use legend
1515
           as long as the number of labels is not large. When you call 'savefig
          ' function, you must set the following parameter: "bbox_inches='tight
1516
          ٠".
1517
      - If the question includes the specified output format, please follow the
1518
           format without adding redundant texts. Please include the answer in
1519
          the print statement in the last line, and do not use the print
1520
          statement except for the last line. Please do not use print statement
           if the answer aims to generate the image files.
1521
      - Please do not truncate the decimal point unless the question requires
1522
1523
      - The output is only Python code without additional explanation.
1524
      - In the generated Python code, the input file path is 'data_[index].csv
          ', where 'index' is the index of the table starting from 1 (1, 2, 3,
1525
          4\ldots) depending on the number of available datasets, so for instance
1526
          the code includes 'pd.read_csv('data_1.csv')' when loading the csv
1527
          file. The tentative path will be replaced by the actual path
1528
          afterwards, so please just follow the rule.
1529
      - Please include print statement for the final answer in the last line.
1530
      - Please do not include try-except statement and exit().
1531
      Question: {question}
1532
1533
      Data publisher: {publisher}
1534
      Data source: {dataset_title}
1535
      Data source description: {dataset_description}
1536
      This question is a part of multi-turn conversation. Following is the
1537
          previous question and answer pairs. You can refer to them to
1538
          understand the contexts.
1539
      {QA Pairs}
1540
      {serialized_table_information}
1541
1542
      Following is the external knowledge on the tabular information. Please
1543
          use the knowledge to make the ID-like or ambiguous words clear.
1544
      {external_knowledge}
1545
```

Prompt5: Prompt for self-correction module in Answer Agent

You are a top data analyst with much experience on Python. Given the Python code and error message generated by executing the code, your task is to revise the Python code. Error message is '{error}', and the here is the Python code. Please do not include try-except statement. You should output only the code without any other text and markdown formatting:

{generated_code}

1546

1547

1548

1549

1550

1551

1552

1553

1554 1555 1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

Prompt6: Prompt for visualization reflection module in Answer Agent

```
You are a top data analyst with much experience on Python and matplotlib.

Given one generated figure that aims to answer the question '{
   question}', your task is to analyze the figures and judge whether the
   figures are aligning with the question and human understandable. If
   it is not, please revise the Python code to generate figure. Please
   do not include try-except statement. If it is OK, please answer only
   "OK!" without additional text.

Here are the perspectives to consider to judge whether the figure is
   human understandable or not:

- The figure should be clear without too many data points.
```

```
1566
      - There should not be overlapped colors in the figure.
1567
      - Axis labels should be clear and not too long.
1568
      - If the figure is a line chart, the line goes to the right direction
          without going back and forth.
1569
       - If the figure has small number of data points, the figure should be the
1570
           scatter plot.
1571
1572
      Here is the code to generate the figure. If you output the revised code,
1573
          please only output the code without any other text and markdown
1574
          formatting:
1575
      {code}
1576
```

```
1578
                  Prompt7: Prompt for text-answer reflection module in Answer Agent
1579
      You are a top data analysis for the tabular data. Given the question
1580
          asking about table data, the generated code to answer the question,
1581
          and the answer, please revise the code toward the correct answer if
1582
          the answer would be wrong. Table information is also given to
          contextualize. If the given answer is correct and the code does not
1583
          need to be revised, please answer only 'OK!' without additional text.
1584
           If the code needs to be revised, please answer only Python code
1585
          without additional explanation and any markdown formatting. Following
1586
           perspectives are included in the correct answer or codes.
1587
      - Given questions include particular output formats. Following the output
1588
           format is imperative without adding redundant texts.
1589
      - Answers are included in the print statement.
1590
      - Please do not include try-except statement.
1591
      - The question is a part of the multi-turn questions, the generated code
1592
          should include context produced from the previous QAs if needed.
      - Columns in the table data would include the multiple hierarchical
1593
          categories (e.g. total, male, female in gender column). Please be
1594
          careful about the aggregation of the column if needed.
1595
      - Columns in the table data would represent numerical values as string
1596
          values (e.g. comma is inserted). Please convert them into numerical
1597
          values appropriately if needed.
      - Columns in the table data would include special characters as a
1598
          replacement of NaN values (e.g. x, -, -99999, etc). Please replace
1599
          them with NaN values if needed.
      - If the answer is NaN or None, the filtering conditions might be wrong.
1601
      - If the output format is just numerical values, they should not be
1602
          truncated or rounded.
1603
      ## QA pair for the question
1604
      Target question: {question}
1605
      Generated code that would be revised:
1606
      {code}
1607
      Answer: {answer}
1608
      ## QA pairs so far in a multi-turn conversation
1609
      {QA_pairs}
1610
1611
      ## Table information
      Data Origin: {data_source}
1612
      Data publisher: {publisher}
1613
      Data source: {dataset_title}
1614
      Data source description: {dataset_description}
1615
1616
      {serialized_table_information}
1617
      Following is the external knowledge on the tabular information. Please
1618
          use the knowledge to make the ID-like or ambiguous words clear.
1619
      {external_knowledge}
```

1621

1622

1623

1624

1625

1626

1627

1628 1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

16421643

1644

1645

1646

1647

1648 1649

1650

1651

1652

165316541655

1656 1657

1658

1659

1660

1661

1663

1664 1665

1666

1667

1668

1669

1670

1671

1672

1673

Prompt8: Prompt for question generator in Insight Agent

```
You are a top data analyst for the tabular data. Your final goal is to
   generate insights from the table. Insights should be led from the
    informative intermediate results (e.g. graph of data distribution,
    statistical values of certain columns, ranking, aggregated values).
    Therefore, you are required to generate a sequence of good questions
    invoking insightful observations. After answering these questions,
    the insights will be generated based on the intermediate QA pairs.
   Following is the rules to generate questions.
- The number of questions is {number_of_initial_questions}.
- Each question is expected to consider the contexts produced by the
   previous questions.
- Format of questions are connected via vertical lines without adding
   redundant explanation before and after the question parts,
    specifically 'text1 / text2 / text3 / ...'.
- If you refer to column names and cell values in the table, you should
   avoid use exact names by rephrasing them naturally without enclosing
   single/double quotes.
- Ouestions ask to provide not only text-based simple answer but also
   text-based complicated statistical information (e.g. correlation) and
    visualization (e.g. graph of data distribution, heatmap
   relationships among columns).
- Questions should specify the output format for each question, saying
    that 'Please provide as a line chart', 'Please answer as a numerical
   value', etc...
Following is table information.
## Table Information
Data Origin: {data_source}
Data publisher: {publisher}
Data source: {dataset_title}
Data source description: {dataset_description}
{serialized_table_information}
```

Following is the external knowledge on the tabular information. Please use the knowledge to make the ID-like or ambiguous words clear. {external_knowledge}

Prompt9: Prompt for follow-up question generator in Insight Agent

```
You are a top data analyst for the tabular data. Your final goal is to generate insights from the table. Insights should be led from the informative intermediate results (e.g. graph of data distribution, statistical values of certain columns). Therefore, you are required to generate a sequence of good follow-up questions invoking insightful observations by referring to questions and insights generated in the previous steps. After answering these questions, the insights will be generated based on the intermediate QA pairs. Following is the rules to generate questions.
```

- Follow-up questions are generated by referring to the single or multiple insights, and you must include which insights are referred to in the output. Therefore, output format is {output_format} in the strict JSON format without markdown formatting and indentation. Please do not add additional explanation.
- It is encouraged to aggregate multiple insights to generate single follow-up question.
- Each insight composes of not only insight text but also the question numbers that the insight is generated from, so please also refer to these questions.

```
1674
      - Avoid duplication of questions by referring to the generated questions
1675
          so far.
1676
       - If you refer to column names and cell values in the table, you should
1677
          avoid use exact names by rephrasing them naturally without enclosing
          single/double quotes.
1678
      - Questions must include mixing text-based simple answer, text-based
1679
          complicated statistical information (e.g. correlation) and
1680
          visualization (e.g. graph of data distribution, heatmap relationships
1681
           among columns).
1682
      - Questions should specify the output format for each question, saying
          that 'Please provide as a line chart', 'Please answer as a numerical
1683
          value', etc...
1684
1685
      ## Questions so far
1686
      {previous_questions}
1687
      ## Insights so far
1688
      {previous_insights}
1689
1690
      Following is table information.
1691
      ## Table Information
1692
      Data Origin: {data_source}
      Data publisher: {publisher}
1693
      Data source: {dataset_title}
1694
      Data source description: {dataset_description}
1695
1696
      {serialized_table_information}
1697
      Following is the external knowledge on the tabular information. Please
1698
          use the knowledge to make the ID-like or ambiguous words clear.
1699
      {external_knowledge}
1700
```

```
Prompt10: Prompt for insight generator in Insight Agent
1702
      You are a top data analyst for the tabular data. Your task is to generate
1703
           insights that can be read from table information QA pairs related to
1704
           the table. Insights should follow the following points.
1705
1706
      - Insights are text-based, and should include factual and informative
1707
          information that attract readers. Also, they are expected to invoke
          non-trivial realizations for humans.
1708
      - Insight should be generated from QA pairs, and please include which QA
1709
          pairs contribute to the insight by referring to the corresponding
1710
          question numbers.
1711
       - Write down {number_of_insights} insights, and the output format is {
1712
          output_format} in the strict JSON format without markdown formatting
          and indentation. Do not add additional texts or redundant information
1713
1714
       - Single insight can be produced from one or multiple QA pairs. It is
1715
          encouraged to aggregate multiple QA pairs to generate single insight.
1716
      - Avoid logical leap under many uncertain assumptions.
1717
      - Avoid duplications of insights by referring to the insights generated
          so far.
1718
1719
      Following is QA pairs and table information.
1720
1721
      ## OA Pairs so far
1722
      {previous QA pairs}
1723
      ## Insights so far
1724
      {previous_insights}
1725
1726
      ## Table Information
1727
      Data Origin: {data_source}
      Data publisher: {publisher}
```

```
1728
      Data source: {dataset_title}
1729
      Data source description: {dataset_description}
1730
1731
      {serialized_table_information}
1732
      Following is the external knowledge on the tabular information. Please
1733
          use the knowledge to make the ID-like or ambiguous words clear.
1734
      {external_knowledge}
1735
```

Prompt11: Prompt for fine-grained analysis of Table Insight

```
1737
      You are an expert data analyst. Your task is to evaluate a 'Predicted
1738
          Insight' against a 'Target Insight' by referring to the score
1739
          measuring how close the predicted insight is close to target insight.
1740
           You must assess the prediction based on the four perspectives
1741
          defined below. For each perspective, you must answer only with the
1742
          score (1 to 5, 1 is the lowest and 5 is the highest).
1743
      Definitions:
1744
      Topic Relevance: Does the prediction address the same topic as the target
1745
1746
      Quantitative Details Match: Does the prediction mention the same specific
1747
           quantitative numbers as the target?
1748
      Qualitative Details Match: Does the prediction mention the same specific
          names (e.g., places, trends, proper names) as the target?
1749
      Narrative Alignment: Does the prediction make the same core argument or "
1750
          headline" conclusion as the target?
1751
1752
      Target Insight:
      {gt_insight}
1753
1754
      Predicted Insight:
1755
      {pred_insight}
1756
      score: {score}
1757
      The output format is {output_format} in the valid JSON format without any
1758
           additional text.
1759
```

GT	Insight Agent	AgentPoirot
Provinces/Territories with Highest	Radon concentrations vary	The average radon concentration
Prevalence: The provinces and ter-	significantly across Canadian	in New Brunswick (179.9 Bq/m3)
itories that exhibited the highest	provinces and territories, with	is more than double that of British
percentages of participant homes	New Brunswick, Yukon, and	Columbia (70.98 Bq/m3) and
esting above the radon guideline	Manitoba consistently showing	the Northwest Territories (70.96
were Manitoba, New Brunswick,	the highest average concentrations	Bq/m3), highlighting significant
Saskatchewan, and the Yukon . For	and a wider spread of values.	regional disparities in radon levels
example, New Brunswick had a raw percentage of 24.8% and a	Notably, New Brunswick has the highest proportion of homes	across Canada. (score: 0.37)
population-weighted percentage of	exceeding the 200 Bq/m ³ mitiga-	
20.6% of homes above 200 Bq/m³,	tion guideline, with over 25% of	
while Manitoba had 23.7% raw	its homes above this threshold.	
and 19.4% population-weighted.	Within these high-concentration	
and 1911/2 population weighted.	regions, specific health regions and	
	Forward Sortation Areas (FSAs)	
	exhibit even higher localized aver-	
	ages, highlighting the importance	
	of granular regional analysis for	
	targeted mitigation efforts. (score:	
	0.78)	
Localized Risk in Provinces	While New Brunswick and Yukon	The significant variability in rador
with Lower Averages: Even in	have the highest average radon	concentrations between Health Re
provinces where the overall	concentrations, Ontario and Man-	gions and their provincial aver
population-weighted results	itoba also show significant radon	ages, as highlighted by the larg
indicated a lower incidence	concerns, particularly regarding	standard deviation of 40.21 Bq/m3
of homes with elevated radon	high outliers. Ontario has a	suggests that localized geologic
levels, there were still specific	substantial number of measure-	cal factors or housing characteris
Health Regions with high radon	ments exceeding 500 Bq/m³ (49 in-	tics within specific Health Region
levels. For example, in Ontario,	stances), and Manitoba has a high	may play a more dominant role i
where the population-weighted	proportion of measurements above	radon levels than broader provin
estimate was 4.6% of homes exceeding the guideline, 13 of 36	200 Bq/m³ (23.67%), second only to New Brunswick. This indicates	cial trends. (score: 0.49)
Health Regions (over one-third)	that even provinces with lower	
had more than 10% of homes test	overall average radon concen-	
above the guideline.	trations can have localized ar-	
	eas with very high radon levels,	
	necessitating targeted mitigation	
	efforts. (score: 0.64)	
Age-Related Increases in Mirex	Polychlorinated biphenyls	For Polychlorinated biphenyls, th
and Marker PCBs: Mirex con-	(PCBs), particularly 'Marker	AM-MA values for the 'Total
centrations increased with age in	polychlorinated biphenyls (sum	gender group consistently increas
Cycle 1 (2007–2009), with the	of PCB 138, 153, 180)', show a	with age, with the 60-79 age grou
highest mean serum concentration	clear age-related accumulation,	showing AM-MA values as high a
found in the 60–79 years age group	with significantly higher average	9.62, significantly higher than th
(0.019 ng/g serum) compared to	measured amounts in older age	12-19 age group which has value
younger groups (e.g., 0.0014 ng/g	groups (40-79 years) compared to	as low as 0.89. (score: 0.31)
serum for 6–11 years). Simi-	younger ones (3-39 years). This	
larly, the sum of Marker PCBs	suggests a persistent presence and	
(PCB 138, 153, 180) generally	bioaccumulation of these sub-	
showed an increase in concentra-	stances over a person's lifetime.	
tions with increasing age across	(score: 0.71)	
all cycles, with the 60–79 years age group consistently exhibiting		
THE OFFICE CONCICIONIST AVNING I		
the highest arithmetic means (e.g., 140 ng/g lipid in Cycle 1).		

Table 11: Apple-to-apple comparison among GT insight, insight from Table Insight, and one from AgentPoirot.