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Abstract

Type 2 diabetes (T2D) is a chronic disease currently affecting around 500 million
people worldwide and potentially leading to severe health conditions. Yet, the
causes for the underlying beta-cell failure leading to impaired insulin secretion
are not fully understood, especially on a morphological level. While giga-pixel
microscopy images may visualize such subtle morphological differences, the dimen-
sionality and variability of the data quickly surpass the limits of human analysis.
In response, we collected a dataset consisting of pancreas whole-slide images
stained with multiple chromogenic and multiplex fluorescent stainings and trained
various deep learning models to predict the T2D status. Using explainable AI
(XAI) methods, we rendered the learned relationships humanly understandable,
quantified them as comprehensive biomarkers, and utilized statistical modeling
to assess their association with T2D. Our analysis reveals the contributions of
adipocytes, pancreatic islets, and fibrotic patterns to T2D.

1 Introduction

Based on the current WHO classification of diabetes, over 90% of all persons with the disease fall
into the category defined as type 2 diabetes (T2D). T2D is a major global health issue, affecting
millions and placing a significant burden on healthcare systems [1]. Drivers of T2D are insulin
resistance and impaired insulin secretion, with dysfunction of pancreatic islet beta-cells being a key
feature. Despite extensive research, the exact nature of beta-cell failure in T2D remains unclear.
Given the high degree of inter-individual variability, no specific traits are sufficient for pathologists to
discriminate whether a pancreatic sample belongs to a subject with or without T2D. Pancreatic tissue,
represented in giga-pixel whole-slide images (WSIs), lacks clear features that differ significantly
between individuals with and without T2D.

Our goal was therefore to assess whether the exploitation of an imaging data-driven approach
combining attention-based DL models with explainable artificial intelligence (XAI) would enable the
attribution of a pancreatic patient to a patient with or without T2D with high reliability. While DL
models could find patterns in data infeasible to detect by doctors, XAI methods subsequently rendered
the learned relationships human-understandable, revealing regions of interest (ROIs) associated with
the occurrence of T2D. Given the limited feasibility of qualitative analyses of large amounts of XAI
results, we quantified the attention to the ROIs and subsequently computed specific biomarkers for
the most important ones. At last, we analyzed these biomarkers in combination with clinical patient
data using statistical models. Besides the integration of vast amounts of diverse WSIs, our approach
offered the advantage that we do not bias ourselves to prior assumptions regarding T2D as the XAI
application can also uncover unanticipated findings, leading to the formulation of new hypotheses
about the disease.

2 Classification of T2D from WSIs of pancreatic tissue sections
Dataset We first applied both single chromogenic and multiplex fluorescence techniques to im-
munostain pancreas sections from 100 patients with (35) or without (65) T2D who underwent
pancreatectomy [2–5] at two medical centers. Immunostained antigens included glucagon, insulin,
and somatostatin as markers of islet α-, β- and δ-cells, respectively, as well as PECAM1 for endothe-
lial cells (blood vessels), perilipin 1 for adipocytes (fat cells) and tubulin beta 3 for neuronal axons.
In the case of the chromogenic stainings, each marker was detected individually in serial sections
counterstained with hematoxylin. In the case of multiplex fluorescent stainings, serial sections were
incubated with DAPI and primary antibodies either against glucagon, somatostatin, and tubulin beta
3 (Stainingset 1), or against insulin, PECAM1, and perilipin 1 (Stainingset 2) (see Figure 1 (a)).
Brightfield and fluorescent WSIs were then used to train DL models distinguishing donors with or
without T2D (see Figure 1 (b)). See Appendix A for a full description of the cohort and staining
procedures. Patients were split into a training set (75) and a test set (25). For the chromogenic data,
where each of the six stainings is available as an individual RGB WSI, separate models per staining
were trained. In contrast, the multiplex fluorescent data contained multiple stainings in one WSI via
different image channels. We compared different representations of these WSIs by either treating
each of the three channels as color channel (RGB), encoding each of the channels individually and
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Figure 1: (A) We acquired serial pancreatic tissue sections, fasting blood samples, and clinical data
from 100 patients. Further, we used six chromogenic stainings for brightfield and two staining sets
for multiplex fluorescence microscopy to capture the WSIs. (B) Multiple Instance Learning (MIL)
architecture with different pretrained encoders and fine-tune MIL classifier. (C) XAI methods were
used to identify regions of interest (ROIs) utilized by the models for their prediction. (D) ROIs were
segmented and quantified, with extracted biomarkers and clinical covariates analyzed using statistical
models.
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Figure 2: Performance efficiency of trained models to predict type 2 diabetes on chromogenic (A)
and fluorescent (B) WSIs. AUROCs show ImageNet21k/CLAM outperforms Phikon/CLAM in most
cases, with tubulin beta 3 achieving the highest performance, and Stainingset 1 with channel-wise
average representation performing best on fluorescent WSIs.

append all resulting feature vectors (channel-wise) or encoding each of the channels individually and
averaging the resulting feature vectors (channel-wise avg).

Model Performance WSI classification is a multiple instance learning (MIL) problem since an
entire image is too large to be processed at once while a classification label is only available globally
but not per patch. We used CLAM [6] which first encodes individual patches via a pre-trained feature
extractor and then aggregates the features using attention mechanisms followed by a classification
layer to obtain the WSI-level prediction. This allows for a direct interpretability of patch importance
by visualizing the attention scores over the WSI. See Appendix B for further experiments with other
MIL models. For the chromogenic data we tested two vision transformers either pre-trained on
Imagenet21k [7] or Phikon [8], a foundation model trained on thousands of WSIs), while on the
fluorescent data we only used Imagenet21k. When applied to chromogenic brightfield WSIs, the
ImageNet21k pre-training delivered the best prediction performance on average (AUROC = 0.833;
Figure 2 (a) and Appendix Table 3). Across all stainings except for PECAM1 and somatostatin,
there was a significant increase in AUROC when using the ImageNet21k pre-trained encoder. When
ImageNet21k/CLAM-based prediction was conducted using fluorescent WSIs, Stainingset 1, despite
the absence of insulin staining, yielded significantly better classification results than Stainingset
2. The best performance was reached using the channel-wise avg representation on Stainingset 1
(Ensemble AUROC=0.956; Figure 2 (b) and Appendix Table 2).

3 AI models attend to specific biological traits
Upon completion of model training, we aimed to understand the biological features utilized by the
models in predicting diabetes. For this purpose, we employed XAI techniques specifically within
the domains of Attention and Attribution methods, to highlight regions critical to the models when
predicting the T2D status Figure 1 (c). We applied these techniques to the best classification model
among the evaluated training settings for both fluorescent and chromogenic modalities.

Initially, we focused on determining the significance of specific patches using the built-in attention
mechanism of the multiple instance learning (MIL) classifier and creating attention heatmaps for
the individual chromogenic and fluorescent WSIs of each patient Figure 3. The heatmaps of the
chromogenic WSIs revealed both similarities and distinctions in the regions important to the model
when classifying a WSI to diabetes or its absence. Specifically, for the “diabetes” outcome (Figure 3
(a), lower panels), several stainings showed heightened attention to fibrotic patterns (left side of the
PECAM1-, glucagon-, insulin-, and somatostatin-stained WSIs) as well as a pronounced focus on
adipocytes (top left of the perilipin 1-stained WSI). Both recognized features, i.e. fibrotic changes and
adipocyte infiltration are mainly localized in the exocrine tissue. Notably, in the chromogenic WSIs
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Figure 3: Representative attention heatmaps for the chromogenic (A) and fluorescent (B) WSIs of a
single patient. Top 15 attended fluorescent patches associated with T2D or no T2D status.

the fibrotic patterns were revealed by low-intensity diffuse staining of the tissue by diaminobenzidine
precipitates, regardless of antigen specificity, accounting for spatially restricted, high-intensity signals.
Conversely, for the “no T2D” outcome, the models demonstrate significantly less attention to fibrotic
patterns. Instead, they concentrate on tissue borders and display more dispersed attention patterns.
The heatmaps for the fluorescent WSI of both Stainingsets revealed similar attention patterns such as
on adipocytes (perilipin 1) in Stainingset 2 Figure 3 (b).

While these heatmaps facilitate the visualization of larger ROIs in the tissue, they do not provide
detailed insights into the finer biological features that the model considers significant. To address
this, we first sampled the top attended patches using attention scores (Figure 3 (b), see Appendix G
for chromogenic WSIs), essentially zooming in from image-level to patch-level. In the case of
fluorescent WSI, these heatmaps reveal that for Stainingset 2, the model indeed exhibits a high level
of attention to adipocytes (perilipin 1). However, for Stainingset 1, the model focuses also on islet
α-cells (glucagon), when classifying "diabetes". This focus of the model on α-cells when classifying
a patient as having diabetes is not observable from the patch-level heatmap alone.

To further determine the specific pixel-level features utilized by the model in each of the top-attended
patches, we employed multiple attribution methods to quantify the contribution of individual pixels to
the predicted outcomes. The model was indeed able to recognize biological traits, such as cell nuclei,
adipocyte cytosolic compartments, inter-cellular structures, or islets Appendix H. Integrating all XAI
findings, we compiled a comprehensive report for each patient, imaging modality, and DL model.

4 Quantifying Attention to regions-of-interests
To quantitatively assess the global importance of specific regions across all heatmaps, we implemented
a scalable, data-driven methodology. We examined highly attended patches to determine their
corresponding tissue types. Those reoccurring were defined as ROIs and segmented in the WSI using
a specifically trained DL segmentation model to enable quantitative analysis of total attention to
different relevant tissue types (similar to localization metrics in XAI). The attention scores within
ROIs were standardized for tissue size and total amount of attention. Our analysis of the attention
scores revealed a heterogeneous distribution of attention toward tissue components such as islets,
adipocytes, or fibrotic patterns in the individual chromogenic stainings. Attention to islets showed
the highest z-scores for insulin and glucagon-stained WSIs, but it did not depend on diabetes status
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Figure 4: Z-scores for average attributed attention to (A) islets, (B) adipocytes, and (C) fibrosis for
the individual chromogenic stainings of patients with and without T2D.

Figure 4 (a). The attention to adipocytes showed significant variability across different stainings,
with the highest z-scores for the perilipin 1 staining Figure 4 (b). Notably, regardless of the stained
antigens, the model’s attention to fibrosis in the chromogenic WSIs was significantly higher in
patients with T2D on the PECAM1, perilipin 1 and tubulin beta 3 stainings, indicating its potential
relevance in the pathology of the disease Figure 4 (c).

5 Results

A.    GMLM Regression for Diabetes Status (Chromogenic) B.    MLM Regression for HOMA2B (Chromogenic)

Fixed Effects Estimate SE P-Value (p) Sign.

Intercept -1.607 0.290 0.000 ***
Area of Islets -0.237 0.192 0.216

Number of Islets 0.088 0.105 0.404

Area of Adipocytes clusters 0.266 0.126 0.035 *
Num. of Adipocytes clusters -0.401 0.158 0.011 *

Min. Dist. Islets and Adipocytes -0.633 0.237 0.007 **
Area of Fibrotic Patterns	 0.524 0.124 0.000 ***

Sex 0.610 0.226 0.007 **
Age 0.741 0.137 0.000 ***
BMI 0.538 0.114 0.000 ***

Malignant Tumor 0.330 0.240 0.170

Chronic Pancreatitis 1.420 0.394 0.000 ***

Random Effects Type Variance STD

Staining Intercept 0.000 0.000

Cohort Intercept 0.176 0.483

Observations

Groups


Log-likelihood

AIC

600

{Staining: 6, Cohort: 2}

-298.010

624.010

Note * p<0.05, ** p<0.01, *** p<0.001

Fixed Effects Estimate SE P-Value (p) Sign.
Intercept 0.342 0.230 0.262

Area of Islets 0.028 0.037 0.442
Number of Islets 0.069 0.034 0.043 *

Area of Adipocytes clusters 0.216 0.042 0.000 ***
Num. of Adipocytes clusters -0.189 0.40 0.000 ***

Min. Dist. Islets and Adipocytes 0.053 0.040 0.184
Area of Fibrotic Patterns -0.132 0.038 0.001 ***

Size of Adipocytes clusters:BMI -0.071 0.031 0.020 *
Sex -0.179 0.067 0.008 **
Age -0.125 0.036 0.001 ***
BMI 0.218 0.039 0.000 ***

Insulin Therapy -1.460 0.098 0.000 ***
Malignant Tumor 0.074 0.075 0.320

Chronic Pancreatitis 0.254 0.124 0.041 *

Random Effects Type Variance STD
Staining Intercept 0.000 0.000

Cohort Intercept 0.096 0.311

Observations

Groups


Log-likelihood

AIC

546

{Staining: 6, Cohort: 2}

-615.653

1265.307

Note * p<0.05, ** p<0.01, *** p<0.001

Table 1: Regression results of the generalized mixed linear model analysis for diabetes status (A) and
HOMA2B (B) level based on chromogenic.
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Based on XAI results and segmentation maps, we computed various imaging biomarkers related
to T2D status, noting differences between chromogenic and fluorescence modalities, particularly
where certain ROIs, like fibrotic patterns, couldn’t be assessed in fluorescent WSIs due to the lack of
dedicated staining. To evaluate the impact of these biomarkers on T2D status and insulin secretion
(HOMA2B), we used a generalized mixed linear model (GMLM), controlling for patient traits
and random effects associated with the cohort and staining method. See Figure 1 (d) for a list of
all biomarkers and control variables and Table 1 for the chromogenic results (Appendix I for the
fluorescence). Together with the XAI results, we derived the following three main findings:

Amount of Adipocytes affect Islets. The analysis of the chromogenic biomarkers revealed that the
area of adipocyte clusters is positively associated with T2D, whereas the number of adipocyte clusters
was inversely correlated with the disease (see Table 1 (a)). A higher number of adipocyte clusters
may indicate a more advanced adipose infiltration of pancreatic tissue, i.e. intralobular adipocytes
[9]. Such an intralobular infiltration would allow the adipocytes to get closer to the islets and thereby
impact the islet microenvironment with negative consequences for insulin secretion [10]. Indeed we
observe, that for patients with T2D, the pancreatic islets are on average closer located to adipocytes
than for patients without T2D (see "Min. Dist. Islets and Adypocytes" Covariate in Table 1).

Fibrosis as a potential structural alteration by T2D. The peroxidase reaction used in chromogenic
staining made it possible to see areas rich in extracellular matrix (ECM) within pancreatic tissue,
clearly distinguishing between the main tissue structures and the surrounding connective tissue, also
reported by de Haan et al. [11]. DL models showed greater attention to these ECM-rich areas in
PECAM1 and perilipin 1 stainings when predicting T2D. Our results in Table 1 verify a positive
association between the amount of fibrosis and T2D, independent of pancreatic tumors or insulin
therapy, highlighting fibrosis as a potential structural alteration in T2D.

Significance of tubulin beta 3 for T2D detection. Chromogenic mono stainings had lower predictive
performances than immunofluorescence images, with the highest average performance found for
tubulin beta 3, which was also a key component of the best-performing fluorescence Stainingset 1.
Notably, tubulin beta 3 and perilipin 1 received higher attention in T2D samples compared to non-T2D
WSIs. These findings suggest that alterations in tubulin beta 3 structures may be a distinguishing
feature of T2D, potentially impacting islet cell function [12, 13].

6 Conclusion

In this study, we analyzed a unique dataset of human pancreatic WSIs from T2D and non-T2D donors,
enabling the training of deep learning models that accurately predict T2D status. This outcome
is novel and represents a remarkable advancement in the field of DL-based biomarker discovery,
especially because the pancreas, a central organ in the pathophysiology of T2D, exhibits only subtle
anatomical changes in this condition, unlike in the case of cancer or pancreatitis. See Appendix F for a
discussion of the limitations in the experiment setting. Our XAI-based analysis uncovered biomarkers
that support hypotheses about the involvement of adipocytes, pancreatic islets, and enrichment of
fibrotic patterns with T2D. This highlights the complexity of T2D pathogenesis and underscores the
potential of DL and XAI methods in uncovering novel insights from large-scale microscopy data.
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Appendix

A Clinical Cohort

We analyzed clinical, laboratory, and histologic data obtained within the “Studying Islets from Living
Donors” (SILDS) programs. Patients undergoing pancreatic surgery for different indications provided
written informed consent to donate blood samples and pancreas tissue, and share health records
and laboratory data for research purposes at both study sites. We obtained macroscopically healthy
tissue resected during surgery but not required for further pathology workup. All patients were
of European ethnicity. Additionally, fasting blood was drawn pre-surgery for detailed metabolic
phenotyping. Fasting glucose and C-peptide levels were measured as previously described [14],
and homeostatic model assessment (HOMA) of insulin secretion was calculated using the computer
model-based HOMA-2B [15]. None of the participants had depleted endogenous insulin production
as measured by C-peptide-based HOMA2B (lowest HOMA2B: 6% with a diabetes duration of
24 years), excluding type 1 diabetes among the participants. Information on medical history was
collected by a physician. Documented by their health records, T2D patients were diagnosed as having
T2D at least one year before admission to pancreatic surgery. This excludes diabetes in the context
of exocrine pancreatic disease. In contrast, patients without diabetes neither had diabetes nor did
they fulfill diagnostic criteria of T2D based on glycated hemoglobin (HbA1c) and fasting glucose, as
defined by the American Diabetes Association [16]. Data Acquisition

Figure 5: Distribution of Hospital Patient Data. Distribution of all control variables between both
T2D statuses, excluding staining: sex (A), age (B), BMI (C), diagnosis of related illness (D), cohort
(E), and insulin therapy (F).

Hospital Patient Data. The patient cohort-related metadata are summarized in Figure 5. The
quantitative analysis of these parameters in Figure 5 revealed an unbalanced distribution of sex, age,
BMI, tumor type, chronic pancreatitis, and cohort between the patients with and without diabetes. In
9 patients, fasting blood samples were not obtained prior to surgery and therefore HOMA2B was not
calculated.

Chromogenic immunostaining and brightfield microscopy. Formalin-fixed, paraffin-embedded
(FFPE) pancreatic sections (2-4 µm thick) were processed using an automatic slide stainer Bench-
markUltra (Ventana Technology, Roche Diagnostics). Deparaffinization was performed for four min
at 72°C using EZPrep (Roche Ventana, #5279771001), followed by antigen-retrieval (AR) for 40
minutes at 100°C with TRIS-based CC1-buffer (Roche Ventana, #5424569001). After peroxidase-
inhibition with I-View Inhibitor (Roche, #06396500001), the sections were incubated with primary
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antibodies against insulin (1:1000; Dako, #A0564), glucagon (1:600; Santa Cruz, #sc13091), somato-
statin (1:6000; Invitrogen, #14-9751-80), CD31 (1:100; Dako, #M0823), perilipin 1 (1:2000; Progen,
#651156), and tubulin beta 3 (1:2500; R&D Systems, #MAB1195). The secondary horseradish
peroxidase-linked antibody was detected via an Opti-View DAB IHC detection kit (Roche Ventana,
#06396500001). The samples were counterstained with hematoxylin. WSI-acquisition was performed
with a Hamamatsu NanoZoomer 2.0-HT using 20x magnification and NDP.scan 2.5 software.

Multiplex Fluorescence staining and fluorescence microscopy. Consecutive 2-4 µm FFPE sec-
tions derived from the identical pancreatic specimens as used for the chromogenic stainings underwent
fluorescent labeling via an automated staining system DiscoveryUltra (Ventana Technology, Roche
Diagnostics). Deparaffinization utilized EZPrep (Roche Ventana; #5279771001) for 32 min at 69°C,
and subsequent AR was performed with TRIS-based CC1-buffer (Roche Ventana, #5424569001) at
91°C for 48 min. Primary antibody cocktails were applied after incubation with a human FC-receptor-
blocking reagent (1:50; Miltenyi, #130-059-901).

The antibody cocktails for Stainingset 1 included for the first incubation antibodies against glucagon
(1:200; Abcam plc. #Ab10988) and tubulin beta 3 (1:25; R&D Systems, MAB1195), for the second
incubation mouse IgG1 con. AF555 (1:200; Invitrogen, #A-21127) and mouse IgG2a con. AF647
(1:50; Invitrogen, #A21241), and for the third incubation somatostatin con. AF750 (1:200; Novus
Biologicals, #NBP2-99309 AF750) with DAPI (1 ng/ml; Invitrogen, #D1306). The cocktails for
Stainingset 2 included for the first incubation antibodies against perilipin 1/PLIN1 (1:50; Progen,
#690156) and PECAM1/CD31 (1:33; Abcam, #ab134168), for the second incubation mouse IgG1
con. AF555 (1:100; Invitrogen, #A21127) and rabbit IgG con. AF750 (1:50; Invitrogen, #A21039),
and for the third incubation insulin con. AF488 (1:200; Invitrogen, #53-9769-82) with DAPI (1
ng/ml; Invitrogen, #D1306). WSI acquisition was performed with a slide scanner (Zeiss AxioScan.Z1
equipped with ZEN 3.1 software) at 20x magnification.

B Deep Learning Models

Model Architectures. A Multiple Instance Learning Approach (MIL) [17] is commonly used to
tackle WSI classification. In MIL the individual patches are first encoded by a pre-trained feature
extractor and subsequently pooled and fed together to a MIL classification algorithm that is trained to
predict the image-level class label. We tested two different feature extractors on the chromogenic
WSIs. The first is a Vision Transformer pre-trained on ImageNet21k [7], which consists of natural
images, while the second is Phikon [8], a Vision Transformer pre-trained on over 6 thousand
histologic WSIs and therefore specifically tailored to the domain. As MIL algorithm, we used
Clustering-constrained Attention Multiple Instance Learning (CLAM) [6] as well as Chowder [18].
Both architectures deal with the variability in patch importance in different ways. CLAM uses an
attention mechanism to focus on the most relevant patches within a bag while simultaneously imposing
clustering constraints to ensure that similar patches receive comparable attention weights, enhancing
interpretability and performance. We adapted the CLAM algorithm to further improve generalizability
by only showing a random subset of patches of a WSI (usually 5%) to the model during an epoch.
Moreover, a cosine annealing learning rate scheduler as well as gradient accumulation were added.
The Chowder architecture employs a modular and hierarchical approach to MIL, where instance-level
features are aggregated through a series of convolutional and pooling layers to capture complex
patterns and dependencies. It also incorporates importance sampling to dynamically select the most
informative instances from each bag, thereby reducing computational load and enhancing the model’s
ability to focus on critical data points.

Data Representations. Patches of chromogenic samples were encoded as RGB images (3 color
channels) similar to natural images. In contrast, multiplex fluorescent immunostainings required
further preprocessing, since in these cases each channel contains the intensity values of one of the
respective stainings which does not coincide with color channels. Each of the fluorescent WSIs has 4
channels, containing 3 of the Stainingset-specific stainings as well as DAPI, as nuclear (DNA) marker.
We tested 3 different data representations on the fluorescent WSIs:

• RGB: This representation treats each of the 3 stainings as RGB color channels and additionally
overlays the DAPI channel as a grayscale image on each of the other 3 channels, resulting in an
RGB image similar to what can be seen with a standard visualization software when showing all
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stainings simultaneously. This representation contains the co-occurrence of the stainings, i.e. the
model can learn which stainings occur together in the WSI.

• Channel-wise: The channel-wise representation treats each channel (staining) individually as a
grayscale image. Consequently, each patch gets encoded 4 times during feature extraction. The
resulting features (1-dimensional vectors) are then appended, leading to a representation where
each channel is encoded in detail, but no co-occurrence information is preserved.

• Channel-wise average: The channel-wise average representation is very similar to the channel-
wise representation but aims to include the co-occurrence of stainings by averaging the 4 different
feature vectors respective to their occurrence in the image.

Training Procedure. We split the data consisting of 100 unique patients into a train (75 patients)
and test (25 patients) set and performed the model development solely on the train data. For that,
we used a 15-fold cross-validation, where in each fold we randomly used 60 patients from the train
set for training and the remaining 15 patients for validation. Due to the different distributions of
T2D within the two cohorts, we applied balanced sampling during training only for cohort 1 patients
while the cohort 2 was already balanced. As the target metric, we chose the Area Under the Receiver
Operating Characteristic Curve (AUROC), since for the subsequent XAI steps it is more important to
have a model that has a high separability and can generally distinguish between the two classes (T2D
or not) than having a model that works well with a specific cutoff as measured by the F1-Score or the
Accuracy.

Representation Stainingset Encoder / MIL Algorithm AUROC (higher
is better)

Channel-wise Average
1 Imagenet / CLAM 0.956
2 Imagenet / CLAM 0.684

Channel-wise
1 Imagenet / CLAM 0.912
2 Imagenet / CLAM 0.816

RGB
1 Imagenet / CLAM 0.842
2 Imagenet / CLAM 0.640

Table 2: Model performance on fluorescent WSIs.

C Attention Computation

Initially, we focused on determining the significance of specific patches using the built-in attention
mechanism of the classification head. Nevertheless, raw attention data predominantly indicates
general importance rather than class-specific relevance. To address the latter, we applied Attention
Layer-wise Relevance Propagation (Attention LRP) [19], which filters the attention values to highlight
patches distinctly associated with either diabetic or non-diabetic status within the same WSI. The
class-specific relevance R is iteratively computed for each layer n. Here x(n) is the input at layer n
with j elements and x(n−1) is the input of the downstream layer with i elements. wji is the respective
weight matrix of the layer. Non-linear functions like GELU [20] produce both positive and negative
outputs. To account for this, relevance propagation can be adjusted by forming a subset of indices q
resulting in the following relevance propagation:

R
(n)
j =

∑
{i|(i,j)∈q}

xjwji

Σ{j′|(j′,i)∈q}xj′wj′i
R

(n−1)
i with q = {(i, j)|xjwji ≥ 0} (1)

We set R(0) = 1t for initialization, where t is the one-hot-encoded outcome class. Based on the
relevance, we compute the average relevance filtered attention Ā for each attention head b, with
the number of heads h. To this end, we take the Hadamard product between the relevance and the
attention’s heads gradient ∆A(b), considering only the positive relevance:
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Staining MIL Algorithm Encoder AUROC (higher
is better)

Mean over Stainings

CLAM Imagenet 0.833
Chowder Imagenet 0.830
CLAM Phikon 0.794

Chowder Phikon 0.781

Tubulin beta 3 CLAM Imagenet 0.895
Insulin CLAM Imagenet 0.842
Glucagon CLAM Imagenet 0.842
Perilipin 1 CLAM Imagenet 0.842
Somatostatin CLAM Imagenet 0.842
PECAM1 CLAM Imagenet 0.737

Tubulin beta 3 CLAM Phikon 0.851
Insulin CLAM Phikon 0.684
Glucagon CLAM Phikon 0.711
Perilipin 1 CLAM Phikon 0.816
Somatostatin CLAM Phikon 0.921
PECAM1 CLAM Phikon 0.781

Tubulin beta 3 Chowder Imagenet 0.877
Insulin Chowder Imagenet 0.851
Glucagon Chowder Imagenet 0.640
Perilipin 1 Chowder Imagenet 0.877
Somatostatin Chowder Imagenet 0.877
PECAM1 Chowder Imagenet 0.851

Tubulin beta 3 Chowder Phikon 0.833
Insulin Chowder Phikon 0.693
Glucagon Chowder Phikon 0.728
Perilipin 1 Chowder Phikon 0.860
Somatostatin Chowder Phikon 0.842
PECAM1 Chowder Phikon 0.728

Table 3: Model performance on chromogenic WSIs.

Ā(b) = I + Eh(∇A(b) ⊙R(nb))+ (2)

D Imaging Biomarker

ROI Segmentation. To compute the identified biomarkers a segmentation map of the respective
regions is needed. Due to the amount and size of the WSIs we used scribble annotation [21]
to efficiently label 44 (out of 600 chromogenic WSIs) slides with the labels background, tissue,
adipocytes, fibrotic patterns, and islets. Scribble annotation allows for a very fast annotation because
regions are not annotated densely (i.e. each pixel gets annotated) but rather only smaller lines
(scribbles) are used to approximately label the respective regions. During model training, we used
the ignore label in nnU-Net [22] to only update the model weights based on annotated scribbles

13



while ignoring the remaining image. While annotation is based on scribbles, the model still returns a
dense prediction which makes this approach well-suited for segmenting the ROIs. Since the nature of
scribbles only allows a quantitative evaluation of the respective annotated areas, a qualitative analysis
of the resulting segmentation maps was conducted. After adjusting some annotations and retraining
the nnU-Net, a satisfactory segmentation quality was reached.

Quantifying Attention. The attention to specific ROIs for the chromogenic stainings was computed
by summing up the raw attention within specific segmentation masks and standardizing it by the total
attention in the WSI and the tissue size. We summed up the attention per staining channel for the
fluorescence stainings and standardized it by the total attention over all stainings and the tissue size.
For the exploratory analysis, we z-standardized all continuous variables on non-interpretable scales;
however, we routinely z-standardized all continuous covariates for the statistical analysis.

Biomarker. For the chromogenic staining, we computed the area-related biomarkers based on the
segmentation masks and counted the number of distinct islets and adipocyte clusters by applying
connected components to the respective segmentation mask. All biomarkers are standardized by the
total size of the tissue. For the islet-related biomarker, we only include islet segmentations larger
than 5000 pixels, ignoring segmentation artifacts or errors. For the fluorescence-specific intensity
biomarkers, we computed the channel-specific mean intensity as an approximation of the respective
area of the trait and standardized it again by the tissue size. In the case of perilipin 1, we first threshold
the intensity values, including only values larger than 1000 (intensity measured as 16-bit integers),
filtering out unspecific stained traits. For tubulin beta 3 within islets, we only included the intensity
within islets and additionally, standardized by the number of islets.

E Statistical Methods

Hypothesis Testing. To test differences between two groups, e.g. patients with and without diabetes,
we applied a two-sample t-test. For testing, if at least one group is significantly different, we applied
the F-test within a one-way ANOVA. To test if a coefficient in a linear model is significantly different
from zero we used the Z-test. For all tests, we considered p-value > 0.05 as not significant.

Statistical Models. For statistical analysis of the biomarkers, we used a generalized mixed linear
model (GMLM), as we have several dependence structures within the data. For the diabetes status as
the outcome, we selected the canonical binomial link function. For the HOMA2B level, we selected
the canonical Gaussian and Gamma link functions and reported results for the Gaussian link, as its
Akaike Information Criterion (AIC) was lower. We accounted for random effects linked to the cohort
and staining method. Due to no variation between the outcomes (i.e., diabetes status) within a patient,
we could not model the patient as a random effect. In this case, the intercept would be enough to fit
one model per patient perfectly. All models were fitted via maximum likelihood and the L-BFGS-B
optimizer [23]. We tested for multicollinearity by computing variance inflation factor (VIF) and
removed “benign tumor” due to perfect multicollinearity with “malignant tumor” combined with
“chronic pancreatitis”. Sensitivity analyses were performed using generalized estimating equation
(GEE) models.
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Figure 6: Top 15 attended chromogenic patches.

Statistical Model Evaluation. For all models with the same modality and response variable, we
used the AIC for model selection. Additionally, we evaluated the logistic models through a confusion
matrix (Figure 6) and the linear models through parity plots, residual plots, and Q–Q plots of the
residuals (Figure 7).

Figure 7: Top 15 attended chromogenic patches.

F Limitations

While this data-driven approach has the potential to accelerate and facilitate the understanding of
T2D pathogenesis, several potential limitations must be considered. One is that immunostaining
approaches can be associated with technical pitfalls such as antibody binding specificity, nonspecific
background staining, or variations in the staining intensity across samples regardless of target antigen
level. Furthermore, our histological preparations were not representative of the whole organ, since
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they were obtained from limited regions of the pancreas, the anatomical location of which varied
among living donors. Further, despite originating from the “healthy” margins of the surgical resection,
as also verified by postoperative pathological assessment, the samples could be affected by changes
in the tissue microenvironment such as inflammation, enrichment of connective tissuefocal fibrosis,
and angiopathy.

G Top 15 attended chromogenic patches

Figure 8: Top 15 attended chromogenic patches.
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H Pixel-level saliency maps

Figure 9: Pixel-level heatmaps of local regions and one single patch based on Saliency with Smooth-
Grad for chromogenic (A) and fluorescence (B) data.
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I Regression Results Fluorescence

A.    GMLM Regression for Diabetes Status (Fluorescence)

Fixed Effects Estimate SE P-Value (p) Sign.

Intercept -1.889 0.877 0.031 *

Area of Islets -0.446 0.426 0.295

Number of Islets 0.085 0.288 0.768

Perilipin 1 Intensity 0.408 0.265 0.124

Tubulin beta 3 Intensity in Islets -0.328 0.310 0.168

Sex 0.709 0.554 0.201

Age 0.832 0.330 0.012 *

BMI 0.593 0.263 0.024 *

Malignant Tumor 0.672 0.616 0.276

Chronic Pancreatitis 1.915 0.967 0.048 *

Random Effects Type Variance STD

Cohort Intercept 0.754 0.868

Observations

Groups


Log-likelihood

AIC

100

{Cohort: 2}

-51.628

125.256

Note * p<0.05, ** p<0.01, *** p<0.001

B.    MLM Regression for HOMA2B (Fluorescence)

Fixed Effects Estimate SE P-Value (p) Sign.

Intercept 0.306 0.173 0.080

Area of Islets -0.207 0.094 0.030 *
Number of Islets 0.280 0.103 0.008 **

Perilipin 1 Intensity 0.032 0.085 0.706

Tubulin beta 3 Intensity in Islets 0.183 0.093 0.053

Sex -0.149 0.170 0.383

Age -0.154 0.088 0.085

BMI 0.243 0.090 0.008 **
Malignant Tumor 0.076 0.187 0.685

Chronic Pancreatitis 0.314 0.307 0.309

Insulin Therapy -1.435 0.244 0.000 ***

Random Effects Type Variance STD

Cohort Intercept 0.000 0.000

Observations

Groups


Log-likelihood

AIC

91

{Cohort: 2}

-105.898

237.797

Note * p<0.05, ** p<0.01, *** p<0.001

Table 4: Regression results of the generalized mixed linear model analysis for diabetes status (A) and
HOMA2B (B) level based on fluorescence.
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