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Abstract

Type 2 diabetes (T2D) is a chronic disease currently affecting around 500 million
people worldwide and potentially leading to severe health conditions. Yet, the
causes for the underlying beta-cell failure leading to impaired insulin secretion
are not fully understood, especially on a morphological level. While giga-pixel
microscopy images may visualize such subtle morphological differences, the dimen-
sionality and variability of the data quickly surpass the limits of human analysis.
In response, we collected a dataset consisting of pancreas whole-slide images
stained with multiple chromogenic and multiplex fluorescent stainings and trained
various deep learning models to predict the T2D status. Using explainable AI
(XAI) methods, we rendered the learned relationships humanly understandable,
quantified them as comprehensive biomarkers, and utilized statistical modeling
to assess their association with T2D. Our analysis reveals the contributions of
adipocytes, pancreatic islets, and fibrotic patterns to T2D.

1 Introduction

Based on the current WHO classification of diabetes, over 90% of all persons with the disease fall
into the category defined as type 2 diabetes (T2D). T2D is a major global health issue, affecting
millions and placing a significant burden on healthcare systems [1]. Drivers of T2D are insulin
resistance and impaired insulin secretion, with dysfunction of pancreatic islet beta-cells being a key
feature. Despite extensive research, the exact nature of beta-cell failure in T2D remains unclear.
Given the high degree of inter-individual variability, no specific traits are sufficient for pathologists to
discriminate whether a pancreatic sample belongs to a subject with or without T2D. Pancreatic tissue,
represented in giga-pixel whole-slide images (WSIs), lacks clear features that differ significantly
between individuals with and without T2D.

Our goal was therefore to assess whether the exploitation of an imaging data-driven approach
combining attention-based DL models with explainable artificial intelligence (XAI) would enable the
attribution of a pancreatic patient to a patient with or without T2D with high reliability. While DL
models could find patterns in data infeasible to detect by doctors, XAI methods subsequently rendered
the learned relationships human-understandable, revealing regions of interest (ROIs) associated with
the occurrence of T2D. Given the limited feasibility of qualitative analyses of large amounts of XAI
results, we quantified the attention to the ROIs and subsequently computed specific biomarkers for
the most important ones. At last, we analyzed these biomarkers in combination with clinical patient
data using statistical models. Besides the integration of vast amounts of diverse WSIs, our approach
offered the advantage that we do not bias ourselves to prior assumptions regarding T2D as the XAI
application can also uncover unanticipated findings, leading to the formulation of new hypotheses
about the disease.

2 Classification of T2D from WSIs of pancreatic tissue sections
Dataset We first applied both single chromogenic and multiplex fluorescence techniques to im-
munostain pancreas sections from 100 patients with (35) or without (65) T2D who underwent
pancreatectomy [2–5] at two medical centers. Immunostained antigens included glucagon, insulin,
and somatostatin as markers of islet �-, �- and �-cells, respectively, as well as PECAM1 for endothe-
lial cells (blood vessels), perilipin 1 for adipocytes (fat cells) and tubulin beta 3 for neuronal axons.
In the case of the chromogenic stainings, each marker was detected individually in serial sections
counterstained with hematoxylin. In the case of multiplex fluorescent stainings, serial sections were
incubated with DAPI and primary antibodies either against glucagon, somatostatin, and tubulin beta
3 (Stainingset 1), or against insulin, PECAM1, and perilipin 1 (Stainingset 2) (see Figure 1 (a)).
Brightfield and fluorescent WSIs were then used to train DL models distinguishing donors with or
without T2D (see Figure 1 (b)). See Appendix A for a full description of the cohort and staining
procedures. Patients were split into a training set (75) and a test set (25). For the chromogenic data,
where each of the six stainings is available as an individual RGB WSI, separate models per staining
were trained. In contrast, the multiplex fluorescent data contained multiple stainings in one WSI via
different image channels. We compared different representations of these WSIs by either treating
each of the three channels as color channel (RGB), encoding each of the channels individually and
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Figure 1: (A) We acquired serial pancreatic tissue sections, fasting blood samples, and clinical data
from 100 patients. Further, we used six chromogenic stainings for brightfield and two staining sets
for multiplex fluorescence microscopy to capture the WSIs. (B) Multiple Instance Learning (MIL)
architecture with different pretrained encoders and fine-tune MIL classifier. (C) XAI methods were
used to identify regions of interest (ROIs) utilized by the models for their prediction. (D) ROIs were
segmented and quantified, with extracted biomarkers and clinical covariates analyzed using statistical
models.
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Figure 2: Performance efficiency of trained models to predict type 2 diabetes on chromogenic (A)
and fluorescent (B) WSIs. AUROCs show ImageNet21k/CLAM outperforms Phikon/CLAM in most
cases, with tubulin beta 3 achieving the highest performance, and Stainingset 1 with channel-wise
average representation performing best on fluorescent WSIs.

append all resulting feature vectors (channel-wise) or encoding each of the channels individually and
averaging the resulting feature vectors (channel-wise avg).

Model Performance WSI classification is a multiple instance learning (MIL) problem since an
entire image is too large to be processed at once while a classification label is only available globally
but not per patch. We used CLAM [6] which first encodes individual patches via a pre-trained feature
extractor and then aggregates the features using attention mechanisms followed by a classification
layer to obtain the WSI-level prediction. This allows for a direct interpretability of patch importance
by visualizing the attention scores over the WSI. See Appendix B for further experiments with other
MIL models. For the chromogenic data we tested two vision transformers either pre-trained on
Imagenet21k [7] or Phikon [8], a foundation model trained on thousands of WSIs), while on the
fluorescent data we only used Imagenet21k. When applied to chromogenic brightfield WSIs, the
ImageNet21k pre-training delivered the best prediction performance on average (AUROC = 0.833;
Figure 2 (a) and Appendix Table 3). Across all stainings except for PECAM1 and somatostatin,
there was a significant increase in AUROC when using the ImageNet21k pre-trained encoder. When
ImageNet21k/CLAM-based prediction was conducted using fluorescent WSIs, Stainingset 1, despite
the absence of insulin staining, yielded significantly better classification results than Stainingset
2. The best performance was reached using the channel-wise avg representation on Stainingset 1
(Ensemble AUROC=0.956; Figure 2 (b) and Appendix Table 2).

3 AI models attend to specific biological traits
Upon completion of model training, we aimed to understand the biological features utilized by the
models in predicting diabetes. For this purpose, we employed XAI techniques specifically within
the domains of Attention and Attribution methods, to highlight regions critical to the models when
predicting the T2D status Figure 1 (c). We applied these techniques to the best classification model
among the evaluated training settings for both fluorescent and chromogenic modalities.

Initially, we focused on determining the significance of specific patches using the built-in attention
mechanism of the multiple instance learning (MIL) classifier and creating attention heatmaps for
the individual chromogenic and fluorescent WSIs of each patient Figure 3. The heatmaps of the
chromogenic WSIs revealed both similarities and distinctions in the regions important to the model
when classifying a WSI to diabetes or its absence. Specifically, for the “diabetes” outcome (Figure 3
(a), lower panels), several stainings showed heightened attention to fibrotic patterns (left side of the
PECAM1-, glucagon-, insulin-, and somatostatin-stained WSIs) as well as a pronounced focus on
adipocytes (top left of the perilipin 1-stained WSI). Both recognized features, i.e. fibrotic changes and
adipocyte infiltration are mainly localized in the exocrine tissue. Notably, in the chromogenic WSIs
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