Under review as a conference paper at ICLR 2025

ANTI-REFERENCE: UNIVERSAL AND IMMEDIATE DE-
FENSE AGAINST REFERENCE-BASED GENERATION

Anonymous authors
Paper under double-blind review

Dreambooth LoRA  Textual inversion IP-Adapter Reference-only Magic animate Ecomimic

—

Customize
Generation

s

Clean images  Anti-reference

s

Customize
Generation

q.

Perturbed images Tuning-based method Tuning-free method Human animation method

Figure 1: Malicious attackers can collect users’ images as reference images and use diffusion models
to achieve malicious purposes. Our system, called Anti-reference, applies imperceptible perturba-
tions to user-uploaded images before they are published, resulting in noticeable artifacts in images
or videos generated by reference-based methods and fine-tuning approaches. This makes it easy to
recognize them as Al-generated, thus protecting the images.

ABSTRACT

Diffusion models have completely transformed the field of generative models, demonstrating unpar-
alleled capabilities in generating high-fidelity images. However, when misused, such a powerful and
convenient tool could create fake news or disturbing content targeted at individual victims, causing
severe negative social impacts. In this paper, we introduce Anti-Reference, a novel method that
protects images from the threats posed by reference-based generation techniques by adding imper-
ceptible adversarial noise to the images. We propose a unified loss function that enables joint attacks
on fine-tuning-based customization methods, non-fine-tuning customization methods, and human-
centric driving methods. Based on this loss, we train a Noise Encoder with a DiT architecture to
predict the noise or directly optimize the noise using the PGD (Projected Gradient Descent) method.
Our method demonstrates strong black-box transferability, being equally effective against black-
box models and some commercial APIs such as Animate Anyone, and EMO. Extensive experiments
validate the performance of Anti-Reference, establishing a new benchmark in image security.

1 INTRODUCTION

Diffusion models have completely transformed the field of generative models, demonstrating un-
paralleled capabilities in generating high-fidelity images. Customized generation can be divided

into methods that require training, such as Dreambooth(Ruiz et al} [2023), LoRA 2022),
Textual Inversion (Gal et al. [2022), Custom Diffusion(Kumari et al., and those that do not,
such as IP-Adapter (Ye et al.| [2023a)), Instant-ID (Wang et al.,[2024b)). Reference-based methods are
widely used in customized image and video generation, especially in human-centered video gen-
eration, including portrait video creation methods(Tian et all, 2024} [Chen et all, 2024} [He et all}
2024} [Xie et al, [2024), and human animation (Xu et al. [2024; [Hul [2024) , which have attracted
significant attention due to their practical value in creating digital human avatars and enhancing film
production.
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However, the high convenience and efficiency of non-trainable Reference-based methods make them
potentially susceptible to misuse, becoming tools for creating fake news or disturbing content tar-
geted at individual victims, causing severe negative social impacts. Existing studies use encoder
attack (Salman et al.| 2023)) and diffusion attack (Van Le et al., 2023} [Liang et al.,|2023) to protect
images from the threats posed by methods requiring fine-tuning (Ruiz et al., [2023}; [Hu et al., 2022;
Gal et al., 2022), using PGD (Madry, 2017)) optimization to generate adversarial noise, but this ap-
proach requires several minutes to protect a single image, severely limiting its practical application.
Moreover, these methods are largely ineffective against non-trainable Reference-based generation
methods. Therefore, developing an efficient method to protect personal images from the threats of
Reference-based generation has become an urgent priority.

Reference-based methods provide additional conditions through a Reference Image to enable cus-
tomized generation. These methods can be divided into two types based on their implementation:
one type embeds Reference features in the cross-attention layer of the denoising network using
an adapter, such as IP-Adapter (Ye et al.l [2023a); the other type embeds reference features in the
self-attention layer of the denoising network using ReferenceNet. The approach of ReferenceNet is
widely used for image customization generation (Team), |2023; |Zhang et al.,|2024bjc), Image2Video
(Chen et al.,|2023b; |[Zhang et al.| |2023)), and face animation generation (Tian et al.,[2024;|Chen et al.,
2024;[He et al.| [2024; [ Xie et al.}|2024), and body-driven tasks (Xu et al.||2024; [Hu, 2024). However,
due to the variety of existing Reference-based generation methods, attacking a specific method has
limited practical significance, as attackers can easily switch methods to bypass protection. There-
fore, the motivation of this paper is to propose a universal adversarial noise generation method to
address the threats posed by mainstream Reference-based methods.

In practical image protection scenarios, protection methods need to address several challenges.
Firstly, universality is a key challenge. Since Reference-based methods have many different imple-
mentations, and models trained on different datasets have different feature spaces, the same attack
strategy may have very different effects on different models. Secondly, efficiency is also crucial.
Existing methods like Anti-DreamBooth (Van Le et al [2023) , which use PGD optimization, usu-
ally require hundreds of steps and significant time, severely limiting their feasibility for real-time
applications. Finally, black-box transferability and robustness are also central challenges. In prac-
tical applications, the structures and parameters of proprietary APIs like EMO (Tian et al., [2024) ,
Animate anyone (Hul 2024) are not accessible, so attack methods must have good black-box trans-
ferability. Additionally, the generated adversarial noise also needs to be robust enough to withstand
common data augmentation operations and preprocessing steps (such as JPEG compression and
Affine transformations).

To address these challenges, this paper presents Anti-Reference, the first to protect images from
the threats posed by mainstream reference-based methods and tuning-based customization methods
through the forward process. We propose a Noise Encoder based on the DiT (Peebles & Xie, [2023))
architecture, which predicts adversarial noise of the same size as the original image and overlays
it to form a protected image. To achieve a universal attack on methods requiring fine-tuning and
those that do not, we designed a unified loss function, using a weighted strategy to achieve joint
attack effects across multiple tasks, and by limiting the noise range and regularization loss to en-
sure the invisibility of the noise. To enhance the robustness of adversarial noise, we also introduced
some data augmentation techniques to ensure that the adversarial noise can withstand various data
enhancements and preprocessing operations. As the model structures and weights of proprietary
APIs are not accessible, directly attacking these models is usually not feasible. To overcome this
hurdle, we created white-box proxy models that mimic the structure and behavior of these propri-
etary models, and we successfully implemented attacks on these proxy models, thereby achieving
black-box transferability attacks. Specifically, our adversarial samples have successfully transferred
to closed-source APIs (such as Animate Anyone (Hu,2024) and EMO (Tian et al., [2024))).

Extensive experimental results demonstrate the outstanding performance of Anti-Reference in pro-
tecting images from the threats of Reference-based generation methods and potential security risks
associated with fine-tuning methods. This paper not only extends the theoretical construction of
adversarial attacks but also transforms it into a deployable solution, establishing a new benchmark
in the fields of privacy protection and information security.

‘We summarize our main contributions as follows:
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* Universality and Joint Multi-Task Attacks: For the first time, we propose a universal adver-
sarial noise generation method that employs a unified loss function to simultaneously target
both mainstream Reference-based generation methods and those requiring fine-tuning.

» Efficiency Improvement: Compared to traditional PGD optimization methods, this paper
introduces a DiT architecture-based Noise Encoder that enables attack execution without
optimization, significantly reducing computational time and enhancing practicality for real-
time applications.

* Black-Box Transferability and Robustness: We have successfully designed transferable ad-
versarial samples that facilitate black-box attacks on proprietary commercial APIs (such as
EMO, Animate Anyone) using white-box proxy models. Moreover, our method is suffi-
ciently robust to effectively handle common data augmentation operations and complex
preprocessing methods, ensuring the effectiveness of adversarial noise across various sce-
narios.

2 RELATED WORK

2.1 CUSTMIZED DIFFUSION MODEL.

Diffusion probability models|Song et al.|(2020); Ho et al.|(2020) represent a class of advanced gener-
ative models that reconstruct original data from pure Gaussian noise by learning noise distributions
at different levels. These models excel in handling complex data distributions and have marked
significant accomplishments across various fields such as image synthesis Rombach et al.| (2021));
Peebles & Xief(2023), image editing Brooks et al.[(2023)); [Hertz et al.| (2022)), video generation Wu
et al.| (2022)); Hu| (2024)), and 3D content creation Poole et al.|(2022). A prominent example is Stable
Diffusion [Rombach et al.|(2021), which utilizes a UNet architecture to iteratively produce images,
demonstrating robust text-to-image capabilities after extensive training on large text-image datasets.
DreamBooth Ruiz et al.| (2023), Custom diffusion [Kumari et al.| (2023) and Textual Inversion |Gal
et al.|(2022), adopt transfer learning to text-to-image diffusion models via either fine-tuning all the
parameters, partial parameters , or introducing and optimizing a word vector for the new concept.
LoRA (Low-Rank Adaptation) Hu et al.|(2022)) is a popular and lightweight training technique that
significantly reduces the number of trainable parameters and is widely used for personalized or
task-specific image generation.

2.2 REFERENCE-BASED GENERATION

In addition to the aforementioned fine-tuning methods, finetuning-free concept learning methods can
capture concepts from a single image and are widely used for tasks such as customized generation
(Ye et al, [2023a}; |[Zhang et al., 2024a)), identity consistency maintenance (Wang et al., 2024b; [Li
et al., [2024)), face-driven [Tian et al.| (2024)); |Chen et al.| (2024); Xie et al.| (2024)), and body-driven
tasks Xu et al| (2024); Hul (2024). These methods can be roughly categorized into the Adapter
approach and the ReferenceNet approach based on how the reference image features are utilized. In
the Adapter approach, the reference image is first processed by a pre-trained image feature extractor,
typically CLIP (Radford et al., [2021)) image encoder or ArcFace Deng et al.| (2019)), and then an
adapter structure generates visual tokens applied to the cross-attention layers of the U-Net. The
ReferenceNet approach emphasizes the effectiveness of integrating reference image features into the
self-attention layers of LDM U-Nets, enabling customized generation while preserving appearance
context. Image-to-video technology (Chen et al.| (2023b); Zhang et al.| (2023) uses ReferenceNet
to maintain consistency between the generated results and the reference image. Magic Animate | Xu
et al.| (2024)) and Animate Anyone Hu|(2024) combine ReferenceNet with pose control and temporal
modules to achieve body-driven generation. EMO [Tian et al.|(2024), Ecomimic [Chen et al.| (2024),
and X-Portrait Xie et al.|(2024), among other talking-face methods, maintain identity consistency
using ReferenceNet, generating fake videos from just a single photo. The misuse of Reference-
based Generation methods can have severe consequences, making it urgent to protect images from
the threats posed by such methods.
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2.3 PROTECTIVE PERTURBATION AGAINST DIFFUSION.

Protective Perturbation against Stable Diffusion. To protect personal images such as faces and art-
work from potential infringement when used for fine-tuning Stable Diffusion, recent research aims
to disrupt the fine-tuning process by adding imperceptible protective noise to these images. Several
methods have been developed to achieve this goal: Glaze (Shan et al.l 2023) focuses on prevent-
ing artists’ work from being used for specific style mimicry in Stable Diffusion. It optimizes the
distance between the original image and the target image at the feature level, causing Stable Dif-
fusion to learn the wrong artistic style. AdvDM (Liang et al.l [2023) proposes a direct adversarial
attack on Stable Diffusion by maximizing the Mean Squared Error loss during the optimization pro-
cess. This approach uses adversarial noise to protect personal images. Anti-DreamBooth (Van Le
et al., |2023) incorporates the DreamBooth fine-tuning process of Stable Diffusion into its consid-
eration. It designs a bi-level min-max optimization process to generate protective perturbations.
Additionally,other research efforts (Wang et al.| [2024a; |Ye et al., 2023bj [Zheng et al., |2023)) have
explored generating protective noise for images using similar adversarial perturbation methods. The
aforementioned works use PGD optimization to protect images from threats posed by fine-tuning
methods such as Dreambooth (Ruiz et al., [2023)), LoRA (Hu et al ., [2022), and textual inversion (Gal
et al.| 2022)). However, these methods fail to provide protection against reference-based generation.
Therefore, it is urgent to explore how to protect personal images from reference-based generation,
and this paper fills that gap.

Generation Task Categories Examples of Methods

TP-Adapter|Ye et al.|(2023a), InstantID |Wang et al[(2024b), Anydoor|Chen et al.[(2023a),
SSR-Encoder|Zhang et al.|(2024a)

Reference-only [Team| (2023), Stable-Makeup[Zhang et al[(2024b), StableHair[Zhang et al.|
(2024c)

Animate anyone |Hul (2024), Magicanimate [Xu et al. (2024), EMO [Tian et al| (2024),
EchoMimic|Chen et al.|(2024), X-Potrait|Xie et al.|(2024), Echo-PMO (Tian et al.|{(2024)

Adapter-based image generation

Reference-based image generation

Reference-based video generation

Table 1: Overview of Generative Methods by Category

3  PROBLEM DEFINITION

Given the practical implications of image infringement based on Stable Diffusion, it is essential to
define the threat model in real-world scenarios. We consider two participants involved in fine-tuning
Stable Diffusion using images: the “image protector” Alice and the “image exploiter” Bob. Bob
illicitly uses reference-based methods to exploit others’ photos for customized content, while Alice,
wishing to safeguard her images on social media, adds adversarial noise to disrupt Bob’s methods,
aiming to induce severe artifacts in the generated content. Specifically, we explain the workflow of
the two parties as follows:

Image Protector Alice: The Image Protector aims to provide protection for images to prevent
exploitation by Stable Diffusion. In this context, the chosen protection method involves adding
imperceptible protective perturbations to the images, with the goal of offering protection while min-
imizing alterations to the original image. In real-world scenarios, the Image Protector often faces
challenges, such as not knowing the methods and forms the Image Exploiter will use to fine-tune
Stable Diffusion with the protected images. Additionally, they cannot protect images that have been
publicly disclosed in the past.

Image Exploiter Bob: The Image Exploiter aims to fine-tune Stable Diffusion using images col-
lected from the internet to generate high-quality images with specific concepts, including faces,
objects, and artistic styles. To realistically assess the effectiveness of protective perturbations, we
consider that the Image Exploiter may have the following possibilities during image collection and
fine-tuning: (1) The Image Exploiter can choose any fine-tuning method, including but not limited
to direct fine-tuning, LoRA, Textual Inversion, DreamBooth, and Custom Diffusion, among other
mainstream fine-tuning methods. This requires the Image Protector to ensure that the protected im-
ages remain effective against any fine-tuning method. (2) The protected images may undergo natural
transformations during the dissemination process, including but not limited to cropping, compres-
sion, and blurring. This necessitates the Image Protector to consider the robustness of protective
perturbations when exposed to these natural disturbances. (3) Image pre-processing: The Image Ex-
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ploiter may employ purification methods to remove the protective perturbations from the collected
images after acquisition.

The goal of this work is to add imperceptible adversarial noise to images, formalized as I’ = I +
noise, where I and I’ represent the original and protected images, respectively. These images serve
as inputs to customization methods, and the outputs Gen(I) and Gen(I”) are compared. If Gen(I")
exhibits significant distortion, the protection is considered successful. We achieve this by solving
the following optimization problem:

max d(Gen(I),Gen(I,q,)) subject to d' (I, I4qy) < 6,

Tadv €

where M indicates the natural image manifold, d and d’ denote image distance functions, and §
represents the fidelity budget. Through this optimization process, we aim to effectively safeguard
images from unauthorized editing and translation while maintaining their fidelity.

Adversarial noise Conditional modules
Noise Encoder
.| RerferenceNet or
7| IP-Adapter ...
I, adv
A
clean Iddv Denmsmg Unet Predlcl noise lnitia]!-noise Denoising Unet Predic‘ noise
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Figure 2: Illustration of Anti-reference. We propose a loss function to protect images from the
threats of customized generation methods, and we use this loss to train a noise encoder to predict
adversarial noise.

4 METHOD

In Section 4.1, we first introduce the overall method. In Section 4.2, we introduce the Noise Encoder
in detail. In Section 4.3, we introduce the Loss function we use. In Section 4.4, we describe how to
implement PGD joint optimization. In Section 4.5, we explain how to create white-box proxies for
black-box models to facilitate attacks.

4.1 OVERALL METHOD

This section introduces the overall framework of the Anti-Reference method, as shown in Figure 2.
Our method consists of several key components: the Noise Encoder, a set of conditional modules, the
Denoising Unet, and a differentiable data augmentation module. The Noise Encoder adds adversarial
noise to the image, forming the protected image I,4,. The set of Reference Modules is a group of
conditional control modules that serve as the target models for the attack.

To protect images from the threats posed by tuning-free customization generation methods and driv-
ing methods, we selected the pre-trained ReferenceNet from Magic Animate and Ecomimic, as well
as the Stable Diffusion Unet, as the target models for attacking the ReferenceNet route. Addition-
ally, we chose the IP-Adapter as the target model for the Adapter route. The Denoising Unet utilizes
the pre-trained Stable Diffusion 1.5 Unet, as it is the most commonly used base model for various
customization generation methods. The protected image [,4, is fed into two components: the set
of conditional modules and the Denoising Unet, where losses are calculated separately. To enhance
the robustness of the adversarial noise against real-world scenarios, we propose a differentiable data
augmentation module, which applies common data augmentations to /4.
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4.2 NOISE ENCODER

Our objective is to input an image that needs protection, and the Noise Encoder generates adver-
sarial noise of the same size as the image through a forward process. In designing the structure of
the noise encoder, we initially tried the hidden watermark embedding method proposed by Hidden
and the U-Net structure from stable diffusion, but neither yielded satisfactory results. Ultimately,
we proposed the Noise Encoder based on the DiT structure. DiT, a new diffusion model based on
transformers, is referred to as Diffusion Transformers and follows the best practices of Vision Trans-
formers (ViTs). ViTs have demonstrated superior scalability in visual recognition tasks compared to
traditional convolutional networks like ResNet. Specifically, the DiT model processes input images
by patchifying them into smaller blocks, which are then fed as input sequences into transformers.
After being processed by multiple transformer blocks, the noise is gradually removed, resulting in
high-quality image generation.

In our Noise Encoder design, there are several key differences from the DiT design: 1. Our Noise
Encoder generates adversarial noise in a single inference rather than iterative denoising. 2. We
removed the additional conditional information related to the diffusion process from DiT, such as
noise timesteps t, class labels c, and natural language. 3. DiT performs denoising in the latent space
of the VAE, whereas our method predicts adversarial noise in the pixel domain, with differences in
input channels and resolution. Considering that the customization methods targeted by our attacks
typically use SD1.5 as the base model, with the input image resolution for ReferenceNet and the
denoising U-Net set to 512x512, we also set the training resolution of DiT to 512x512 to ensure
compatibility with these customized generation tasks and to enhance the effectiveness of the attack.

To ensure the adversarial noise retains its effectiveness under various image processing conditions,
we apply a series of data augmentations before utilizing the noised image I’. These augmentations
include differentiable cropping, resizing, JPEG compression, and color adjustments, all of which
help maintain the robustness of the adversarial noise against common image transformations.

4.3 Loss FUNCTION

Diffusion adv loss In adversarial attacks, our goal is to maximize the noise prediction loss of the
diffusion model, rather than minimize it. This means that we aim for the noise predicted by the
model, €g, to have the largest possible error compared to the actual noise e, thereby disrupting the
model’s denoising capability. The specific loss function can be defined as:

Loy = _Ezo,ewN(O,l),t [||6 - 69($t7t)||2]

Where z is the original data, € is noise sampled from a standard normal distribution, ¢ is the time
step representing the noise level, z; = \/@; 2o ++/1 — aye is the noisy image at time step ¢, €g (¢, t)
is the noise predicted by the model. This loss function is as same as diffusion training loss, but the
objective is completely opposite.

Conditional Adversarial Loss Conditional Adversarial Loss aims to attack reference-based cus-
tomization generation methods and driving techniques. Specifically, we calculate the adversarial
noise prediction loss when adversarial noise images are used as inputs for ReferenceNet or IP-
adapter. This loss measures the deviation of the noise predicted by the denoising Unet from the
actual noise, under specific conditional features provided by either ReferenceNet or the IP-adapter.
The conditional adversarial loss is formulated as follows:

Leconadv = 7Exo,e~./\/(0,1),t,c “|€ - 69(It7 i, C)Hz}

c represents the features extracted from [,4, using ReferenceNet or IP-adapter. These features
disrupt the denoising process by interacting with the cross-attention or self-attention layers of the
Denoising Unet.

Image Regularization Loss To make the adversarial noise less perceptible, we calculate the Mean
Squared Error (MSE) of the images before and after noise addition as the regularization loss.

Lieg = MSE(!, I40)
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Total Loss For joint attacks, a weighted loss formulation is employed to ensure a balanced attack
performance across various tasks by balancing the impact across all contributions. The total loss,
incorporating adversarial, conditional adversarial, and regularization losses, is defined as follows:

Liotal = Wagy * Lagy + E Weon,i * Lcon,adv,i + Wreg - Lreg
[

Here, Weon,i * Leonadv,i Tepresents the weighted sum of conditional adversarial losses from differ-
ent conditional modules. Each module ¢ targets different conditional control tasks, and weon,; 1S
the specific weight assigned to the conditional adversarial loss for module 7. This paper conducts
joint training across four conditional modules: IP-Adapter, Reference-only, Magic Animate, and
Ecomimic’s ReferenceNet. This approach allows for tailored defenses against a range of adversarial
manipulations facilitated by different attack modules, ensuring that the influence of each module is
properly scaled according to its significance and effectiveness in the overall defense strategy.

4.4 PGD JOINT OPTIMIZATION

We introduce our Anti-Reference (PGD) method, where adversarial noise is optimized directly using
PGD (Projected Gradient Descent). PGD iteratively perturbs the input image [ within a predefined
bound, ensuring the noise remains imperceptible while maximizing its impact on the model’s pre-
dictions. Unlike the Noise Encoder, which generates noise in a single pass, PGD updates the noise
iteratively by calculating the gradient of the loss function with respect to the image. At each itera-
tion, the adversarial noise is updated as:

I{EIZ;‘;U = HI+E (I((Lljiz; +a- Sigl’l (vI(’;) Ltotal))

Here, 1 gflzj is the adversarial image at iteration k, « is the step size, and e defines the perturbation

bound. The projection II;, . ensures the noise stays within the allowed limits.

By optimizing both L,g, and Loy aqv, PGD effectively disrupts both the diffusion process and con-
ditional adversarial predictions. Our experiments show that PGD provides strong protection across
various reference-based customization methods, with gradually increasing noise impact while pre-
serving image quality. Although Noise Encoder generates noise faster, PGD’s iterative process
delivers stronger protection across tasks, albeit with higher computational costs, making it suitable
for scenarios requiring maximum protection.

4.5 BLACK-B0OX TRANSFER

This section introduces proxy-based black-box attacks, a method that generates adversarial samples
using a white-box model with a structure similar to the target black-box model or a closely related
latent space. By training DiT to generate adversarial samples on the white-box model, these samples
also achieve high attack success rates on the black-box model. The success of this approach relies
on two key factors: 1) structural similarity between the white-box and black-box models, and 2)
shared similarity in their latent spaces. For instance, both Animate Anyone and Magic Animate are
based on Stable Diffusion 1.5 and share the same ReferenceNet architecture, with similar datasets
used for fine-tuning, resulting in similar latent spaces. Additionally, we successfully attacked the
EMO, Animate anyone and other apps or APIs, as demonstrated in the experiments.

5 EXPERIMENT

5.1 SETUP

Training data This paper aims to achieve general image protection, and therefore, we use 600K
natural image-text pairs from the Laion dataset as the training set. To enhance the protection effec-
tiveness for talking face and body-driven tasks, we also include the Celeb-A dataset (200K) and the
TikTok dataset (30K) into the training data.
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Experimental details We used 4 A100 GPUs to train on 830,000 image-text pairs for 4 epochs with
a batch size of 8, employing a learning rate decay strategy with an initial value of 10~3. We utilized
a pre-trained DiT-S/8 model as the pre-trained model for the Noise Encoder.

Input image Clean SimAC  PhotoGuard AdvDM

)‘,

Ours(pgd) Ours(DiT

Dream booth

Textual inversion

Reference only

Ip-Adapter

Ecomimic

Magic animate

Figure 3: Results of different image protection methods in safeguarding images from the threats of
customized generation tasks.

Baselines and Evaluation benchmarks We use PhotoGuard (Salman et al., 2023), AdvDM
2023), and SimAC (Wang et al.,[20244)) as baselines, with SIimAC being an improved version
of the classic Anti-DreamBooth (Van Le et al., [2023). We systematically evaluate the protection
effectiveness of our method and the baseline methods across seven customization generation tasks,
including three fine-tuning-based methods: DreamBooth, LoRA, and Textual Inversion; two tuning-
free methods: IP-Adapter and reference-only; and two tasks involving human figure animation:
Magic Animate and Ecomimic.

Evaluation benchmarks In constructing the evaluation dataset, we follow previous works. For
subject-driven generation, we select 10 subject categories from the DreamBooth dataset [18], with
3 to 5 images per category. For face-driven tasks, we use 10 identities from the CelebA-HQ dataset.
For each subject or individual, we generate a total of 200 images using 10 different prompts for
quantitative evaluation. For face-driven and body animation tasks, we generate 200 images using
CelebA-HQ and TikTok data, respectively, for quantitative comparison.

Evaluation metrics In our evaluation of person-centric image generation quality, we utilized the
FDR (Face Detection Rate) and ISM (Identity Score Matching) metrics (Van Le et al.| [2023) to as-
sess protection effectiveness, where lower FDR indicates a significant reduction in generative effect,
making it difficult for face detection technologies to detect, and lower ISM scores indicate more ef-
fective disruption of individual identity in the generated images. Additionally, we measured general
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image quality using Aesthetics Score [2023) and CLIP-IQA (CLIP Image Quality Assessment)
(Wang et al} [2023)), which evaluate the naturalness and perceptual quality of images. These met-
rics were applied across all frames for tasks involving human body and face-driven content. Lower
values in these metrics indicate better image protection effectiveness.

5.2 QUANTITATIVE EVALUATION

In this section, we present the quantitative evaluation results and time cost for our method and base-
lines across seven customized generation methods. For all baseline methods, we use their default
code and settings to learn adversarial noise. The results of our two methods used for calculating
quantitative metrics are all obtained through joint optimization while results of other baselines are
optimized independently on each generation method.

Effectiveness. From Figures [3]and [ it is evident that our two methods exhibit more comprehen-
sive and thorough attack effects compared to the baseline. Our PGD method effectively protects
images from the threats of 7 customized generation methods, and our DiT method also demon-
strates effectiveness across all tasks. Specifically, PhotoGuard performed best in the FDR metric,
closely followed by our PGD and DiT methods. In the ISM metric, both our PGD and DiT meth-
ods achieved leading results. Regarding the Aesthetic Score, our PGD method showed a definitive
advantage, followed closely by the SimAC method and our DiT method. On the CLIP-IQA metric,
our two methods demonstrated superiority in protecting against training-based methods.

FDR 1SM Aesthetic-Score CLIP-IQA

Reference-only 1P-Adapter Reference-only 1P-Adapter

Figure 4: Comprehensive Evaluation of 7 Customized Generation Methods Across 4 Metrics.

Time Cost. Figure [f]shows a comparison of the time required to protect a single image using our
method versus the baseline methods. Our method takes only one thousandth of the time required by
the baseline methods. This improvement in efficiency marks a crucial advancement from academic
research to practical application, laying the foundation for real-world implementation in Al security.

Perturbed image  Clean image

Method GPU Time (s) CPU Time (s)

Ours(PGD) 846 - H
Ours(DiT) 0.21 1.05 s
AdvDM 212 - g
PhotoGuard 66 -

SimAC 51 -

R

Animate Anyone

Figure 5: Time Cost Comparison.

Perturbed image

Figure 6: Black-box attack results.
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5.3 QUALITATIVE EVALUATION

Black-Box Performance In this section, we demonstrate the black-box transferability of our
method. We tested the closed-source face-driven method EMO (Tian et al., |2024) and body-driven
method Animate anyone (Hul [2024) on the Tongyi app. In all of the aforementioned software and
commercial APIs, we were unable to access the model parameters or any internal information. From
the results, our method demonstrates excellent black-box transferability, with noticeable artifacts
appearing in the customized generation outputs. Additionally, these APIs require cropping of input
images, and our method demonstrates robustness to cropping.

Dreambooth - IP-Adapter  Reference only Ecomimic

)
AR

Anti-Ref (PGD)
Anti-Ref (PGD)

Anti-Ref (DiT)

Anti-Ref(DiT)
@

“a photo of a [v] “a photo of a [v]

Perturbed images [a ]pho:o ‘::, “?, dstr ponra'iyt person in front  person looking
Vipersof of [VIperson™ ¢ Eiffel tower”  at the mirror”

Perturbed images after
JEPG compression

Figure 7: Qualitative Evaluation of Method Robustness: Performance Under Prompt Mismatch and
JPEG Compression.

Robustness Test In this section, we qualitatively evaluate the robustness of our method, including
its performance under prompt mismatch and JPEG compression.

* Prompt Mismatch. When Bob uses the Stable Diffusion model to customize concepts, the
prompts he uses might differ from the assumptions Alice made when adding noise. Current
PGD-based optimization methods (Van Le et al.| 2023)),which use ~a photo of sks person”
during perturbation learning, exhibit performance degradation when faced with different
prompts during inference. As shown in Figure [7} our method, which trains DiT on a
large-scale image-text dataset, is inherently robust to different prompts.

* JPEG Compression JPEG compression is the most common operation in image transmis-
sion, and Figure [7]demonstrates the robustness of our method against the JPEG compres-
sion.

6 LIMITATIONS AND FUTURE WORK

There are many reference-based customized generation methods, and our model trained on SD1.5
cannot handle architectures like SD-XL, SD3, or image generation methods based on autoregressive
models. In the future, joint training across different architectures may be a solution. The DiT
scheme proposed in this paper still has some gaps in effectiveness compared to the results optimized
with PGD on a single image. In addition, we will explore ways to make the adversarial noise less
perceptible in the future.

7 CONCLUSION

This paper introduces Anti-Reference, a novel and effective method for protecting images from the
threats posed by mainstream Reference-based generation methods and fine-tuning-based methods.
Utilizing a Noise Encoder based on the DiT architecture and a unified loss function, our approach
offers universal and efficient protection against various adversarial attacks. Additionally, the in-
troduction of data augmentation techniques and black-box transfer capabilities through white-box
proxy models ensures robust and scalable defenses. Extensive experiments validate the effective-
ness of Anti-Reference in protecting images from unauthorized customized generation, setting a
new standard in the fields of privacy protection and information security.
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A APPENDIX

A.1 CRITICAL OVERSIGHT

It is worth noting that when training Dreambooth with adversarial images, we did not fine-tune the
CLIP text encoder, which aligns with the common practice in the community. We found that the
good protection performance of Anti-Dreambooth and SimAC is based on the incorrect assumption
that Bob will fine-tune the CLIP text encoder. As shown in Figure 7, when the attacker Bob does
not fine-tune the CLIP text encoder during Dreambooth training, both of these image protection
methods show a significant drop in performance, regardless of whether the CLIP text encoder was
fine-tuned during the noise learning process. Our method does not suffer from this issue.

Does Alice fine-tune the text encoder ?

Tru Fle _

e

Clean images

Does Bob fine-tune
the text encoder ?

Figure 8: We have identified a critical oversight in the current SimAC method; when Bob does
not train the Text Encoder while training Dreambooth, the protection effectiveness of the images is
significantly compromised.

A.2 DETAIL OF EVALUATION METRICS

For evaluating the quality of person-centric image generation, we used widely adopted metrics FDR
and ISM (Van Le et al, 2023) to quantify the generation quality, where higher FDFR and lower
ISM represent better protection effectiveness. Additionally, we employed two general image quality

assessment metrics, Aesthetic Score (A, [2023) and CLIP-IQA 2023). For human body

and face-driven tasks, we calculated quantitative metrics across all frames.

* FDR (Face Detection Rate): Measures the effectiveness of face detection by calculating
the percentage of images in which a face detector, such as RetinaFace, successfully detects
a face. A lower success rate indicates better image protection effectiveness.

* ISM (Identity Score Matching): Measures the cosine similarity between the features of the
generated face and the original face to evaluate how well the generated image maintains
the identity of the subject.

* Aesthetic Score: An aesthetic assessment metric that utilizes a linear estimator built on top
of CLIP to predict the aesthetic quality of images.

e CLIP-IQA (CLIP Image Quality Assessment): Uses CLIP (Contrastive Language-Image
Pretraining) to evaluate the perceptual quality of images by assessing how well the visual
features of the image align with text descriptions.

A.3 INVISIBILITY OF ADVERSARIAL NOISE.
Table 4 provides a comparison of the invisibility of adversarial noise introduced by our method

versus baseline methods, measured using Mean Squared Error (MSE), Peak Signal-to-Noise Ratio
(PSNR), and Structural Similarity Index (SSIM). Lower MSE and higher PSNR and SSIM values
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Table 2: FDR(]) .

Method Ours(PGD) Ours(DiT) SimAC AdvDM PhotoGuard Clean
Dreambooth 0.658 0.690 0.646 0.698 0.556 0.708
LoRA 0.656 0.672 0.688 0.696 0.628 0.650
Textual Inversion 0.318 0412 0.242 0.582 0.732 0.894
IP-Adapter 0.870 0.910 0.870 0.855 0.595 0.910
Reference-only 0.840 0.990 0.960 1.000 0.600 0.990
Echomimic 1.000 1.000 1.000 1.000 1.000 1.000
Magic Animate 1.000 1.000 1.000 1.000 1.000 1.000

Table 3: ISM(]).

Method Ours(PGD) Ours(DiT) SimAC AdvDM PhotoGuard Clean
Dreambooth 0.029 0.078 0.051 0.077 0.081 0.287
LoRA 0.005 0.017 0.008 0.015 0.022 0.085
Textual Inversion 0.011 0.123 0.018 0.018 0.304 0.336
IP-Adapter 0.197 0.226 0.225 0.225 0.242 0.233
Reference-only 0.038 0.198 0.096 0.096 0.295 0.348
Echomimic 0.655 0.574 0.673 0.668 0.677 0.715
Magic Animate 0.163 0.221 0.236 0.236 0.134 0.308

Table 4: Aesthetic Score(].).

Method Ours(PGD) Ours(DiT) SimAC AdvDM PhotoGuard Clean
Dreambooth 5.345 5.716 5.687 5.874 5.935 5.985
LoRA 5.511 5.694 5.719 5.823 5.856 5.951
Textual Inversion 4.344 4.988 4.552 5.4 5.723 5.971
IP-Adapter 5.548 5.93 5.771 6.05 5.961 6.241
Reference-only 4.836 5.48 4.847 5.384 5.996 6.216
Echomimic 5.506 5.37 5.377 5.631 5.461 5.817
Magic Animate 4451 4716 5.057 4.988 4.582 4951

Table 5: CLIP-IQA (]).

Method Ours(PGD) Ours(DiT) SimAC AdvDM PhotoGuard Clean
Dreambooth 0.550 0.552 0.561 0.631 0.623 0.648
LoRA 0.566 0.579 0.591 0.662 0.634 0.642
Textual Inversion 0.444 0.462 0.500 0.599 0.583 0.653
IP-Adapter 0.445 0.517 0.483 0.566 0.416 0.545
Reference-only 0.584 0.608 0.341 0.523 0.473 0.622
Echomimic 0.419 0.527 0.319 0.573 0.500 0.556
Magic Animate 0.225 0.202 0.184 0.191 0.196 0.217
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indicate better invisibility of the noise. Our method achieves a lower MSE and higher PSNR and
SSIM values compared to the baseline methods, demonstrating superior performance in maintaining
the visual quality of the image while effectively applying adversarial noise.

Table 6 provides a comparison of the invisibility of adversarial noise between our method and base-
line methods, using metrics including Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity
Index (SSIM). Higher PSNR and SSIM values indicate better noise invisibility. AdvDM exhibits
the best noise invisibility, while our method achieves comparable invisibility levels to the other two
baseline methods.

Table 6: Comparison of Adversarial Noise Invisibility.

Method PSNR (dB) (1) SSIM (1)
Ours(PGD) 30.39 0.762
Ours(DiT) 29.00 0.713
AdvDM 38.04 0.939
PhotoGuard 32.25 0.822
SimAC 32.17 0.811

A.4 ADDITIONAL RESULTS OF OUR METHODS

Figure 9, 10 and 11 show additional attacking results of our methods on seven pipelines. Note that
results for both PGD and DiT are obtained through joint optimization on four conditional modules
as stated in Section 4.3.

Figure 9: Additional results of our method (PGD).
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Clean image Perturbed image Reference only Echomimic DreamBooth  Textual Inversion LoRA

Figure 10: Additional results of our method (DiT).

= ‘ X t
Clean image Perturbed image Perturbed image Magic Animate (PGD)
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o

Figure 11: Additional results of our method, protect images against Magic Animate.
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