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Abstract This paper proposes a methodology for building fuzzy multimedia on-
tologies dedicated to image annotation. The built ontology incorporates visual,
conceptual, contextual and spatial knowledge about image concepts in order to
model image semantics in an effective way. Indeed, our approach uses visual and
conceptual information to build a semantic hierarchy that will serve as a back-
bone of our ontology. Contextual and spatial information about image concepts
are then computed and incorporated in the ontology in order to model richer se-
mantic relationships between these concepts. Fuzzy description logics are used as a
formalism to represent our ontology and the inherent uncertainty and imprecision
of this kind of information. Subsequently, we propose a new approach for image
annotation based on hierarchical image classification and a multi-stage reasoning
framework for reasoning about the consistency of the produced annotation. In this
approach, fuzzy ontological reasoning is used in order to achieve a semantically
relevant decision on the belonging of a given image to the set of concepts from
the annotation vocabulary. An empirical evaluation of our approach on Pascal
VOC’2009 and Pascal VOC’2010 datasets has shown a significant improvement on
the average precision results.
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1 Introduction

Automatic image annotation is a challenging problem dealing with the textual
description of images. This process usually consists in the building of a compu-
tational model that enables to associate a text description (often reduced to a
set of semantic keywords) to digital images. A wide number of approaches have
been proposed to address this concern and to narrow the well-known semantic
gap problem [36]. Most approaches rely on machine learning techniques to provide
a mapping function that allows classifying images in semantic classes using their
visual features [5,28,9]. However, these approaches face the scalability problem
when dealing with broad content image databases [31], i.e. their performances de-
crease significantly when the concept number is high and depend on the targeted
datasets as well [22]. This variability may be explained by the huge intra-concept
variability and the wide inter-concept similarities on their visual properties that
often lead to conflicted and incoherent annotations. Yet, more and more concept
classes are introduced for annotating multimedia content in order to enrich the
description of images and to satisfy user expectations in an image retrieval sys-
tem. Consequently, current techniques are struggling to scale up, and the only use
of machine learning seems to be insufficient to solve the image annotation prob-
lem. Firstly, because of the lack of a reliable computational model that allows to
model the correlation between the low-level features of images and the semantic
concepts. Secondly, because it seems that there is a lack of coincidence between
the high-level concepts and the low-level features, and that image semantics is not
always correlated with the visual appearance. Therefore other alternatives need
to be explored in order to improve existing approaches. In particular, some recent
work proposed to use explicit semantic structures, such as semantic hierarchies
and ontologies, to improve the image annotation [18,12,2,45].

Indeed, ontologies defined as a formal, explicit specification of a shared con-
ceptualization [20] have shown to be very useful to narrow the semantic gap.
They allow identifying, in a formal way, the dependency relationships between the
different concepts and therefore provide a valuable information source for many
problems. Moreover, ontological reasoning can also be used to formulate image
annotation and interpretation tasks. For instance, in [12] the authors proposed a
framework for the extraction of enhanced image descriptions based on an initial
set of graded annotations generated through generic image analysis techniques.
Explicit semantics, represented by ontologies, have also been intensely used in the
field of image and video indexing and retrieval [27,2]. In most of these approaches,
only the descriptive part of ontologies is used as a common multi-level language
to describe image content [34], or more recently as semantic concept networks to
refine image annotation [18,45], or to perform image classification [33,43,3,15].

In this paper, we propose to go deeper in the use of ontologies for image an-
notation. Our objective is twofold. We first propose an approach to automatically
build a fuzzy multimedia ontology dedicated to image annotation. Indeed, given
a training database consisting of pairs of image/textual annotation, our approach
allows to automatically build an ontology representative of the image semantics
by mining these images and their annotations. Thereafter, we propose a generic
approach for image annotation combining both machine learning techniques such
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as hierarchical classification and fuzzy ontology reasoning. The rest of this paper is
structured as follows. In Section 2, we review some related work. Section 3 presents
an overview of the proposed approach for multimedia ontologies building. Section
4 introduces the proposed formalism for our multimedia ontology and the set of
axioms and inferences rules allowing to perform the reasoning tasks. In Section
5, we introduce the proposed method for building multimedia ontologies suitable
for reasoning about image annotation and interpretation. Section 6 introduces the
proposed multi-stage reasoning framework for image annotation. Section 7 reports
the experimental results obtained on the Pascal VOC dataset. A discussion about
the proposed approach and the usefulness of our ontology for computer vision
tasks is presented in Section 8. The paper is concluded in Section 9.

2 Related Work

Despite significant progress shown by statistical approaches for images annota-
tion, the semantic gap problem is still an open issue for image annotation. In this
context, several recent approaches have proposed to improve this task by the use
of explicit knowledge models. A first category of approaches have proposed to use
semantic hierarchies for image annotation and classification [33,18,3,44]. Bannour
et al. [3] have identified three types of hierarchies used for image annotation: 1)
language-based hierarchies: based on textual information (ex. tags, surrounding
context, WordNet, Wikipedia, etc.) [33,14], 2) visual hierarchies: based on low-
level image features [19,6,48], 3) semantic hierarchies: based on both textual and
visual features [18,30,3]. However, most of these approaches use semantic hier-
archies to reduce the complexity of the classification problem or as a framework
for hierarchical image classification and they do not use the semantic structure of
these hierarchies (i.e. the inherent semantic relationships of concepts within these
hierarchies). Consequently, only a limited improvement in the classification results
was shown by these approaches.

Other approaches proposed to use multimedia ontologies in order to define
a standard for the description of low-level multimedia content [13,35], or to use
it as a semantic repository for storing knowledge about image domain [34], or to
allow semantic interpretation and reasoning over the extracted descriptions [23,25,
12]. Indeed, ontologies allow to model many important semantic relations between
concepts which are missing in the semantic hierarchy models, as for instance the
contextual and the spatial relationships. These relations have been proved to be
of prime importance for image annotation [23,25,26,41]. The reasoning power of
ontological models has also been used for semantic image interpretation. In [12,
25,26], formal models of domain application knowledge are used through fuzzy
description logics to help and to guide the semantic image analysis.

However, much remains to be done in order to achieve more expressive on-
tologies of images semantics. Firstly, almost all existing approaches for building
multimedia ontologies start from an existing specification of a domain (defined
by an expert or inferred from a generic commonsense ontology). These specifica-
tions are not always relevant for modeling image semantics and are often incom-
plete, subjective and subject to many inconsistencies. Indeed, many assumptions
about the concepts, their properties and relationships must be done in order to
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achieve a given specification, which finally do not hold in the real world. Secondly,
most recent approaches for building multimedia ontologies are based either on a
conceptual specification, or a visual one. Consequently, these approaches do not
accurately model images semantics. Furthermore, many of these approaches are
limited to provide a formalism allowing to use ontologies as a repository for stor-
ing knowledge about multimedia content. However, since these approaches have
not addressed the problem of reasoning about this knowledge, the effectiveness of
stored knowledge has to be proved. Finally, ontology modeling in description logics
is not an intuitive task. The representation of each single real world object is split
into many axioms about concepts and roles, leading to an overall design that is
very difficult to apprehend [37]. This makes the design of a well-defined ontology
by humans a big challenge, with no guarantee of success (scalability problem of
ontology building).

Our approach goes further than the aforementioned ones and allows answering
many of the previously stated limitations. Specifically, we propose in this paper
a methodology for building multimedia ontologies as knowledge bases that con-
tain explicit and structured knowledge about image context. To ensure that the
structure of our ontology is representative of the image semantics, we propose to
use a semantico-visual specification (which incorporates the visual and conceptual
semantics of image concepts) for designing our ontology. In addition, we propose
to build our multimedia ontology in an automatic manner and based on mining
image databases to gather valuable information about image context. Thereby, we
reduce the scalability problem of ontology building and we ensure that the depicted
knowledge is faithful to image semantics. Finally, the proposed ontology is built
using a highly expressive formalism (Fuzzy OWL2-DL), which allows a good inter-
action with it, i.e. a good querying and reasoning capabilities. Our belief is that
such formal ontology will allow performing reasoning tasks in order to achieve an
effective decision-making to provide a semantically consistent image annotation.

3 Overview of our Approach for Building Multimedia Ontologies
Dedicated to Image Annotation

This paper proposes an approach for building a fuzzy multimedia ontology dedi-
cated to image annotation. As illustrated in Figure 1, our ontology incorporates
several types of knowledge about image context in order to achieve a relevant
representation of image semantics. Moreover, this knowledge is automatically ex-
tracted from a training image database using data mining techniques. Therefore,
assuming that the considered training dataset is enough representative of current
image databases, our approach allows for building multimedia ontologies faithful
to the image semantics.

Figure 1 depicts the workflow of our approach. As shown in this figure, the
knowledge discovery process is performed through the following steps:

1. Processing the set of images in the training dataset to discover useful knowl-
edge about the image domain (i.e. perceptual semantics), such as the visual
similarity between concepts.
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Fig. 1 From image data to structured knowledge models: Architecture of our approach for
building multimedia ontologies dedicated to image annotation.

2. Mining the image annotations (provided in the metadata) to gather useful
information about images context, namely contextual and spatial knowledge
about image concepts.

3. Query a commonsense knowledge base to gather precise information about the
semantics of image concepts, and in order to link the initial concepts to their
hypernyms using the method proposed in [3].

Thereafter, the building of our multimedia ontology is fully automatically per-
formed, i.e. without any human intervention. This is achieved by converting the
previously extracted information about image context into explicit knowledge us-
ing the formalism described in Section 4.

Problem Formalization.
Given:

– DB, a training image database consisting of a set of pairs 〈image/textual an-
notation〉, i.e. DB = {[i1,A1], [i2,A2], · · · , [iL,AL]}, where:
– I = 〈i1, i2, · · · , iL〉 is the set of all images in DB,
– L is the number of images in the database.
– C = 〈c1, c2, · · · , cN 〉 is the annotation vocabulary used for annotating im-

ages in I,
– N is the size of the annotation vocabulary.
– Ai is a textual annotation consisting of:
• the set of concepts {cj ∈ C, j = 1..nii} associated with a given image
ii ∈ DB,

• the spatial location of each concept cj in the image ii given by its
minimum bounding box defined as (cjxmin , cjymin , cjxmax , cjymax), where
cjxmin and cjymin are the coordinates of the low left corner of the bound-
ing box (and respectively cjxmax and cjymax are the coordinates of the
upper right corner of the bounding box).

– CO, a generic commonsense ontology containing N ′ concepts (C ), such that
C ⊆ C . In this paper, we used WordNet as a commonsense ontology.

Our objective is to build a multimedia ontology, consisting of a set of |C|+|C′|
concepts (s.t. C∪C′ ⊆ C , and C′ could be probably the empty set), dedicated to this
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specific annotation problem, i.e. dependent on the initial annotation vocabulary
but which could be extended at any time later. This ontology should not only
incorporate the subsumption relationships between the different concepts, but also
richer semantic relations, such as contextual and spatial relationships. The overall
goal is to extend the use of this ontology to previously unseen images (i.e. ∀ ix /∈
DB) in order to reason on the consistency of their annotations and to provide
them a relevant textual description.

The design of our multimedia ontology as a well defined formal knowledge base
is achieved through the following main steps, which are detailed in the remaining
of this paper:

? Definition of the DL formalism of the proposed ontology, i.e. the expressiveness
of the ontology.

? Definition of the set of axioms and inferences rules allowing to perform the
reasoning tasks on the proposed ontology.

? Definition of the main concepts of the ontology.
? Definition of the RBox, i.e. definition of the key roles (relationships between

concepts) and their properties.
? Definition of the TBox, i.e. definition of the subsumption hierarchy, and con-

sequently the subsumption relationships between the ontology concepts.
? Definition of the ABox, i.e. the instances of concepts and the relations between

them with respect to the roles defined in the RBox.

4 Formalism of our Multimedia Ontology

4.1 Preliminaries

The Web Ontology Language (OWL) is the current standard language for repre-
senting ontologies. It allows describing a domain in terms of: concepts (or classes),
roles (or properties), individuals and axioms. Concepts (C ) are a set of objects,
individuals (I ) are instances of concepts in C, roles are binary relationships be-
tween individuals in I, whereas axioms describe how these concepts, individuals,
roles, etc. should be interpreted. Three sublanguages of OWL can be used: OWL-
Full which is the most expressive language but reasoning within it is undecidable,
OWL-Lite which has the lowest complexity but fewer constructs, and OWL-DL
which has a good balance/trade-off between expressiveness and reasoning com-
plexity [8].

In our approach, in order to ensure a high expressiveness with a decidable
reasoning for our ontology, we used OWL 2 DL as a language for designing our
ontology. Indeed, OWL 2 DL is more expressive than OWL-DL, i.e. includes more
axioms. Concretely, we have implemented a framework using the OWL API 1 [24],
which supports OWL 2 since it last version. The reasoning tasks about concepts,
roles and individuals are also performed using our framework, which is based on
the FaCT++ reasoner and extending it with the axioms illustrated in Table 1
to support the Fuzzy Description Logics (Fuzzy DL). Initially, FaCT++ supports

1 http://owlapi.sourceforge.net/index.html

http://owlapi.sourceforge.net/index.html
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the SROIQ(D) logic (i.e. the DL for OWL2 ontology). However, our framework
supports the fuzzy logic f -SROIQ(D) thanks to the extension we have made.

Description Logics (DLs) are a family of logics for representing structured
knowledge. Fuzzy DLs extend classical DLs by allowing to deal with fuzzy/imprecise
concepts [39]. Indeed, in fuzzy logics a statement is no longer true or false, but is
changed in a fuzzy statement signifying that it has a degree of truth α ∈ [0, 1].

Fuzzy Set Preliminaries. In a formal way, let X be a set of elements. A
fuzzy set A over a countable crisp set X is characterized by a membership function
µA : X → [0, 1] (or A(x) ∈ [0, 1]), assigning a membership degree A(x) to each
element x in X. A(x) gives an estimation of the belonging of x to A. In fuzzy logics,
the membership degree A(x) is regarded as the degree of truth of the statement ”x
is A”. Accordingly, a concept C is interpreted in fuzzy DL as a fuzzy set, and thus
concepts become imprecise. For instance, the statement a : C (a is an instance of
concept C) will have a truth-value in [0,1] given by its membership degree denoted
CI(a). A fuzzy relation R over two countable crisp sets X and Y is a function
R : X × Y → [0, 1]. R is reflexive iff for all x ∈ X,R(x, x) = 1 holds, while R is
symmetric iff for all x, y ∈ X,R(x, y) = R(y, x) holds. R is said functional iff R is
a partial function R : X × Y → {0, 1} such that for each x ∈ X there is a unique
y ∈ X where R(x, y) is defined.

4.2 Expressiveness of our Ontology

As aforementioned, for the sake of providing a highly expressive multimedia ontol-
ogy with a decidable reasoning, we used the fuzzy DL f -SROIQ(D) for designing
our ontology. Based on the work of [40,38], we introduce in the following the specific
formalism (constructors and axioms) used for defining our multimedia ontology.

The f -SROIQ(D) is a fuzzy extension of the SROIQ(D) DL, which provide
both a set of constructors allowing the construction of new concepts and roles. The
f -SROIQ(D) includes ALC standard constructors (i.e. negation ¬, conjunction
u, disjunction t, full existential quantification ∃, and value restriction ∀) extended
with transitive roles (S), complex role axioms (R), nominals (O), inverse roles (I),
and qualified number restrictions (Q). (D) indicates support for (fuzzy) concrete
domains, i.e. datatype properties, data values or data types.

Fuzzy concrete domain. A fuzzy concrete domain is a pair 〈∆D, ΦD〉,
where ∆D is an interpretation domain and ΦD is the set of fuzzy domain predicates
d with a predefined arity n and an interpretation dD : ∆nD → [0, 1] [42].

In f -SROIQ(D), concepts (denoted C or D) and roles (R) can be built in-
ductively from atomic concepts (A), atomic roles (RA), top concept >, bottom
concept ⊥, named individuals (oi), simple roles S, and universal role U . Simple
roles S are inductively defined: i) RA is simple if it does not occur on the right
side of a Role Inclusion Axioms (RIA), ii) R− is simple if R is, iii) if R occurs on
the right side of a RIA, R is simple if, for each 〈w v R B α〉 , w = S for a simple
role S.
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C Constructor Syntax Semantics

1 Atomic concept A AI(a) ∈ [0, 1]

2 Top > >I(a) = 1

3 Bottom ⊥ ⊥I(a) = 0

4 Conjunction C uD (C uD)I(a) = CI(a)⊗DI(a)

5 Disjunction C tD (C tD)I(a) = CI(a)⊕DI(a)

6 Negation ¬C (¬C)I(a) = 	CI(a)

7 Existential restriction ∃R.C (∃R.C)I(a) = supb∈∆I{RI(a, b)⊗ CI(b)}
8 ∃T.d (∃T.d)I(a) = supv∈∆D

{TI(a, v)⊗ dD(v)}
9 Universal restriction ∀R.C (∀R.C)I(a) = infb∈∆I{RI(a, b)→ CI(b)}
10 ∀T.d (∀T.d)I(a) = infv∈∆D

{TI(a, v)→ dD(v)}
11 At-least restriction ≥ m S.C (≥ m S.C)I(a) = supb1,...bm∈∆I

(
(⊗mi=1{SI(a, bi)⊗ CI(bi)})⊗ (⊗j<k{bj 6= bk})

)

12 ≥ m T.d (≥ m T.d)I(a) = supv1,...vm∈∆D

(
(⊗mi=1{TI(a, vi)⊗ dD(vi)})⊗ (⊗j<k{vj 6= vk})

)

13 At-most restriction ≤ n S.C (≤ n S.C)I(a) = infb1,...bn+1∈∆I
(
(⊗n+1

i=1 {SI(a,bi)⊗ CI(bi)})→ (⊕j<k{bj = bk})
)

14 ≤ n T.d (≤ n T.d)I(a) = infv1,...vn+1∈∆D

(
(⊗n+1

i=1 {TI(a, vi)⊗ dD(vi)})→ (⊕j<k{vj = vk})
)

15 Local reflexivity ∃S.Self (∃S.Self)I(a) = SI(a, a)

16 Fuzzy nominals
⋃m
i=1{(oi, αi)} {(o1, α1), . . . , (om, αm)}I(a) = supi|a∈{oIi }αi

17 Atomic role RA RIA(a, b) ∈ [0, 1]

18 Universal role U UI(a, b) = 1

19 Inverse role R− ∀a, b ∈ ∆I , (R−)I(a, b) = RI(b, a)

20 Concrete role T TI(a, v) ∈ [0, 1]

A Axiom Syntax Semantics

1 Concept assertion 〈a : C ./ α〉 CI(aI) ./ α

2 Role assertion 〈(a : b) : R ./ α〉 RI(aI , bI) ./ α

3 Concrete role assertion 〈(a : b) : T ./ α〉 TI(aI , vD) ./ α

4 Equality assertion 〈a = b〉 aI = bI

5 Inequality assertion 〈a 6= b〉 aI 6= bI

6 Subsumption 〈C v D B α〉 infa∈∆I{CI(a)→ DI(a)}B α

7 Concept definition 〈C ≡ D〉 ∀a ∈ ∆I , CI(a) = DI(a)

8 Role inclusion axioms 〈R1R2 · · ·Rn v R B α〉 supb1...bn+1∈∆I
⊗

[RI1 (b1, b2), . . . , RIn(bn, bn+1)]→ RI(b1, bn+1) B α

9 Disjoint role dis(S1, S2) ∀a, b ∈ ∆I , SI1 (a, b)⊗ SI2 (a, b) = 0

10 Symmetric role sym(R) ∀a, b ∈ ∆I , RI(a, b) = RI(b, a)

11 Reflexive role ref(R) ∀a ∈ ∆I , RI(a, a) = 1

12 Transitive role trans(R) ∀a, b ∈ ∆I , RI(a, b) ≥ supc∈∆IRI(a, c)⊗RI(c, b)

13 Irreflexive role irr(S) ∀a ∈ ∆I , SI(a, a) = 0

14 Asymmetric role asy(S) ∀a, b ∈ ∆I , if SI(a, b) > 0 then SI(b, a) = 0

Table 2 Syntax and semantics of the Fuzzy Description Logic f -SROIQ(D) used for designing our
multimedia ontology. a, b ∈ ∆I are abstract individuals, v ∈ ∆D is a concrete individual, n, m are natural
numbers (n ≥ 0,m > 0), α ∈ [0, 1] is the truth degree of a statement, B∈ {>,≥}, ./∈ {>,<,≥,≤}.

Fuzzy interpretation. The Semantics of the f -SROIQ(D) DL is defined
in terms of fuzzy interpretations [35]. A fuzzy interpretation is a pair I = (∆I , ·I)
where ∆I is a non-empty set of objects (called the domain) and ·I is a fuzzy
interpretation function, which maps:

Table 1 Syntax and semantics of the Fuzzy Description Logic f -SROIQ(D) used for de-
signing our multimedia ontology. a, b ∈ ∆I are abstract individuals, v ∈ ∆D is a concrete
individual, n, m are natural numbers (n ≥ 0,m > 0), α ∈ [0, 1] is the truth degree of a
statement, B∈ {>,≥}, ./∈ {>,<,≥,≤}.

Fuzzy Concepts. Under f -SROIQ(D), a fuzzy concept is defined by the
following assertions2:

C → > | ⊥ | A | C1 u C2 | C1 t C2 | ¬C | ∃R.C | ∃T.d | ∀R.C | ∀T.d |
(≥ m S.C) | (≥ m T.d) | (≤ n S.C) | (≤ n T.d) | {o1, . . . , on}

D → d | ¬d

For more details about the semantics of these assertions cf. Table 1 - Constructors
C1-C16.

Fuzzy KB. A f -SROIQ(D) knowledge base (denotedKB) is a triple (T ,R,A)
where T is a fuzzy Terminological Box (TBox ), R is a regular fuzzy Role Box
(RBox ), and A is a fuzzy Assertional Box (ABox ) containing statements about
individuals. The TBox and RBox contain general knowledge about the domain
application.

Fuzzy ABox. The fuzzy ABox consists of a finite set of fuzzy concept and
fuzzy role assertion axioms. Typically, these assertions include: concept assertion

2 n, m are natural numbers, such that n ≥ 0,m > 0. d is an unary fuzzy domain predicate.
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(〈a : C ./ α〉), role assertion (〈(a : b) : R ./ α〉), concrete role assertion (〈(a :
b) : T ./ α〉), equality assertion (〈a = b〉), and inequality assertion (〈a 6= b〉). The
semantics of these assertions is defined in Table 1 - Axioms A1-A5.

Fuzzy TBox. The fuzzy TBox is a finite set of General Concept Inclusions
(GCI) constrained with a truth-value and of the form 〈C v D B α〉 between two
f -SROIQ(D) concepts C and D. Concept equivalence 〈C ≡ D〉 can be captured
by two inclusions C v D and D v C. These assertions and their semantics are
defined in Table 1 - Axioms A6-A7.

Fuzzy RBox. The fuzzy RBox consists of a finite set of role axioms which
are illustrated in Table 1 - Axioms A8-A14. These include: role inclusion axioms,
disjoint role, symmetric role, reflexive role, transitive role, irreflexive role, and
asymmetric role.

Owing to the specific motivations discussed in Section 4.3, we have defined the
fuzzy operators used in Table 1 as follows:

1. product t-norm: a⊗ b = a ∗ b.
2. product t-conorm: a⊕ b = a+ b− a ∗ b.
3.  Lukasiewicz negation: 	α = 1− α.
4. Gödel implication (for GCIs and RIAs): α→ β = 1 if α ≤ β, β otherwise.
5. KD implication (for other constructors): α→ β = max(1− α, β).

Fuzzy interpretation. The Semantics of the f -SROIQ(D) DL is defined
in terms of fuzzy interpretations [39]. A fuzzy interpretation is a pair I = (∆I , ·I)
where ∆I is a non-empty set of objects (called the domain) and ·I is a fuzzy
interpretation function, which maps:

– a concept name C onto a function CI : ∆I → [0, 1],
– a role name R onto a function RI : ∆I ×∆I → [0, 1],
– an individual name a onto an element aI ∈ ∆I ,
– a concrete individual v onto an element vD ∈ ∆D,
– a concrete role T onto a function TI : ∆I ×∆D → [0, 1],
– a concrete feature t onto a partial function tI : ∆I ×∆D → {0, 1}

Satisfiability. Finally, a fuzzy interpretation I satisfies an f -SROIQ(D)
knowledge base KB = (T ,R,A) if it satisfies all axioms of T , R and A. I is then
called a model of KB, written: I |= KB.

4.3 Ontology-Based Reasoning

General automatic reasoning tasks on ontologies include concept consistency, con-
cept subsumption to build inferred concepts taxonomy, instance classification and
retrieval, parent and children concept determination, and answering queries over
ontology classes and instances [1]. These reasoning tasks are induced by inferring
logical consequences from a set of asserted facts or axioms.

Logical consequence. A fuzzy axiom τ is a logical consequence of a knowl-
edge base KB, denoted KB |= τ iff every witnessed model of KB satisfies τ .

Given a KB and an axiom τ of the form 〈C v D〉, 〈a : C〉 or 〈(a, b) : R〉, it
is possible to compute the best explanation of a given statement (probably, about
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an image) as the τ ’s best entailment degree (bed). The bed problem can be solved
by determining the greatest lower bound (glb) [39].

Greatest lower bound. The greatest lower bound of τ with respect to a
fuzzy KB is:

glb(KB, τ) = sup{n | KB |= 〈τ ≥ n〉}, where sup ∅ = 0 (1)

Example 1 (Greatest lower bound) For instance, given KB = {〈(a, b) : R, 0.5〉, 〈b :
C, 0.9〉}, the greatest lower bound that a is an instance of a concept which is in
relation R with concept C is:

glb(KB, a : ∃R.C) = 0.45

Best satisfiability degree. The best satisfiability degree (bsd) of a concept
C with respect to a fuzzy KB is defined as:

bsd(KB, C) = supI|=KB supx∈∆I {CI(x)} (2)

The best satisfiability degree consists in determining the maximal degree of
truth that the concept C may have over all individuals x ∈ ∆I , among all models
I of the KB.

According to our specific context, and in order to achieve an efficient reasoning
(and subsequently an accurate decision) on the best explanation of a given image,
it is important to compute a membership degree for this explanation which reflects
the likelihood of conjunction of all independent events composing it. The product
logic makes possible to dispose of this desirable property for the t-norm. This
assumption has motivated our choice for the product t-norm and the product t-
conorm as fuzzy operators of our ontology - cf. Section 4.2. For instance, let us
consider the following example where we want to compute the membership of an
image i to the class BeachImage:

Example 2 (Product semantics and Zadeh semantics)

KB = {〈i : Image, 1〉, 〈i : ∃depicts.Sea, α1〉, 〈i : ∃depicts.Sand, α2〉,
〈i : ∃depicts.Sky, α3〉}
BeachImage ≡ Image u ∃depicts.Sea u ∃depicts.Sand u ∃depicts.Sky

glb(KB, i : BeachImage) = α1 ⊗ α2 ⊗ α3

=

{
min{α1, α2, α3} under Zadeh semantics

α1 ∗ α2 ∗ α3 under Product semantics

Both explanations and membership degrees are meaningful with respect to
a given application. However, according to our target application, the product
semantics allows to dispose of a more significant membership value than the one
produced by Zadeh semantics. For example, let us suppose that α1, α2, and α3

are produced as a result of an image classification process, or an object detection
one. Therefore, it would be more accurate to compute the membership degree of
the image i to the class BeachImage as the product of the confidence values of
these classifiers than as the minimum score of these classifiers. This property is
reachable by the use of product semantics.
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5 Building of our Multimedia Ontology

5.1 Main Concepts of our Ontology

Proposed concepts. The proposed multimedia ontology relies mainly on the
four following concepts, which can recursively involve similar concepts:

– ”Thing” represents the top concept (>) of the ontology,
– ”Concept” is the generic concept in our ontology to represent a concept from

the annotation vocabulary, i.e. any concept cj ∈ C ∪ C′ used to describe the
content of an image.

– ”Image” is the generic concept to represent an image, i.e. each image ii of
the database will be considered as an instance of the concept ”Image” with a
satisfiability degree of 1 (〈ii : Image, 1〉).

– ”Annotation” is a generic concept introduced to represent a given annotation,
i.e. a set of concepts as a whole. We will come back on this notion later.

5.2 Definition of the RBox

As stated previously, our intent is to design an ontology of spatial and contextual
information dedicated to reasoning about the consistency of image annotation.
According to this aim, we define in Table 2 the proposed roles and their proper-
ties, which constitute the RBox of our multimedia ontology. These roles can be
categorized as contextual relationships and spatial relationships, and are detailed
respectively in Section 5.4.1 and in Section 5.4.2. The choice of these specific roles
is motivated by the reasoning scenarios designed to improve the image annotation
task. However, these roles can be further enriched depending on referred applica-
tions.

12 Multimed Tools Appl

Role name Domain Range Symetric Reflexive Functional Inverse

isAnnotatedBy Image Annotation No No No -
hasAppearedWith Concept Concept Yes Yes No -
hasAppearedAbove Concept Concept No No No hasAppearedBelow
hasAppearedBelow Concept Concept No No No hasAppearedAbove
hasAppearedLeftOf Concept Concept No No No hasAppearedRightOf
hasAppearedRightOf Concept Concept No No No hasAppearedLeftOf
hasAppearedAlignedWith Concept Concept Yes No No -
hasAppearedCloseTo Concept Concept Yes No No -
hasAppearedFarFrom Concept Concept Yes No No -

Functional role name Domain Range Symetric Reflexive Functional Inverse

hasFrequency Concept Float - - Yes -
hasAppearedAlone Concept Float - - Yes -

Table 3 Roles and functional roles used for defining concept relationships in our ontology (RBox).

5.3 Building the Semantic Hierarchy and Definition of the TBox

The subsumption hierarchy (respectively the subsumption relationships) is a fun-
damental component of ontologies. It acts as a backbone of the produced ontology,
where the subsumption roles allow defining the inheritance of properties from the
parent (subsuming) concepts to the child (subsumed) concepts. Thus, any state-
ment that is true (with an α degree) for a parent concept is also necessarily true
(with at least an α degree) for all of its subsumed (child) concepts. Consequently,
these subsumption relationships allow defining the Terminological Box of ontolo-
gies.

In order to define the TBox of our multimedia ontology, we propose to build a
subsumption hierarchy where leaf nodes are the initial concepts of the considered
dataset (cj ∈ C), and mid-level nodes are the concepts discovered by a variant
of the approach proposed in [3]. Indeed, we propose in this work to automati-
cally build the semantic hierarchy using a Semantico-Visual similarity computed
between concepts. The proposed Semantico-Visual similarity incorporates:

i) a visual similarity which represents the visual affinity between concepts, and
ii) a conceptual similarity which defines a relatedness measure between target

concepts based on their definitions in WordNet.

For more information about how to compute these (visual and conceptual)
similarities, the reader is suggested to refer to Section ?? and ??.

Afterwards, the building of the subsumption hierarchy is bottom-up, and is
based on the set of heuristic rules defined in Section ?? in order to link together
the concepts that are semantically most related, with respect to the previously
computed similarity. Consequently, the building of the subsumption hierarchy con-
sists in identifying |C′| new concepts that link all the concepts of C in a hierarchical
structure that best represents image semantics.

Table 2 Roles and functional roles used for defining concept relationships in our ontology.
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(a) (b)

Fig. 2 Illustration of the used roles for defining concept relationships in our ontology. Figure
2(a) illustrates the main concepts of our ontology, and the used fuzzy roles (in dashed arrows)
for defining the relationships between concepts. Figure 2(b) illustrates the roles names.

5.3 Building the Semantic Hierarchy and Definition of the TBox

The subsumption hierarchy (and respectively the subsumption relationships) is
a fundamental component of ontologies. It acts as a backbone of the produced
ontology, where the subsumption roles allow defining the inheritance of properties
from the parent (subsuming) concepts to the child (subsumed) concepts. Thus, any
statement that is true (with an α degree) for a parent concept is also necessarily
true (with at least an α degree) for all of its subsumed concepts. Furthermore, these
subsumption relationships allow defining the Terminological Box of ontologies.

In our approach, we propose to automatically build a subsumption hierarchy
where leaf nodes are the initial concepts of the considered dataset (cj ∈ C), and
mid-level nodes are the concepts discovered by a variant of the approach pro-
posed in [3]. Indeed, in order to design a representative ontology of the image
semantics, we propose in this paper to automatically build the semantic hierarchy
using a Semantico-Visual similarity computed between image concepts. The used
Semantico-Visual similarity incorporates:

i) a visual similarity which represents the visual distance between concepts, and
ii) a conceptual similarity which defines a relatedness measure between target

concepts based on their definitions in WordNet.

Afterwards, the building of the subsumption hierarchy is bottom-up, and is
based on a set of heuristic rules in order to link together the concepts that are
semantically most related w.r.t the previously computed similarity. Consequently,
the building of the subsumption hierarchy consists in identifying |C′| new concepts
that link all the concepts of C in a hierarchical structure that best represents image
semantics. For more information about these (visual and conceptual) similarities
and the used rules for linking concepts together, the reader is suggested to refer
to [3].

Subsequent to the building of the semantic hierarchy, the subsumption rela-
tionships between all pairs of concepts (ci, cj ∈ C ∪C′) are added to our ontology
according to the hierarchy structure. This is achieved automatically using the ax-
iom A6 illustrated in Table 1.
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Fig. 3 The semantic hierarchy built on Pascal VOC’2010 dataset. Double octagon nodes are
original concepts, i.e. concepts of C, and the diamond one is the root of the produced hierarchy.

Figure 3 illustrates the built semantic hierarchy on the Pascal VOC’2010
dataset. This semantic hierarchy allowed to define the subsumption relationships
between image concepts. We can observe that the produced hierarchy is a N-ary
tree like-structure, where leaf nodes are the concepts in C. Mid-level concepts
are automatically recovered from WordNet based on the previously introduced
method. We can also observe that the connected concepts share strong visual and
semantic similarity, which justifies the choice of this method in our approach. We
therefore concur with the assumption that a suitable semantic hierarchy for rep-
resenting image semantics should incorporate visual and conceptual (semantic)
modalities during the building process [3].

5.4 Definition of the ABox

Following the building of the semantic hierarchy that will be used as the backbone
of our ontology, information about the context of images is added to our ontology
in order to design a more representative knowledge base of image semantics. This
information, mainly consisting of contextual and spatial relationships between im-
age concepts will forms the ABox of our ontology and will serves for reasoning
about image annotation. Furthermore, our intent is to design a fuzzy multime-
dia ontology in order to model the inherent uncertainty of concept relationships,
which should lead to a more efficient decision-making during the image annotation
process. Consequently, we introduce in the following how the confidence degrees
of each of the proposed fuzzy roles (concept relationships) are computed.

5.4.1 Contextual Relationships

Contextual information is of great interest to help understanding the image seman-
tics. A simple form of contextual information is the co-occurrence frequency of a
pair of concepts. For example, it is intuitively clear that if two concepts are similar
or related, it is likely that their role in the world will be similar, and thus their
context of occurrence will be equivalent (i.e. they tend to occur in similar contexts,
for some definition of context). For instance, a photo containing ”Television” and
”Sofa” depicts usually a ”Living-room” scene. Nevertheless, contextual similarity
is a ’corpus-dependent’ measure, i.e. depends on the concepts distribution in the
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dataset. It is therefore important to normalize the measures based on contextual
information.

In our approach, we define three contextual relationships that we estimated im-
portant for reasoning about image annotation. These are: CON = {”hasFrequency”,
”hasAppearedWith”, ”isAnnotatedBy”}. However, nothing prevents the enrichment
of our multimedia ontology with other contextual relationships in order to adapt
to other reasoning scenarios. The proposed relations (∈ CON ) are detailed bellow.

Let us consider an image database DB, where:

– L is the number of images in the database,
– N is the size of the annotation vocabulary,
– ni is the number of images annotated by ci (occurrence frequency of ci), and
– nij the number of images co-annotated by ci et cj .

Our objective is to estimate P (ci) as the probability of occurrence of a given
concept ci (and respectively P (ci, cj) as the joint probability of ci and cj) in DB.
These probabilities can be easily estimated by:

P̂ (ci) =
ni
L (3)

̂P (ci, cj) =
nij
L (4)

Based on these probabilities, we define the concept frequency relationship as
the concrete feature: hasFrequency : ∆I ∗ ∆D → {0, 1}, where ∆I = C and
∆D = [0, 1] are the interpretation domains. This concrete feature associates to
each concept ci ∈ C a fuzzy degree corresponding to its occurrence frequency in
DB:

µhasFrequency(ci) = P (ci) (5)

We also define the contextual relationship ’hasAppearedWith’ as the fuzzy role
hasAppearedWith : ∆I ∗∆I → [0, 1], where ∆I = C. The membership degree of
this relationship is computed using the Normalized Pointwise Mutual Information
(NPMI). To this purpose, the Pointwise Mutual Information ρ(ci, cj) is firstly
computed for all pairs of concept ci, cj ∈ C as follows:

ρ(ci, cj) = log
P (ci, cj)

P (ci)P (cj)
= log

L ∗ nij
ni ∗ nj

(6)

ρ(ci, cj) quantifies the amount of information shared between the two concepts
ci and cj . Thus, if ci and cj are independent concepts, then P (ci, cj) = P (ci) ·
P (cj) and therefore ρ(ci, cj) = log 1 = 0. ρ(ci, cj) can be negative if ci et cj are
negatively correlated. Otherwise, ρ(ci, cj) is positive and quantifies the degree of
dependence between these two concepts. In this work, we only want to estimate the
positive correlation between each pair of concepts from the annotation vocabulary
and therefore we set the negative values of ρ(ci, cj) to 0. Moreover, in order to
normalize it into [0,1], the membership degree of the fuzzy role ’hasAppearedWith’
is computed as follows:

µhasAppearedWith(ci,cj) =
ρ(ci, cj)

− log[max(P (ci), P (cj))]
(7)
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Finally, we define the fuzzy role ’isAnnotatedBy ’ as a relationship between in-
stances of concepts ”Image” and ”Annotation”, i.e. isAnnotatedBy : ∆I ∗∆I →
[0, 1], where ∆I = {Image,Annotation}. This relationship is intended to repre-
sent the probability of finding an image in DB annotated by a set of concepts
(Annotationj = 〈c1, c2, · · · , cΛ〉), or inversely, the likelihood that a given annota-
tion ’Annotationj ’ is associated with an image ii ∈ I. To this end, all the possible
annotations in DB are extracted and are added to our ontology as subconcepts of
concept ”Annotation”. The confidence value of this relationship is computed as
follows:

µisAnnotatedBy(Image1,Annotationj) =
nAnnotationj

L (8)

where Annotationj = 〈c1, c2, · · · , cΛ〉 is a textual annotation used for annotat-
ing a set of images in DB, nAnnotationj

is the number of images annotated by
Annotationj , and L = |I| is the total number of images in DB.

For instance, Example 3 illustrates some inputs of the added assertions to our
ABox.

Example 3 (Contextual relationship: ’ isAnnotatedBy’)

〈Annotation1 ≡ Aeroplane u Car u Person〉
〈Annotation1 v Annotation ≥ 1〉〉
〈Annotation2 ≡ Dining Table u Chair uBottle uDog〉
〈Annotation2 v Annotation ≥ 1〉

〈a : Image ≥ 1〉
〈b : Annotation1 ≥ 1〉

〈(a : b) : isAnnotatedBy ≥ 0.023064〉
· · ·

5.4.2 Spatial Relationships

Spatial information is a valuable source for the understanding of image semantics.
The spatial arrangement of objects provides an important information for the
recognition and interpretation tasks, and allows to solve the ambiguity between
objects having a similar appearance [7]. For instance, using object detectors if one
have detected in an image that ”Sky” has appeared bellow ”Sea”, it is easy to fix
this prediction using spatial information because any well defined knowledge base
(KB) would allow to detect and correct this inconsistency.

In our approach, eight spatial relationships are used in order to define the
directional positions and distances between image concepts. The directional rela-
tionships are defined as follows: DIR = {”hasAppearedAbove”, ”hasAppearedBe-
low”, ”hasAppearedLeftOf”, ”hasAppearedRightOf”, ”hasAppearedAlignedWith”},
such as ∀X ∈ DIR,X : ∆I ∗∆I → [0, 1], with ∆I = C.

The relationships in DIR are derived from the following primitives: ’left ’,
’right ’, ’above’, ’below ’ and ’aligned ’, which are computed according to the angle
between the segment joining two points ’a’ and ’b’ (where ’a’ and ’b’ are the
centroids of two given objects in a given image) and the x-axis of the image -
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cf. Figure 4. This angle, denoted θ(a, b), takes values in [−π, π] which constitutes
the domain of definition of these primitives. They are then computed using cos2θ
and sin2θ, and are functions from [−π, π] into {0, 1}. Thus, any of the previous
primitives can be computed by an angle α with the x-axis as illustrated in Figure
5.

Fig. 4 Spatial primitives are computed according to the angle between the segment joining
two points ’a’ and ’b’ and the x-axis of the image. ’a’ and ’b’ are the centroids of two given
objects (here ”Cow” and ”Person”) in a given image.

-1

0

1

-Pi -Pi/2 Pi/2 Pi

left bellow right above left

(a)

above

bellow

left right

3π/4 π/4

-3π/4 -π/4

(b)

Fig. 5 Directional relationships are computed according to an angle α with the x-axis.

Regarding the primitive ’aligned ’, it takes 1 when θ ∈ [−π/6, π/6]∪[5π/6,−5π/6]
and 0 otherwise. A comprehensive survey about spatial relationships for image pro-
cessing can be found in [7].

The confidence value of a given directional relationship is finally computed as
follows:

µX (ci,cj) =
] of instances where X (ci, cj)

nij
(9)

where ci, cj ∈ C, and X is a directional relationship, i.e. X ∈ DIR.
In addition, we define in our approach the distance relationships as DIS =

{”hasAppearedCloseTo”, ”hasAppearedFarFrom”}, such as ∀χ ∈ DIS, χ : ∆I ∗
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∆I → [0, 1], with ∆I = C. These distance relationships are computed accord-
ing to the Euclidean distance on the considered objects. To this purpose, let
us consider in a given image two objects O and P defined by their centroids
(x1, y1) and (x2, y2), and their bounding box (Oxmin, Oxmax, Oymin, Oymax) and
(Pxmin, Pxmax, Pymin, Pymax). We define then the following primitives:

distance(O,P ) =
√

(x1 − x2)2 + (y1 − y2)2 (10)

size(O) =
√

(Oxmax −Oxmin)2 + (Oymax −Oymin)2 (11)

close(O,P ) =

{
1 if distance(O,P ) < 2(size(O) + size(P ))
0 otherwise

(12)

farfrom(O,P ) =

{
1 if distance(O,P ) ≥ 2(size(O) + size(P ))
0 otherwise

(13)

Using the previous primitives, distance relationships can easily be computed
by the following equation:

µχ(ci,cj) =
] of instances where χ(ci, cj)

nij
(14)

where ci, cj ∈ C, and χ is a distance relationship, i.e. χ ∈ DIS.

Example 4 (Spatial Relationships)

〈a : Bottle ≥ 1〉
〈b : Dining Table ≥ 1〉

〈(a : b) : hasAppearedAbove ≥ 0.76〉
〈(a : b) : hasAppearedBelow ≥ 0.02〉
〈(a : b) : hasAppearedAlignedWith ≥ 0.62〉
〈(a : b) : hasAppearedCloseTo ≥ 0.97〉

· · ·

In order to illustrate our approach for building multimedia ontologies, we show
in Figure 6 an extract of the built ontology on Pascal VOC dataset. This figure
depicts the main concepts of the built ontology and the used roles for defining con-
cepts relationships. Full arrows represent the subsumption relationships between
the ontology concepts. Dashed arrows represent the fuzzy roles used for defining
the contextual and spatial relationships between concepts. For the clarity of the
illustration we restricted the Annotationj concept number to 4 and we did not
displayed the instances (individuals).

6 Proposed Method for image Annotation: Multi-Stage Reasoning
Framework for Image Annotation

Automatic image annotation is still a challenging problem despite more than a
decade of research. Indeed, current approaches are struggling to scale up because
of the lack of a computational model allowing to model such a complex system,
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(a)

(b)

Fig. 6 An extract of the built multimedia ontology on Pascal VOC dataset is illustrated
in Figure 6(a). Dashed arrows represent the fuzzy roles used for defining the contextual and
spatial relationships between concepts. Figure 6(b) illustrates the roles names.

the uncertainty introduced by the statistical learning algorithms, the dependency
on the accuracy of the ground truth of the training dataset and the well-known
semantic gap problem. Given a training dataset, automatic image annotation often
consists in building a computational model that enables to predict a set of concepts
from the annotation vocabulary to previously unseen images.

Image classification is a widely used technique for image annotation. It consists
in performing several binary SVM classifiers on an input image to find to which
classes it belongs to. The annotation of an image depends therefore on the clas-
sifier outputs, i.e. an image is annotated by a concept ci ∈ C if the output of the
classifier associated to ci is positive. Usually, such a process involves considerable
uncertainty because of the errors introduced by the machine learning algorithms.
However, this uncertainty can be reduced using reasoning over the produced im-
age annotation. For instance, it is most often easy to compute a confidence score
(membership value) for the classification of an image to a given class. Such infor-
mation is valuable and can be of great importance to improve image classification
accuracy. For instance, one can improve image annotation in a post-classification
process based on these confidence scores and an explicit knowledge source, such
as an ontology which models images context. In that way, this uncertainty is used
itself as a knowledge source in order to achieve a better decision-making on the
image annotation. Furthermore, the use of an explicit knowledge model can help
model, reduce, or even remove this uncertainty by supplying a formal framework
to reason about the consistency of extracted information from images.

Our approach is motivated by the above assumption. Indeed, we propose in
the following a multi-stage reasoning framework for image annotation based on the
earlier built multimedia ontology. The proposed framework allows reasoning on the
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provided annotations by the image classification algorithm in order to achieve a se-
mantically relevant image annotation. A global overview of the proposed approach
is illustrated in Figure 7.

Hierarchical Image 
Classification 

Reasoning on the annotation 
using the subsumption 

relationships 

Reasoning on the annotation 
using contextual information 

Input Image 

Multimedia Ontology 

Fuzzy DL Reasoner 

Detected concepts and their 
confidence scores 

  A set of concepts  

Reasoning on the annotation 
using spatial information 

Relevant Image Annotation 

  A set of concepts  

Fig. 7 Proposed method: a knowledge-based multi-stage reasoning framework for image an-
notation.

Specifically, we consider the following problem. Given a formal multimedia on-
tology designed as a fuzzy knowledge base KB = 〈T ,R,A〉, where T is a fuzzy
Terminological Box (TBox ), R is a regular fuzzy Role Box (RBox ), and A is a
fuzzy Assertional Box (ABox ). This fuzzy knowledge base is assumed to contain
the following explicit knowledge about ontology concepts: i) subsumption relation-
ships, ii) contextual relationships, and iii) spatial relationships. This multimedia
ontology is then used within our framework for annotating previously unseen im-
ages. As illustrated in Figure 7, this is achieved by the following steps:

– A hierarchical classification is performed on the input image, and the confidence
score for each concept cj ∈ C ∪ C′ is recovered.

– These concepts and their confidence scores are thereafter transformed into
fuzzy description logics assertions, and their consistency is checked using the
subsumption relationships and our fuzzy DL reasoner. Inconsistent concepts
are removed from the candidate annotation3 of the input image.

– Thereafter, the consistency of the set of concepts from the candidate annota-
tion is checked with respect to the contextual relationships and our fuzzy DL
reasoner. Inconsistent concepts are again removed from the candidate annota-
tion of the input image.

– Finally, the consistency of the candidate annotation is checked with respect
to the spatial information, and the final (candidate) annotation is associated

3 A candidate annotation P consists of a set of candidate concepts {cj ∈ C ∪ C′, j = 1..nii}
and their confidence values {αj , j = 1..nii}, predicted as describing the image content.
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with the input image. This final annotation is supposed to be semantically
consistent.

6.1 Hierarchical Image Classification

Based on the subsumption hierarchy, we propose in the following to train several
classifiers that represent the same concept at different levels of abstraction. These
classifiers are consistent with each other since they are linked by the subsumption
relationship, and then represent the same information with different levels of de-
tails. Therefore, it is possible to reason on the outputs of these classifiers in order
to achieve a relevant decision on the belonging of an image to a given class.

Concretely, given a semantic (subsumption) hierarchy, a classifier for each con-
cept node of the hierarchy is trained by performing a One-Versus-All (OVA) Sup-
port Vector Machines [11]. Specifically, for training the classifier of a target concept
node we took as positive samples all images associated with its children leaf nodes.
Negative samples are all the other images of the training database. Therefore, the
semantic hierarchy is only used to recover the set of positive and negative sample
images for training the classifiers of each concept node at the different layers of
the hierarchy. Consequently, the decision function of each classifier is independent
from its subsumed (child) and subsuming (parent) concept nodes.

Let xvi be any visual representation of an image ii ∈ I (a visual feature vector),
we train for each concept class (cj ∈ C ∪ C′) in the hierarchy a classifier that can
associate cj with its visual features. This is achieved by the use of |C|+ |C′| binary
SVM OVA, with a decision function:

G(xvi ) =
∑

k

αkykK(xvk, x
v
i ) + b (15)

where K(xvk, x
v
i ) is the value of a kernel function for the training sample xvk and

the test sample xvi , yk ∈ {1,−1} is the class label of xvk, αk is the learned weight
of the training sample xvk, and b is a learned threshold parameter.

Radial Basis Function (RBF) kernel is used for the training of our SVM:

K(xvk, x
v
i ) = exp

(‖xvk − xvi ‖2
σ2

)
(16)

6.2 Reasoning on Image Annotation using the Subsumption Hierarchy

Based on the classifiers outputs and the subsumption relationships, we propose
in the following to check the consistency of candidate concepts. So, let us con-
sider a previously unseen image i′i ∈ I′. Performing a hierarchical image clas-
sification on i′i produces an output P which consists of a set of candidate con-
cepts {cj ∈ C ∪ C′, j = 1..ni′i} and their confidence values {αj , j = 1..ni′i},
i.e. P = 〈(c0, α0), (c1, α1), · · · (cm, αm)〉 as illustrated in Figure 8. Subsequently,
these concepts and their confidence scores are transformed into fuzzy descrip-
tion logics assertions. In order to do so, we first normalize into [0, 1] the outputs
{αj , j = 1..ni′i} of the SVM classifiers by assigning zero to negative values and
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performing min-max normalization on the positive values. Thereafter, the con-
sistency of each concept cj ∈ C is checked using the subsumption relationships
and our fuzzy DL reasoner. Inconsistent concepts are removed from the candidate
annotation.

Specifically, our objective is to check the consistency of a candidate concept
cj ∈ C to a given image i′i using the subsumption relationships, and thus the set
of its hypernyms {ck ∈ C′ | cj : C > 0, ck : D > 0, C v D > 0}. Therefore, the
reasoning process can be formulated using conjunctive queries as follows:

valid(cj) ← P(cj) > 0 ∧ cj : C > 0 ∧ ck : D > 0 ∧ C v D > 0 ∧ valid(ck)

valid(>) = 1

where > is the root of the ontology, and P(cj) represents the confidence score of
the concept cj given by αj .

In DL, given an abstract individual ’a’ (an instance of a given candidate con-
cept), the consistency checking of concept inclusions is performed as follows. For
C v D, we compute the greatest lower bound glb(KB, C v D) using Axiom A6 in
Table 1, i.e. as the minimal value of x such that KB = 〈T ,R,A∪{〈a : C,α1〉}∪{〈a :
D,α2〉}〉 is satisfiable under the constraints expressing that α1 → α2 ≤ x, with
α1 and α2 ∈ [0, 1]. This process is then iterated until the root of the ontology is
reached. Thus, we come up with the following hierarchy: C1 v C2 ≥ x1, C2 v C3 ≥
x2, · · · , Cn v > ≥ 1. Thereafter, a confidence score for the considered candidate
concept is computed as follows:

bed(KB, a : V alidCC) = x1 ⊗ x2 ⊗ · · · ⊗ 1 = x1 ∗ x2 ∗ · · · ∗ 1 (17)

where V alidCC stands for a Valid Candidate Concept, which is a concept defined
to regroup all the consistent candidate concepts.

Finally, all candidate concepts with a confidence score equal to zero are removed
from the annotation of image i′i.

In order to illustrate our approach, let us consider the first example in Fig-
ure 8 where evaluations were performed on Pascal VOC’2010 dataset. The image
classification algorithm has detected ”Motorbike” as a candidate concept (among
others) for the considered image. However, according to the subsumption hierar-
chy (cf. Figure 3) a ”Motorbike” v ”Wheeled vehicle” v ”Conveyance”, etc., and
therefore the classifiers should also have detected these concepts to stay coher-
ent. The consistency checking of the concept ”Motorbike” is performed according
to the previously described procedure - cf. Example 5, and thus this concept is
removed from the list of candidates since bed(KB,Motorbike : V alidCC) = 0.

Example 5 (Consistency checking of concept ”Motorbike”)

KB = 〈T ,R,A ∪ {〈a : Motorbike ≥ 0.262〉} ∪ {〈a : Weeled vehicule ≥ 0〉} ∪
{〈a : Conveyance ≥ 0〉} ∪ {〈a : Abstraction ≥ 0.109〉} ∪ {〈a : Concept ≥ 1〉}〉
bed(KB,Motorbike : V alidCC) = 0.262⊗ 0⊗ 0⊗ 0.109⊗ 1 = 0
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Groundtruth:

Sheep, Person Cat, Tv monitor, Sofa
Chair, Dining Table: Marked as

Difficult, Person

Classifier Outputs for Concepts cj ∈ C:
Aeroplane: -1.192, Bicycle: -0.012, Bird:
-0.639, Boat: -0.474, Bottle: -0.347, Bus:
-0.367, Car: -0.525, Cat: -0.244, Chair:
-0.310, Cow: 0.310, Dining table: 0.162,
Dog: -0.0211, Horse: 0.391, Motorbike:
0.262, Person: 0.805, Potted plant: -
0.012, Sheep: 0.519, Sofa: -0.465, Train:
-0.259, Tv monitor: -0.701

Aeroplane: -0.491, Bicycle: 0.196, Bird:
-0.723, Boat: 0.055, Bottle: -0.296, Bus:
-0.464, Car: -0.108, Cat: 0.758, Chair:
0.428, Cow: -0.900, Dining table: 0.391,
Dog: -1.031, Horse: -0.118, Motorbike:
-0.098, Person: 0.069, Potted plant:
0.148, Sheep: -0.925, Sofa: 0.858, Train:
0.098, Tv monitor: 0.421

Aeroplane: -1.086, Bicycle: 0.106, Bird:
-0.752, Boat: -0.792, Bottle: 0.807,
Bus: -0.330, Car: -0.185, Cat: -0.207,
Chair: 1.024, Cow: -0.458, Dining table:
0.854, Dog: 0.271, Horse: -0.109, Motor-
bike: 0.147, Person: 1.240, Potted Plant:
0.584, Sheep: -0.670, Sofa: -0.046, Train:
-0.530, Tv monitor: 0.158

Classifier Outputs for Concepts cj ∈ C′:
Abstraction: 0.109, Bovid: 0.499, Carni-
vore: -0.012, Conveyance: -0.377, Craft:
-1.040, Furniture: -0.135661, Instru-
mentality: -0.659, Organism: 0.636,
Public transport: -0.377, Seat: -0.243,
Ungulate: 0.391, Vertebrate: 0.056,
Wheeled vehicle: -0.088, Whole: -0.106

Abstraction: 1.098, Bovid: -0.976,
Carnivore: 0.875, Conveyance: 0.033,
Craft: -0.671, Furniture: 1.229, In-
strumentality: 0.785, Organism: 0.488,
Public transport: -0.108, Seat: 0.361,
Ungulate: -0.682, Vertebrate: 0.508,
Wheeled vehicle: -0.294, Whole: 1.065

Abstraction: 1.072, Bovid: -0.368,
Carnivore: -0.049, Conveyance: -1.077,
Craft: -1.446, Furniture: 1.145, In-
strumentality: 0.775, Organism: 0.647,
Public transport: -0.185, Seat: 0.513,
Ungulate: -0.202, Vertebrate: -0.138,
Wheeled Vehicle: 0.020, Whole: 1.179

Reasoning on the annotations using the subsumption hierarchy:

Cow: 0.310, Horse: 0.391, Person: 0.805,
Sheep: 0.519
Motorbike, Dining table

Cat: 0.616, Chair: 0.348, Dining table:
0.318, Person: 0.056, Potted plant:
0.120, Sofa: 0.698, Tv monitor: 0.342
Bicycle, Boat, Train

Bottle: 0.650, Chair: 0.825, Din-
ing table: 0.688, Person: 1.00, Pot-
ted Plant: 0.470, Tv monitor: 0.127
Bicycle, Dog, Motorbike

Reasoning on the annotations using image context:

Person: 0.805, Sheep: 0.519
Horse, Cow

Cat: 0.616, Chair: 0.348, Dining table:
0.318, Sofa: 0.698, Tv monitor: 0.342
Person, Potted plant

Bottle: 0.650, Chair: 0.825, Din-
ing table: 0.688, Person: 1.00, Pot-
ted Plant: 0.470
Tv monitor

Reasoning on the annotations using spatial information:

Person: 0.805, Sheep: 0.519
Cat: 0.616, Chair: 0.348, Dining table:
0.318, Sofa: 0.698, Tv monitor: 0.342

Bottle: 0.650, Chair: 0.825, Din-
ing table: 0.688, Person: 1.00, Pot-
ted Plant: 0.470

Fig. 5 Illustrative examples of the proposed framework for image annotation.

KB = 〈T ,R,A∪{〈i : Image, 1〉}∪{〈a : Horse, 0.391〉}∪{〈b : Person, 0.805〉}∪
{〈c : Sheep, 0.519〉}〉

CA0 ≡ Horse u Person u Sheep
CA1 ≡ Person u Sheep
CA2 ≡ Cow u Person
bed(KB, i : V alidCA0) = (0.391⊗ 0.805⊗ 0.519)⊗ 1⊗ 0.003548 = 0.00057

bed(KB, i : V alidCA1) = (0.805⊗ 0.519)⊗ 1⊗ 0.027413 = 0.01145

Fig. 8 Illustrative examples of the proposed method for annotating images.

6.3 Reasoning on Image Annotation using Image Context

As aforementioned, contextual information can provide valuable information for
the understanding of image context or to reason about the consistency of image
annotation. For instance, it is evident that an image which contains the set of
concepts {”Aeroplane”, ”Person”, ”Car”} represents a scene of an airport tarmac,
and not the one of a flying plane. And conversely, it is obvious that an image that
contains ”Dining table” and ”Sofa” should not contain ”Boat” or ”Bus”. Thus,
contextual information, if processed, can be helpful to check the consistency of
image annotations.

Using our multimedia ontology, it is easy to recover contextual information
about images. Consequently, we propose in the following to use this information
to recover from our ontology all consistent annotations with respect to contextual
information, and to compute the best explanation of a considered image. Specifi-
cally, the fuzzy role ”isAnnotatedBy” allows predicting a confidence score (based
on contextual information) for a given set of candidate concepts. Given a Candi-
date Annotation CAj = 〈c1, c2, · · · , cm〉 and a target image i′i ∈ I′, a confidence
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score is computed to estimate the correlation likelihood between CAj and i′i. This
confidence score increases according to the likeliness of the candidate annotation
CAj , or it is equal to 0 when the annotation is not valid.

Concretely, given an image i′i and P ′ : 〈(c0, α0), (c1, α1), · · · (cm, αm)〉,m =
|P ′|, a set of valid candidate concepts with respect to the subsumption relation-
ships, we build first the set of candidate annotation (CAj , j ∈ 1..|combinaisons|)
by taking all the possible combination of the concepts in P ′. A confidence score
for each valid candidate annotation (ValidCA) is then computed. For instance, let
us assume that we dispose of one candidate annotation consisting of 3 concepts.
Its confidence score is computed as follows:

Example 6 (Reasoning using image context)

P ′ : 〈(c1, α1), (c2, α2), (c3, α3)〉, (classifier outputs)

〈c1 : C1 ≥ α1〉, 〈c2 : C2 ≥ α2〉, 〈c3 : C3 ≥ α3〉
〈CA ≡ C1 u C2 u C3〉
〈b : CA ≥ αb〉, s.t. αb = α1 ⊗ α2 ⊗ α3

KB = 〈T ,R,A ∪ {〈a : Image ≥ αa〉} ∪ {〈b : CA ≥ αb〉}〉
〈(a, b) : isAnnotatedBy ≥ αr〉, is already stored in the KB during the ontology

building process, where αr = µisAnnotatedBy(a,b) (cf. Equation 8).

Therefore, according to Equation 1, the correlation likelihood between a candidate
annotation CA and a given image i′i can be computed as follows:

glb(KB, a : ∃ isAnnotatedBy.CA) = αb⊗αr = (α1⊗α2⊗α3)⊗ µisAnnotatedBy(a,b)

(18)
then,

V alidCA ≡ ∃ isAnnotatedBy.CA (19)

Finally, the best explanation (bex) of i′i is retrieved as the ValidCA having
the maximum correlation likelihood among all the others. This explanation is
computed as follows:

bex(KB, V alidCA) = {〈a, r〉|r = bed(KB, a : V alidCA)} (20)

For instance, let us consider the first example in Figure 8. We show below some
cases of DL reasoning using the contextual information:
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Example 7 (DL Reasoning using image context)

P ′ : 〈(c1 : Horse, 0.391), (c2 : Person, 0.805), (c3 : Sheep, 0.519), (c4 : Cow, 0.310)〉
〈CA0 ≡ Horse u Person u Sheep〉
〈CA1 ≡ Person u Sheep〉
〈CA2 ≡ Cow u Person〉
〈b0 : CA0 ≥ 0.163〉
〈b1 : CA1 ≥ 0.417〉
〈b2 : CA2 ≥ 0.249〉
KB = 〈T ,R,A ∪ {〈a : Image ≥ 1〉} ∪ {〈b0 : CA0 ≥ 0.163〉} ∪ {〈b1 : CA1 ≥ 0.417〉}∪
{〈b2 : CA2 ≥ 0.249〉}〉
glb(KB, a : ∃ isAnnotatedBy.CA0) = (0.391⊗ 0.805⊗ 0.519)⊗ 0.003548 = 0.00057

glb(KB, a : ∃ isAnnotatedBy.CA1) = (0.805⊗ 0.519)⊗ 0.027413 = 0.01145

glb(KB, a : ∃ isAnnotatedBy.CA2) = (0.391⊗ 0.805)⊗ 0.025455 = 0.00635

bex(KB, V alidCA) = 0.01145

Consequently, with respect to the contextual information, the best explanation
for the left image in Figure 8 is: CA1 ≡ Person u Sheep.

Please note that, since most images of the Pascal VOC dataset contain only
one or two concepts [10], and thus the distribution of multi-labeled images is not
uniform, we computed the Equation 8 for this dataset as:

µisAnnotatedBy(Photo,Annotationi) =
nAnnotationi

L ∗ exp(Λ) (21)

where Λ = |Annotationi|.

6.4 Reasoning Using Spatial Information

Contextual knowledge can help the recognition of objects within a scene by pro-
viding predictions about objects that are most likely to appear in a specific setting,
i.e. topological information, along with the locations that are most likely to contain
objects in the scene, i.e. spatial information. Specifically, the spatial arrangement
of objects provides important information for the recognition and interpretation
tasks, and allows to solve ambiguity between objects having a similar appearance.
As part of this work, we have proposed an approach based on image classification
for annotating images. Consequently, we do not dispose of the spatial position of
detected concepts, and therefore the reasoning capabilities using spatial informa-
tion are limited in the current approach. However, we propose in the following a
simple but effective usage scenario that relies on the spatial arrangement of the
currently detected concepts in order to provide a semantically consistent image
annotation. In Section 8, we propose some usage scenarios that illustrate the use-
fulness of spatial information and the reasoning over this kind of knowledge in
order to improve image annotation.
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Given an image i′i ∈ I′ and P ′′ : 〈(c0, α0), (c1, α1), · · · (cm, αm)〉,m = |P ′′|, a
set of a valid candidate concepts with respect to the subsumption relationships
and contextual information. We propose first to query the ontology in order to
retrieve all possible spatial arrangement of all pairs of concepts (cj , ck) ∈ P ′′, and
to recover the confidence score of each of these spatial arrangements. A score can
then be computed as the maximum likelihood of all spatial arrangements of these
concepts to find the best explanation of i′i. Algorithm 1 details the different steps
of this method.

Algorithm 1: Reasoning using spatial Information

Input: A valid candidate annotation: ValidCA
Result: Semantically consistent image annotation
begin

Find:
- C,D ← argmax

x,y∈V alidCA
x.hasAppearedwith(y)

- Spatial arrangement← argmax
χ∈DIR

C.χ(D)

- E ← argmax
x∈V alidCA

x.hasAppearedwith(C tD)

- Max spatial arrangement of E and C s.t Spatial arrangement of E and D is
satisfiable
- Reiterate the process with the remaining concepts in ValidCA

end

Reasoning on spatial information should also allow to provide a good image in-
terpretation. For instance, computing the maximum spatial arrangement likelihood
allows to retrieve the likeliness of spatial arrangement of each detected concept in
a given image. This will allow for example, to provide a textual description of a
given image in the following way:

Figure 8 - first example: ”This picture depicts a person standing on the left of a
sheep. They are close to each other.”

Figure 8 - second example: ”This picture depicts a cat sitting on a table in a living
room. There is a table, a sofa and a television in the living room.”

It is easy to implement such a system for image interpretation once we dispose
of information about detected concepts and their spatial location [21]. We will
address the implementation of such a system in our future work.

7 Experiments

In this paper, evaluations are performed on Pascal VOC’2009 dataset [16] and
Pascal VOC’2010 dataset [17]. These datasets contain about 11 000 images and 20
concepts. Each image is annotated with one or more concepts from the annotation
vocabulary. In the following, we introduce the used method for visual representa-
tion of images, then we present the obtained results on the used datasets and we
compare our proposal to recent work.
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7.1 Visual Representation of Images

The Bag-of-Features (BoF) representation, also known as Bag-of-Visual-Word
(BoVW), is used in this paper to describe image features. The BoF model has
shown excellent performances and became one of the most widely used model for
image classification and object recognition [29]. In our approach, image features
are described as follows: Lowe’s DoG Detector [32] is used for detecting a set of
salient image regions. A signature of these regions is then computed using SIFT
descriptor [32]. Afterwards, given the collection of detected region from the train-
ing set of all categories, we generate a codebook of size K = 1000 by performing
the k-means algorithm. Thus, each detected region in an image is mapped to the
most similar visual word in the codebook through a KD-Tree. Each image is then
represented by a histogram of K visual words, where each bin in the histogram
corresponds to the occurrence number of a visual word in that image.

7.2 Evaluation of Image Annotation

As aforementioned, experiments are performed on Pascal VOC’2009 and VOC’2010
datasets. Since we do not dispose of the test set used in these challenges, we used
50% of the image dataset for training the classifiers and the other images are used
for evaluating our approach.

In order to emphasize the importance of hierarchical image classification and
ontological reasoning using the subsumption relationships, we illustrate in Figure
9 the obtained average precision and Precision/Recall (PR) curves for all the
concepts of each level of the hierarchy. As depicted in this figure, the concepts in
the higher levels of the hierarchy have strong average precision, and we can also
observe that the classifier accuracy decreases as we go deeper in the hierarchy.
These results can be explained as follows. Firstly, the classes in the higher levels of
the hierarchy are widely different in their visual appearance, i.e. it is easy to find
a boundary that separates these classes. They are also more balanced, i.e. these
classes dispose of more positive samples for training their classifiers than the ones
in lower levels of the hierarchy. We can therefore conclude that the subsumption
relationships should allow improving the image annotation results as they provide
a formal framework for reasoning about concepts consistency. Moreover, as the
classification accuracy increases as we move to the upper levels of the hierarchy,
the overall classification accuracy should increase also.

In Figure 10, we compare our framework for image annotation to the follow-
ing methods: a flat classification method, a hierarchical classification one and a
baseline method. The baseline method is built by taking the average submission
results to Pascal VOC’2010 challenge. The flat classification is performed by using
|C| SVM One-Versus-All (OVA), where the inputs are the BoF representation of
images and the outputs are the desired SVM responses for each image (1 or -1).
We used cross-validation to overcome the unbalanced data problem, taking at each
fold as many positive as negative images. Hierarchical classification is performed
by training a set of (|C|+ |C′|) hierarchical classifiers (OVA) consistent with the
structure of the hierarchy illustrated in Figure 3 - for more details about hier-
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(a) PR curves for the 2nd layer concepts. (b) PR curves for the 3rd layer concepts.

(c) PR curves for the fourth layer concepts.

Fig. 9 Hierarchical classification: Precision/Recall (PR) curves for the concepts of each level
of the hierarchy.

archical classification see Section 6.1. Results are evaluated in terms of Average
Precision (AP) scores.

As illustrated in Figure 10, our method for image annotation performs better
results than the other ones on Pascal VOC’2010 dataset, with an average preci-
sion of 66.49% and a gain of +8.6% comparing to the baseline method, a gain of
+14.8% comparing to the hierarchical classification method and a gain of +32.6%
comparing to the flat classification method. These results confirm the effectiveness
of the proposed approach, and the importance of contextual and spatial infor-
mation for improving image annotation. These improvements could be further
significant when using a dataset containing more multi-labeled images. Indeed, in
Pascal VOC dataset the proportion of images labeled with more than two concepts
is small compared with the total number of images [10].

In Figure 11, we compare our framework for image annotation to the follow-
ing methods: Bottom-Up Score Fusion (BUSF )[4], Top-Down Classifiers Voting
(TDCV ) [4] and Hierarchy of SVM (H-SVM ) [33]. As it can be seen in this fig-
ure, our multi-stage reasoning framework for image annotation outperforms on all
classes comparing to the other ones. Please note that this comparison was per-
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Fig. 10 Comparison of our method for image annotation with: a flat classification method, a
hierarchical classification one, and the baseline method. Comparison is performed on VOC’2010
dataset.
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Fig. 11 Comparison of our framework for image annotation to previous work on Pascal
VOC’2010 dataset. Our approach outperforms on all classes comparing to the other ones.

formed using the same experimental setup, i.e. the same training/validation sets
from the VOC’2010 dataset and the same visual representation of images. There-
fore, it is clear that the proposed multimedia ontology and the proposed framework
for reasoning about the consistency of image annotation allow achieving a signif-
icant improvement in the image annotation accuracy. These results also put into
evidence the effectiveness of using explicit knowledge models, such as ontologies,
for achieving semantically relevant image annotation.
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Proposed Method (AP) [49] (AP) [47] (AP)

Aeroplane 82.2 87.1 87.7
Bicycle 74.1 67.4 67.8
Bird 69.2 65.8 68.1
Boat 64.5 72.3 71.1
Bottle 52.1 40.9 39.1
Bus 80.4 78.3 78.5
Car 70.1 69.7 70.6
Cat 61.7 69.7 70.7
Chair 63.8 58.5 57.4
Cow 62.7 50.1 51.7
Dining Table 68.9 55.1 53.3
Dog 63.2 56.3 59.2
Horse 62.7 71.8 71.6
Motorbike 76.1 70.8 70.6
Person 83.2 84.1 84.0
Potted Plant 57.1 31.4 30.9
Sheep 64.4 51.5 51.7
Sofa 58.1 55.1 55.9
Train 72.8 84.7 85.9
Tv Monitor 66.7 65.2 66.7

AP on all concepts 67.7 64.29 64.6

Table 3 Comparison of our method for image annotation with the ones of [49] and [47] on
Pascal VOC’2009 dataset.

In table 3, we compare our multi-stage reasoning framework for image anno-
tation to the methods of [49] and [47] on Pascal VOC’2009 dataset. In [49], the
authors proposed a method for image classification using local visual descriptors
and their spatial coordinates. Their method consists in performing first a nonlin-
ear feature transformation on local appearance descriptor, termed as super-vector,
which exploits the residual vector information obtained from the vector quanti-
zation (VQ). These descriptors are then aggregated to form image-level feature
vector. The image-level feature vector is finally fed into a classifier to perform
image classification. In [47], an efficient sparse coding algorithm with a mixture
model is proposed and which is assumed to work with much larger dictionaries that
often offer higher classification performances. The mixture model softly partitions
the descriptor space into local sub-manifolds, where sparse coding with a much
smaller dictionary can fast fit the data. As illustrated in table 3, our approach
performs better than the other ones and achieves a gain of 3.41% compared to the
method of [49] and a gain of 3.1% compared to the method of [47]. This result is
promising especially because we did use only the half of the training set for train-
ing our classifiers and the other images for evaluating our approach, since we did
not dispose of the testing set. We also wish to recall that we have included in our
evaluation the images and the concepts marked as difficult, which are ignored in
the challenge because they are considered as difficult to recognize. For instance, in
the third example of Figure 8, we can easily observe a ”Dining table” in the illus-
trated image. However, ”Dining table” is marked as difficult in the ground-truth
of this image in the VOC’2009 challenge, and thus it will not count for computing
the average precision of this concept. In our evaluation, we included these con-
cepts, i.e. if they are not detected they will count as false negative. Furthermore,
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the scope of our paper was to study the potential of adding contextual and spatial
information into the image annotation process through the use of ontology and
ontological reasoning. Thus, we have focused our contribution on these points and
we did not seek to implement a very efficient image descriptor since this is not the
aim of our paper. Accordingly, the obtained results can be further improved as for
example by incorporating other image features.

Fig. 12 An example of a badly annotated image in the VOC’2010 dataset. Ground-truth:
Person. Annotation provided by our method: Bottle: 0.982, Chair: 0.281, Dining table: 0.493,
Person: 1.00, Tv monitor: 0.333.

Finally, we want to highlight that some images in the VOC dataset are badly
annotated. For instance, in the third example of Figure 8 we can distinguish a
bottle partially hidden by a vase and a potted flower in the background of the
image. However, these concepts (i.e. ”Bottle” and ”Potted plant”) are missing
in the ground-truth of this image. Thus, despite that our method succeeded to
recognize these concepts, they counted as false positive detections in the evaluation
of our method since they are missing in the ground-truth. For the second example
of Figure 8, our method has detected the concept ”Dining table” which is absent
from the ground-truth. However, the image depicts indeed a ”coffee table” and
therefore our prediction is semantically relevant, especially since the annotation
vocabulary does not provide concepts such as ”Table” or ”Coffee Table”. In Figure
12, we illustrate another image which is badly annotated in the dataset. Indeed, the
ground-truth of this image contains only the concept ”Person”. However, the image
depicts much more concepts: a bottle, chairs, tables, and screens. Our method
has detected these concepts, but according to the ground-truth these detections
counted as false positives.
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8 Discussion

The proposed methodology for building multimedia ontologies is original, and is
useful for the modeling and the understanding of image semantics, i.e. identify and
formalize the semantic relationships between image concepts. Indeed, the represen-
tation of our concepts and their semantic relationships are automatically extracted
from image datasets, which provides an efficient modeling of image semantics and
allows for extending our ontology at any time by mining new image datasets. Ef-
ficient modeling of image semantics means here: less sensitive to the subjectivity
of human perception and less sensitive to the semantic gap.

Regarding the usefulness of our multimedia ontology for computer vision tasks,
we propose in the following some usage scenarios. Let us consider an expressive
amount of multimedia content, it is possible to extend our approach in order to
model (or to learn), in a simple way, complex concepts by the mining of this mul-
timedia content. For instance, let us suppose that we dispose of a well annotated
image database and which is representative of the scenes from real life. It is obvious
that when we find a ’Computer monitor ’ in a given image, it is very likely to find a
’Mouse’ and a ’Keyboard ’, and thus, these concepts will share a high co-occurrence
confidence score. One can therefore use our proposed approach to define complex
concepts, which are not previously included in the annotation vocabulary, based on
the fuzzy role ’hasAppearedWith’ and the co-occurrence confidence score. Specifi-
cally, if the context of appearance of a set of concepts is sufficiently high (greater
than a predefined threshold), therefore using their definition in WordNet we can
find the common concept that connects them, and consequently define automati-
cally this (complex) concept. To illustrate this proposal, here are some examples
of defined concepts by the above described method:

Example 8 (Scenario 1: Defining complex concepts)

〈Sitting room ≡ Sofa u Table u Television〉
〈Beach ≡ Sea u Sand u Sky u ∃hasAppearedAbove(Sea, Sand)u
∃hasAppearedBellow(Sea, Sky)〉

〈Computer ≡ Screen uKeyboard uMouse u ∃hasAppearedAbove(Screen,
Keyboard) u ∃hasAppearedRightOf(Mouse,Keyboard)〉

Another usage scenario consists in a knowledge-driven approach for image an-
notation using object detection. Indeed, one popular technique for identifying and
localizing objects in an image is by the use of sliding-window object detection.
It consists in defining a fixed-size rectangular window and applying a classifier to
the sub-image defined by the window. The classifier extracts image features from
within the window and returns the probability that the window bounds a partic-
ular object. The process is repeated on successively scaled copies of the image so
that objects can be detected at any size.
So, let us suppose that one dispose of a multimedia database annotated with an
average of 3000 concepts, as for instance the SUN database [46]. Thus, we will dis-
pose of 3000 object detectors that will be performed on all images of the database
and at different scales, which is computationally very expensive. The complexity
of this task can be decreased significantly by the use of our multimedia ontology
and the scenario defined in the following.
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Example 9 (Scenario 2: A knowledge-driven approach for object detection.) Given
a previously unseen image:

1. Apply progressively the detectors of the most frequent concepts (w.r.t ’hasFre-
quency ’ concrete feature) in KB, until a first concept ci ∈ C is detected.

2. Query the ontology (KB) for the most likely concept (cj ∈ C) to appear with
ci and its spatial location.

3. Apply the detector for cj by delimiting the retrieving space according to the
predicted spatial location. If it fails go to 2, else go to 4.

4. Query the ontology for candidate textual annotations with respect to the al-
ready detected concepts and their locations.

5. According to the decreasing confidence scores of these annotations, apply the
detectors for the concepts of the selected annotation. If all concepts of the
considered annotation are detected go to 6, else go to 4 (to select another
annotation consistent w.r.t the already detected concepts).

6. Stop the processing and return the object detection result (i.e., the set of
detected concepts and their spatial location) for the input image.

This usage scenario allows reducing significantly the complexity of the object
detection process. In order to perform object detection, it requires performing
much less detectors than the classical approach and targeting the detection zone
according to the already detected concepts. Thus, it is clear that the proposed
ontology is useful to effectively manage image processing tasks, and to efficiently
perform image annotation. These usage scenarios will be addressed in our future
work.

9 Conclusion

In this paper, we proposed a new approach to automatically build a fuzzy multime-
dia ontology dedicated to image annotation and interpretation. In our approach,
visual and conceptual information are used to build a semantic hierarchy faith-
ful to image semantics, and which will serves as a backbone of our ontology. The
ontology is thereafter enriched with contextual and spatial information. Fuzzy de-
scription logics are used as a formalism to represent our ontology and to deal with
the uncertainty and the imprecision of concept relationships. Some usage scenarios
are then proposed to show the usefulness of the proposed ontology.
We subsequently proposed a new method for image annotation based on hierar-
chical image classification and a multi-stage reasoning framework for reasoning
about the consistency of the produced annotation. An empirical evaluation of our
approach on Pascal VOC’2009 and Pascal VOC’2010 datasets has shown a signif-
icant improvement on the average precision results.
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