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Abstract

The application of machine learning (ML) in scientific tasks is increasing, especially1

ML in simulation-driven engineering tasks. While previous studies were mostly2

model-centric and required large-data learning, recent studies start to pay attention3

to data-centric AI and are investigating small-data learning with effective structured4

representations, which is significant for industrial application. This article provides5

a theoretical discussion for the feasibility of small-data learning with structured6

representations, which is then verified through the surrogate modelling of hot7

stamping simulations. Future directions are also discussed.8

1 Introduction9

In the past decade, ML, particularly deep learning, has been successfully applied to general Artifi-10

cial Intelligence (AI) tasks, including object detection [1], semantic segmentation [2], and image11

generation [3]. Recently, ML is being extended to scientific tasks, which can be broadly clas-12

sified into mechanism-unknown tasks and mechanism-known tasks, as shown in Figure 1. In13

mechanism-unknown tasks, ML can be applied to mathematically formulating the mechanisms, such14

as ML-assisted material modelling [4][5], or explorative discovery with unknown or partly-unknown15

mechanisms, such as discovering new materials [6] or drugs [7]; in mechanism-known tasks, also16

known as simulation-driven engineering tasks, the mechanisms have been mathematically formulated17

and integrated with simulation tools, such as finite element analysis (FEA), while ML is mainly18

applied to surrogate-based optimisation [8]. A frequent observation is that the application of ML is19

more convenient and practical in simulation-driven engineering tasks than in mechanism-unknown20

tasks, since multi-scale simulation tools can generate data containing comprehensive info, such as21

physical fields, that are difficult to obtain in experiments. Therefore, this article mainly focuses on22

ML-assisted surrogate-based optimisation in simulation-driven engineering tasks.23

In ML-assisted surrogate-based optimisation, while some studies replaced classical optimisers with24

ML, such as reinforcement learning [9], most efforts have been devoted to improving the accuracy,25

generalisability, and interpretability of surrogate models. Current ML with scalar representations26

of both inputs and outputs, such as Kriging models [10][11], has been widely deployed. However,27

these models are only suitable for low-dimension, single-parameterisation, scalar-output use cases,28

while it is difficult to integrate data from multiple parameterisations or reuse historical data. To29

improve the performance of ML-assisted surrogate models, including their flexibility, accuracy and30

generalisability, recent studies have intensively investigated ML with structured representations, such31

as fields [12] and graphs [13]. ML with structured representations was initially practiced in computa-32

tional fluid dynamics (CFD), since Eulerian meshing, which is popular in most CFD tasks, can be33

conveniently integrated with convolutional neural networks (CNN). Guo, Xu. et al. represented 2D or34

3D geometries using signed distance functions (SDF) [14]. Based on the SDF field representations, a35
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CNN was trained to predict the full fields of 2D or 3D non-uniform steady laminar flow. ML with36

structured representations, which integrates advanced architectures such as recurrent neural networks37

(RNNs) and generative adversarial networks (GANs), has been applied to more complex CFD cases,38

including temporal prediction [15][16] and inverse design [17][18]. Based on the success in CFD39

cases, ML with structured representations has been extended to difficult use cases where non-Eulerian40

meshing is applied, including solid mechanics [19], structured optimisation [20][21], manufacturing41

[22][23][24], and meta-material design [25][26].

Figure 1: Classification of AI tasks.
42

The ML-assisted surrogate models discussed above mainly employed full field-based representations,43

which significantly improved the overall performance of surrogate models. The previous studies dis-44

cussed above mostly pursued universally-generalised models, large-data training, and high-resolution45

full-field representations. Recent studies have started to investigate more effective structured repre-46

sentations, such as implicit shape parameterisation [27][28][29][30][31][32] and graphs [12][38];47

surrogate models are trained on datasets with task-specific sizes [33][34][35]. Despite the emerg-48

ing trend discussed above, only a few studies attemped to investigate the feasibility of small-data49

learning and the benefits of effective representations: Cao et al. showed that non-parametric input50

representation using graph neural network (GNN) and field-based output representation significantly51

improved the performance of surrogate models [12]; Li et al. significantly reduced the dataset size,52

which was acceptable for industrial practice and significantly facilitated multi-query optimisation,53

using wing mode representations [30][33].54

In this article, the feasibility of small-data learning and the benefits of effective representations will be55

investigated based on the surrogate modelling of a case with application to hot stamping. In section 2,56

the feasibility and benefits will be discussed based on theoretical considerations. In section 3, a hot57

stamping case will be presented for verification. In section 4, current studies will be summarised and58

future directions will be pointed out.59

2 Theoretical discussion60

In this section, the feasibility of small-data learning in simulation-driven engineering tasks will be61

theoretically discussed by comparing these tasks with general tasks, and the benefits and criteria62

of effective representations will be discussed. The feasibility of small-data learning in mechanism-63

unknown tasks remains an open research question due to the lack of physical mechanisms, which is64

out of the scope of this article and requires further study.65

2.1 The feasibility of small-data learning in simulation-driven engineering tasks66

The definition of small-data and the required dataset size largely depends on specific tasks. In general67

tasks, millions of samples are required to ensure the performance of ML, such as ImageNet and Open68

Images. However, simulation-driven engineering tasks are expected to require much less data thanks69

to the following three attributes:70

• From the input side, the design variables and corresponding domain in simulation-driven71

engineering tasks can be explicitly defined. For instance, in a stiffness-driven shape op-72

timisation task, the shape can be completely defined by a set of variables and uniformly73

generated using sampling strategies, such as Latin hypercube [37]. This ensures an effective74

coverage of the design space. However, in general tasks such as a multi-classification, it75

is nearly impossible to define the features of a certain class using explicit variables, not to76
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mention sampling strategies. In this case, large data is required to better cover the design77

space of general tasks, while mode collapse still occurs.78

• From the output side, in a multi-classification task, laborious labelling work is required79

in supervised and semi-supervised learning. Furthermore, the labels are usually not em-80

bedded in a mathematical metric space: it is nonsense to say ’cat’>’dog’ mathematically.81

This might lead to highly nonlinear and complicated input-output mapping relationships.82

However, the outputs of simulation-driven engineering tasks are mostly fields with inherent83

mechanism driven patterns. Labelling work is rarely required while the outputs are in nature84

mathematically comparable.85

• Data in simulation-driven engineering tasks usually has a higher signal-to-noise ratio (SNR).86

To clarify, a cat in a multi-classification task may be classed under diverse headings because87

the image contains features such as eyes, irrelevant objects and background. This has a88

negative effect on data quality and SNR. However, data in simulation-driven engineering89

tasks, as long as the simulation model is verified and uncertainty is estimated, contains little90

irrelevant information.91

These advantageous attributes lead to smoother input-output mapping relationships and significantly92

reduces the data requirement in simulation-driven engineering.93

2.2 The benefits and criteria of effective data representations94

Besides the natural attributes discussed above, proper representations are required to reduce dataset95

sizes and improve the performance of surrogate models. Based on a case with application to stiffened96

panel optimisation, Hao et al. demonstrated that field-based input shapes preserved the topological97

information, compared with parametric representations [13]. To clarify, a shape usually consists of98

multiple inter connected features, such as rounded corners, while the interconnection relationship99

is lost if the shape is represented merely by the scalar feature parameters, such as radius. Based on100

a cold forming case, Zhou et al. demonstrated that field-based output physical fields preserved the101

data structure of physical fields compared with scalar performance indicators [36]. For example,102

multiple thinning fields that have the same maximum thinning might differ in their locations, peak103

number, and patterns. Overall, field-based representations have shown remarkable advantages over104

conventional scalar representations in academia [12][13][33][36] and industry [38][40].105

3 Case study: A field-based Artificial Intelligence empowered surrogate106

model for a hot-stamped ultrahigh-strength-steel (UHSS) B-pillar107

Small-data learning, which has been theoretically discussed in section 2, is verified based on the108

surrogate model of a hot stamped B-pillar used in automotive applications. The simulation setup in109

PAM-STAMP is shown in Figure 2, while the simulation model was experimentally verified [39].

Figure 2: (a) Simulation model setup in PAM-STAMP (b) Initial blank (same model as (a) while
hiding die, pad and symmetric) (c) Predicted thinning field (A key manufacturing quality indicator).

110

3.1 Dataset and surrogate model setup111

The surrogate model predicted the full blank thinning fields, which was mapped on the 2D initial112

blank configuration, given the 2D images of die and blank. The design variables and domain are113

demonstrated in Figure 3. A training set sized 64, which could be regarded as small-data, and a114

validation set sized 256 were sampled from the design domain in Figure 3(b) using Latin hypercube115
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(LHS). Two samples in the 64-size training set and nine in the 256-size validation set had excessive116

thinning due to small draft angles (<1.2°) or large height (>65mm). The FEA ground truth thinning117

fields of these samples were not reliable due to numerical errors when excessive thinning occurred.118

Since this study was not discussing failure and corresponding representations, these samples were119

removed, which led to a 62-size training set and a 247-size validation set. The surrogate model was

Figure 3: (a) Design variables set up (b) Design domain.
120

adapted based on a well-developed Res-SE-U-Net that is comprised of residual modules, squeeze-121

excitation modules, and skip connections [19][21][36]. The details of Res-SE-U-Net were discussed122

in [36]. For comparison with models that have scalar inputs/outputs, a Gaussian process (GP) model123

with anisotropic radius basis kernels was developed using Python/sklearn [13].124

3.2 Results and discussion125

Res-SE-U-Net model was trained using combing mean square error (MSE) with batch size 2 and126

learning rate 0.0004, and GP model was fitted with optimised noise coefficient (0.02). Both models127

were validated on the 247-size validation set. As shown in Figure 4(a)(b), the violin plot of maximum128

thinning predicted by Res-SE-U-Net has a better consistency with the ground truth than that predicted129

by GP. For Res-SE-U-Net, the average absolute relative error of the maximum thinning (AREMT)130

ARMET = |(ML prediction− FEA ground truth)/FEA ground truth| × 100% (1)
was 3.77%, and 82.6% samples (204/247) had AREMT below 6%. For GP, the average AREMT131

was 5.30%, while only 72.3% samples had AREMT below 6%. In conclusion, Res-SE-U-Net trained132

on small data accurately and reliably predicted scalar maximum thinning even though maximum133

thinning was not explicitly included in MSE loss. A potential reason is that Res-SE-U-Net predicted134

the full thinning field that contained intrinsic physics, as shown in Figure 4(c). Predicting full fields135

also provides more guiding information to engineers.

Figure 4: (a) Violin plot of maximum thinning predicted by Res-SE-U-Net (b) Violin plot of
maximum thinning predicted by Gaussian process (c) Thinning fields of a validation sample.

136

4 Summary and future directions137

In this study, small-data learning using field-based representations in simulation-driven engineering138

tasks was investigated and verified. The advantageous attributes that enable small-data learning were139

discussed in comparision with general tasks. In the case study, Res-SE-U-Net outperformed GP by140

leveraging the intrinsic physics in full thinning fields.141

More studies on data-centric approaches in AI for science and engineering are expected in the future.142

Effective representations will be investigated. For example, a graph representation is preferred in a143

truss optimisation case since the truss contains only nodes and links [38]. Besides, active sampling,144

transfer learning, and physics-informed losses are promising to further facilitate small-data learning.145
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[37] Bogoclu, C., Roos, D., & Nestorović, T. (2021) Local Latin hypercube refinement for multi-objective design235

uncertainty optimisation. Applied Soft Computing: pp. 107807.236

[38] Chang, K., & Cheng, C. (2020) Learning to simulation and design for structural engineering. In International237

Conference on Machine Learning: pp. 1426-1436, PMLR.238

[39] Ganapathy, M., Li, N., Lin, J., Abspoel, M., & Bhattacharjee, D. (2019) Experimental investigation of a new239

low-temperature hot stamping process for boron steels. The International Journal of Advanced Manufacturing240

Technology 105: pp. 669-682.241

[40] Pongetti, J., Kipouros, T., Emmanuelli, M., Ahlfeld, R., & Shahpar, S. (2021) Using autoencoders and242

output consolidation to improved machine learning for turbomachinery applications. Proceedings of the ASME243

2021 Turbomachinery Technical Conference & Exposition.244

6


	Introduction
	Theoretical discussion
	The feasibility of small-data learning in simulation-driven engineering tasks
	The benefits and criteria of effective data representations

	Case study: A field-based Artificial Intelligence empowered surrogate model for a hot-stamped ultrahigh-strength-steel (UHSS) B-pillar
	Dataset and surrogate model setup
	Results and discussion

	Summary and future directions

