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Abstract
Despite being a fundamental building block for re-
inforcement learning, Markov decision processes
(MDPs) often suffer from ambiguity in model pa-
rameters. Robust MDPs are proposed to over-
come this challenge by optimizing the worst-
case performance under ambiguity. While ro-
bust MDPs can provide reliable policies with lim-
ited data, their worst-case performances are of-
ten overly conservative, and so they do not of-
fer practical insights into the actual performance
of these reliable policies. This paper proposes
robust satisficing MDPs (RSMDPs), where the
expected returns of feasible policies are softly-
constrained to achieve a user-specified target un-
der ambiguity. We derive a tractable reformula-
tion for RSMDPs and develop a first-order method
for solving large instances. Experimental results
demonstrate that RSMDPs can prescribe policies
to achieve their targets, which are much higher
than the optimal worst-case returns computed by
robust MDPs. Moreover, the average and per-
centile performances of our model are competi-
tive among other models. We also demonstrate the
scalability of the proposed algorithm compared
with a state-of-the-art commercial solver.

1. Introduction
Markov decision processes (MDPs) have emerged as a pow-
erful modeling framework for sequential decision-making
problems under uncertainty (Ashok et al., 2019; Puterman,
2014; Sutton & Barto, 2018). Successful employments of
MDPs largely rely on the perfect estimation of model pa-
rameters (Petrik & Russel, 2019), which, unfortunately, is
not always the case. A common situation is when the true
parameters are estimated from a limited amount of sam-
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ples, which may lead to non-negligible estimation deviation
(Mannor et al., 2007). Sometimes, these true parameters
themselves may be uncertain or even time-dependent, yet
they are mistreated as fixed ones in the modeling process
(Mannor et al., 2016; Suilen et al., 2022). Due to the se-
quential nature of MDPs, these estimation errors accumulate
quickly (Behzadian et al., 2021b; Xu & Mannor, 2009), and
so the output policies of MDPs could be disappointing in
practice.

As an encouraging framework to mitigate or resolve these
issues, a robust MDP (RMDP) assumes the uncertain reward
function and/or transition kernel to reside in an ambiguity
set, which includes the possible candidates of the unknown
true parameters with high confidence (Delgado et al., 2016;
Ghavamzadeh et al., 2016; Hanasusanto & Kuhn, 2013;
Petrik, 2012; Tamar et al., 2014; Xu & Mannor, 2006). By
optimizing against the most adversarial value within the
ambiguity set, RMDPs can provide policies that are robust
in practice (Auer et al., 2008; Goyal & Grand-Clement,
2022; Hansen et al., 2013; Ho et al., 2018; Iyengar, 2005;
Kaufman & Schaefer, 2013; Taleghan et al., 2015).

However, since RMDPs optimize the worst cases (which
probably are unusual in most cases), the optimized worst-
case performances are often too pessimistic and do not offer
insights into the actual performance of the obtained poli-
cies. Moreover, one major drawback of using ambiguity sets
to account for parameter ambiguity in RMDPs (resp., DR-
MDPs) is that the model may perform poorly when the true
parameter (resp., true probability distribution of parameter)
is outside the ambiguity set, which could be catastrophic
in high-risk applications such as healthcare and robotics
(Brown et al., 2020). Another potential issue is the difficulty
of determining the right “size” of the ambiguity set: for
example, when using a Wasserstein ambiguity set (Derman
& Mannor, 2020; Yang, 2017), choosing an appropriate
size/radius that provides satisfying out-of-sample perfor-
mances can be challenging (Mohajerin Esfahani & Kuhn,
2018).

In this paper, we focus on the case of ambiguous transition
kernel and we propose a novel framework, named robust sat-
isficing MDPs (RSMDPs), to handle the ambiguity. Robust
satisficing is an alternative framework of optimization under
uncertainty (Long et al., 2023). As opposed to RMDPs,
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the proposed RSMDPs consider all possible transition ker-
nels, therefore one does not need to specify an ambiguity
set. Unlike nominal MDPs where only the hard constraints
that correspond to the empirical transition kernel are consid-
ered, we also impose soft constraints for all other transition
kernels in RSMDPs. The magnitudes of violation of these
soft constraints depend on the distance between the asso-
ciated transition kernel and the empirical one. This is one
notable feature of our RSMDPs that prevents the model
from performing too poorly when the empirical transition
kernel is not close to the true one, which RMDPs may fail to
achieve when the true kernel is not included in the ambiguity
set. In particular, to achieve robustness, RSMDPs directly
optimize/minimize the magnitude of constraint violations,
and the level of robustness can be controlled elastically by
articulating the targeted average return. Compared to the
radius/size of RMDPs, the targeted return is a more tangible
parameter, where a lower target corresponds to a higher level
of robustness. Moreover, parameter selection approaches
are much easier to use for choosing the one-dimensional
targeted return, rather than choosing the possibly multi-
dimensional size of an ambiguity set (e.g., (Delage & Ye,
2010)). More details of RSMDPs are provided in Section 3.

Our contributions may be summarized as follows.

(i). We propose a novel framework of RSMDPs that allows
the uncertain transition probabilities to vary within the entire
support set and optimizes/minimizes the constraint violation
directly while attaining an intuitive and tangible target on
the expected return articulated by the decision-maker.

(ii). We derive a tractable reformulation of our RSMDPs as
a conic program. To solve RSMDPs, we design a first-order
method that is more scalable than the Gurobi solver (Gurobi
Optimization, LLC, 2022), and thus is advantageous in
large-scale problems.

(iv). Via data-driven experiments, we compare RSMDPs
with nominal MDPs (NMDPs), RMDPs and distributionally
robust MDPs (DRMDPs). Results show that RSMDPs have
better percentile performances and target-oriented feature.

The remainder of the paper is organized as follows. Pre-
liminaries are introduced in Section 2. We study RSMDPs
and derive their tractable reformulation in Section 3, and we
propose a first-order method to solve RSMDPs efficiently in
Section 4. We conduct numerical experiments in Section 5.

Notations. We denote vectors (resp., matrices) by bold-
face lowercase (resp., uppercase) letters. The sets of non-
negative and strictly positive real numbers are denoted as
R+ and R++, respectively. The symbols 0 and e stand for
the vectors of all 0’s and all 1’s of a size that is clear from
the context, respectively. We use es, s ∈ {1, · · · , S} to
denote the s-th standard basis vector in RS . A probability
simplex is denoted as ∆S = {p ∈ RS+ | e⊤p = 1}. The

matrixA = diag(a) ∈ RS×S is diagonal with its diagonal
entries being defined by the vector a ∈ RS .

Related Work

RMDPs Solving RMDPs is generally an NP-hard prob-
lem (Ho et al., 2021; Iyengar, 2005; Wiesemann et al.,
2013). The rectangularity assumption is crucial in obtaining
tractability, which ensures that the optimal policy can be
computed via robust variants of value or policy iteration in
polynomial time (Hansen et al., 2013; Iyengar, 2005); many
RMDPs are equipped with rectangular ambiguity sets: the
sa-rectangularity is the most common assumption where
the uncertain transition probabilities at each state-action
pair are independently distributed (Iyengar, 2005; Nilim &
El Ghaoui, 2005; Strehl et al., 2009). However, the volumes
of sa-rectangular ambiguity sets are usually unnecessarily
large, which implies that the output policies are often too
conservative. To this end, s-rectangular sets are proposed to
be a less conservative alternative where only independence
between states are assumed (Goyal & Grand-Clement, 2022;
Ho et al., 2021; 2022; Wiesemann et al., 2013). Fast algo-
rithms for solving RMDPs are also an active research topic,
where the RMDPs are equipped with polyhedral ambiguity
sets that are defined using L1 or L∞-norm (Behzadian et al.,
2021a; Derman et al., 2021; Ho et al., 2021) or with nonlin-
ear ambiguity sets such as the spherical ambiguity set and
the KL uncertainty set (Grand-Clément & Kroer, 2021b;
Ho et al., 2022). On another note, it is worth mentioning
that DRMDPs (Chen et al., 2019; Clement & Kroer, 2021;
Xu & Mannor, 2010) are closely related to RMDPs, where
the transition kernels are assumed to be random and subject
to some unknown probability distributions that reside in
ambiguity sets.

Dual formulation of NMDPs As we will demonstrate
in Section 3, since the interpretation of the value func-
tion will become unclear when applying the robust sat-
isficing framework to the primal formulation of NMDPs,
the proposed RSMDPs are motivated by the dual formu-
lation. In recent years, various new models have been
proposed based on the dual formulation of NMDPs due
to their interpretability. For example, (Lobo et al., 2020)
optimize a weighted average of expectation and condi-
tional value-at-risk (CVaR) of return under model ambi-
guity, (Brown et al., 2020) and (Delage & Mannor, 2010)
optimize CVaR and the value-at-risk (VaR) of average re-
turn, respectively; by considering random rewards r̃ ∼ P
and a risk threshold ε ∈ (0, 1), (Brown et al., 2020) and (De-
lage & Mannor, 2010) replace the objective function r⊤u
in (2) by maxy

{
y − (1/(1− ε)) · EP[(y − r̃⊤u)+]

}
and

maxy{y | P[r̃⊤x ≥ y] ≥ 1 − ε}, respectively. Our pro-
posed RSMDPs, as opposed to the aforementioned models,
do not optimize the expected return or the risk of return. In-
stead, we optimize/minimize the constraint violation while
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specifying a target value for the expected return, reflecting
their target-oriented feature.

Model-free approaches for robust reinforcement learn-
ing Our RSMDPs are motivated by the linear program-
ming formulation of NMDPs, both of which are model-
based approaches. We remark that, beyond model-based
methods, there is an abundance of inspiring research on
robust reinforcement learning, such as robust policy gra-
dient (Wang & Zou, 2022), sample complexity analysis
(Panaganti & Kalathil, 2022), least-squares policy iteration
(Lagoudakis & Parr, 2003) and robust Q-learning (Roy et al.,
2017; Wang & Zou, 2021). While model-free methods often
require a large number of interactions with the environment,
model-based learning is known for high sample efficiency
(Sutton & Barto, 2018), which are especially preferred for
those applications with limited data such as medicine (Imani
et al., 2018) and manufacturing (Doltsinis et al., 2014).

2. Preliminaries
Consider an infinite-horizon MDP denoted by a tuple
⟨S,A,p, r, γ,d⟩ with a finite state space S = {1, · · · , S}
and a finite action space A = {1, · · · , A}. When an action
a ∈ A is chosen at state s ∈ S, transition to a new state
s′ ∈ S follows a distribution ps,a ∈ ∆S and a non-negative
reward rs,a ∈ R+ materializes. We condense the transi-
tion probabilities and rewards to p = (ps,a)s∈S,a∈A ∈
(∆S)S·A and r = (rs,a)s∈S,a∈A, respectively. The dis-
count factor is γ ∈ (0, 1) and the initial state distribution
is d ∈ RS++. We optimize a policy π ∈ Π = (∆A)S that
takes an action a ∈ A with probability πs,a at state s ∈ S,
where Π is the set of all (stationary) randomized policies.
For a nominal MDP (NMDP), to obtain the optimal policy
that maximizes our total expected discounted reward, we
solve maxπ∈Π E [

∑∞
t=0 γ

t · rSt,At ], where the initial state
S0 follows the distribution d, and for any time step t, we
use St to denote the state at time step t whileAt is a random
action governed by the distribution πSt

∈ ∆A.

To obtain the optimal policy of an NMDP, under the dynamic
programming principle, we let vπ ∈ RS+ be a vector where
vπs denotes the total expected discounted reward starting at
state s ∈ S when applying policy π. The optimal value
function v⋆s (achieved by the optimal policy π⋆) can be
expressed via the Bellman optimality equation

v⋆s = max
a∈A

{
rs,a + γ · p⊤s,av⋆

}
∀s ∈ S, (1)

and the optimal solution can be retrieved by value iteration
or policy iteration; see, e.g., (Sutton & Barto, 2018). Alter-
natively, an NMDP can be formulated as a linear program

(in primal and dual)1

ZN(p) = min d⊤v
s.t. vs ≥ rs,a + γ · p⊤s,av ∀(s, a) ∈ S ×A

v ∈ RS+
= max r⊤u

s.t. e⊤us − p⊤Qsu− ds ≤ 0 ∀s ∈ S
u ∈ RS·A+ ,

(2)

where for each s ∈ S, Qs = γ · diag(es, · · · , es) such
that γ

∑
s′∈S

∑
a∈A ps′,a,sus′,a = p⊤Qsu. Here, we fo-

cus on the dual formulation (i.e., the maximization prob-
lem) in (2), where the feasible solution u is interpreted
as the discounted probability of executing action a at
state s when employing a (stationary randomized) policy
πs,a = us,a/

∑
a′∈A us,a′ ∀(s, a) ∈ S × A. Therefore,

the dual formulation in essence, chooses the optimal policy
that maximizes the total expected discounted reward r⊤u
(Puterman, 2014).

Robust optimization (e.g., (Ben-Tal et al., 2009)) is a classic
paradigm to account for parameter uncertainty:

max r⊤u
s.t. e⊤us − p⊤Qsu− ds ≤ 0 ∀p ∈ F , s ∈ S

u ∈ RS·A+ .
(3)

Here, the ambiguity set F = {p ∈ P | ℓ(p, p̂) ≤ κ} is a κ-
neighbourhood (measured by a distance function ℓ) around
the empirical p̂. Compare the first set of constraints of (3) to
that of the dual formulation (2), one can observe that, for all
s ∈ S , the solution of (3) is robust against all transition ker-
nels in the ambiguity set F , i.e., the solution of (3) always
remains feasible for all p ∈ F , while the solution of ZN(p̂)
is only guaranteed to be feasible when the true transition
kernel is the same as the empirical one (i.e., p̂).

3. Robust Satisficing MDPs
3.1. Model

Equipped with the dual formulation of NMDPs in (2), our
target-oriented robust satisficing MDP is formulated as

ZRS(p̂) = min w⊤k
s.t. e⊤us − p⊤Qsu− ds ≤ ks · ℓ(p, p̂)

∀p ∈ P, s ∈ S
r⊤u ≥ τ
u ∈ RS·A+ , k ∈ RS+,

(4)

where p̂ is the empirical transition kernel and the support
set is P =

{
p ∈ RS·A·S

+ | e⊤ps,a = 1 ∀s ∈ S, a ∈ A
}
.

1Throughout this paper, the last line of constraints of an op-
timization problem indicates its decision variables (and their di-
mensions). For example, v ∈ RS

+ and u ∈ RS·A
+ herein are the

decision variables of the primal and dual NMDPs, respectively.
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While w could be set to any non-negative vector, we com-
monly setw = e in (4). If there is no additional information,
the first set of constraints appear to be symmetric to each
other and should be equally important. The term ℓ(p, p̂),
which can be a general norm ℓ(p, p̂) = ∥p− p̂∥ or other dis-
tances such as the KL divergence, measures the proximity
between p and the empirical p̂.

Comparing the first collection of constraints in RSMDP (4)
to that of (the dual formulation of) NMDP (2), we observe
that the decision variables {ks}s∈S in RSMDPs reflect the
magnitude of constraint violation incurred by the distance
between the ambiguous transition kernel and the empirical
one: when the values of {ks}s∈S are small, only mild vio-
lation will occur even when the true transition kernel is far
away from the empirical estimation p̂, which is often un-
likely to happen. RSMDPs then minimize a weighted sum
of {ks}s∈S under the promise that the average return r⊤u
is not smaller than the pre-specified target τ > 0, highlight-
ing the notion of satisficing. Notice that when p = p̂, there
will be no violation in our RSMDPs (4), thus the average
return achieved should reach the target τ .

Note that the feasible region of (4) will become smaller
with a larger τ , where the optimal ks, s ∈ S tend to be
larger. Therefore, one can interpret τ as, in addition to the
targeted expected return, the controller of the robustness
of (4). That is, a smaller τ corresponds to higher robustness.
By setting τ = ZN(p̂), one can recover the optimal policy
of the corresponding NMDP.
Proposition 3.1. (i) Any optimal u⋆ of ZRS(p̂) with τ =
ZN(p̂) is also optimal in ZN(p̂), while (ii) ZRS(p̂) is infea-
sible when τ > ZN(p̂).

Since we consider non-negative rewards, when we set τ ≤ 0,
the feasible region of (4) is unchanged with its second set
of constraints (i.e., r⊤u ≥ τ ) being eliminated. This obser-
vation, together with Proposition 3.1, provide the interval
[0,ZN(p)] within which we calibrate τ for RSMDPs. As
opposed to sizing the ambiguity sets in RMDPs, setting the
target τ is another distinguished feature of RSMDPs. To a
decision-maker, the target τ is more directly related to her
objective (i.e., return) and is thus more tangible.

The robust optimization model (3) is another important
benchmark for RSMDPs (4). Compare their first set of
constraints, one can observe that for all s ∈ S, the robust
optimization model only hedges against transition kernels
in the ambiguity set F , while giving no guarantee about
the constraint violation when the transition kernel is outside
F . In contrast, the RSMDP (4) minimizes the magnitude
of the constraint violation for all possible transition kernels
from the whole support set P , where the decision variable
ks measures the maximal violation of the s-th constraint
among all p ∈ P which is to be optimized. To further
distinguish between these two frameworks, let uRO and

(uRS,k) be the feasible solutions of the robust optimization
model (3) and RSMDP (4), respectively. Comparing the
s-th constraints of (3) and (4), for the former we have{

e⊤uRO
s − p⊤Qsu

RO − ds ≤ 0 ∀p ∈ F
e⊤uRO

s − p⊤Qsu
RO − ds ≤ +∞ ∀p ∈ P\F ,

(5)
while for the latter, we have{
e⊤uRS

s − p⊤Qsu
RS − ds ≤ ks · ℓ(p, p̂) ∀p ∈ F

e⊤uRS
s − p⊤Qsu

RS − ds ≤ ks · ℓ(p, p̂) ∀p ∈ P\F .
(6)

It is clearly indicated by (5) and (6) that, though RSMDPs
may allow some additional violation (i.e., ks · ℓ(p, p̂)) when
the true transition kernel is inside the ambiguity set F , it
can protect one from disastrous situations when p ∈ P\F .
This is one advantage of RSMDPs because the ambiguity
set F is often much smaller compared to the support set P .
One can also consider P as the ambiguity set for RSMDPs,
which is a “special” one in the way that the magnitude of
violation is proportional to the proximity of the unknown
true transition kernel to its nominal value (i.e., ℓ(p, p̂)); for
the robust optimization framework, the violation is equal
for all p ∈ F (and is unpredictable and ignored for p /∈ F ).

3.2. Reformulation

RSMDP (4) is an infinitely constrained optimization prob-
lem, where each possible p ∈ P corresponds to one con-
straint. Quite notably, it can be reformulated as a conic
program when equipped with a general norm.

Theorem 3.2. Equipped with a general norm ℓ(p, p̂) =
∥p− p̂∥, RSMDP (4) is equivalent to the conic program

ZRS(p̂)

= min
∑
s∈S

ws · ∥βs −Qsu−B⊤αs∥∗

s.t. e⊤us − ds ≤ −p̂⊤βs + p̂⊤Qsu ∀s ∈ S
r⊤u ≥ τ
u ∈ RS·A+ , αs ∈ RS·A, βs ∈ RS·A·S

+ ∀s ∈ S
(7)

whereB = diag(e⊤, · · · , e⊤) ∈ RS·A×S·A·S and e ∈ RS .

We remark that, due to the choice of a general norm in (4),
the conic program (7) admits an equivalent reformulation
as a minimax optimization problem (as we will show in the
coming section), to which an efficient primal-dual algorithm
can be applied. Besides a general norm, choosing the KL
divergence in (4) also allows a reformulation as a convex
optimization problem (see more details in Appendix B). We
also remark that, after solving (7), the optimal policy of
RSMDPs can be retrieved as in NMDPs (2).

4. First-Order Method
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By Theorem 3.2, we are already able to compute the optimal
policy of an RSMDP (equipped with a general norm) by
solving its equivalent reformulation (7) via the state-of-the-
art commercial solvers; however, the computation time may
be quite long when the problem size becomes large. To
this end, we will apply the first-order primal-dual algorithm
(PDA) (e.g., (Chambolle & Pock, 2016; Esser et al., 2010;
Grand-Clément & Kroer, 2021b; He & Yuan, 2012)) that
aims to solve problems in a convex-concave min-max form
at a convergence rate O(1/N) (Chambolle & Pock, 2016),
whereN is the number of iterations. First-order methods are
known for their computationally efficient updates, by which
large-scale problems can be solved with moderate accuracy
efficiently. To apply PDA, we will transform problem (7)
into a min-max form. A necessary preceding result for the
transformation is relegated to Lemma A.1 in Appendix A.2,
and we provide the min-max reformulation in the following
proposition.
Proposition 4.1. When w ∈ RS++, problem (7) has an
equivalent minimax reformulation:

min
u∈U

max
(λs,θs)∈Vq(ws):s∈S

∑
s∈S

(λs · (e⊤us − ds)− θ⊤s Qsu),

(8)
where U = {u ∈ RS·A+ | r⊤u ≥ τ} and

Vq(w) =
{
(λ,θ) ∈ R+ × RS·A·S

+

∣∣∣∣ ∥θ − λ · p̂∥q ≤ wλ · e = Bθ

}
.

In the remainder, we focus on solving the min-max prob-
lem (8) (thus RSMDPs (4)) equipped with an L∞-norm:

min
u∈U

max
(λs,θs)∈V∞(ws):s∈S

∑
s∈S

(λs · (e⊤us − ds)− θ⊤s Qsu).

(9)
As we demonstrate later in this section, the specific problem
structure of this min-max formulation, together with the
computational scheme of PDA, allows us to decompose the
min-max formulation into several subproblems that can be
solved efficiently in each iteration by our designed strategy.
In particular, to update the decision variable of the outer
minimization problem, we solve a minimization problem
by an efficient procedure with time complexity O(SA ·
log(SA)); while to update the inner problem, we design
a strategy with time complexity O(S3 log(S)A log(1/δ)),
where δ is the desired precision of the golden section search
that will be introduced in Section 4.2.

Observe that, for any fixed u ∈ RS·A+ , the inner maximiza-
tion problem of (9) is decomposable into S subproblems,
which allows an equivalent reformulation of (9) as

min
u∈U

∑
s∈S

max
(λs,θs)∈V∞(ws)

λs · (e⊤us − ds)− θ⊤s Qsu.

Hence, for any fixed u, it is sufficient to solve each of
these S subproblems separately. This decomposition is

beneficial to our PDA since it can remarkably lower the
time complexity for the update of the decision variables
(λ,θ) for the inner maximization problem in (9).

Now we introduce our PDA in Algorithm 1. In every itera-
tion, our PDA updates the primal (resp., dual) variable by
solving a minimization problem with the dual (resp., primal)
variable fixed at a value related to its last update. Here, the
primal update operator is defined as

P(λ,θ; û)

= argmin
u∈U

∑
s∈S

(
λse

⊤us − θ⊤s Qsu
)
+

1

2ν
· ∥u− û∥22

for û ∈ RS·A+ and (λ,θ) ∈ RS+ × RS·S·A·S
+ , while for any

ŝ ∈ S, the dual update operator is

Dŝ(u; λ̂, θ̂) = argmin λ(dŝ − e⊤uŝ) + θ
⊤Qŝu

+ 1
2σ · ((λ− λ̂)

2 + ∥θ − θ̂∥22)
s.t. (λ,θ) ∈ V∞(wŝ)

for any u ∈ RS·A+ and (λ̂, θ̂) ∈ R+ × RS·A·S
+ , where

ν > 0 and σ > 0 are, respectively, the stepsizes
of the primal and dual updates. The input coefficient
matrix C = (diag(e, · · · , e),−Q⊤

1 , · · · ,−Q⊤
S )

⊤ ∈
R(S+S·S·A·S)×S·A with S all-ones vectors e ∈ RA satisfies
⟨Cu, (λ⊤,θ⊤)⊤⟩ =

∑
s∈S

{
λs(e

⊤us − ds)− θ⊤s Qsu
}

.
Note that one needs to choose the Bregman divergence in
PDA, and herein we choose the convex function in the defi-
nition of the Bregman divergence as (1/2) · ∥ · ∥22 for both
the primal and the dual updates (Chambolle & Pock, 2016).
We provide a simplified result for the convergence rate of
Algorithm 1, which is based on a stronger but more techni-
cal convergence result in Theorem 1 in (Chambolle & Pock,
2016). Specifically, our result is obtained by specifying
the sufficient condition νσ ≤ 1/L2. We refer interested
readers to Theorem A.2 in Appendix A.2 for the original
convergence result in (Chambolle & Pock, 2016).

Theorem 4.2. Let (uk, (λk,θk)), k = 0, 1, 2, · · · ,K be a
sequence generated by Algorithm 1. If the stepsizes ν, σ >
0 are chosen such that νσ ≤ 1/L2. Then for any feasible
solution (u, (λ,θ)) of problem (9) it holds that

∑
s∈S

ϕs(ū
K , λs,θs)−

∑
s∈S

ϕs(u, λ̄
K
s , θ̄

K
s ) = O

(
1

K

)
,

where ūK = (
∑
k∈[K] u

k)/K, (λ̄K , θ̄K) =

(
∑
k∈[K](λ

k,θk))/K, and for all s ∈ S, ϕs(u,θ, λ) =

λ · (e⊤us − ds)− θ⊤Qsu.

4.1. Solving P(λ,θ; û) via Interval Search

To solve P(λ,θ; û) in Step 1, note that it is a quadratic pro-
gram with no cross term in the objective function and with
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Figure 1. Average and percentile performances over 5000 out-of-sample testing trajectories in the river swim application.

Algorithm 1 Primal-Dual Algorithm (PDA) for Problem (9)
Input: Operator norm L = ∥C∥, initial feasible solution
(u0, (λ0,θ0)) of problem (9), stepsizes ν, σ > 0, desired
precision ε, k ← 0
repeat
// Step 1 : Primal update
uk+1 ← P(λk,θk;uk);
// Step 2 : Dual update
for ŝ = 1 to S do
(λk+1
ŝ ,θk+1

ŝ )← Dŝ(2u
k+1 − uk;λkŝ ,θkŝ );

end for
k ← k + 1;

until ∥uk − uk−1∥∞ < ε
Output: Solution ūk = 1

k

∑
i∈[k] u

i and (λ̄k, θ̄k) =
1
k

∑
i∈[k](λ

i,θi)

only linear constraints. Based on its structure, we develop
an efficient algorithm to solve this problem. In particular,
we show that solving P(λ,θ; û) is equivalent to finding the
root of a non-decreasing piecewise linear function, which
can be done efficiently via Interval Search (where we search
the intervals between breakpoints of the piecewise linear
function). The time complexity of the proposed algorithm
is provided in the statement of the following proposition,
while the details of the algorithm are provided in the proof
and pseudocode that are relegated to the appendix.

Proposition 4.3. Problem P(λ,θ; û) can be solved in time
O(SA · log(SA)).

4.2. Solving Dŝ(u; λ̂, θ̂) via Golden Section Search

For Step 2 in our PDA, for each ŝ ∈ S, we solve the sub-
problem Dŝ(u; λ̂, θ̂) by a well-known golden section search
algorithm (e.g., (Truhar & Veselić, 2009)). For any fixed
λ ∈ R+, the function

fŝ(λ) = min λ(dŝ − e⊤uŝ) + θ
⊤Qŝu+

1

2σ
·
∥∥∥∥λ− λ̂θ − θ̂

∥∥∥∥2
2

s.t. (λ,θ) ∈ V∞(wŝ)

θ ∈ RS×A×S
+

(10)
defined on R+ involves the inner minimization problem that
we need to solve. Notice that, herein we treat the prob-
lem Dŝ(u; λ̂, θ̂) as a min-min problem where we optimize
λ ∈ R+ in the outer minimization problem and θ ∈ RS·A·S

+

in the inner one. The golden section search is used to lo-
cate the optimal λ⋆ for the outer problem: we initialize the
interval [λ, λ] for the search, where λ = 0 and we provide
Lemma A.3 in Appendix A.2 for selecting λ. At the initial-
ization phase and in each iteration of the search, we need to
solve the inner problem (10) once.

To implement the golden section search, we need to prove
that fŝ is well-defined on R+. We provide this proof in
Lemma A.4 in Appendix A.2. In general, the golden sec-
tion search converges to a local minimizer of the problem;
fortunately, this is a global minimizer in our case.

Proposition 4.4. The golden section search converges to a
global minimizer λ⋆ of Dŝ(u; λ̂, θ̂).

6



Robust Satisficing MDPs

Table 1. Predicted returns and the corresponding differences (in median) between sample returns and predicted returns over 1000 samples
in the river swim application.

RSMDPs
τ / ZN(p̂) 1.0 0.9 0.8 0.7 0.6 0.5

Predicted Return 58.6 52.7 46.9 41.0 35.2 29.3
Difference (in median) -4.4 0.9 6.1 12.0 17.9 23.6

DRMDPs
r 0.0 0.3 0.6 0.9 1.2 1.5

Predicted Return 58.6 41.0 32.4 26.5 21.5 17.3
Difference (in median) -4.4 12.9 20.7 26.6 31.7 35.9

RMDPs
r 0.0 0.3 0.6 0.9 1.2 1.5

Predicted Return 58.6 38.6 27.2 20.2 15.0 11.3
Difference (in median) -4.4 15.6 27.0 34.1 39.2 43.0

It remains to solve problem (10) to obtain the optimal so-
lution θ⋆. Observe that the problem can be further decom-
posed into SA subproblems, and for each (s, a) ∈ S × A,
we have

min
1

2σ
· θ⊤s,aθs,a + θ⊤s,a(zŝ,s,a −

1

σ
· θ̂s,a)

s.t. [λp̂s,a,s′ − wŝ]+ ≤ θs,a,s′ ≤ λp̂s,a,s′ + wŝ ∀s′ ∈ S
e⊤θs,a = λ
θs,a ∈ RS ,

(11)
where zŝ = Qŝu ∈ RS·A·S . The only difference be-
tween (11) and P(λ,θ; û) is that the former has upper
bounds for decision variables, while the latter has not. There-
fore, we can develop a similar efficient strategy to solve
problem (11), whose time complexity is provided in the
following proposition.
Proposition 4.5. Problem (11) can be solved in time
O(S logS).

Now we provide the total time complexity of our strategy
described in this section to compute Step 2 in Algorithm 1.
Proposition 4.6. The output of Step 2 in Algorithm 1 can be
computed in time O(S3 log(S)A log(δ−1)), where δ > 0 is
the desired precision of the golden section search.

4.3. Randomized Block Coordinate Gradient Descent
for Dual Updates

Although Step 2 in Algorithm 1 can be computed in time
complexity that is almost linear in the number of dual vari-
ables λ and θ, the dual updates in Step 2 remain as the
computational bottleneck of the algorithm. This is because
the number of dual variables is in O(S3A), as opposed to
the number of primal variablesu, which is inO(SA). More-
over, as mentioned above, our policy is computed via nor-
malization step, πs,a = us,a/

∑
a′∈A us,a′ ∀(s, a) ∈ S×A;

therefore, it would be desirable to update the primal vari-
ables u frequently toward their optimal values. To achieve

this, one possible direction is to update only part of the
dual variables at every Step 2. In particular, inspired by
the randomized block coordinate gradient descent, one may
modify the Step 2 in Algorithm 1 to be

(λk+1
s ,θk+1

s )← Ds(2u
k+1−uk;λks ,θks ) ∀s ∈ Sk. (12)

Here Sk with |Sk| =M ≪ S ∀k is an index set whose ele-
ments are sampled uniformly from S without replacement
in each iteration. Therefore, only M dual update operators
would be applied, and the time complexity of this mod-
ified Step 2 is reduced from O(S3 log(S)A log(δ−1)) to
O(MS2 log(S)A log(δ−1)). In the same spirit, a more rad-
ical approach is to uniformly sample (ŝ, s, a) from S×S×A
at every Step 2 and update the dual variables that are only
associated to the corresponding problem (11). The complex-
ity of such updates would be reduced to O(S logS). This
second type of updates with problem (11) doesn’t update
λ. Hence, one needs to apply both aforementioned updates.
We relegate the discussions on the computation complexities
of NMDPs, RMDPs and RSMDPs to Appendix C.

5. Numerical Results
We compare the performances of the proposed RSMDPs
with NMDPs, RMDPs and DRMDPs in three applications:
river swim (Strehl & Littman, 2008), machine replacement
(Delage & Mannor, 2010) and grid world (Ghavamzadeh
et al., 2016), where the results of the latter two applications
are provided in Appendices D.5 and D.6, and detailed set-
tings are provided in Appendices D, D.1 and D.4. We also
compare our proposed algorithms with the Gurobi solver
in terms of scalability; see more details in Appendix D.7.
The code and data to reproduce our experiments is avail-
able online at https://github.com/RUANHaolin/
RSMDPs.
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Figure 2. Differences between sample returns and predicted returns over 1000 samples in the river swim environment. Due to the page
limit, we only plot the parameters (of the three models) where the sample returns are close to predicted returns.

Table 2. Average of computation times (in ms) of different algorithms for RSMDPs and Gurobi for RMDPs, and the ratios of Gurobi’s
computation times of RSMDPs to those of PDA, PDAblock, and PDAblock+.

Computation times Ratios of computation times

S = A Gurobi PDA PDAblock PDAblock+ RMDP Gurobi/
PDA

Gurobi/
PDAblock

Gurobi/
PDAblock+

10 8459.3 1521.5 1325.2 341.4 2818.6 5.6 6.4 24.8
13 60684.0 3104.8 2158.5 1132.7 4900.6 19.5 28.1 53.6
15 194114.5 4813.1 2241.7 2049.5 6604.5 40.3 86.6 94.7
17 552354.5 9305.4 2825.4 5286.8 9332.2 59.4 195.5 104.5

5.1. Improvements on Percentiles

In this section we compare the average and percentile per-
formances of the four MDP models. In Figure 1, we present
the case where the models are equipped with the “best”
two parameters selected by cross validation. In most cases,
RSMDPs outperform the other three in terms of both aver-
age and percentile performances.

5.2. Target-Oriented Feature

In this section, we contaminate the true transition kernel p⋆

to obtain the “polluted transition kernel” p; in particular, we
quantify the level of contamination by ∥p− p⋆∥1. We first
input the true transition kernel to the four MDP models, then
use the polluted kernels to test the policies they yield. To
test the models on their abilities of reaching their “predicted”
(average) returns (with p⋆ input) under contamination, we
compute the difference between their sample returns and
predicted returns, so that a non-negative difference indicates
reaching the prediction.

Table 1 compares the differences between sample returns
and predicted returns with 1000 samples for each value
of parameters (i.e., τ for RSMDPs, r for RMDPs and
DRMDPs). Results show that RSMDPs have predicted
returns that are much higher than those of RMDPs and
DRMDPs, while their sample returns can still reach their
predicted/target returns in most times (i.e., have “high pre-

diction accuracy”). Notice that the three models have the
same predicted and sample returns in the third column of
Table 1 because RSMDPs with τ = ZN(p̂) (by Proposition
3.1), and RMDPs and DRMDPs with r = 0 all degenerate
to NMDPs. Figure 2 also illustrates that even with transi-
tion kernel samples that are far away from the true one, in
contrast to RMDPs and DRMDPs where nearly half and
even most of the sample returns fall below the prediction,
RSMDPs still remain highly accurate in prediction, reflect-
ing its target-oriented feature.

5.3. Scalability of Different Algorithms

In this section, we compare the computation times of our
proposed first-order algorithms with the state-of-the-art
solver Gurobi (academic license) (Gurobi Optimization,
LLC, 2022). Table 2 reports the computation times of
Gurobi when solving RMDPs (see Appendix D.2 for details
of the model) and RSMDPs, as well as the proposed algo-
rithms when solving RSMDPs. Results show that directly
solving RSMDPs could be very challenging: the compu-
tation time increases rapidly with even a small increase in
problem size, and is much larger than that of RMDP. This ob-
servation confirms our motivation on developing a tailored
first-order method for this problem. Compared to Gurobi,
the proposed algorithms remain scalable as the problem size
increases. In particular, the computation time of PDA scales
similarly to that of RMDP, and PDAblock (PDA with dual
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updates (12)) and PDAblock+ (PDA where the dual updating
step follows the second strategy mentioned in Section 4.3)
provide computationally cheap updates on the policy. This
matches the advantages of first-order methods, which are
used to solve large problems to moderate accuracy with high
efficiency.

6. Conclusion and Future Work
We propose RSMDPs to compute satisficing policies un-
der model ambiguity. In particular, the expected return is
constrained to meet a user-specified target which is strictly
imposed under the empirical transition kernel and softly im-
posed under all other possible transition kernels. RSMDPs
minimize the magnitude of violation of those soft constraints
with additional tolerance that depends on the distance of
the associated transition kernel to the empirical one. We
reformulate the RSMDP model into a min-max form where
a scalable PDA algorithm is applicable. Experimental re-
sults showcase the robustness and target-oriented feature
of RSMDPs as well as the scalability of the algorithm. A
promising future work would be extending RSMDPs to
the setting with continuous state and action spaces, for
which discretization of the state and action spaces, as well
as the Approximate Linear Programming (ALP) method
(e.g., (Abbasi-Yadkori et al., 2019)) may be needed.
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A. Technical Results and Proofs
A.1. Proofs of Results in Section 3

Proof of Proposition 3.1 By letting p = p̂ in the first S constraints in (4), on the one hand, one can observe that the feasible
set of (4) is a subset of the optimal solution set of (2), where conclusion (i) follows; on the other hand, one can also observe
that for all feasible u of (4), the maximal reachable value of r⊤u is at most ZN(p̂), which implies the infeasibility when
τ > ZN(p̂).

Proof of Theorem 3.2 Focus on the first S constraints in problem (4). For every s ∈ S, the s-th one equivalent to

e⊤us − ds ≤ min
p∈P

{
p⊤Qsu+ ks · ∥p− p̂∥

}
.

The optimization problem on the right-hand side is

min p⊤Qsu+ ks · ∥p− p̂∥
s.t. Bp = e

p ∈ RS·A·S
+ ,

whereBp = e is a compact form of
∑
s′∈S ps,a,s′ = 1 ∀(s, a) ∈ S ×A. The equivalent min-max form of this problem is

min
p

max
β≥0,α

p⊤Qsu+ ks · ∥p− p̂∥+α⊤(Bp− e)− β⊤p,

whose dual problem2 is

max
β≥0,α

min
p
p⊤(Qsu+B⊤α− β) + ks · ∥p− p̂∥ −α⊤e

= max
β≥0,α

−α⊤e−max
p

{
p⊤(β −Qsu−B⊤α)− ks · ∥p− p̂∥

}
.

By the technique of convex conjugate, we have its equivalent reformulation as

max −α⊤e− p̂⊤(β −Qsu−B⊤α)
s.t. ∥β −Qsu−B⊤α∥∗ ≤ ks

α ∈ RS·A, β ∈ RS·A·S
+ .

Therefore, for all s ∈ S, the s-th constraint in (4) can be reformulated as e⊤us − ds ≤ −α⊤
s e− p̂⊤(βs −Qsu−B⊤αs)

∥βs −Qsu−B⊤αs∥∗ ≤ ks
αs ∈ RS·A, βs ∈ RS·A·S

+ .

Now we can re-express problem (4) as

min w⊤k
s.t. e⊤us − ds ≤ −α⊤

s e− p̂⊤(βs −Qsu−B⊤αs) ∀s ∈ S
∥βs −Qsu−B⊤αs∥∗ ≤ ks ∀s ∈ S
r⊤u ≥ τ
u ∈ RS·A+ , k ∈ RS+,αs ∈ RS·A, βs ∈ RS·A·S

+ ∀s ∈ S,

which is equivalent to
min

∑
s∈S

ws · ∥βs −Qsu−B⊤αs∥∗

s.t. e⊤us − ds ≤ −α⊤
s e− p̂⊤(βs −Qsu−B⊤αs) ∀s ∈ S

r⊤u ≥ τ
u ∈ RS·A+ , αs ∈ RS·A, βs ∈ RS·A·S

+ ∀s ∈ S.

Our conclusion then follows from the fact thatBp̂ = e.
2Here, strong duality follows from the fact that the primal problem has only the collection of constraints ps,a ∈ ∆S ∀(s, a) ∈ S ×A.
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A.2. Proofs of Results in Section 4

Lemma A.1. When w ∈ R++, strong duality holds for the following convex optimization problem:

max
(λ,θ)∈Vq(w)

λ(e⊤u− d)− θ⊤Qu, (13)

where u ∈ RA, d ∈ R,Q ∈ RS·A·S×S·A and q ≥ 1 are constants, and

Vq(w) :=
{
(λ,θ) ∈ R+ × RS·A·S

+

∣∣∣∣ ∥θ − λ · p̂∥q ≤ wλ · e = Bθ

}
.

Proof of Lemma A.1 Notice that, since we haveBp̂ = e by the definition ofB, by letting λ be any nonnegative number and
θ = λ · p̂, we can have (λ,θ) as the feasible solution of (13) (which is also strictly feasible in the first inequality constraint
in Vq(w)). If p̂ > 0, then (λ, λ · p̂) with λ > 0 is the strictly feasible solution we want. Otherwise, if p̂s̄,ā,s̄′ = 0 for some
(s̄, ā, s̄′) ∈ S ×A× S, then (λ,θ) with λ > 0 and θ = λ · p̂ will be a solution of (13) that is not strictly feasible because
θs̄,ā,s̄′ = 0.

Now we demonstrate how we can construct a strictly feasible solution of (13). First, observe that the second set of constraints
in Vq(w) of (13) is equivalent to

e⊤θs,a = λ ∀(s, a) ∈ S ×A. (14)

Since θ ≥ 0 and λ > 0, there must exists some s̄′′ ∈ S such that θs̄,ā,s̄′′ > 0. Let

ε = min{θs̄,ā,s̄′′/2, w/(2 · ∥es̄,ā,s̄′ − es̄,ā,s̄′′∥)},

where es̄,ā,s̄′ and es̄,ā,s̄′ are two standard bases of RS·A·S . One can then easily verify that (λ, θ̄) with

θ̄ = θ + ε · (es̄,ā,s̄′ − es̄,ā,s̄′′)

is a feasible solution of (13) which remains strictly feasible in the first inequality constraint, while θs̄,ā,s̄′′ remains strictly
positive and θs̄,ā,s̄′ becomes strictly positive. By going through a similar procedure iteratively, we can finally construct a
strictly feasible solution of (13).

Proof of Proposition 4.1 Notice that, by Theorem 3.2, the RSMDP model (4) is equivalent to

min
∑
s∈S

ws · ∥ys∥∗

s.t. e⊤us − ds ≤ −α⊤
s e− p̂⊤ys ∀s ∈ S

ys = βs −Qsu−B⊤αs ∀s ∈ S
r⊤u ≥ τ
u ∈ RS·A+ , αs ∈ RS·A, βs ∈ RS·A·S

+ , ys ∈ RS·A·S ∀s ∈ S.

(15)

Since the first set of constraints in (4) implies that e⊤us − p̂⊤Qsu− ds ≤ 0 ∀s ∈ S , we have an equivalent reformulation
of (15):

min
∑
s∈S

ws · ∥ys∥∗

s.t. e⊤us − ds ≤ −α⊤
s e− p̂⊤ys ∀s ∈ S

ys = βs −Qsu−B⊤αs ∀s ∈ S
r⊤u ≥ τ
e⊤us − p̂⊤Qsu− ds ≤ 0 ∀s ∈ S
u ∈ RS·A+ , αs ∈ RS·A, βs ∈ RS·A·S

+ , ys ∈ RS·A·S ∀s ∈ S.

(16)

Notice that for any u ∈ RS·A+ that satisfies r⊤u ≥ τ and e⊤us − p̂⊤Qsu − ds ≤ 0 ∀s ∈ S, (αs,βs,ys) =
(0,0,−Qsu), s ∈ S is feasible in (16), whose objective value has a lower bound 0. We thus can re-express (16) in

13
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a min-min form:
min
u

min
α,β,y

∑
s∈S

ws · ∥ys∥∗

s.t. e⊤us − ds ≤ −α⊤
s e− p̂⊤ys ∀s ∈ S

ys = βs −Qsu−B⊤αs ∀s ∈ S
r⊤u ≥ τ
e⊤us − p̂⊤Qsu− ds ≤ 0 ∀s ∈ S
u ∈ RS·A+ , αs ∈ RS·A, βs ∈ RS·A·S

+ , ys ∈ RS·A·S ∀s ∈ S,

(17)

Fix any u ∈ RS·A+ that satisfies r⊤u ≥ τ and e⊤us− p̂⊤Qsu−ds ≤ 0 ∀s ∈ S , we have the dual of the inner minimization
problem of (17) as follows:

max
λ,θ

min
α,β,y

∑
s∈S

ws · ∥ys∥∗ +
∑
s∈S

λs(e
⊤us − ds +α⊤

s e+ p̂
⊤ys) +

∑
s∈S

θ⊤s (βs −Qsu−B⊤αs − ys)

s.t. λ ∈ RS+, θ ∈ RS·S·A·S
+ , αs ∈ RS·A, βs ∈ RS·A·S

+ , ys ∈ RS·A·S ∀s ∈ S.
(18)

Here, for the inner minimization problem of (18), we have

min
y

∑
s∈S

{
ws · ∥ys∥∗ + y⊤

s (λs · p̂− θs)
}
=

{
0 ∥θs − λs · p̂∥ ≤ ws ∀s ∈ S
−∞ otherwise,

min
α

∑
s∈S

α⊤
s (λs · e−Bθs) =

{
0 λs · e−Bθs = 0 ∀s ∈ S
−∞ otherwise,

and

min
β

∑
s∈S

θ⊤s βs =

{
0 θs ≥ 0 ∀s ∈ S
−∞ otherwise.

Therefore we have the equivalent reformulation of (18) as follows:

max
∑
s∈S

{
λs(e

⊤us − ds)− θ⊤s Qsu
}

s.t. ∥θs − λsp̂∥ ≤ ws ∀s ∈ S
λs · e = Bθs ∀s ∈ S
λ ∈ RS+, θs ∈ RS·A·S

+ ∀s ∈ S,

(19)

where a strictly feasible solution exists by Lemma A.1. Therefore we claim that strong duality between the inner minimization
problem of (17) and its dual problem (19) holds by Slater’s condition. We thus have an equivalent minimax formulation of
(17) is as follows:

min
u

max
λ,θ

∑
s∈S

{
λs(e

⊤us − ds)− θ⊤s Qsu
}

s.t. ∥θs − λsp̂∥ ≤ ws ∀s ∈ S
λs · e = Bθs ∀s ∈ S
e⊤us − p̂⊤Qsu− ds ≤ 0 ∀s ∈ S
r⊤u ≥ τ
u ∈ RS·A+ , λ ∈ RS+, θs ∈ RS·A·S

+ ∀s ∈ S.
It remains to argue that it is free to eliminate the third collection of constraints. To this end, notice that, if we choose a
feasible u in (8) that satisfies e⊤us − p̂⊤Qsu− ds > 0 for some s ∈ S , the inner maximum will approach +∞ since we
can choose a feasible solution (λs,θs) that satisfies θs = λs · p̂ with arbitrarily large λs > 0, by which the objective value
is expanded to +∞.

Theorem A.2. [theorem 1, (Chambolle & Pock, 2016)] Let (uk, (λk,θk)), k = 0, 1, 2, · · · ,K be a sequence generated by
Algorithm 1. If the stepsize parameters σ, ν > 0 satisfy

1

2ν
· ∥u− u′∥22 +

1

2σ
·
∥∥∥∥λ− λ′

θ − θ′
∥∥∥∥2
2

− ⟨C(u− u′), ((λ− λ′)⊤, (θ − θ′)⊤)⊤⟩ ≥ 0 (20)

14



Robust Satisficing MDPs

for any u, u′ ∈ RS·A and (λ,θ), (λ′,θ′) ∈ RS × RS·S·A·S . Then it holds for any feasible solution (u, (λ,θ)) of
problem (9) that ∑

s∈S
{(λs · (e⊤ūKs − ds)− θ⊤s Qsu)− (λ̄Ks · (e⊤us − ds)− θ̄K⊤

s Qsu))}

≤ 1

K
·

(
1

2ν
· ∥u− u0∥22 +

1

2σ
·
∥∥∥∥λ− λ0

θ − θ0

∥∥∥∥2
2

− ⟨C(u− u0), ((λ− λ0)
⊤, (θ − θ0)⊤)⊤⟩

)
,

where ūK = 1
K

∑
k∈[K] u

k, λ̄K = 1
K

∑
k∈[K] λ

k and θ̄K = 1
K

∑
k∈[K] θ

k.

Proof of Proposition 4.3 We first rewrite P(λ,θ; û) as

argmin a⊤u+
1

2ν
· u⊤u

s.t. r⊤u ≥ τ
u ∈ RS·A+ ,

(21)

where the coefficient vector a ∈ RS·A satisfies a⊤u =
∑
s∈S

(
λs · e⊤us − θ⊤s Qsu

)
− 1
ν ·û

⊤u. Introducing dual variables
ζ ∈ R+ and κ ∈ RS·A+ , the Lagrangian dual function of this problem is

L(u, ζ,κ) = a⊤u+
1

2ν
· u⊤u+ ζ · (τ − r⊤u)− κ⊤u.

Since ν > 0, problem (21) is a convex optimization problem. The KKT conditions (e.g., (Boyd & Vandenberghe, 2004))
thus are sufficient conditions of the optimality for the primal and dual solutions, which are

r⊤u ≥ τ
u ≥ 0
ζ ≥ 0
κ ≥ 0
ζ · (τ − r⊤u) = 0
κiui = 0 ∀i ∈ [SA]

∇uL(u, ζ,κ) =
1

ν
· u+ a− ζ · r − κ = 0.

By these conditions, for ζ = 0 we have 
r⊤u ≥ τ

ui =

{
−νai ∀i ∈ [SA] : κi = 0
0 ∀i ∈ [SA] : κi ̸= 0

u ≥ 0;

and for ζ > 0 we have 
r⊤u = τ

ui =

{
ν · (ζri − ai) ∀i ∈ [SA] : κi = 0

0 ∀i ∈ [SA] : κi ̸= 0
u ≥ 0,

where it is sufficient to find the optimal ζ⋆ ∈ R+ which is the solution to the equation Φ(ζ) :=
∑
i∈[SA] riν ·[ζri−ai]+ = τ ,

and then obtain optimal u⋆i = [ν · (ζ⋆ri − ai)]+ ∀i ∈ [SA]. Notice that Φ(ζ) is a piecewise linear function so that we can
locate all its breakpoints αi = ai

ri
: i ∈ I with I = {i ∈ [SA] | ai > 0, ri > 0} and then sort them from smallest to largest

as ζi1 ≤ ζi2 ≤ · · · ≤ ζi|I| . As Φ is non-decreasing on [0,+∞), by searching the intervals [0, ζi1 ], [ζi1 , ζi2 ], · · · , [ζiI ,+∞)
sequentially in an ascending order, we can obtain optimal ζ⋆ and u⋆.

The time complexity is dominated by the breakpoint sorting, which is O(SA · log(SA)).

We provide the pseudocode for solving problem (21) in Algorithm 2.
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Algorithm 2 Interval Search Algorithm for Problem (21)
if
∑
i∈[SA] ri[−νai]+ ≥ τ then

return ζ⋆ = 0 and u⋆i = [−νai]+ ∀i ∈ [SA]
else

Compute all the breakpoints ζi = ai
ri

: i ∈ I with I = {i ∈ [SA] | ai > 0, ri > 0};
Sort the breakpoints from smallest to largest as ζi1 ≤ ζi2 ≤ · · · ≤ ζi|I| ;
Compute the initial index set Ī ← [SA] \ I;
for k = 1 to |I| do

if τ ≤
∑
j∈Ī ν(ζikrj − aj) · rj then

return ζ⋆ =
τ
ν +

∑
j∈Ī ajrj∑

j∈Ī rjrj
and u⋆i = [ν(ζ⋆ri − ai)]+ ∀i ∈ [SA]

else
Ī ← Ī ∪ {ik};

end if
end for
return ζ⋆ =

τ
ν +a⊤r

r⊤r
and u⋆i = [ν(ζ⋆ri − ai)]+ ∀i ∈ [SA]

end if
Output: Solutions ζ⋆ and u⋆

Lemma A.3. For the optimal solution (λ⋆,θ⋆) of Dŝ(u; λ̂, θ̂), the upper bound for λ⋆ is

λ⋆ ≤ λ̂+ σ ·
(
− (dŝ − e⊤uŝ) +

{
(dŝ − e⊤uŝ)

2 +
2

σ
·
(
σ

2
·
(
z⊤z − 2

σ
· z⊤θ̂

)
+

∑
(s,a,s′)∈Z+

zs,a,s′(λ̂p̂s,a,s′ + wŝ) +
∑

(s,a,s′)∈Z−

zs,a,s′ [λ̂p̂s,a,s′ − wŝ]+
)} 1

2
)
,

where z = Qŝu, Z+ = {(s, a, s′) ∈ S ×A× S | zs,a,s′ > 0} and Z− = {(s, a, s′) ∈ S ×A× S | zs,a,s′ < 0}.

Proof. By Algorithm 1, (λ̂, θ̂) is a feasible solution of Dŝ(u; λ̂, θ̂). Thus by the first constraint in Dŝ(u; λ̂, θ̂), we have
[λ̂p̂s,a,s′−wŝ]+ ≤ θ̂s,a,s′ ≤ λ̂p̂s,a,s′ +wŝ ∀(s, a, s′) ∈ S×A×S . Plugging (λ̂, θ̂) in the objective function of Dŝ(u; λ̂, θ̂),
we obtain an upper bound of its optimal value

(dŝ − e⊤uŝ) · λ̂+ z⊤θ̂

≤ (dŝ − e⊤uŝ) · λ̂+
∑

(s,a,s′)∈Z+

zs,a,s′(λ̂p̂s,a,s′ + wŝ) +
∑

(s,a,s′)∈Z−

zs,a,s′ [λ̂p̂s,a,s′ − wŝ]+.

Let (λ⋆,θ⋆) with λ⋆ = λ̂+∆λ be the optimal solution of Dŝ(u; λ̂, θ̂) and (λ̂+∆λ,θ) be a feasible solution of Dŝ(u; λ̂, θ̂).
Plugging (λ̂+∆λ,θ) in Dŝ(u; λ̂, θ̂), we consider the problem:

min (dŝ − e⊤uŝ) · (λ̂+∆λ) + z⊤θ +
1

2σ
· ((∆λ)2 + ∥θ − θ̂∥22)

s.t. (λ̂+∆λ)p̂s,a,s′ − wŝ ≤ θs,a,s′ ∀(s, a, s′) ∈ S ×A× S
(λ̂+∆λ)p̂s,a,s′ + wŝ ≥ θs,a,s′ ∀(s, a, s′) ∈ S ×A× S
e⊤θs,a = λ̂+∆λ ∀s ∈ S, a ∈ A
θ ∈ RS·A·S

+ .

(22)

Notice that problem (22) and Dŝ(u; λ̂, θ̂) share the same optimal value. The equivalent minimax representation of
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problem (22) is:

min
θ∈RS·A·S

max
χ∈RS·A·S

+ ,

ψ∈RS·A·S
+ ,

ξ∈RS·A,

µ∈RS·A·S
+

(dŝ − e⊤uŝ) · (λ̂+∆λ) + z⊤θ +
1

2σ
· ((∆λ)2 + ∥θ − θ̂∥22)

+
∑

(s,a,s′)∈S×A×S

χs,a,s′ · ((λ̂+∆λ)p̂s,a,s′ − wŝ − θs,a,s′)

+
∑

(s,a,s′)∈S×A×S

ψs,a,s′ · (θs,a,s′ − (λ̂+∆λ)p̂s,a,s′ − wŝ)

+
∑

(s,a)∈S×A

ξs,a · (e⊤θs,a − λ̂−∆λ)

−µ⊤θ.

Taking its dual, we have

max (dŝ − e⊤uŝ) · (λ̂+∆λ) +
1

2σ
· ((∆λ)2 + θ̂⊤θ̂)

+
∑

(s,a,s′)∈S·A·S

χs,a,s′ · ((λ̂+∆λ)p̂s,a,s′ − wŝ)

−
∑

(s,a,s′)∈S×A×S

ψs,a,s′ · ((λ̂+∆λ)p̂s,a,s′ + wŝ)

−
∑

(s,a)∈S·A

ξs,a · (λ̂+∆λ)− σ

2

∥∥∥∥z − 1

σ
θ̂ − χ+ψ +B⊤ξ − µ

∥∥∥∥2
2

s.t. χ ∈ RS·A·S
+ , ψ ∈ RS·A·S

+ , ξ ∈ RS·A, µ ∈ RS·A·S
+ .

(23)

Considering a feasible solution (χ,ψ, ξ,µ) = 0 in (23), by weak duality, we have a lower bound:

Dŝ(u; λ̂, θ̂) ≥ (dŝ − e⊤uŝ) · (λ̂+∆λ) +
1

2σ
· ((∆λ)2 + θ̂⊤θ̂)− σ

2
·
∥∥∥∥z − 1

σ
· θ̂
∥∥∥∥2
2

.

Hence, the existence of the optimal value requires that the following inequality must hold:

(dŝ − e⊤uŝ) · (λ̂+∆λ) +
1

2σ
· ((∆λ)2 + θ̂⊤θ̂)− σ

2
·
∥∥∥∥z − 1

σ
· θ̂
∥∥∥∥2
2

≤ (dŝ − e⊤uŝ) · λ̂+
∑

(s,a,s′)∈Z+

zs,a,s′(λ̂p̂s,a,s′ + wŝ) +
∑

(s,a,s′)∈Z−

zs,a,s′ [λ̂p̂s,a,s′ − wŝ]+,

which is

1

2σ
· (∆λ)2 + (dŝ − e⊤uŝ) ·∆λ−

[
σ

2
· (z⊤z − 2

σ
· z⊤θ̂)

+
∑

(s,a,s′)∈Z+

zs,a,s′(λ̂p̂s,a,s′ + wŝ) +
∑

(s,a,s′)∈Z−

zs,a,s′ [λ̂p̂s,a,s′ − wŝ]+
]
≤ 0.

Hence, we have an upper bound

∆λ ≤ σ ·
(
− (dŝ − e⊤uŝ) +

{
(dŝ − e⊤uŝ)

2 +
2

σ
·
(
σ

2
·
(
z⊤z − 2

σ
· z⊤θ̂

)
+

∑
(s,a,s′)∈Z+

zs,a,s′(λ̂p̂s,a,s′ + wŝ) +
∑

(s,a,s′)∈Z−

zs,a,s′ [λ̂p̂s,a,s′ − wŝ]+
)} 1

2
)
,

from which our conclusion follows immediately.

By Proposition 4.3, we have in Algorithm 1 that for all k ∈ N+, uk+1 is bounded if uk and (λ,θ) are bounded; while by
Lemma A.3, λk+1 is bounded if uk+1, uk and (λk,θk) are bounded. Since we initialize (u0, (λ0,θ0)) with some real
numbers, Lemma A.3 can iteratively provide us the upper bounds for the golden section search.
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Lemma A.4. The function fŝ is well-defined on R+.

Proof It is sufficient to prove that problem (10) can achieve its minimum for all λ ∈ R+. Since for all λ ∈ R+, the feasible
region of (10),

C(λ) :=

{
θ ∈ RS·A·S

+

∣∣∣∣ ∥θ − λ · p̂∥∞ ≤ wŝe⊤θs,a = λ ∀(s, a) ∈ S ×A

}
is compact and the objective function

hŝ(λ,θ) := (dŝ − e⊤uŝ) · λ+ θ⊤Qŝu+
1

2σ
·
∥∥∥∥λ− λ̂θ − θ̂

∥∥∥∥2
2

is continuous in θ, by the Weierstrass extreme-value theorem (see, e.g., (Khanh & Quan, 2019)), problem (10) can obtain its
minimum.

Proof of Proposition 4.4 Let us fix λ, λ′ ∈ R+ and ω ∈ [0, 1]. By Lemma A.4, fŝ is well-defined, which means that there
exists θ ∈ C(λ), θ′ ∈ C(λ′) such that

hŝ(λ,θ) = fŝ(λ) and hŝ(λ
′,θ′) = fŝ(λ

′),

where we denote

C(λ) :=

{
θ ∈ RS·A·S

+

∣∣∣∣ ∥θ − λ · p̂∥∞ ≤ wŝe⊤θs,a = λ ∀(s, a) ∈ S ×A

}
and

hŝ(λ,θ) := (dŝ − e⊤uŝ) · λ+ θ⊤Qŝu+
1

2σ
·
∥∥∥∥λ− λ̂θ − θ̂

∥∥∥∥2
2

(as in the proof of Lemma A.4). By the convexity of

C :=
{
(λ,θ) ∈ R+ × RS·A·S

+ | θ ∈ C(λ)
}

(which is, the feasible region of Dŝ(u; λ̂, θ̂)), we have ((1 − ω) · λ + ωλ′, (1 − ω) · θ + ω · θ′) ∈ C. Thus we have
(1− ω) · θ + ω · θ′ ∈ C((1− ω) · λ+ ωλ′) and

fŝ((1− ω) · λ+ ωλ′) ≤ hŝ((1− ω) · λ+ ωλ′, (1− ω) · θ + ω · θ′)
≤ (1− ω) · hŝ(λ,θ) + ω · hŝ(λ′,θ′)
= (1 + ω) · fŝ(λ) + ω · fŝ(λ′),

where the first inequality follows from the definition of fŝ and the second inequality holds because of the convexity of h.
Since λ, λ′ and ω are arbitrary, we have proved the convexity of fŝ, where our conclusion follows.

Proof of Proposition 4.5 Rearranging the constraints in (11), we rewrite the problem as

min
1

2σ
· θ⊤s,aθs,a + θ⊤s,a(zŝ,s,a −

1

σ
· θ̂s,a)

s.t. θs,a,s′ ≥ [λp̂s,a,s′ − wŝ]+ ∀s′ ∈ S
θs,a,s′ ≤ λp̂s,a,s′ + wŝ ∀s′ ∈ S
e⊤θs,a = λ

θs,a ∈ RS .

Introducing dual variables η ∈ RS+,φ ∈ RS+ and ι ∈ R, we have its Lagrangian dual function as

L(θs,a,η,φ, ι) =
1

2σ
· θ⊤s,aθs,a + θ⊤s,a(zŝ,s,a −

1

σ
θ̂s,a)

+
∑
s′∈S

ηs′ · ([λp̂s,a,s′ − wŝ]+ − θs,a,s′)

+
∑
s′∈S

φs′ · (θs,a,s′ − (λp̂s,a,s′ + wŝ)) + ι · (λ− e⊤θs,a).

18



Robust Satisficing MDPs

Thus we have the KKT conditions of problem (11) as

θs,a,s′ ≥ [λp̂s,a,s′ − wŝ]+ ∀s′ ∈ S
θs,a,s′ ≤ λp̂s,a,s′ + wŝ ∀s′ ∈ S
e⊤θs,a = λ
η ≥ 0
φ ≥ 0
ηs′ · ([λp̂s,a,s′ − wŝ]+ − θs,a,s′) = 0 ∀s′ ∈ S
φs′ · (θs,a,s′ − (λp̂s,a,s′ + wŝ)) = 0 ∀s′ ∈ S
∇θs,aL(θs,a,η,φ, ι) =

1

σ
· θs,a + (zŝ,s,a −

1

σ
· θ̂s,a)− η +φ− ι · e = 0,

from which we have

θs,a,s′ =


λp̂s,a,s′ + wŝ ∀s′ ∈ S : φs′ ̸= 0

σ · (ι+ 1

σ
θ̂s,a,s′ − zŝ,s,a,s′) ∀s′ ∈ S : ηs′ = 0 and φs′ = 0

[λp̂s,a,s′ − wŝ]+ ∀s′ ∈ S : ηs′ ̸= 0.

where it is sufficient to solve the equationWs,a(ι) = λ to find ι⋆ then obtain the optimal solution θ⋆s,a,s′ =Ws,a,s′(ι
⋆) ∀s′ ∈

S, where Ws,a(ι) =
∑
s′∈S Ws,a,s′(ι) with

Ws,a,s′(ι)

=


λp̂s,a,s′ + wŝ if ι ≥ 1

σ
· (λp̂s,a,s′ + wŝ) + zŝ,s,a,s′ −

1

σ
θ̂s,a,s′

[λp̂s,a,s′ − wŝ]+ if ι <
1

σ
· [λp̂s,a,s′ − wŝ]+ + zŝ,s,a,s′ −

1

σ
θ̂s,a,s′

σ · (ι+ 1

σ
θks,a,s′ − zŝ,s,a,s′) otherwise,

for all s′ ∈ S. Since for all s′ ∈ S, the function Ws,a,s′ is clearly piecewise linear and non-decreasing, the function
Ws,a =

∑
s′∈S Ws,a,s′ is thus also piecewise linear and non-decreasing with 2S breakpoints: the upper breakpoints

1
σ · (λp̂s,a,s′ +wŝ)−

1
σ θ̂s,a,s′ +zŝ,s,a,s′ , s

′ ∈ S and the lower breakpoints 1
σ · [λp̂s,a,s′−wŝ]+−

1
σ θ̂s,a,s′ +zŝ,s,a,s′ , s

′ ∈ S .
Sort them from smallest to largest as ι1 ≤ · · · ≤ ι2S and search the intervals [ι1, ι2], [ι2, ι3], · · · , [ι2S−1, ι2S ] in an ascending
order, we can locate the optimal ι⋆ and θ⋆s,a,s′ =Ws,a,s′(ι

⋆) ∀s′ ∈ S.

The time complexity is dominated by sorting the breakpoints, which is achieved in time O(S log(S)).

We provide the pseudocode for solving problem (11) in Algorithm 3. Here the functions p1(·) : [2S] 7→ S and p2(·) :
[2S] 7→ {“lower”, “upper”} map the indices of the non-decreasing breakpoint sequence to the indices and types of
lower/upper breakpoints, respectively; e.g., if ι3 corresponds to ι5, then we have p1(3) = 5 and p2(3) = “lower”.

Proof of Proposition 4.6 By the strategy described in Section 4.2, to obtain the output of Step 2 in Algorithm 1, we need to
solve S subproblems, each of which solved by a golden section search with time complexity log( 1δ ). By the analysis in
Section 4.2, each function valuation of fŝ in the search requires to solve SA subproblems in the form of (11), and each of
these subproblems is, by Proposition 4.5, solvable in time O(S log(S)). Our conclusion thus follows.

B. An Equivalent Convex Optimization Problem for RSMDPs with KL Divergence
Lemma B.1. Let U := {u ∈ RS·A+ | r⊤u ≥ τ}. For all s ∈ S and (α,u) ∈ RS·A × U , if

lim
k→0+

−α⊤e−
∑

i∈[SAS]

p̂ik

(
exp

(
−
Q⊤
s,iu+B⊤

:,iα

k

)
− 1

)
≥ e⊤us − ds, (24)

then it holds thatQsû+B⊤α̂ ≥ 0.

Proof Suppose to the contrary that there exists some i ∈ [SAS] such thatQ⊤
s,iu+B⊤

:,iα < 0. It follows that

lim
k→0+

k exp

(
−
Q⊤
s,iu+B⊤

:,iα

k

)
=∞,
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Algorithm 3 Interval Search Algorithm for Problem (11)
Compute all the upper breakpoints ιs′ ← 1

σ (λp̂s,a,s′ + wŝ) − 1
σ θs,a,s′ + zŝ,s,a,s′ ∀s′ ∈ S and lower breakpoints

ιs′ ← 1
σ [λp̂s,a,s′ − wŝ]+ −

1
σ θs,a,s′ + zŝ,s,a,s′ ∀s′ ∈ S;

Sort the breakpoints from smallest to largest as ι1 ≤ · · · ≤ ι2S ;
Initialize χ← σ and ψ ←

∑
s′∈S:s′ ̸=p1(1)[λp̂s,a,s′ − wŝ]+ + σ · ( 1σ θs,a,p1(1) − zŝ,s,a,p1(1));

Initialize upper breakpoint index set U ← ∅ and lower breakpoint index set L ← S \ p1(1);
for k = 1 to 2S − 1 do

if χ · ιk+1 + ψ ≥ λ then
ι⋆ ← λ−ψ

χ ;
for s′ = 1 to S do

θ⋆s,a,s′ ←

 λp̂s,a,s′ + wŝ ∀s′ ∈ U
[λp̂s,a,s′ − wŝ]+ ∀s′ ∈ L
σ · (ι⋆ + 1

σ θs,a,s′ − zŝ,s,a,s′) ∀s′ ∈ S \ (U ∪ L);

end for
break

else if p2(k + 1) = “upper” then
χ← χ− σ;
ψ ← ψ − σ · ( 1σ θs,a,p1(k+1) − zŝ,s,a,p1(k+1)) + λp̂s,a,p1(k+1) + wŝ;

else
χ← χ+ σ;
ψ ← ψ + σ · ( 1σ θs,a,p1(k+1) − zŝ,s,a,p1(k+1))− [λp̂s,a,p1(k+1) − wŝ]+;

end if
end for
Output: Solution θ⋆s,a

by which the left-hand side of (24) will be driven to −∞, yielding a contradiction.

Lemma B.2. Let Bs(u) := {α ∈ RS·A | −α⊤e ≥ e⊤us − ds andQsu+B⊤α ≥ 0} and

B′s(u) :=

α ∈ RS·A
∣∣∣∣∣ lim
k→0+

−α⊤e−
∑

i∈[SAS]

p̂ik

(
exp

(
−
Q⊤
s,iu+B⊤

:,iα

k

)
− 1

)
≥ e⊤us − ds


for all s ∈ S, where Qs,i is the i-th row of Qs and B:,i is the i-th column of B, both of them are column vectors. When
p̂ ∈ RS·A·S

++ , it holds that Bs(u) = B′s(u) ∀s ∈ S for all u ∈ U := {u ∈ RS·A+ | r⊤u ≥ τ}.

Proof Fix some s ∈ S. We will first prove that Bs(u) ⊆ B′
s(u) for all u ∈ U . To this end, let (α̂, û) ∈ RS·A × U be

arbitrarily taken such that α̂ ∈ Bs(û), i.e., (α̂, û) satisfies r⊤û ≥ τ
−α̂⊤e ≥ e⊤ûs − ds
Qsû+B⊤α̂ ≥ 0.

We then have

lim
k→0+

−α̂⊤e−
∑

i∈[SAS]

p̂ik

(
exp

(
−
Q⊤
s,iû+B⊤

:,iα̂

k

)
− 1

)
= −α̂⊤e,

which implies that α̂ ∈ B′s(û).

Next, we prove that B′s(u) ⊆ Bs(u) for all u ∈ U . To this end, let (α̂, û) ∈ RS·A × U be arbitrarily taken such that
α̂ ∈ B′s(û). By Lemma B.1, it holds thatQsû+B⊤α̂ ≥ 0. In this case, we have

lim
k→0+

−α̂⊤e−
∑

i∈[SAS]

p̂ik

(
exp

(
−
Q⊤
s,iû+B⊤

:,iα̂

k

)
− 1

)
= −α̂⊤e,
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which means that α̂ ∈ B′s(û) if and only if (α̂, û) satisfies −α̂⊤e ≥ e⊤ûs − ds. Hence, α̂ ∈ Bs(û) follows from the
definition of Bs(û).

Proposition B.3. When p̂ ∈ RS·A·S
++ , the RSMDPs (4) equipped with the KL divergence3 ℓ(p, p̂) =∑

(s,a,s′)∈S×A×S p̂s,a,s′ϕ(ps,a,s′/p̂s,a,s′), where the phi-divergence function ϕ(t) = t log t − t + 1, is equivalent to
the following convex optimization problem:

ZRS = min w⊤k

s.t. e⊤us − ds ≤ −α⊤
s e−

∑
i∈[SAS]

p̂iks

(
exp

(
−
Q⊤
s,iu+B⊤

i αs

ks

)
− 1

)
∀s ∈ S

r⊤u ≥ τ
u ∈ RS·A+ , k ∈ RS+, αs ∈ RS·A ∀s ∈ S,

whereQs,i is the i-th row ofQs andB:,i is the i-th column ofB, both of them are column vectors.

Proof The s-th constraint of (4) is equivalent to

e⊤us − ds ≤ min
p∈P

p⊤Qsu+ ks · ℓ(p, p̂),

where the minimization problem on the right-hand side is:

min p⊤Qsu+ ks · ℓ(p, p̂)
s.t. Bp = e

p ∈ RS·A·S
+ .

The dual of this problem is:

max
α

min
p≥0

p⊤Qsu+ ks · ℓ(p, p̂) +α⊤(Bp− e)

= max
α

min
p≥0

(Qsu+B⊤α)⊤p+ ks ·
∑

i∈[SAS]

p̂i · ϕ
(
pi
p̂i

)
−α⊤e

= max
α
−α⊤e+min

p≥0
(Qsu+B⊤α)⊤p+ ks ·

∑
i∈[SAS]

p̂i · ϕ
(
pi
p̂i

)
= max

α
−α⊤e−

∑
i∈[SAS]

max
p≥0
−(Q⊤

s,iu+B⊤
:,iα)p− ksp̂iϕ

(
p

p̂i

)
= max

α
−α⊤e−

∑
i∈[SAS]

max
q≥0
−(Q⊤

s,iu+B⊤
:,iα)p̂iq − ksp̂iϕ (q) .

Here, strong duality holds for {p ∈ RS·A·S
+ | Bp = e} = (∆S)SA, where p = (1/S) · e is a strictly feasible solution. The

last equality holds by the substitution q = p/p̂i. We can further have

max
α
−α⊤e−

∑
i∈[SAS]

max
q≥0
−(Q⊤

s,iu+B⊤
:,iα)p̂iq − ksp̂iϕ (q)

=



 max −α⊤e
s.t. Qsu+B⊤α ≥ 0

α ∈ RS·A
if ks = 0

max
α
−α⊤e−

∑
i∈[SAS]

p̂iks

(
exp

(
−
Q⊤
s,iu+B⊤

:,iα

ks

)
− 1

)
if ks > 0,

where the equality for the case ks > 0 follows from the convex conjugate of ϕ(·); see (Bayraksan & Love, 2015). Therefore,

3We refer intereted readers to (Bayraksan & Love, 2015) for more details about the KL divergence.
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we have that RSMDPs (4) is equivalent to

ZRS(p̂) = min w⊤k
s.t. −α⊤

s e ≥ e⊤us − ds ∀s : ks = 0
Qsu+B⊤αs ≥ 0 ∀s : ks = 0

−α⊤
s e−

∑
i∈[SAS]

p̂iks

(
exp

(
−
Q⊤
s,iu+B⊤

:,iαs

ks

)
− 1

)
≥ e⊤us − ds ∀s : ks > 0

r⊤u ≥ τ
u ∈ RS·A+ , k ∈ RS+,αs ∈ RS·A ∀s ∈ S.

Our conclusion then follows from Lemma B.2.

C. Discussions on Computation Complexities
For value iteration, the time complexity per iteration for solving NMDPs is O(S2A). For robust value iteration, the time
complexity per iteration for solving RMDPs differs for different ambiguity sets. In general, for s-rectangular ambiguity
set, the practical time complexity per iteration could be at least O(S4A3) (Boyd & Vandenberghe, 2004). There are recent
algorithmic developments for specific ambiguity sets; for example, the time complexity per iteration for solving RMDPs with
an unweighted L1-norm ambiguity set could be reduced to O(S2A logS) (Ho et al., 2021). As mentioned in Section 4.3,
the proposed PDAblock and PDAblock+ have time complexities of O(MS2 log(S)A log(δ−1)) and O(S logS) (with high
probability as PDAblock+ is a randomized algorithm), respectively.

D. Additional Details and Results on the Experiments
In our experiments, the reward functions are deterministic and known to the agent while the transition kernel is uncertain.
We adopt data-driven setups and evaluate models based on their out-of-sample performances. All optimization problems are
solved on an Intel 3.6 GHz processor with 32GB RAM.

In the experiment in Section 5.1, we vary the training sample size 4 among {10, 20, · · · , 140,M} with some sufficiently
large M such that the empirical transition kernel is close enough to the true one, and we generate 5000 out-of-sample testing
trajectories of length 100. The parameters of RMDPs and DRMDPs (i.e., the radius r of the ambiguity set) are selected
from r ∈ [0.0, 1.8] and those of RSMDPs (i.e., the target τ ) are selected from τ ∈ [0.5ZN, 1.0ZN], via cross validation.

In the experiment in Section 5.2, τ is the predicted return for RSMDPs, while ZN = d⊤v⋆N, d⊤v⋆R and d⊤v⋆DR are the
predicted returns of NMDPs, RMDPs and DRMDPs, respectively, where the optimal value function v⋆N is computed
via (1), and v⋆R and v⋆DR are via robust Bellman optimality equation, respectively (see details in Appendices D.2 and D.3,
respectively), all with the true p⋆. All sample returns are computed by Bellman equation with the polluted transition kernel.

In the experiment in Section 5.3, we implemented our algorithms in C++, whereas Gurobi is also called from C++. In our
experiments, we synthetically generate random RSMDP instances, and the details of the experiments and parameters can be
found in the Appendix D.7, which also includes additional experimental results with PDAblock+, a variant of PDA where
the dual updating step follows the second strategy mentioned in Section 4.3.

D.1. Setup for Initial Transition Kernel

For the experiments in Section 5.1, the next state space for each state-action pair is given to the agent at the beginning when
the state space and action space are big (e.g., grid world), but such information is unknown to the agent when the state
space and action space are small (e.g., machine replacement, river swim), otherwise the optimal policy can be obtained
immediately with the initial transition kernel using any methods.

4Here “sample size” is the number of transitions that an agent experiences (with a uniform initial distribution).
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Algorithm 4 Solve the inner minimization problem in (26)
Input: Value function v, transition kernel p = p̂s,a
Sort p such that its corresponding v is non-decreasing, indexed as 1, · · · , S;
o← copy(p);
i← S;
b← min

{
1− p1,

r

2

}
;

o1 ← b+ p1;
repeat
oi ← oi −min {b, oi};
b← b−min {b, oi};
i← i− 1;

until b ≤ 0 or i < 0
p⋆ ← o;
Output: Optimal solution p⋆

D.2. Additional Details on Robust MDPs

Robust MDPs (RMDPs) maximize the total expected return considering the worst-case realization of the uncertain parameter
within a predefined ambiguity set P̄:

ZR = max
π∈Π

min
p∈P̄

d⊤v(π,p). (25)

In the experiments, we adopt the popular sa-rectangular ambiguity set (Behzadian et al., 2021a; Iyengar, 2005; Nilim &
El Ghaoui, 2005; Strehl et al., 2009; Weissman et al., 2003):

P̄ =
{
p ∈ RS·A·S

+ | ps,a ∈ P̄s,a, e⊤ps,a = 1 ∀s ∈ S, a ∈ A
}
,

where P̄s,a =
{
p ∈ ∆S | ∥p− p̂s,a∥1 ≤ r

}
with p̂s,a ∈ ∆S being the subvector of empirical transition kernel p̂ ∈ P̄; see,

e.g., (Petrik & Subramanian, 2014; Russel et al., 2019). To calculate the optimal policy in RMDP, we utilise the value
iteration method, where in each iteration, the robust Bellman optimality equation:

v⋆s = max
a∈A

min
p∈P̄s,a

{
rs,a + γ · p⊤v⋆

}
= max

a∈A
min
p∈∆S

{
rs,a + γ · p⊤v⋆ | ∥p− p̂s,a∥1 ≤ r

}
s ∈ S (26)

is solved to update our value function. We adopt Algorithm 4 to solve the inner minimization problem in (26) (Petrik &
Subramanian, 2014).

We remark the the input v in Algorithm 4 is given by the value function at the last iteration in the value iteration process,
where it is initialized as 0 at the first iteration.

D.3. Additional Details on Distributionally Robust MDPs

We follow the settings in (Grand-Clément & Kroer, 2021a) where the ambiguity set is defined using Wasserstein distance
with Lp-norm ∥ · ∥p (for some p ∈ R∪ {∞}). In particular, we solve the following distributionally robust Bellman equation

v⋆s = max
πs∈∆A

min
p1,··· ,pN∈P̂

{∑
a∈A

πs,a ·

(
rs,a + γ · 1

N

N∑
i=1

pi⊤s,av
⋆

) ∣∣∣ 1

N

N∑
i=1

∥pis − p̂is∥p ≤ µ
p
W

}
,

where µW is the radius and p̂1, . . . , p̂N ∈ P are N samples of transition kernels (Bertsimas et al., 2018; Xie, 2020; Yang,
2017). In the experiments, we set p to be 1 and Mosek (academic license) is utilized to solve the inner minimization problem
in each iteration (MOSEK ApS, 2022).

D.4. Additional Details on Environments

We use a discounted factor γ = 0.85 for all environments, and the objective is always maximizing (total discounted) rewards.
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Machine Replacement: we have 2 repair options constituting our action set [“repair”, “do nothing”] and 10 states. The
rewards relate only to the states, which are [20, 20, 20, 20, 20, 20, 20, 0, 18, 10].

River Swim: we have 2 swimming directions constituting our action set [“move left”, “move right”] and 10 states, and the
rewards relate only to the state, which are [5, 0, 0, 10, 10, 10, 10, 10, 10, 15].

Grid World: the grid world has two rows and 12 columns, and the rewards relate to the column indices only, which are [0,
3, 21, 27, 6, 0, 0, 0, 0, 0, 15, 24]. There are four available actions, “move up” and “move down” for vertical moves (that
decreases and increases the column index, respectively), as well as “move left”, and “move right” for horizontal moves
(that decreases and increases the row index, respectively). Horizontal moves have a chance of failure that only related to
row indices (0.9 for the first row and 0.2 for the second). Failing a transfer or selecting a vertical move would generate
the column index of the next state according to a Dirichlet distribution. After selecting a horizontal move, the agent will
randomly go up, go down, or stay with probabilities 0.35, 0.35 and 0.3, respectively.

D.5. Additional Results on the Improvements on Percentiles
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Figure 3. Average and percentile performances over 5000 out-of-sample testing trajectories in the machine replacement application.
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Figure 4. Average and percentile performances over 5000 out-of-sample testing trajectories in the grid world application.

D.6. Additional Results on the Target-Oriented Feature
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Figure 5. Differences between sample returns and predicted returns over 1000 samples in the machine replacement environment. Due to
the page limit, we only plot the parameters (of the three models) that the sample returns are close to predicted returns.
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Table 3. Predicted returns and the corresponding differences (in median) between sample returns and predicted returns over 1000 samples
in the machine replacement application.

RSMDPs
τ / ZN(p̂) 1.0 0.9 0.8 0.7 0.6 0.5

Predicted Return 123.9 111.5 99.1 86.7 74.4 62.0
SamRet-PreRet (Median) -10.5 1.0 13.4 25.8 38.2 50.9

DRMDPs
r 0.0 0.3 0.6 0.9 1.2 1.5

Predicted Return 123.9 105.4 88.2 68.5 45.2 31.5
Difference (in median) -10.5 7.6 24.8 44.0 66.9 79.1

RMDPs
r 0.0 0.3 0.6 0.9 1.2 1.5

Predicted Return 123.9 99.9 76.1 52.8 30.2 20.7
SamRet-PreRet (Median) -10.5 13.7 37.5 60.8 83.4 92.9
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Figure 6. Differences between sample returns and predicted returns over 1000 samples in the grid world environment. Due to the page
limit, we only plot the parameters (of the three models) that the sample returns are close to predicted returns.

D.7. Detailed Numerical Results on PDAs

In our experiments, we generate random instances as follows. The entries in reward function r, initial distribution d, and
transitional kernel p̂ are sampled from an uniform distribution in [0, 1]. The entries in d and p̂ are then normalized so that d
and p̂s,a are elements in a probability simplex, for all s ∈ S, a ∈ A. We set the discount factor γ = 0.95, and the target
τ = 0.85ZN.

We denote PDA as the proposed Algorithm 1. PDAblock is a variant of PDA where the dual updating step (i.e. Step 2 in
Algorithm 1) follows the first strategy mentioned in Section 4.3 in which the dual updating step becomes

(λk+1
s ,θk+1

s )← Ds(2u
k+1 − uk;λks ,θks ) ∀s ∈ Sk. (27)

Here Sk with |Sk| = M ≪ S is an index set where its elements are sampled uniformly from S without replacement in
each iteration, and we set M = 2. On the other hand, PDAblock+ is a PDA where the dual updating step follows the second
strategy mentioned in Section 4.3. In particular, at each iteration, (ŝ, s, a) is sampled uniformly, we perform the update
(27) with probability P and otherwise we update θs,a by solving problem (11), which is the subproblem corresponded to
problem (10). We set P = 1/(SA) in this experiment.

In the experiment, we also compare our PDAs to Gurobi solver for RMDPs. Since the overhead (in terms of computation
time) can be dominating, we only report the runtime of the Gurobi solver.

Figure 7 reports the average of computation times and per-iteration computational times (relative to Gurobi) over 20 generated
test instances. The vertical bars indicate the average± standard deviations. Since PDA is a first-order method, it is impractical
to expect solution with extreme precision with optimally. Hence, we terminate PDA when |fPDA − fGurobi|/fGurobi < 5%,
where fPDA and fGurobi are the objective values computed by PDA and Gurobi, respectively. The same stopping criteria is
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Table 4. Predicted returns and the corresponding differences (in median) between sample returns and predicted returns over 1000 samples
in the grid world application.

RSMDPs
τ / ZN(p̂) 1.0 0.9 0.8 0.7 0.6 0.5

Predicted Return 55.9 50.3 44.7 39.1 33.5 27.9
SamRet-PreRet (Median) -2.4 3.1 8.7 14.3 19.8 25.4

DRMDPs
r 0.0 0.3 0.6 0.9 1.2 1.5

Predicted Return 55.9 31.8 21.1 14.7 11.0 9.4
Difference (in median) -2.5 21.1 31.6 38.0 41.6 42.8

RMDPs
r 0.0 0.3 0.6 0.9 1.2 1.5

Predicted Return 55.9 26.6 15.5 11.1 9.4 8.5
SamRet-PreRet (Median) -2.5 26.7 38.2 42.6 44.3 45.2
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Figure 7. Left: Computation times (in ms) of different algorithms and Gurobi. Right: The ratio of Gurobi’s computation time to the
per-iteration computation times of PDA, PDAblock, and PDAblock+.

used for PDAblock and PDAblock+. To ensure algorithms will terminate within a reasonable amount of time, we also set
their maximal numbers of iterations to be 2000, 20000, and 400000 for PDA, PDAblock, and PDAblock+, respectively.

Figure 7 shows that as the problem size increases, the computational time of Gurobi increases rapidly compared to PDA,
PDAblock, and PDAblock+. PDA also exhibits similar performance, but with a slower rate compared to Gurobi. The right
figure of Figure 7 demonstrates the scalability of the proposed algorithms. As the problem size increase, the per-iteration
computation times are remarkably cheaper compared to Gurobi. This phenomenon identifies the advantage of the proposed
PDAs, and it matches the expected algorithmic behaviors for first-order methods, which are often proposed to efficiently
solve large problems to moderate accuracy by computationally cheaper updates.

E. Limitations and Potential Negative Societal Impact
One limitation of this work is that the RSMDPs are not (yet) solvable by a dynamic programming approach. Another
limitation would be the lack of further exploration about how the optimal policy and robust value function of RMDPs can
indicate the range of the targeted return of RSMDPs. Potential negative societal impact is not applicable to this work.
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