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AMD-SD: An Optical Coherence 
Tomography Image Dataset for 
wet AMD Lesions Segmentation
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Wet Age-related Macular Degeneration (wet AMD) is a common ophthalmic disease that significantly 
impacts patients’ vision. Optical coherence tomography (OCT) examination has been widely utilized 
for diagnosing, treating, and monitoring wet AMD due to its cost-effectiveness, non-invasiveness, and 
repeatability, positioning it as the most valuable tool for diagnosis and tracking. OCT can provide clear 
visualization of retinal layers and precise segmentation of lesion areas, facilitating the identification 
and quantitative analysis of abnormalities. However, the lack of high-quality datasets for assessing 
wet AMD has impeded the advancement of related algorithms. To address this issue, we have curated a 
comprehensive wet AMD OCT Segmentation Dataset (AMD-SD), comprising 3049 B-scan images from 
138 patients, each annotated with five segmentation labels: subretinal fluid, intraretinal fluid, ellipsoid 
zone continuity, subretinal hyperreflective material, and pigment epithelial detachment. This dataset 
presents a valuable opportunity to investigate the accuracy and reliability of various segmentation 
algorithms for wet AMD, offering essential data support for developing AI-assisted clinical applications 
targeting wet AMD.

Background & Summary
Age-related macular degeneration (AMD) is one of the main causes of irreversible vision loss in people aged 50 
years and older. Globally, an estimated 8.69% of the population aged from 45 to 85 is afflicted with AMD, with 
projections that by 2040, approximately 288 million individuals worldwide will be affected by the condition1. 
AMD is divided into dry AMD (geographic atrophy) and neovascular AMD (also known as wet AMD), both 
forms of which can precipitate rapid vision loss2. Presently, effective treatment modalities for dry AMD are lack-
ing3,4. In contrast, wet AMD is typified by choroidal neovascularization (CNV) or retinal neovascularization, 
leading to pronounced changes including retinal edema, hemorrhage, exudation, and scarring5. Primary treat-
ment for wet AMD entails intravitreal administration of anti-vascular endothelial growth factor (VEGF) agents, 
which is capable of mitigating or reversing disease progression6–12.

Optical coherence tomography (OCT), a non-invasive, high-resolution imaging modality, offers rapid 
acquisition of cross-sectional macular images13,14. Its simplicity, speed, and non-invasive nature render OCT a 
cost-effective, repeatable tool for diagnosing, managing, and monitoring wet AMD. By facilitating visualization 
of retinal layers and pertinent features of wet AMD, such as subretinal fluid (SRF), intraretinal fluid (IRF), ellip-
soid zone continuity, subretinal hyperreflective material (SHRM), and pigment epithelial detachment (PED), 
OCT enables precise disease assessment, prognostication, and informed clinical decision-making. This person-
alized approach optimizes treatment outcomes by tailoring regimens to individual responses, thus enhancing 
patient compliance and alleviating economic burdens. Nevertheless, manual lesion size measurements from 
OCT B-scans are labor-intensive and susceptible to inter-observer variability, warranting caution in clinical 
interpretation.

Leveraging artificial intelligence (AI) technology, scholars have predominantly concentrated on establishing 
OCT-based models for AMD diagnosis and treatment response prediction, including diagnostic models15,16, 
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segmentation models leveraging characteristic AMD lesion features on OCT B-scan images17,18, staging mod-
els19–21, prognostic models22–25. Notably, deep learning models demonstrate superior sensitivity and specificity 
in automated disease diagnosis, classification, and segmentation.

Table 1 presents publicly available OCT datasets related to AMD or macular edema. The Retouch dataset 
provides segmented images of edema that simultaneously include AMD, diabetic macular edema (DME), and 
retinal vein occlusion (RVO)26. With a total of 6926 OCT B-scan images, it is currently the largest dataset for 
edema segmentation including IRF, SRF, and PED. However, wet AMD exhibits diverse pathological features 
on macular OCT slices, including but not limited to IRF, SRF, PED, SHRM, Ellipsoid zone (IS/OS) junction 
disruption, hyper-reflective dots, and vitreomacular adhesion. Studies by Simader C27 and Waldstein SM28 have 
shown a significant correlation between IRF, SRF, and PED with visual prognosis in wet AMD. Lai29 further 
emphasized the importance of continuity in the Ellipsoid Zone, as its structural integrity also exhibits a strong 
correlation with visual prognosis. Research by Pokroy R30 and Kumar JB31 focused on the impact of SHRM on 
visual prognosis in wet AMD, demonstrating its relevance as well.

Drawing inspiration from past research, the five pivotal features linked to visual decline and prognosis in wet 
AMD encompass IRF, SRF, PED, SHRM, and IS/OS junction disruption. Leveraging these insights, we manually 
annotated a high-quality OCT dataset containing five types of lesion labels by experienced ophthalmologists. 
Our dataset paves the way for creating various artificial intelligence-driven image segmentation models. This 
measure aims to intelligently simplify the evaluation of wet AMD and promote significant progress in clinical 
research.

Methods
Data collection.  This study was approved by the Ethics Committee of The Second Affiliated Hospital of 
Nanchang University and adheres to the principles of the Helsinki Declaration (Approval Number: I-Medical 
Research Ethics Review [2023] No. 27). All patients included in the study were informed prior to their OCT 
examination that the images might be used for clinical research and released as public datasets. Informed consent 
was obtained from each patient. 3049 OCT B-scan images were collected from 138 patients (156 eyes) diagnosed 
with AMD from September 2023 to January 2024.

These patients were diagnosed and included in the dataset by three primary ophthalmologists (3-5 years 
of clinical experience) and one expert ophthalmologist (8 years of clinical experience) together. The exclusion 
criteria include (1) Patients with a history of vitrectomy surgery or the presence of intraocular filling substances 
in the vitreous cavity;(2) Patients with vitreoretinal diseases other than AMD, including but not limited to cen-
tral serous chorioretinopathy, retinal artery occlusion, vein occlusion, macular hole, high myopic maculopathy, 
retinal detachment, diabetic retinopathy, retinitis pigmentosa, glaucoma, Coats’ disease, optic nerve diseases, 
etc.;(3) Poor imaging quality, as defined by the following criteria: Signal strength of less than 5/10 on Cirrus 
HD-OCT 5000, partial horizontal B-scan missing, or structural incompleteness.

All patients underwent macular OCT scanning using the Zeiss Cirrus-HD-5000. These images were acquired 
by experienced ophthalmologists. During the scanning process, patients were in a seated position with their chin 
resting on a chin rest, and pupil dilation was performed when necessary. Patients were instructed to maintain 
a steady gaze to ensure that the scanning area was centered on the fovea. The majority of the OCT B-scans we 
selected were taken before any treatment, although there were also post-treatment images included. Given that 
we were engaged in the structural segmentation of OCT B-scan images from AMD patients, the amalgamation 
of additional features aids in a more comprehensive capture of clinical characteristics.

Image annotation.  The OCT B-scan images segmentation annotation team consisted of three junior oph-
thalmologists and one expert ophthalmologist with over 8 years of experience. Initially, all images were annotated 
by the three junior ophthalmologists. Subsequently, the expert ophthalmologist reviewed and corrected all anno-
tated images. Figure 1 illustrates the entire workflow of the segmentation annotation process. In the first step of 
the initial annotation (Fig. 1b), all three junior ophthalmologists manually outlined five anatomical structures 
(i.e., IRF, SRF, PED, SHRM, IS/OS) using the Labelme software.

Reference Num. of Images Disease Task Segmentation Type

Chiu et al.37 220 AMD SEG RPE, RPE drusen complex, and total retina

Farsiu et al.38 38,400 AMD SEG RPE, RPE drusen complex, and total retina

Srinivasan39 3,231 DME, AMD, H.E. CLS —

Stephanie et al.40 610 DME SEG Fluid, Structure Layers

Rashno et al.41 600 AMD SEG IRF, SRF

Kermany et al.16 108,312 CNV, DME, DRUSEN, H.E. CLS —

Bogunovic et al.26 6,936 AMD, DME, RVO SEG IRF, SRF, PED

Gholami42 470 AMD, DR, MH, CSR, H.E. CLS —

Melinscak et al.43 1136 AMD SEG IRF, SRF, PED, Structure Layers

Table 1.  Overview of Publicly Accessible OCT Datasets Related to AMD or macular edema. Note: DME stands 
for Diabetes Retinal Edema, H.E. stands for Healthy Eye, RVO stands for Retinal Vein Occlusion, MH stands 
for Macula Hole, RPE stands for Retinal Pigment Epithelium, SEG stands for Segmentation, and CLS stands for 
Classification.
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The annotation requirements are outlined as follows: (1)IRF: Refers to low-reflective exudates situated within 
the inner layers of the neurosensory retina. (2)SRF: Denotes low-reflective exudates located between the neu-
rosensory retina and the retinal pigment epithelium (RPE). It is crucial to differentiate SRF from certain IRF 
near the RPE.(3)Ellipsoid zone (IS/OS): This represents a normal anatomical structure rich in mitochondria, 
demarcating the junction between the inner and outer segments of photoreceptors. It appears as a high-reflective 
signal band between the outer limiting membrane and the RPE layer. Annotation should proceed from left to 
right to ensure comprehensive coverage. In this study, we defined the annotation criteria as the outer limit of 
the myoid zone and the inner interface of the retinal pigment epithelium (Supplementary Fig. S1). When the 
Ellipsoid zone was damaged or could not be annotated due to image quality, the Ellipsoid zone annotation would 
be empty. The Ellipsoid zone was crucial in assessing retinal health, especially in AMD. Segmenting the Ellipsoid 
zone allows clinicians to precisely monitor changes over time, such as Ellipsoid zone disruption or thinning. (4)
SHRM: Signifies high-reflective material situated between the retinal neuroepithelium and the RPE, possibly 
comprising various constituents such as exudates, fibrosis, blood, scars, or choroidal neovascularization. Careful 
differentiation from fibrovascular/hemorrhagic PED is necessary to prevent confusion, as some boundaries may 
be indistinct. (5)PED: This represents a characteristic feature of AMD, characterized by the separation of the 
RPE from the collagen within Bruch’s membrane due to sub-RPE fluid accumulation. Initial identification of the 
RPE is essential for accurate annotation. In our study, PED was considered as the separation of the RPE from the 
collagen within Bruch’s membrane due to sub-RPE fluid accumulation, including serous PED, vitelliform PED, 
and fibrovascular/hemorrhagic PED. For some small PEDs, it was sometimes difficult to distinguish them from 
drusenoid PEDs. If there was subretinal fluid or neovascular changes around them, we still considered them 
likely to be caused by sub-RPE fluid accumulation and annotated as PED.

In instances of poor-quality images, incomplete tissue morphology on OCT B-scans may occur due to noise 
or shadow artifacts. To minimize false-positive annotations and ensure segmentation accuracy, primary oph-
thalmologists should refrain from modifying image pixels, thereby preserving the original continuity of ana-
tomical structures. We selected 20 to 60 B-scan slices containing representative and characteristic structures, 
and these selected images were nonconsecutive and distributed as widely as possible across the scope of the 
macular lesion. And we performed pixel-level annotation on specific structures. For some small lesions, we 
selected and annotated consecutive B-scan slices around the lesion, which might be fewer than 20 images. Those 
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Fig. 1  The workflow for establishing the AMD-SD (a) Data collection. 138 patients were diagnosed with wet 
AMD at the Department of Ophthalmology of The Second Affiliated Hospital of Nanchang University. OCT 
B-scan was performed on 156 eyes of these patients, resulting in 3049 images. (b) Initial annotation. Three 
junior ophthalmologists manually annotated and segmented SRF, IRF, PED, SHRM, and IS/OS in OCT slices. 
(c) Review and modification. One expert ophthalmologist reviewed and validated all initial segmented images. 
Provide three types of evaluations, including adapt, modify, and reannotation, until all images pass expert review.
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B-scans predominantly containing normal retinal tissue structures and needing few required annotations were 
not included.

The initial annotation images completed by all junior ophthalmologists were evaluated by the expert ophthal-
mologist, who then made corresponding decisions. The quality of the annotation was rated by the expert doctor in 
three categories: pass, modify, and reannotation. If all five labels were accurately annotated, no further modifica-
tion was needed. If the rating was modified, the responsible junior doctor would need to make modifications under 
the guidance of the expert doctor. A small number of images rated as re-annotated would need to be re-annotated 
by the responsible junior ophthalmologist. During the annotation process, the expert ophthalmologist provided 
guidance and instructions to the junior ophthalmologists to improve the accuracy of the segmentation.

The inter-consistency and intra-consistency evaluation.  To ensure consistent pixel-level image 
annotation among junior ophthalmologists, a structured approach was implemented. Initially, under the guid-
ance of senior ophthalmologists, training sessions were conducted on annotation software usage and data anno-
tation methodologies. Subsequently, three junior ophthalmologists were tasked with annotating the same set of 
10 random B-scan slices from 10 different volumes to assess their understanding and consistency in identifying 
the five key structures in OCT B-scan images.

Following the basic annotation training, the average Intersection over Union (IoU) and Dice coefficients for 
SRF annotations by the three junior ophthalmologists were 0.9577 and 0.9779, respectively. Similarly, for IRF, 
the average IoU and Dice coefficients were 0.9314 and 0.9618, while for PED annotations, they were 0.8324 and 
0.9020. SHRM annotations yielded average IoU and Dice coefficients of 0.9530 and 0.9751, and IS/OS labeling 
showed averages of 0.9563 and 0.9793. The evaluation of annotators’ performance is presented in Fig. 2 and 
Supplementary Tables S1 and S2.
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Fig. 2  The inter and intra segemation evaluation. (a) Inter-annotator agreement analysis. The average Dice 
coefficient was from 0.9020 to 0.9793. The average IoU was from 0.8324 to 0.9577. (b) Intra-annotator agreement 
analysis. The average Dice coefficient was from 0.9685 to 0.9891. The average IoU was from 0.9431 to 0.9794.
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Moreover, to assess the intra-annotator consistency, three annotators independently performed pixel-level 
segmentation on the same 10 OCT B-scan images on different dates. The results are illustrated in Fig. 2b and 
Supplementary Tables S3 and S4. The average IoU and Dice coefficients for SRF were 0.9530 and 0.9738, for IRF 
they were 0.9794 and 0.9891, for PED annotations they were 0.9431 and 0.9690, for SHRM they were 0.9485 and 
0.9685, and for IS/OS labeling, they were 0.9675 and 0.9826.

Although pixel-level annotation of most structures has achieved good consistency, significant deviations have 
been observed in the annotation of PED and SHRM according to Fig. 2 and Supplementary Tables. This is mainly 
because these two types of lesions have a relatively small proportion of pixels in the AMD dataset, and the annotators 
did not obtain sufficient consistency recognition in the initial stage of dataset establishment. The inter-consistency 
and intra-consistency evaluation identifies potential challenges in the annotation process, providing a founda-
tion for improving the quality of collaborative annotation. All the final images were annotated after undergoing 
inter-consistency and intra-consistency evaluation, and all images were reviewed by the expert ophthalmologist.

Data Records
The AMD-SD is uploaded to the Figshare platform as a compressed file32. The extracted files are organized into 
one folder, one Microsoft Office Excel list, and two txt format files, named “Images” and “Demographics of the 
participants”, “training” and “validation”, respectively. In the “Images” folder, there are 156 sub-folders, each con-
taining all images of an eye. Each image consists of two parts, with the original OCT B-scan image on the left and 
the expert segmentation mask on the right. The naming convention for images is “n_x.png”, where “n” represents 
the eye ID and x represents the image number in a study. In the “Demographics of the participants” file, there 
are 5 columns. The first column represents the patient ID. The second column represents the eye ID. The third 
column represents the eye category. The fourth column represents the patient’s age. The fifth column represents 
the patient’s gender. The “training” and “validation” txt files store the specific image names for training and test-
ing, respectively, following an 80:20 split of the dataset. The final OCT B-scan segmentation masks are six-color 
images, with red pixels representing SRF, pink pixels representing IS/OS, blue pixels representing PED, green pix-
els representing IRF, yellow pixels representing SHRM, and black pixels representing the background of the OCT.

The dataset consists of 3049 OCT B-scan images along with their corresponding lesion area segmentation 
masks. All images have a resolution of 570 x 380 pixels. The key features of the database are summarized in 
Table 2. These images are from 156 eyes of 138 patients, with 61 females and 77 males. The average age of the 
patients is 66.7 years with a standard deviation of 9.1 years. All participants are of Asian descent.

Technical Validation
To showcase the technical effectiveness of the dataset and offer insights into its statistical quality, we conducted 
supervised OCT B-scan image segmentation experiments. The objective of these experiments was to establish 
benchmark classification metrics that can serve as a reference for future research. We employed four fundamen-
tal and widely used image segmentation frameworks, namely U-Net33, U-Net++34, Att-UNet35, and ResUNet36. 
These methods have a strong track record in medical image segmentation tasks. We randomly divided the OCT 

Item Value

Total number of participants 138

Number of eyes 156

Number of OCT B-scans 3,049

Age, year (mean  ±  s.d.) 66.7 (9.1)

Female (%) 61 (44.2%)

Table 2.  Data statistics of AMD-SD.

Metrics Type

Method

U-Net33 U-Net++34 Att-UNet35 ResUNet36

DICE

SRF 78.65 78.96 78.96 78.86

IRF 78.66 78.20 81.69 81.16

PED 79.62 77.37 79.61 81.88

SHRM 72.04 71.48 70.39 72.97

IS/OS 83.76 83.85 82.95 84.19

Mean 78.55 77.97 78.72 79.81

IoU

SRF 64.81 65.24 65.23 65.11

IRF 64.82 64.21 69.05 68.33

PED 66.14 63.10 66.13 69.33

SHRM 56.37 55.62 54.30 57.44

IS/OS 72.06 72.19 70.86 72.70

Mean 64.48 64.07 65.11 66.58

Table 3.  Baseline image segmentation model results.
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examination studies into 80% for training and 20% for testing. The baseline segmentation performance of five 
distinct target areas was evaluated using the Dice Similarity Coefficient as the metric. The results of the OCT 
segmentation metrics for different structures are presented in Table 3. Figure 3 displays various input images 
in the test set, their doctor-annotated ground truth, and the results of different models. Additionally, the data 
partitioning used for training is included in our publicly available dataset.

The segmentation results demonstrate the capability of existing baseline segmentation models to converge 
with AI models on our dataset. This validates that existing models can generally learn from this dataset, reflect-
ing a reliable segmentation. This further underscores the significance of our dataset in providing a foundational 
dataset for accurate assessment of wet AMD using OCT B-scan images.

Since our collected data all come from Cirrus-HD-5000, there may be potential performance differences on 
other brands of OCT devices. This is a limitation of our dataset that we must acknowledge. Furthermore, the cur-
rent publicly available OCT dataset for AMD only covers IRF, SRF, and PED, while we provide additional SHRM 
and IS/OS segmentation, which will have a significant impact on this field. Our future work will focus on filling the 
gaps in the publicly available dataset regarding AMD evaluation features and achieving more precise assessments.

Usage Notes
The complete dataset is available for download via the provided link. Users have the flexibility to divide the data-
set based on their specific study designs. It is expected that users will reference this paper in their research and 
recognize the dataset’s contribution to their studies.

Code availability
The code mentioned in this study can be found at https://github.com/tsinghuamedgao20/Basic-Seg-Experiment.

Received: 3 April 2024; Accepted: 2 September 2024;
Published: xx xx xxxx

References
	 1.	 Wong, W. L. et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a 

systematic review and meta-analysis. The Lancet Global Health 2, e106–e116 (2014).
	 2.	 Colijn, J. M. et al. Prevalence of age-related macular degeneration in europe: the past and the future. Ophthalmology 124, 1753–1763 

(2017).
	 3.	 Eisenstein, M. Age-related macular degeneration (2021).
	 4.	 de Guimaraes, T. A. C., Varela, M. D., Georgiou, M. & Michaelides, M. Treatments for dry age-related macular degeneration: 

therapeutic avenues, clinical trials and future directions. British Journal of Ophthalmology 106, 297–304 (2022).
	 5.	 Guymer, R. H. & Campbell, T. G. Age-related macular degeneration. The Lancet (2023).
	 6.	 Vottonen, P. Anti-vascular endothelial growth factors treatment of wet age-related macular degeneration: from neurophysiology to 

cost-effectiveness. Acta Ophthalmologica 96, 1–46 (2018).
	 7.	 Chandra, S. et al. Ten-year outcomes of antivascular endothelial growth factor therapy in neovascular age-related macular 

degeneration. Eye 34, 1888–1896 (2020).
	 8.	 Hussain, R. M., Shaukat, B. A., Ciulla, L. M., Berrocal, A. M. & Sridhar, J. Vascular endothelial growth factor antagonists: promising 

players in the treatment of neovascular age-related macular degeneration. Drug design, development and therapy 2653–2665 (2021).

Inputs Ground Truth U-Net U-Net++ Att-UNet ResUNet

Fig. 3  Comparison of visual segmentation results. Red, blue, green, yellow, and pink colors represent SRF, PED, 
IRF, SHRM, and IS/OS, respectively.

https://doi.org/10.1038/s41597-024-03844-6
https://github.com/tsinghuamedgao20/Basic-Seg-Experiment


7Scientific Data |         (2024) 11:1014  | https://doi.org/10.1038/s41597-024-03844-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

	 9.	 Cho, H. J. et al. Development of intraretinal fluid in neovascular age-related macular degeneration during anti–vascular endothelial 
growth factor treatment. American Journal of Ophthalmology 234, 6–14 (2022).

	10.	 Kodjikian, L. et al. Early predictive factors of visual loss at 1 year in neovascular age-related macular degeneration under 
anti–vascular endothelial growth factor. Ophthalmology Retina 6, 109–115 (2022).

	11.	 Bakri, S. J., Karcher, H., Andersen, S. & Souied, E. H. Anti–vascular endothelial growth factor treatment discontinuation and 
interval in neovascular age-related macular degeneration in the united states. American Journal of Ophthalmology 242, 189–196 
(2022).

	12.	 MacCumber, M. W. et al. Antivascular endothelial growth factor agents for wet age-related macular degeneration: an iris registry 
analysis. Canadian Journal of Ophthalmology 58, 252–261 (2023).

	13.	 Drexler, W. et al. Ultrahigh-resolution ophthalmic optical coherence tomography. Nature medicine 7, 502–507 (2001).
	14.	 Fujimoto, J. G. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nature biotechnology 21, 1361–1367 (2003).
	15.	 Treder, M., Lauermann, J. L. & Eter, N. Automated detection of exudative age-related macular degeneration in spectral domain optical 

coherence tomography using deep learning. Graefe’s Archive for Clinical and Experimental Ophthalmology 256, 259–265 (2018).
	16.	 Kermany, D. S. et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. cell 172, 1122–1131 (2018).
	17.	 Moraes, G. et al. Quantitative analysis of oct for neovascular age-related macular degeneration using deep learning. Ophthalmology 

128, 693–705 (2021).
	18.	 Xie, H., Xu, W., Wang, Y. X. & Wu, X. Deep learning network with differentiable dynamic programming for retina oct surface 

segmentation. Biomedical optics express 14, 3190–3202 (2023).
	19.	 Seeböck, P. et al. Unsupervised identification of disease marker candidates in retinal oct imaging data. IEEE transactions on medical 

imaging 38, 1037–1047 (2018).
	20.	 Motozawa, N. et al. Optical coherence tomography-based deep-learning models for classifying normal and age-related macular 

degeneration and exudative and non-exudative age-related macular degeneration changes. Ophthalmology and therapy 8, 527–539 (2019).
	21.	 Rim, T. H. et al. Detection of features associated with neovascular age-related macular degeneration in ethnically distinct data sets 

by an optical coherence tomography: trained deep learning algorithm. British Journal of Ophthalmology 105, 1133–1139 (2021).
	22.	 Schmidt-Erfurth, U. et al. Prediction of individual disease conversion in early amd using artificial intelligence. Investigative 

ophthalmology & visual science 59, 3199–3208 (2018).
	23.	 Yim, J. et al. Predicting conversion to wet age-related macular degeneration using deep learning. Nature Medicine 26, 892–899 

(2020).
	24.	 Romo-Bucheli, D., Erfurth, U. S. & Bogunović, H. End-to-end deep learning model for predicting treatment requirements in 

neovascular amd from longitudinal retinal oct imaging. IEEE Journal of Biomedical and Health Informatics 24, 3456–3465 (2020).
	25.	 Bogunović, H., Mares, V., Reiter, G. S. & Schmidt-Erfurth, U. Predicting treat-and-extend outcomes and treatment intervals in 

neovascular age-related macular degeneration from retinal optical coherence tomography using artificial intelligence. Frontiers in 
Medicine 9, 958469 (2022).

	26.	 Bogunović, H. et al. Retouch: The retinal oct fluid detection and segmentation benchmark and challenge. IEEE transactions on 
medical imaging 38, 1858–1874 (2019).

	27.	 Simader, C. et al. Morphologic parameters relevant for visual outcome during anti-angiogenic therapy of neovascular age-related 
macular degeneration. Ophthalmology 121, 1237–1245 (2014).

	28.	 Waldstein, S. M. et al. Predictive value of retinal morphology for visual acuity outcomes of different ranibizumab treatment regimens 
for neovascular amd. Ophthalmology 123, 60–69 (2016).

	29.	 Lai, T.-T., Hsieh, Y.-T., Yang, C.-M., Ho, T.-C. & Yang, C.-H. Biomarkers of optical coherence tomography in evaluating the 
treatment outcomes of neovascular age-related macular degeneration: a real-world study. Scientific Reports 9, 529 (2019).

	30.	 Pokroy, R. et al. Prognostic value of subretinal hyperreflective material in neovascular age-related macular degeneration treated with 
bevacizumab. Retina 38, 1485–1491 (2018).

	31.	 Kumar, J. B., Stinnett, S., Han, J. I. & Jaffe, G. J. Correlation of subretinal hyperreflective material morphology and visual acuity in 
neovascular age-related macular degeneration. Retina 40, 845–856 (2020).

	32.	 Author, T. Amd-sd: An optical coherence tomography image dataset for wet amd lesions segmentation. Figshare https://doi.
org/10.6084/m9.figshare.c.7157554.v1 (2024).

	33.	 Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image 
Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, 
Proceedings, Part III 18, 234–241 (Springer, 2015).

	34.	 Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N. & Liang, J. Unet++: Redesigning skip connections to exploit multiscale features in 
image segmentation. IEEE transactions on medical imaging 39, 1856–1867 (2019).

	35.	 Oktay, O., et al. Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018).
	36.	 Zhang, Z., Liu, Q. & Wang, Y. Road extraction by deep residual u-net. IEEE Geoscience and Remote Sensing Letters PP, 1–5 (2017).
	37.	 Chiu, S. J. et al. Validated automatic segmentation of amd pathology including drusen and geographic atrophy in sd-oct images. 

Investigative ophthalmology & visual science 53, 53–61 (2012).
	38.	 Farsiu, S. et al. Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical 

coherence tomography. Ophthalmology 121, 162–172 (2014).
	39.	 Srinivasan, P. P. et al. Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical 

coherence tomography images. Biomedical optics express 5, 3568–3577 (2014).
	40.	 Chiu, S. J. et al. Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema. 

Biomedical optics express 6, 1172–1194 (2015).
	41.	 Rashno, A. et al. Fully-automated segmentation of fluid regions in exudative age-related macular degeneration subjects: Kernel 

graph cut in neutrosophic domain. PloS one 12, e0186949 (2017).
	42.	 Gholami, P., Roy, P., Parthasarathy, M. K. & Lakshminarayanan, V. Octid: Optical coherence tomography image database. Computers 

& Electrical Engineering 81, 106532 (2020).
	43.	 Melinščak, M., Radmilović, M., Vatavuk, Z. & Lončarić, S. Annotated retinal optical coherence tomography images (aroi) database 

for joint retinal layer and fluid segmentation. Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije 
62, 375–385 (2021).

Acknowledgements
This work was supported by grants from the National Natural Science Foundation of China (82360204; 
82160203); the Natural Science Foundation Youth Fund Project Of Jiangxi Province (20224BAB216049); and 
the Science and Technology project of Jiangxi Administration of Traditional Chinese Medicine (2023B0368). 
National Natural Science Foundation incubation project of The Second Affiliated Hospital of Nanchang 
University (2022YNFY12004). The authors report there are no competing interests to declare.

https://doi.org/10.1038/s41597-024-03844-6
https://doi.org/10.6084/m9.figshare.c.7157554.v1
https://doi.org/10.6084/m9.figshare.c.7157554.v1


8Scientific Data |         (2024) 11:1014  | https://doi.org/10.1038/s41597-024-03844-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

Author contributions
Y.H., Y.G., and W.G. were responsible for the conceptualization and design of the study. Y.H., Y.G., W.L., and 
Z.Y. were responsible for data annotation. F.X., Z.C., Y.L., and X.X. contributed to data collection and assisted 
in manuscript writing. Y.H., W.G., and L.M. participated in the technical validation. X.Y., X.D., L.M., and G.L. 
collectively supervised this research’s progress. All authors contributed to the article and approved the submitted 
version.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.
org/10.1038/s41597-024-03844-6.
Correspondence and requests for materials should be addressed to X.Y., Y.D., L.M. or G.L.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial- 
NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribu-

tion and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) 
and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed mate-
rial. You do not have permission under this licence to share adapted material derived from this article or parts  
of it. The images or other third party material in this article are included in the article’s Creative Commons 
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Crea-
tive Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by-nc-nd/4.0/.
 
© The Author(s) 2024

https://doi.org/10.1038/s41597-024-03844-6
https://doi.org/10.1038/s41597-024-03844-6
https://doi.org/10.1038/s41597-024-03844-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/

	AMD-SD: An Optical Coherence Tomography Image Dataset for wet AMD Lesions Segmentation

	Background & Summary

	Methods

	Data collection. 
	Image annotation. 
	The inter-consistency and intra-consistency evaluation. 

	Data Records

	Technical Validation

	Usage Notes

	Acknowledgements

	Fig. 1 The workflow for establishing the AMD-SD (a) Data collection.
	Fig. 2 The inter and intra segemation evaluation.
	Fig. 3 Comparison of visual segmentation results.
	Table 1 Overview of Publicly Accessible OCT Datasets Related to AMD or macular edema.
	Table 2 Data statistics of AMD-SD.
	Table 3 Baseline image segmentation model results.




